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Abstract

Many grant applications have a preliminary stage where only a select group are invited

to submit a full application. Similarly, procurement contracts by governments are often

awarded through a two-stage procedure. We model and analyze such environments where

the designer cares about the style of the application as well as its quality. The designer

has the option of choosing an initial stage, where contestants can enter and learn about

their desirability while the designer learns about their style. We determine closed form

solutions for equilibrium outcomes and designer payoffs and use this to analyze design

questions regarding whether or not a second stage is desirable, different rules for deciding

who will advance, as with whether or not to communicate the number of contestants that

qualify for the second stage.
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1 Introduction

There are many examples of contests run in two stages. Often grant applications have a

preliminary stage where only some of the applications advance to the second stage. The

Leverhulme Foundation has several funding schemes that require two stages (for instance for

a research project grant): an outline application and a detailed application.1 In 2012, there

were 908 applications to this scheme approximately 50% made it to the second round and

40% of those received funding (20% of the original received funding). This two-stage process

is common for large grants of several UK funding agencies (NERC, ESRC, etc.) as well as

used in the establishment of centers for research excellence (I-CORE) in Israel. The latter had

26 out of 67 applications advance to the second stage of which 12 were chosen for funding.

In architecture, it is common to hold a contest for determining a building design. One

of the earliest examples was a contest for a design to rebuild the Houses of Parliament in

1836 after a fire. A recent prestigious example of such a contest is when the Mumbai city

museum ran a design competition for a $45 million for an additional wing (using Malcolm

Reading Consultants to run the competition). Expressions of interest were received from 104

architects worldwide with 8 teams shortlisted. The jury, which consisted of 11 distinguished

members, chose New York-based Steven Holl as the winner. There are also a plethora of

smaller architecture contests using two stages.2

We also note that such a practice is common in advertising. There is a call for a request

1The applications to the two stages do not differ in the general idea: there cannot be substantial differences
in the intentions, aims, objectives, personnel or budget between the two applications.

2The Garden Museum in South London sought an architect to take forward plans to extend the museum in
a second phase of renovation. In a two-stage contest, the value of the contract to the architects was estimated
between £380,000 and £420,000 and expressions of interest was due by January 20, 2013. It was announced
that up to five practices would be shortlisted for the job. In another advertisement, the Tricycle Theatre in
Kilburn, North London sought an architect for its £2.4 million refurbishment. There was no mention of how
many would be shortlisted. See http://www.bdonline.co.uk/home/competitions for other examples.
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for a proposal (RFP) sent to half a dozen ad agencies that asks not only background questions

and who will be on the core team, but creative questions about approach. After seeing the

RFP responses, the top two or three are invited to present the ideas (perhaps after feedback).3

Other examples include government procurement, talent show contests, and television series

pilots.

There are two characteristics about these contests that are worth noting: (i) This practice

appears to be most common in areas where a particular preference or style might be a major

factor in selecting the winner. (ii) It appears that sometimes (and sometimes not) the proposed

number of finalists is announced.

We find that (i) may be because the contestants are not aware of the preferences of the

designer, who may favor some contestants over others. This can be thought of the economics

grant committee either preferring theoretical research over empirical research or vice-versa.

The reason for (ii) is less obvious and may simply be a feature of the optimal contest design.

We suppose that style is an exogenous feature of a proposal, but quality is a function

of effort. For simplicity, we assume that the designer’s preference over style is dichotomous:

either preferred or not. We also assume for simplicity that the first stage is limited in scope

such that a contestant can put in the effort required for the designer to determine his or her

type or not put in the effort. This matches many real world contests where the first stage is

meant to weed out those with an inappropriate style. It may not be feasible to put in extra

effort or at least have that extra effort visible. Such may be the case in a two-stage grant

proposal where the first stage is limited to a 1000 word summary.

We model and analyze such environments where the designer wants to maximize the

3From personal correspondence with Rachel Greene, a Public Relations & Media Relations Consultant.
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best overall effort (as opposed to the total effort of the contestants) by a preferred style.

In designing the contest, the designer may choose between a one-stage contest and a two-

stage contest. The advantage of the two-stage contest is that the designer learns the type of a

contestant if that player puts forth some minimal effort. The disadvantage is that this minimal

effort does not contribute to the efforts in the second stage. If the designer chooses a two-stage

contest, the designer also has other options. He may choose to advance only a specific number

of contestants that satisfy his preferences or anyone that satisfies his preference. He may also

choose whether or not to announce how many made it to the second stage before it starts.

We analyze these under the condition as to whether or not the stage one effort needs to be

redone in the second stage.

Here we use a framework where information is symmetric among contestants and there

is complete information about the value of winning the contest (see Baye et al., 1996, and

more recently Kaplan et al., 2003, and Siegel, 2009). Recently there has been a number of

papers on multi-stage contests (see Sela, 2011, 2012, Segev and Sela, 2014a, 2014b as well

as experiments comparing one-stage to two-stage (see Sheremeta 2010). There has also been

research where the designer has preferences over style (see Kaplan, 2012). Also related to

our paper is research on entry in contests where there is potentially an unknown number of

entrants (see Fu et al., 2011, 2014, 2015, and Chen et al., 2015) as well as auctions with a

unknown number of bidders (see McAfee and McMillan, 1987). The contribution of this paper

is adding the possibility of a two-stage design to a contest where the designer cares about

style as well as quality.

The paper proceeds as follows. In the next section, we present the model, followed by

the equilibrium analysis in Section 3. We compare the various possibilities in Section 4 and
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conclude in Section 5.

2 The Contest Environment

There are N players competing in a contest for a prize of value V . Style is exogenous and

each contestant independently has a probability p of having a style that the designer desires

and (1 − p) of not having a desired style. The contest can be run in one or two stages.

Contestants decide how much effort to exert in each stage. The designer of the contest cares

only about the highest effort exerted in the last stage by a contestant of a style that he desires.

The designer is only able to determine the style of a contestant if that contestant’s effort is

m or above. Furthermore, awarding the prize to a contestant with a non-desired style is

prohibitively costly.

As a benchmark, we study a one-stage contest with a minimum effort of m and compare

this benchmark with several two-stage contest designs. In all the two-stage contests, the first

stage requires that contestants put in effort m in order to have the possibility of advancing.

Thus, each contestant doing so has his/her style revealed by the end of stage one. We note

that putting in more effort than m does not increase one’s chances of advancing. Thus, the

first stage is really about screening contestants. To focus the paper on this point, we assume

that V is large enough to ensure that all contestants will choose to enter in the first stage.

The two-stage contests differ in the following three aspects: whether there is minimal

effort required in the second stage, the criteria to qualify for the second stage, and information

revealed to qualifying contestants. The minimal effort in the second stage can be m (a 2m

environment) or zero (an m environment). (Note that we use this nomenclature since doing

so counts the aggregate minimal effort needed to participate in the second stage.) Whether
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it is a 2m or m environment may at times not be a choice of the designer, but an exogenous

feature of the environment. The designer can choose between two qualifying rules: (i) all those

that are discovered to have a desired style are asked back (all pass), or (ii) of the contestants

eligible to move to the second stage, two are randomly asked back (if there are indeed two)

(random two). Finally, the designer can choose to inform or not the contestants about the

number of contestants advancing to second stage (inform or not inform).

3 Equilibrium Analysis

In this section, we derive the equilibrium strategies and outcomes for several possible contest

designs. We start with the benchmark case of a one-stage contest and proceed to analyze

several families of two-stage contests.

3.1 Benchmark Case: One Stage

Here we examine the symmetric equilibrium where all contestants choose effort according to a

distribution function F . To ensure entry by all contestants, V must satisfy, (1−p)N−1pV −m ≥

0. For F to be part of an equilibrium, it must satisfy:

p[pF (x) + (1− p)]N−1V − x = (1− p)N−1pV −m. (1)

The RHS of (1) is the expected profit of putting in effort m, in which case it costs the

contestant m and that contestant wins only when he is the only contestant with the preferred

style (the probability of which is (1−p)N−1p). The LHS of (1) is the expected profit of putting

in x ≥ m. The probability of having the preferred style is p and, given this, the probability of
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winning is that each other contestant either does not have the preferred style (with probability

1−p) or has the preferred style but puts in less effort (with probability pF (x)). Both sides are

equal since in a mixed-strategy equilibrium, expected payoffs are constant over the support

of the equilibrium strategies.

Solving (1) for F (x) yields:

F (x) =

[
x−m
pV

+ (1− p)N−1
] 1
N−1

− (1− p)

p

=

[
(
1− p

p
)N−1 +

x−m

pNV

] 1
N−1

−
(1− p)

p

with support [m, pV
[
1− (1− p)N−1

]
+ m]. For example, if N = 3, we have F (x) =

[
x−m
pV

+(1−p)2
] 1
2
−(1−p)

p
with support [m, pV

[
1− (1− p)2

]
+m].

To determine the designer’s one-stage profits Πone we proceed to evaluate the expected

value of the highest effort put forth by a contestant with a preferred style. We define a

distribution G(x) by G(x) = pF (x) + (1 − p). The function G represents the distribution of

the effort that is preferred. Here, we replace the case where effort is not useful by an atom

of size (1 − p) at zero. Now Πone =
∫ x
0 xdG

N where G(x) =
[
(1− p)N−1 + x−m

pV

] 1
N−1

and

x = pV
[
1− (1− p)N−1

]
+m. Hence, Πone = m+ NpV

2N−1+
(N−1)pV (1−p)2N−1

2N−1 −(1−p)N−1(m(1−

p) + pV ).

Next, we consider the first of several two-stage contests.

3.2 Two Stages - All Pass

With two stages and all pass (denoted by AP), all the contestants that put forward effort

m in stage one and have the preferred style pass to the second stage. A contestant that
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makes it to the second stage learns that he has the preferred style. Also, depending upon the

information condition, the contestant may or may not know how many other contestants also

have a preferred style. In the latter case since all that have the preferred style make it to the

second stage, making it to the second stage does not affect a contestant’s estimate about how

many other contestants with a preferred style are competing in the second stage.

3.2.1 All pass: 2m, not inform

For full participation in stage one, we require

p(1− p)N−1V ≥ m(1 + p). (2)

The LHS of (2) is the expected probability of being alone in the second stage times the prize,

while the RHS of (2) is the expected minimum effort needed if a contestant puts in effort m

in stage one and again in stage two if advancing. Since a contestant is not informed in stage

two about how many others advanced, the contestant would always put forth at least effort

m.

Again we look for a symmetric equilibrium with a distribution function F that represents

effort in the second stage. For F to be part of an equilibrium, the corresponding G distribution

function must satisfy:

G(x)N−1V − x = (1− p)N−1V −m. (3)

The RHS of (3) is the expected profit of putting in effort m and winning with probability of

(1− p)N−1. The LHS of (3) is the expected profit of putting in x ≥ m. Note that as opposed

to (1), here at the second stage, each contestant already knows he has the preferred style.
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Thus, moving from one stage to two stages effectively increases the prize from pV to V .

Solving (3) for F (x) yields (by first solving for G(x)):

F (x) =

[
(1−p)N−1V+x−m

V

] 1
N−1

− (1− p)

p
=

=

[
(
1− p

p
)N−1 +

x−m

pN−1V

] 1
N−1

−
(1− p)

p

with support [m,V
[
1− (1− p)N−1

]
+m].

Proceeding similarly to the one-stage environment, we can calculate two-stage profits,

when contestants are not informed and must pay at least m in the second stage. Here,

ΠAP2m,NI =
∫ x
m
xdGN where G(x) =

[
(1− p)N−1 + x−m

V

] 1
N−1 and x = V

[
1− (1− p)N−1

]
+m.

Hence, ΠAP2m,NI = m−m(1− p)
N + NV

2N−1 + (1− p)
N−2V

[
(N−1)(1−p)N+1

2N−1 − (1− p)
]
.

3.2.2 All pass: m, not inform

This environment is identical to the previous one except for the fact there is no minimal bid

m required in the second stage. For full participation in stage one, we now require

p(1− p)N−1V ≥ m(1 + p). (4)

Again we look for a symmetric equilibrium with a distribution function F that represents

effort in the second stage. Looking at the second stage, for F to be part of an equilibrium,

the corresponding G distribution function must satisfy:

G(x)N−1V − x = (1− p)N−1V. (5)
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The RHS of (5) differs from the RHS of (3) in that m need not be expended in the second

stage. The LHS of (5) is identical to the LHS of (3).

Solving (5) for F (x) yields:

F (x) =

[
(1−p)N−1V+x

V

] 1
N−1

− (1− p)

p
=

=

[
(
1− p

p
)N−1 +

x

pN−1V

] 1
N−1

−
(1− p)

p

with support [0, V (1− (1− p)N−1)].

To determine the designer’s profits we proceed similarly to before, to obtain ΠAPm,NI =

∫ x
0 xdG

N where now G(x) =
[
(1− p)N−1 + x

V

] 1
N−1 and x = V (1−(1−p)N−1). Hence ΠAPm,NI =

(N−1)(1−p)2N−1−(2N−1)(1−p)N−1+N
2N−1 V .

3.2.3 All pass: 2m, inform

For full participation in stage one, we now require

p(1− p)N−1V ≥ 2m. (6)

With probability Np(1−p)N−1, only one contestant will participate in the second stage. Since

the contestant knows this, the designer will get m. For i ≥ 2, there will be i contestants in the

second stage with probability
(
N
i

)
pi(1−p)N−i, and the equilibrium must satisfy F (x)i−1V−x =

10



0 for all x ≥ m. Hence, each contestant bids according to the distribution function:

Fi(x) =






(
x
V

) 1
i−1 if x ≥ m,

(
m
V

) 1
i−1 x < m.

The designer’s profits are then given by ΠAP2m,I =
N∑

i=2

(
N
i

)
pi(1 − p)N−i

∫ V
m
xd
(
x
V

) i
i−1 +N ·

p(1− p)N−1m =
N∑

i=2

(
N
i

)
pi(1− p)N−i i

2i−1(V −m(
m
V
)

i
i−1 ) +N · p(1− p)N−1m.

3.2.4 All pass: m, inform.

For full participation in stage one, we require V p(1− p)N−1 > m.

With probability Np(1− p)N−1, only one contestant will participate in the second stage.

Since the contestant knows this, the designer will get 0. With probability
(
N
i

)
pi(1 − p)N−i,

there will be i ≥ 2 contestants in the second stage, the equilibrium distribution function F

must then satisfy F (x)i−1V − x = 0.

Hence, in equilibrium each contestant bids according to the distribution function:

Fi(x) =
( x
V

) 1
i−1

on the interval [0, V ].

This leads to the following payoff to the designer: ΠAPm,I =
N∑

i=2

(
N
i

)
pi(1−p)N−i

∫ V
0 xd

(
x
V

) i
i−1 =

V
N∑

i=2

(
N
i

)
pi(1− p)N−i i

2i−1 .
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3.3 Two Stages - Random-Two Pass

We now look at where the designer randomly chooses two contestants among those that have

the preferred style. With random-two pass (ran2 ), a contestant advancing to the second stage

learns something about the other contestants. The fact that a contestant was selected means

that he is more likely to be the only one with the preferred style (by Bayes’ rule).

Consider for example the case where N = 3 and p = 0.5. In all-pass, if a contestant makes

it to the second stage, the probability that he is the only one that advanced is 25%. In ran2,

if a contestant is preferred, then there is a 25% probability that he is the only one with a

preferred style, a 50% probability that there is one other contestant with a preferred style,

and a 25% probability that there are two others with a preferred style. When there are two

others with a preferred style, he advances with a 2/3 probability. In the other cases, he would

be always advance. Thus, the probability of being the only one that advanced given that one

advanced is 25
25+50+ 2

3
·25
≈ 27%.

3.3.1 Random Two: 2m, not inform

Denote by pa the probability of being the only remaining contestant given that a contestant

advances. We have pa =
(1−p)N−1

(1−p)N−1+
∑N−1
i=1 (

N−1
i )pi(1−p)N−1−i

2
i+1

= Np
2

(1−p)N−1
−Np−2(1−p)

(using the

same logic as above for N = 3).

In equilibrium, in stage 2, F (x) satisfies:

[(1− pa)F (x) + pa]V − x = paV −m.
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Solving for F (x) yields:

F (x) =
x−m

(1− pa)V
.

The designer’s payoff is then:

Πran22m,NI = Np(1− p)
N−1

∫ x

m

xdF + (1− (1− p)N −Np(1− p)N−1)

∫ x

m

xdF 2

= Np(1− p)N−1(m+
1

2
V (1− pa)) + (1− (1− p)

N
−Np(1− p)N−1)(m+

2

3
V (1− pa)).

3.3.2 Random Two: m, not inform

In equilibrium, in stage 2, F (x) satisfies:

[(1− pa)F (x) + pa]V − x = paV.

Solving for F (x) yields: F (x) = x
(1−pa)V

. The designer’s payoff is then given by Πran2m,NI =

Np(1−p)N−1
∫ x
0 xdF +(1− (1−p)

N −Np(1−p)N−1)
∫ x
0 xdF

2 = Np(1−p)N−1(12V (1−pa))+

(1− (1− p)N −Np(1− p)N−1)(23V (1− pa)).

3.3.3 Random Two: 2m, inform

If only one contestant participates in the second stage, then the contestant knows this and

the designer will get m (which is the minimum effort). If there are two contestants in the

second stage and this is commonly known, the equilibrium must satisfy F (x)V −x = 0 for all

x ≥ m. Thus, the overall expected profits are given by Πran22m,I = Np(1− p)
N−1m+ (1− (1−

p)N −Np(1− p)N−1)
∫ V
m
xdF 2 = Np(1− p)N−1m+(1− (1− p)N −Np(1− p)N−1)(2V3 −

2m3

3V 2
).
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3.3.4 Random Two: m, inform

If only one contestant participates in the second stage, then when in the inform design the

contestant knows he is the only contestant that advanced and the designer will get 0. When

there are two contestants in the second stage, the equilibrium must satisfy F (x)V − x = 0

for all V ≥ x ≥ 0. The designer’s expected profits are then Πran2m,I = (1− (1− p)N −Np(1−

p)N−1)
∫ V
0 xdF

2 = (1− (1− p)N −Np(1− p)N−1)(2V3 ).

4 Ranking the Designs

We now proceed to compare the various designs from the point of view of the designer. The

designer is interested in the expected highest effort by contestant with a preferred style. We

start by comparing the two qualification rules.

4.1 Random two pass versus all pass

Proposition 1 For N > 2, in any of the four two-stage designs, random two pass generates

higher revenue than all pass, that is, Πran22m,NI > Π
AP
2m,NI , Π

ran2
m,NI > Π

AP
m,NI , Π

ran2
2m,I > Π

AP
2m,I and

Πran2m,I > Π
AP
m,I .

Proof. The latter two can be shown by directly looking at the differences: Πran22m,I − Π
AP
2m,I =

(1− (1− p)N −Np(1− p)N−1)(2V3 −
2m3

3V 2
)− [

N∑

i=2

(
N
i

)
pi(1− p)N−i i

2i−1(V −m(
m
V
)

i
i−1 )] > (1−

(1− p)N −Np(1− p)N−1)(2V3 −
2m3

3V 2
)− [

N∑

i=2

(
N
i

)
pi(1− p)N−i 23(V −m(

m
V
)2)] = 0

and

Πran2m,I −Π
AP
m,I = (1− (1− p)

N −Np(1− p)N−1)(2V3 )− V
N∑

i=2

(
N
i

)
pi(1− p)N−i i

2i−1 >

(1− (1− p)N −Np(1− p)N−1)(2V3 )− V
N∑

i=2

(
N
i

)
pi(1− p)N−i 23 = 0.
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Figure 1: Difference of Πran22m,NI −Π
AP
2m,NI (divided by V ) versus p when n varies from 3 to 12.

Higher curve corresponds to higher n.

Intuition is that with all pass the profit is strictly lower when three or more contestants

have a preferred style. We show here the first two for the case of N = 3. The difference for

the 2m case is Πran22m,NI−Π
AP
2m,NI = V [

2p4(3p3−15p2+26p−15)
15(p2−3)

]. At p = 1/2, this is strictly positive.

There are real roots at 0 and 1.28. Thus, the difference for 2m is strictly positive for any

p ∈ (0, 1). Likewise, the difference for the m case is Πran2m,NI −Π
AP
m,NI = V [

p2(3p3−15p2+26p−15)
15(p2−3)

].

At p = 1/2, this is strictly positive. There are real roots at 0 and 1.58. Again, this shows

that the difference for m is strictly positive for any p ∈ (0, 1).

For N > 3, the exercise is similar. By plotting the difference for both cases in Figures 1

and 2, we see that the difference is increasing in N and hence always positive.4

This supports the use of random two rather than all pass, yet we often see the all pass

design. This might be due to considerations outside the scope of our model. First, when

4We have also done this up to N=200.
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Figure 2: Difference of Πran2m,NI − Π
AP
m,NI (divided by V ) versus p when n varies from 3 to 12.

Higher curve corresponds to higher n.

just two contestants pass, cooperation and manipulations on part of the two, leading to

reduced payoff for the designer, is more likely than when there are several more contestants.

Second, there might be public outcry against the arbitrary decision, due to possible concerns

regarding possible discrimination and favoritism on part of the designer. Next we compare

the desirability of requiring a minimum effort in the second stage as well.

4.2 Minimum effort m versus 2m

Here we find that in the case where contestants are not informed, it is better to have a

minimum effort in both stages. This is shown in the following two propositions.

Proposition 2 ΠAPm,NI < Π
AP
2m,NI .

Proof. Note that ΠAP2m,NI =
∫ V [1−(1−p)N−1]+m
m

xd
[
(1− p)N−1 + x−m

V

] N
N−1 and ΠAPm,NI =

∫ V [1−(1−p)N−1]
0 xd

[
(1− p)N−1 + x

V

] N
N−1 . We perform a change of variables z = x − m to
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obtain

ΠAP2m,NI =

∫ V [1−(1−p)N−1]

0
(z +m)d

[
(1− p)N−1 +

z

V

] N
N−1

,

= ΠAPm,NI +

∫ V [1−(1−p)N−1]

0
md

[
(1− p)N−1 +

z

V

] N
N−1

> ΠAPm,NI .

We now make the comparison for the case of ran /2.

Proposition 3 Πran2m,NI < Π
ran2
2m,NI .

Proof. The difference of profits is Πran22m,NI −Π
ran2
m,NI = (1− (1− p)

N )m > 0.

In the case where contestants are informed regarding the number of contestants who

qualified, the ranking depends on p. We see this in the next two propositions.

Proposition 4 (i) Πran2m,I < Π
ran2
2m,I if p is close to 0; (ii) Π

ran2
m,I > Π

ran2
2m,I if p is close to 1.

Proof. Note that Πran22m,I− Πran2m,I = Np(1 − p)N−1m + (1 − (1 − p)N −Np(1 − p)N−1)(2m
3

3V 2
).

When p = 1, this expression is negative. When p = 0, the expression is 0. The derivative of

the expression w.r.t. p at 0 equals Nm, which is strictly positive.

Proposition 5 (i) ΠAPm,I < Π
AP
2m,I if p is close to 0; (ii) Π

AP
m,I > Π

AP
2m,I if p is close to 1.

Proof. We have ΠAP2m,I−Π
AP
m,I = −

N∑

i=2

(
N
i

)
pi(1−p)N−i i

2i−1(m(
m
V
)

i
i−1 )+N ·p(1−p)N−1m. The

proof is similar to that of the previous proposition. When p = 1, this expression is negative.

When p = 0, the expression is 0. The derivative of the difference w.r.t. p at 0 equals Nm,

which is strictly positive.

The intuition for both the above propositions is as follows. If p ∼ 0, then anytime one

enters they are likely to be alone and choose efforts close to the minimum effort. If p ∼ 1, the

minimum effort causes contestants to sometimes drop out when two or more advance.
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We remark that it is plausible that in some types of contests the designer cannot choose

between the two environments of m and 2m. For instance, the designer may prefer a 2m

design, but politically it would be difficult not to award a contract when there is a contestant

with a suitable style and the designer knows this.

We now proceed to compare informing and not informing contestants.

4.3 Informing or not informing

Here we answer the question of whether or not the designer should let contestants know how

many advance to the second stage. McAfee and McMillan (1987) show that with standard

auctions and risk-neutrality there is no difference in revenue between informing and not in-

forming, but with constant absolute risk-aversion, not informing is superior. As opposed to

the auction literature, in our setup all the contestants pay their costs. With contests un-

like auctions (where effort is only expended by the winner), there is a distinction between

the objective of maximizing the highest effort and the objective of maximizing the total ef-

fort. Serena (2016) also looks at information revelation in contests but with the objective of

maximizing total effort and the information is about the rival’s types.

We note that not informing requires a policy of committing to not making announcements.

Otherwise, there would be an incentive to state when there is a relatively large number of

contestants in the second stage. This would then allow the contestants to deduce the state

based upon what is and what is not revealed. For example, if N = 2, when both make it to

the second stage it is worthwhile to say so. If only one, then it makes sense to stay quiet. We

now proceed to rank the inform and not inform policies for the various scenarios and start

with the all-pass design.
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Proposition 6 (i) ΠAPm,I < Π
AP
m,NI : for N = 2 or N > 2 and small p. (ii) ΠAPm,I > Π

AP
m,NI :

for N > 2 and large p.

Proof. We note that for N > 2, we have ΠAPm,I = Π
AP
m,NI for p = 0 and p = 1. Furthermore at

p = 1, the derivative of the difference (ΠAPm,NI −Π
AP
m,I) is positive and at p = 0, the derivative

of the difference is 0 with a positive second derivative.

Proposition 7 (i) ΠAP2m,I < Π
AP
2m,NI for N = 2 or N > 2 and small p.

(ii) It is possible that ΠAP2m,I > Π
AP
2m,NI for large N and small m.

Proof. For N > 2, when p = 0, we have ΠAP2m,NI = ΠAP2m,I = 0 and the derivative of

ΠAP2m,NI −Π
AP
2m,I is positive. Also, at p = 1, the difference is positive for m > 0. However, this

inequality is not satisfied for all parameter values.

As we see in the above propositions, that the ranking is ambiguous when N > 2 in that it

depends upon p. However, as we now see in the random-two pass environment, the ranking

is unequivocal in favor of not informing. We see this in the following proposition.

Proposition 8 Πran2m,NI > Π
ran2
m,I and Πran22m,NI > Π

ran2
2m,I .

Proof. Looking at the difference Πran2m,NI −Π
ran2
m,I =

Np(1− p)N−1(12V (1− pa)) + (1− (1− p)
N −Np(1− p)N−1)(23V (−pa))

= V
Np(2(1− p) + (1− p)N (1− 3( 1

1−p)
N−1 + p(N − 1))

3(1− p)(2− 2( 1
1−p)

N−1 + p(N − 2))

For N = 2, this equals V times p2(1− p)/3. For N = 3, this equals V times

(1− p)2p2(3− 2p)

3− p2
.
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Figure 3: Difference of Πran2m,NI − Π
ran2
m,I (divided by V ) versus p when n varies from 2 to 12.

Higher n corresponds to a left shift.

For N = 4, this equals V times

2(1− p)3p2(6− 8p+ 3p2)

3(2− p2(2− p))
.

These expressions (for N = 2, 3, 4) are strictly positive for 0 < p < 1. For N > 4, the exercise

is similar. By plotting the difference in Figure 3, we see that the difference is positive.5 We

also have Πran22m,NI −Π
ran2
2m,I =

Np(1− p)N−1(12V (1− pa)) + (1− (1− p)
N −Np(1− p)N−1)(m− 2

3V (pa)−
2m3

3V 2
) =

(Πran2m,NI − Π
ran2
m,I ) + (1 − (1 − p)

N − Np(1 − p)N−1)(m −
2m3

3V 2
) > Πran2m,NI − Π

ran2
m,I > 0 (for

0 < p < 1).

5We have also done this up to N = 200.
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4.4 One stage versus two stages

We finally address the basic design question of whether or not the contest should be a one or

two stage competition.

Proposition 9 Πone < ΠAP2m,NI .

Proof. We note thatΠone =
∫ pV [1−(1−p)N−1]+m
0 xd

[
(1− p)N−1 + x−m

pV

] N
N−1

whereasΠAP2,2m,NI =

∫ V [1−(1−p)N−1]+m
m

xd
[
(1− p)N−1 + x−m

V

] N
N−1 . Since p < 1, the inequality follows by first-

order stochastic dominance.

Profits of ΠAPm,NI and Π
one cannot be unequivocally ranked.

Proposition 10 Πone > ΠAPm,NI for large p, Π
one < ΠAPm,NI for small p and m.

Proof. For p close to 1, we have Πone ≈ ΠAP2m,NI , thus Π
one > ΠAPm,NI . For small p and small

m, the effective prize is higher in two stages without the impact of m, thus we have a higher

ΠAPm,NI .

Intuitively, a small p favors two stages by increasing the effective prize. A higher m makes

contestants more aggressive if the prize is large. Which effect is higher, determines the higher

profit.

Proposition 11 Πone < Πran22m,NI .

Proof. Since Πran22m,NI > Π
AP
2m,NI and Π

one < ΠAP2m,NI .

We note that while Πone < Πran22m,NI , it could still be the case that Π
one > Πran2m,NI for large

p (and small N). We see this for N = 2 since then ΠAPm,NI = Π
ran2
m,NI .

The above findings from all the sections show that Πran22m,NI is the largest profit the designer

can obtain. However, to obtain this profit will require the designer to be able to commit to

21



both not inform contestants about the number making it to the second stage as well as being

able to commit to a minimum bid in the second stage.

5 Conclusion

We analyzed contest environments where the designer cares about the style and quality of the

winning effort. We considered four design issues: whether to use one stage or two, requiring a

minimum bid in both stages, whether to advance all qualified contestants or to place a limit,

and whether or not to inform contestants about the number of contestants that advance to

the second stage. These, for the most part, can be observed in actual contests run.

We found closed form solutions for the equilibrium strategies and expected designer’s prof-

its for the various contest designs. We then examined rankings between several design options.

While some can be unequivocally ranked, other rankings were dependent upon the parameters

defining the environment. Overall, we found that the design maximizing the highest effort is a

random two design where there is no information given about the number that make it to the

second stage and there is a minimum bid in each stage. However, there may be many reasons

why such a design cannot be used. For instance, limiting the number of contestants that

advance may cause concern about favoritism on part of the designer. Requiring a minimum

standard in the second stage as well as the first stage could be problematic since not awarding

a contract to a company that one knows is suitable may not be a credible threat. Hence,

there is a need to understand rankings beyond the first-best design.

There are many ways to expand our work. While the purpose of this work is to focus

on screening by having a two-stage mechanism, it is possible to look at parameters where

the contestants’ willingness to enter in the first stage is not ensured. It is also worthwhile to
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have contestants with heterogeneous abilities. In this case, it may be superior to allow more

than two contestants to advance. Also, one can examine social welfare issues and different

objective functions of the designer (such as total effort). Finally, one can change the model

to a scenario where the chance of having a desired style depends upon the effort put forth in

stage one.
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