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In this paper, we offer for two-person games an alternative characterization of

Iterated Kalai-Smorodinsky-Nash Compromise (IKSNC), which was introduced

and first characterized by Saglam (2016) for n-person games. We present an

axiom called Γ-Decomposability, satisfied by any solution that is decomposable

with respect to a given reference solution Γ. We then show that the IKSNC

solution is uniquely characterized by Γ-Decomposability whenever Γ satisfies

the standard axioms of Independence of Equivalent Utility Representations and

Symmetry, along with three additional axioms, namely Restricted Monotonicity

of Individually Best Extensions, Weak Independence of Irrelevant Alternatives,

and Weak Pareto Optimality under Symmetry.
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1 Introduction

In a recent paper, Saglam (2016) proposed a new n-person bargaining solution,

called Iterated Kalai-Smorodinsky-Nash Compromise (IKSNC), which recon-

ciles between the well-known solutions of Nash and Kalai-Smorodinsky using

no more information than is already contained in these solutions. He also

showed that this new solution can be characterized by a single axiom called
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Kalai-Smorodinsky-Nash Decomposability, which requires that the outcome of

the solution on any bargaining problem can be obtained by first calculating the

referential compromise point at which each player receives the minimum of the

utility payoffs he or she would have received under the Kalai-Smorodinsky and

Nash solutions, and then adding this point to the solution of the subproblem

admitting it as both the starting and the disagreement point.1

The procedure of repeated use of a concept for defining a solution was in-

troduced by Raiffa (1953) in the definition of the discrete (sequential) Raiffa

solution. For an alternative characterization of the same solution, this proce-

dure was recently translated by Trockel (2015) into an axiom, called Repeated

Application of the Same Solution (RASS), which is a weakening of an earlier

axiom of Kalai (1977), called Step by Step Negotiations.2 The axiom of RASS

requires that for any problem including a bargaining set S and a disagreement

point d in S, the solution on (S, d) can be obtained by calculating the solution

on a reduced problem (S′, d′) instead, where d′ is the solution on the largest

hyperplane game (SH
d , d) with SH

d ⊆ S and S′ is the set of utilities in S not

smaller than d′. While the IKSNC solution does not satisfy the axiom of RASS

by Trockel (2015), it satisfies, for two-person games, a similar property which we

call Γ-Decomposability.3 Given a referential solution Γ, this axiom is satisfied

by any solution F if it chooses on any (well-defined) problem S an allocation

point that can be obtained by adding the reference solution point Γ(S) to the

solution of F on the utilities in S that are not smaller than Γ(S).

The main result of this paper is that in a two-person bargaining setup the IK-

SNC solution is the unique solution that satisfies the axiom of Γ-Decomposability

when the solution Γ satisfies the axioms of IEUR and SY along with three addi-

1The solution of Saglam (2015) can be obtained by the repeated use of an axiom of Rach-

milevitch (2014), called Kalai-Smorodinsky-Nash Robustness (KSNR). This axiom requires

that each agent receives at least the minimum of the utility payoffs he or she would have

received under the Kalai-Smorodinsky and Nash solutions.

2This axiom of Kalai (1977) requires that for any two bargaining problems S and S′ with

S′ ⊇ S and the disagreement points normalized to zero, the solution on S′ can be obtained

by first calculating the solution on S and then taking it to be the starting point for the

distribution of the utilities in S′ to calculate the solution on this normalized set.

3Various forms of decomposability axioms were earlier used by Salonen (1988), Rachmile-

vitch (2012), Saglam (2014), and Trockel (2014), among others.
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tional axioms, namely Restricted Monotonicity of Individually Best Extensions

(RMIBE), Weak Independence of Irrelevant Alternatives (WIIA), and Weak

Pareto Optimality under Symmetry (WPO-S). Altogether, these five axioms

uniquely characterize a solution called Kalai-Smorodinsky-Nash Compromise

(KSNC), which selects the aforementioned referential compromise point at each

bargaining problem and yields the IKSNC solution when indefinitely repeated.

WPO-S requires the solution to lie on the weak Pareto frontier of the bargaining

problem whenever it is symmetric. Clearly, this axiom weakens WPO, a com-

mon axiom of Kalai-Smorodinsky and Nash solutions not satisfied by the KSNC

solution. Likewise, WIIA weakens the axiom of IIA, which is also not satisfied

by the KSNC solution. WIIA demands that if a bargaining set S contracts to a

subset S′ that contains for each player the individually best extension of the so-

lution on S, then for each player the individually best extension of the solution

on S and on S′ must be the same. Finally, the axiom of RMIBE requests that

if a bargaining set S expands to a set S′ with the ideal point being unchanged,

then the individually best extension of the solution on S′ for some player must

be weakly Pareto superior to the individually best extension of the solution on S

for at least one of the players. In our characterization result, the axiom of WIIA

is needed because of the dependence of the KSNC solution on the Nash solu-

tion. On the other hand, the axiom of RMIBE accounts for the dependence of

the KSNC solution on the Kalai-Smorodinsky solution. However, RMIBE nei-

ther implies nor is implied by the Restricted Monotonicity axiom used by Roth

(1979) in an alternative characterization of the Kalai-Smorodinsky solution for

two-person games.

The paper is organized as follows: Section 2 introduces the basic structures

and Section 3 presents our axiomatization results. Finally, Section 4 contains

some concluding remarks.

2 Basic Structures

We consider a two-person bargaining problem (simply a problem) denoted by

a nonempty subset S of R2
+, representing von Neumann-Morgenstern utilities

attainable through the cooperative actions of two agents. If the agents fail to

agree on any point in S, then each of them gets zero utility (i.e., the disagreement
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utility is normalized yo zero). We also assume that

(a) S is compact and convex and there exists x ∈ S such that x > 0;4

(b) for all x, y ∈ R
2
+, i.e., if x ∈ S and x ≥ y ≥ 0, then y ∈ S (comprehen-

siveness or the possibility of free disposal of utility).

Let Σ2
0 denote the set of all 0-normalized two-person bargaining problems

satisfying the above assumptions. We define a solution F on Σ2
0 as a mapping

from Σ2
0 to R

2
+ such that for each S ∈ Σ2

0, F (S) ∈ S. The solution by Nash

(1950) maps each problem S ∈ Σ2
0 to the point N(S) = argmaxx∈S x1x2, at

which the product of players’ payoff gains from agreement is maximized. Below,

we will present the set of axioms used by Nash (1950) for an arbitrary solution

F on Σ2
0.

Let the weak and the strong Pareto frontier of any set S ∈ R
2
+ be respec-

tively defined as WP (S) = {x ∈ S | y > x implies y /∈ S} and P (S) = {x ∈

S | y ≥ x and y 6= x implies y /∈ S}.

Weak Pareto Optimality (WPO): If S ∈ Σ2
0, then F (S) ∈ WP (S).

Any set S ∈ R
2
+ is said to be symmetric if (x1, x2) ∈ S implies (x2, x1) ∈ S.

Symmetry (SY): If S ∈ Σ2
0 and S is symmetric, then F1(S) = F2(S).

Let Λ be the set of all λ = (λ1, λ2) where each λi : R → R is a positive affine

function, and let λ(S) = {λ(x) : x ∈ S}.

Independence of Equivalent Utility Representations (IEUR): If S ∈ Σ2
0

and λ ∈ Λ, then F (λ(S)) = λ(F (S)).

Independence of Irrelevant Alternatives (IIA): If S, S′ ∈ Σ2
0, S ⊇ S′, and

F (S) ∈ S′, then F (S′) = F (S).

4Given two vectors x and y in R
2
+
, x > y means xi > yi for all i ∈ N and x ≥ y means

xi ≥ yi for i = 1, 2.
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Nash (1950) showed that his solution is the unique solution that satisfies the

axioms of IEUR, IIA, SY, and WPO. In fact, the Nash solution satisfies the

strong version of the Pareto optimality, as well.

Pareto Optimality (PO): If S ∈ Σ2
0, then F (S) ∈ P (S).

While the axioms of IEUR, SY, and WPO are satisfied by many well-known

solutions and are therefore called the standard axioms in the bargaining liter-

ature, IIA has been a controversial axiom, having led the researchers to seek

for alternative solutions that would satisfy more plausible axioms, possibly in

addition to the standard axioms. In that respect, a well-known alternative is the

Kalai-Smorodinsky solution (Raiffa, 1953; Kalai and Smorodinsky, 1975), which

is based on the ideal (utopia) point of the given bargaining problem. Formally,

for any bargaining set S, let ai(S) denote the maximal utility agent i can expect

in S, i.e., ai(S) = max{xi : x ∈ S}. Then, for any bargaining problem S, the

point a(S) = (a1(S), a2(S)) is called the ideal point. The Kalai-Smorodinsky so-

lution selects in each bargaining set the maximal point on the line segment join-

ing the disagreement point to the ideal point. So, it maps each problem S ∈ Σ2
0

to the point KS(S) ∈ WP (S) such that KS1(S)/KS2(S) = a1(S)/a2(S), im-

plying that each player’s payoff gain from agreement has the same proportion

to his or her ideal payoff gain from agreement. Kalai (1975) showed that this

solution is the only solution that satisfies IEUR, SY, WPO, and the following

axiom. (In fact, for two-person games the Kalai-Smorodinsky solution satisfies

PO, as well.)

Individual Monotonicity (IM): If S, S′ ∈ Σ2
0, S

′ ⊇ S, and aj(S
′) = aj(S),

then Fi(S
′) ≥ Fi(S) for i 6= j.

For two-person problems IM can be replaced by a weaker axiom called Re-

stricted Monotonicity, as shown by Roth (1979). This axiom requires that both

players should weakly benefit from an expansion of the bargaining set if the

ideal point does not change.

Restricted Monotonicity (RM): If S, S′ ∈ Σ2
0, S

′ ⊇ S, and a(S′) = a(S),
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then F (S′) ≥ F (S).

From the characterization results of the Kalai-Smorodinsky and Nash solu-

tions for two-person games, it should become evident that these two solutions are

distinguished from each other only by whether they possess RM or IIA. In sit-

uations where it may be necessary to reconcile between the Kalai-Smorodinsky

and Nash solutions (or alternatively between the axioms of RM and IIA), one

can use the compromise point in Rachmilevitch (2014) to define a benchmark

solution. Formally, given any problem S, the said compromise point is the al-

location C(S) in S such that Ci(S) = min{KSi(S), Ni(S)} for every i ∈ {1, 2}.

Then, consider the solution that maps each problem S ∈ Σ2
0 to the point C(S).

We will call this solutionKalai-Smorodinsky-Nash Compromise (KSNC).

Obviously, KSNC is not a desirable solution because it does not satisfy

WPO. However, as observed by Saglam (2016), one can iterate KSNC to obtain

a limit point on the weak Pareto frontier of a given problem. Formally, given

any problem S ∈ Σ2
0 and any point a ∈ S, define S − {a} = {y ∈ R

2 : y =

x− a for some x ∈ S}. Then, consider the sequence of points (ct(S))∞t=0 where

c0(S) = 0, and ct(S) = ct−1(S) + C((S − {ct−1(S)}) ∩ R
2
+) for each integer

t ≥ 1. (Note that in this definition c1(S) = C(S).) Clearly, limt→∞ ct(S) ∈ S.

The solution that maps each problem S ∈ Σ2
0 to the point limt→∞ ct(S) is

called, by Saglam (2016), Iterated Kalai-Smorodinsky-Nash Compromise

(IKSNC).

3 Results

We will first study the KSNC solution in its relation to the axioms introduced

in Section 2. (Below, we denote by co(S) the convex-hull of the set S.)

Remark 1. The KSNC solution satisfies both of the axioms IEUR and SY, but

it does not satisfy any of the axioms IIA, RM, and WPO.

Proof. Below, we will check for each axiom in the remark.

IEUR: Let S ∈ Σ2
0. Since the solutions of Nash (N) and Kalai-Smorodinsky

(K) both satisfy IEUR, for any vector of positive affine functions λ = (λ1, λ2)
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it is true that N(λ(S)) = λ(N(S)) and K(λ(S)) = λ(K(S)). Then, Ci(λ(S)) =

min{Ki(λ(S)), Ni(λ(S))} = λ(min{Ki((S)), Ni((S))} = λ(Ci(S)) for every i ∈

{1, 2}. Thus, C satisfies IEUR.

IIA: Let S = co{(0, 0), (0, 1), (1, 1), (2, 0)}. Clearly, S ∈ Σ2
0. It is easy to

check that N(S) = (1, 1) and K(S) = (4/3, 2/3). Therefore, C(S) = (1, 2/3).

Now, consider

S′ = co{(0, 0), (0, 1), (1, 1), (4/3, 2/3), (4/3, 0)}.

Clearly, S′ ∈ Σ2
0, S ⊇ S′, and C(S) ∈ S′. Also, it is easy to check that

N(S′) = (1, 1) while K(S′) = (8/7, 6/7), implying C(S′) = (1, 6/7). Since

C(S′) 6= C(S), we conclude that C does not satisfy IIA.

SY: Let S ∈ Σ2
0 be such that S is symmetric. Since both of the solutions

N and K satisfy SY and WPO, N(S) = K(S) and N1(S) = N2(S). Then,

C(S) = N(S), implying C1(S) = C2(S). Thus, C satisfies SY.

RM: Consider the problems

S = co{(0, 0), (0, 1), (10/7, 3/7), (2, 0)}

and

S′ = co{(0, 0), (0, 1), (2/3, 1), (2, 0)}.

Apparently, S, S′ ∈ Σ2
0, S

′ ⊇ S, and a(S′) = a(S) = (2, 1). One can easily check

that K(S′) = (6/5, 3/5) and N(S′) = (1, 3/4), implying C(S′) = (1, 3/5). On

the other hand, we have K(S) = (10/9, 5/9) and N(S) = (5/4, 1/2), implying

C(S) = (10/9, 1/2). It follows that the inequality C(S′) ≥ C(S) does not hold.

So, C does not satisfy RM.

WPO: Reconsider from above S′ = co{(0, 0), (0, 1), (2/3, 1), (2, 0)} ∈ Σ2
0 with

K(S′) = (6/5, 3/5) and N(S′) = (1, 3/4), implying C(S′) = (1, 3/5). One can

easily check that y ≡ [K(S′) +N(S′)]/2 = (44/40, 27/40) ∈ S′ and y > C(S′).

So, C(S′) /∈ WP (S), implying that C does not satisfy WPO. �

Now, we will axiomatize the KSNC solution after introducing a number of

axioms defined for an arbitrary solution F on Σ2
0. We will first weaken WPO.
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Weak Pareto Optimality under Symmetry (WPO-S): If S ∈ Σ2
0 is such

that it is symmetric, then F (S) ∈ WP (S).

For any problem S ∈ Σ2
0, let us denote by bi(S, y) the best allocation player

i can expect in P (S), given that agent j 6= i obtains at least yj units of utility.

We will call the allocation bi(S, y) the individually best extension of y on S for

player i.

Weak Independence of Irrelevant Alternatives (WIIA): If S, S′ ∈ Σ2
0,

S ⊇ S′, and bi(S, F (S)) ∈ S′ for every i ∈ {1, 2}, then there exists j ∈ {1, 2}

such that bj(S′, F (S′)) = bj(S, F (S)).

WIIA simply requires that if a bargaining set S contracts to a subset S′ that

contains for every player the individually best extension of the solution on S,

then for some player the individually best extension of the solution on S and S′

must be the same. This axiom weakens the independence axiom, IIA, of Nash

(1950), as illustrated by the below remarks.

Remark 2. IIA implies WIIA.

Proof. Let F be a solution on Σ2
0 that satisfies IIA and let S, S′ ∈ Σ2

0 be

such that S ⊇ S′ and bi(S, F (S)) ∈ S′ for every i ∈ {1, 2}. Then F (S) ∈ S′

by the comprehensiveness of S′. On the other hand, IIA implies that F (S′) =

F (S). Then, we have b1(S′, F (S′)) = b1(S′, F (S)). Note that b1(S, F (S)) ∈

S′ by assumption and b1(S, F (S)) ∈ P (S) by the definition of b1. Thus,

b1(S, F (S)) ∈ S′ ∩ P (S). Moreover, [S′ ∩ P (S)] ⊆ P (S′). So, b1(S, F (S)) ∈

P (S′). Since we also have b1(S′, F (S)) ∈ P (S′) by the definition of b1, we

must have b1(S′, F (S)) = b1(S, F (S)). It then follows that b1(S′, F (S′)) =

b1(S, F (S)), implying that F satisfies WIIA. �

Remark 3. WIIA does not imply IIA.

Proof. Let S, S′ ∈ Σ2
0 be such that S ⊇ S′, and bi(S,C(S)) ∈ S′ for every

i ∈ {1, 2}. We have Ci(S) = min{KSi(S), Ni(S)} for every i ∈ {1, 2}, by the

definition of the KSNC solution. Since N satisfies PO, there exists k ∈ {1, 2}
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such that bk(S,C(S)) = N(S), implying N(S) ∈ S′ due to the assumption

about S′. Moreover, N(S′) = N(S), since N satisfies IIA. By the definition of

C, it follows that there exists j ∈ {1, 2} such that Cj(S
′) = Nj(S

′). Along with

Nj(S
′) = Nj(S), this implies Cj(S

′) = Nj(S). Then, for k 6= j we must have

bk(S′, C(S′)) = N(S), implying bk(S′, C(S′)) = bk(S,C(S)). So, the KSNC

solution satisfies WIIA. On the other hand, Remark 1 shows that the KSNC

solution does not satisfy IIA. �

Restricted Monotonicity of Individually Best Extensions (RMIBE): If

S, S′ ∈ Σ2
0, S

′ ⊇ S, and a(S′) = a(S), then there exists j ∈ {1, 2} and k ∈ {1, 2}

such that bj(S′, F (S′)) ≥ bk(S, F (S)).

The above axiom requires that if a bargaining set S expands to a set S′ with

no change in the ideal point, then the individually best extension of the solu-

tion on S′ for some player must be weakly Pareto superior to the individually

best extension of the solution on S for at least one of the players. As will be

shown below, this new axiom neither implies nor is implied by the axiom of RM.

Remark 4. RMIBE does not imply RM.

Proof. Let Ŝ = co{(0, 0), (1, 0), (0, 1)}. Clearly, Ŝ ∈ Σ2
0. Let F be a solution

on Σ2
0 such that

F (S̃) =

{

(3/4, 0) if S̃ = Ŝ,

(1/2, 0) if S̃ 6= Ŝ.

Step 1: Let S, S′ ∈ Σ2
0 be such that S′ ⊇ S and a(S′) = a(S). If S′ = S, then

the condition for RMIBE trivially holds. So, let S′ 6= S. First assume that S =

Ŝ. Then, F (S) = (3/4, 0), whereas F (S′) = (1/2, 0), since S′ 6= Ŝ. It follows

that b1(S′, F (S′)) = b1(S, F (S)) = (1, 0) since a(S′) = a(S) by assumption

and a(S) = a(Ŝ) = (1, 1). Therefore, for j = 1 and k = 1, the inequality

bj(S, F (S)) ≥ bk(S′, F (S′)) is satisfied. Now, assume that S′ 6= Ŝ. Then, we

must have F (S′) = F (S) = (1/2, 0), implying b1(S′, F (S′)) ≥ b1(S, F (S)) since

S′ ⊇ S. So, it is true that for j = 1 and k = 1, the inequality bj(S, F (S)) ≥

bk(S′, F (S′)) is satisfied.

Step 2: We will show that F does not satisfy RM. Let S = Ŝ and S′ =
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co{(0, 0), (1, 0), (1, 1), (0, 1)}. Clearly, S, S′ ∈ Σ2
0, S

′ ⊇ S, and a(S′) = a(S). In

order F to satisfy RM, the inequality F (S′) ≥ F (S) must hold. But, we have

F (S′) = (1/2, 0) and F (S) = (3/4, 0), violating this inequality. �

Remark 5. RM does not imply RMIBE.

Proof. Let Ŝ = co{(0, 0), (0, 1), (1, 0)}. (Note that Ŝ ∈ Σ2
0.) Also let F be a

solution on Σ2
0 such that

F (S̃) =

{

(0, 0) if S̃ = Ŝ,

K(S̃) if S̃ 6= Ŝ.

Step 1. Let S, S′ ∈ Σ2
0 be such that S′ ⊇ S and a(S′) = a(S). If S′ = S, the

condition for RMIBE trivially holds, thus let S′ 6= S. Note that S′ cannot be

equal to Ŝ. (For otherwise S would also be equal to Ŝ since WP (Ŝ) = P (Ŝ).)

This implies F (S′) = K(S′). As to S, we have two possibilities. If S = Ŝ, then

F (S) = (0, 0). Since K(S′) > (0, 0), the inequality F (S′) ≥ F (S) would be

satisfied. On the other hand, if S 6= Ŝ, then F (S) = K(S). Along with the fact

that F (S′) = K(S′), this implies F (S′) ≥ F (S), since K satisfies RM. We have

established that the inequality F (S′) ≥ F (S) always holds. Thus, F satisfies

RM.

Step 2. Let S = Ŝ and S′ = co{(0, 0), (1, 0), (3/4, 3/4), (0, 1)}. Apparently,

S, S′ ∈ Σ2
0, S

′ ⊇ S, and a(S′) = a(S) = (1, 1). It follows that F (S) = (0, 0) and

F (S′) = K(S′), implying b1(S, F (S)) = b1(S, (0, 0)) = (1, 0) and b2(S, F (S)) =

b2(S, (0, 0)) = (0, 1). On the other hand, b1(S′, F (S′)) = b2(S′, F (S′)) = K(S′)

since K satisfies PO. But, neither K(S′) ≥ (1, 0) nor K(S′) ≥ (0, 1) can

hold, since {(1, 0), (0, 1),K(S′)} ⊂ PO(S′). It then follows that bj(S′, F (S′))

≥ bk(S, F (S)) cannot hold for any j, k ∈ {1, 2}. Therefore, F does not satisfy

RMIBE. �

The following remark implies that the axiom of RMIBE is satisfied by any

solution that satisfies both RM and PO (e.g. the Kalai-Smorodinsky solution).

Remark 6. RM and PO together imply RMIBE.

Proof. Let F be a solution that satisfies RM and PO, and consider any
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S, S′ ∈ Σ2
0 be such that S′ ⊇ S and a(S′) = ai(S). If S′ = S, the condi-

tion for RMIBE trivially holds. So, let S′ 6= S. Note that bj(S′, F (S′)) = F (S′)

for every j ∈ {1, 2} and bk(S, F (S)) = F (S) for every k ∈ {1, 2} by PO. More-

over, F (S′) ≥ F (S) by RM, implying bj(S′, F (S′)) ≥ bk(S, F (S)) for every

j, k ∈ {1, 2}, which ensures that F satisfies RMIBE. �

Now, we are ready to introduce our first characterization result.

Theorem 1. A solution satisfies IEUR, RMIBE, SY, WIIA, and WPO-S if

and only if it is the KSNC solution.

Proof. “⇒”: Remark 1 shows that the KSNC solution satisfies IEUR and

SY. On the other hand, the proof of Remark 3 shows that the KSNC solution

satisfies WII, as well. To show that it satisfies WPO-S, consider any symmetric

S in Σ2
0. Since both N and K satisfy SY and WPO, we must have N(S) =

K(S), implying C(S) = N(S). Therefore, C(S) ∈ WP (S), implying WPO-S

is satisfied. Finally, to show that the KSNC solution also satisfies RMIBE, let

S, S′ ∈ Σ2
0 be such that S′ ⊇ S and a(S′) = a(S). If S′ = S, the condition

of RMIBE trivially holds. So, let S′ 6= S. By the definition of the solution

C, we know that Cj(S
′) = Kj(S

′) for some j ∈ {1, 2} and Ck(S) = Kk(S) for

some k ∈ {1, 2}. Consider players m,n ∈ {1, 2} such that m 6= j and n 6= k.

Then, we must have bm(S′, C(S′)) = K(S′) and bn(S,C(S)) = K(S). Finally,

since K satisfies RM, we must have K(S′) ≥ K(S), implying bm(S′, C(S′)) ≥

bn(S,C(S)). Thus, the KSNC solution satisfies RMIBE.

“⇐”: Pick any solution F on Σ2
0 that satisfies IEUR, RMIBE, SY, WIIA,

and WPO-S. Let S ∈ Σ2
0.

Step 1: Since the solution N satisfies IEUR, there exists a vector of positive

affine functions λ′ = (λ′

1, λ
′

2) such that (1, 1) = N(λ′(S)). Then, let S′ = λ′(S).

Consider T = co{(0, 0), (0, 2), (2, 0)}. As T is symmetric and F satisfies SY and

WPO-S, we have F (T ) = (1, 1). Then, for every i ∈ {1, 2} we have bi(T, F (T )) =

(1, 1), while we already know that (1, 1) ∈ S′. Since F also satisfies WIIA,

there exists j ∈ {1, 2} such that bj(S′, F (S′)) = bj(T, F (T )) = (1, 1). Using

(1, 1) = N(S′), we then have bj(S′, F (S′)) = N(S′) for some j ∈ {1, 2}. Finally,

using S′ = λ′(S) along with the fact that both F and N satisfy IEUR, we can
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replace bj(S′, F (S′)) and N(S′) in the above equality with λ′(bj(S, F (S))) and

λ′(N(S)), respectively. This would imply that there exists j ∈ {1, 2} such that

bj(S, F (S)) = N(S).

Step 2: Since the solution K satisfies IEUR, there exists a vector of positive

affine functions λ′′ = (λ′′

1 , λ
′′

2) such that (1, 1) = K(λ′′(S)). Then, let S′′ =

λ′′(S). Consider T = co{(0, 0), (0, a2(S
′′)), (1, 1), (a1(S

′′), 0)}. From K1(S
′′) =

K2(S
′′), it follows that a1(S

′′) = a2(S
′′), implying that T is symmetric. Then,

F (T ) = (1, 1), because F satisfies SY and WPO-S. Note also that S′′ ⊇ T

and a(S′′) = a(T ). Since F satisfies RMIBE, there exist j, k ∈ {1, 2} such

that bj(S′′, F (S′′)) ≥ bk(T, F (T )) = (1, 1). This is equivalent to saying that

there exists j such that bj(S′′, F (S′′)) ≥ K(S′′), since (1, 1) = K(S′′). Finally,

using S′′ = λ′′(S) along with the fact that both F and K satisfy IEUR, we can

replace bj(S′′, F (S′′)) and K(S′′) in the last inequality with λ′′(bj(S, F (S)))

and λ′′(K(S)), respectively. This would imply that there exists j ∈ {1, 2}

such that bj(S, F (S)) ≥ K(S). For every j ∈ {1, 2}, bj(S, F (S)) ∈ P (S) by

definition. Moreover, K(S) ∈ P (S) since K satisfies PO. Thus, we must have

bj(S, F (S)) = K(S) for some j ∈ {1, 2}.

Steps 1 and 2 respectively show that bj(S, F (S)) = N(S) for some j ∈ {1, 2}

and bk(S, F (S)) = K(S) for some k ∈ {1, 2}. So, it must be true that F (S) =

C(S). �

Obviously, the KSNC solution also satisfies a stronger version of WPO-S,

which we call PO-S, since both of the Kalai-Smorodinsky and Nash solutions

satisfy the axiom of PO and the bargaining sets are assumed to be convex.

Pareto Optimality under Symmetry (PO-S): If S ∈ Σ2
0 and S is symmet-

ric, then F (S) ∈ P (S).

Now, we will consider the characterization of the IKSNC solution. However,

we first observe the following.

Remark 7. The IKSNC solution satisfies all of the axioms IEUR, SY, and

WPO, but it satisfies neither IIA nor RM.
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Proof. Since the solutions K and N are different from each other, the IKSNC

solution is different from both K and N . From the definition of the IKSNC

solution and the fact that the KSNC solution satisfies IEUR and SY, it is clear

that the IKSNC solution satisfies all of the standard axioms IEUR, SY, and

WPO. However, since the solutions K and N are the unique solutions that re-

spectively satisfy RM and IIA in addition to these standard axioms, the IKSNC

solution cannot satisfy RM or IIA. �

Apparently, the IKSNC solution also satisfies PO, as this axiom is satisfied

by both Kalai-Smorodinsky and Nash solutions. Now, we consider the following

axiom for any solution F on Σ2
0.

Γ-Decomposability: If Γ is a solution on Σ2
0, then F (S) = Γ(S) + F ((S −

Γ(S)) ∩ R
2
+).

Theorem 2. There exists a unique solution that satisfies Γ-Decomposability

whenever the solution Γ satisfies IEUR, RMIBE, SY, WIIA, and WPO-S. That

solution is the IKSNC solution.

Proof. “Existence”: By Theorem 1, the KSNC solution satisfies IEUR, RMIBE,

SY, WIIA, and WPO-S. On the other hand, the definition of the IKSNC so-

lution implies that the IKSNC solution satisfies Γ-Decomposability when Γ is

equal to KSNC solution. Thus, we have established that there exists a solu-

tion that satisfies Γ-Decomposability whenever the solution Γ satisfies IEUR,

RMIBE, SY, WIIA, and WPO-S.

“Uniqueness”: Let F be a solution that satisfies Γ-Decomposability when-

ever Γ is a solution on Σ2
0 satisfying IEUR, RMIBE, SY, WIIA, and WPO-S. By

Theorem 1, the solution Γ is unique and equal to the KSNC solution, denoted

by C. Note that Γ-Decomposability with Γ = C implies F (S) = C(S) +F ((S−

C(S))∩R2
+) for any S ∈ Σ2

0. Now, pick any S ∈ Σ2
0, and consider the sequence of

problems (St)∞t=0 where S
0 = S and St = (St−1−C(St−1))∩R2

+ for every integer

t ≥ 1. It is clear that F (S0) = C(S0)+F ((S0−C(S0))∩R
2
+) = C(S0)+F (S1).

Iterating this equation t more times yields F (S0) = (
∑t

j=0
C(Sj)) + F (St+1),

implying F (St+1) = F (S0) −
∑t

j=0
C(Sj) for every integer t ≥ 0. Recall that
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given any S ∈ Σ2
0, the IKSNC solution selects the allocation limt→∞ ct(S0) in

S. Now suppose that F (S0) 6= limt→∞ ct(S0). Then, one can easily show by

the geometry of the rule F that there exists k ≥ 0 such that F (Sk+1) /∈ Sk+1, a

contradiction. Therefore, F (S0) = limt→∞ ct(S0). Since S ∈ Σ2
0 was arbitrarily

picked, F must coincide with the IKSNC solution. �

4 Conclusion

In this paper, we have attempted to offer, for two-person games, an alterna-

tive characterization of Iterated Kalai-Smorodinsky-Nash Compromise, a new

bargaining solution introduced by Saglam (2016) for n-person games. To that

end, we have introduced an axiom called Γ-Decomposability, which requires that

given a reference solution Γ the outcome of the solution F on any bargaining

problem S can be obtained by adding the solution point Γ(S) to the solution

point chosen by F on the subproblem of S admitting Γ(S) as its starting point.

We have showed that the axiom of Γ-Decomposability uniquely characterizes the

IKSNC solution whenever the solution Γ associated with the axiom is requested

to satisfy the standard axioms of IEUR and SY, along with three additional

axioms we have introduced in this paper, namely RMIBE, WIIA, and WPO-S.

These five axioms in fact characterize the KSNC solution, which -if indefinitely

repeated- yields the IKSNC solution. Of these five axioms, IEUR, SY, and

WPO-S account for the common attributes of the Kalai-Smorodinsky and Nash

solutions over which a one-shot compromise yields the KSNC solution. On

the other hand, RMIBE and WIIA are needed to axiomatize the uncommon

attributes of the Kalai-Smorodinsky and the Nash solutions, respectively.

The future research might extend our work to n-person games. We should

recall here that the characterization of the IKSNC solution critically depends

on the characterization of the KSNC solution that chooses for each player the

minimum of the utility payoffs he or she would have received under the Kalai-

Smorodinsky and Nash solutions. As already known, the axiomatization result

by Nash (1950) for two-person games straightforwardly extends to n-person

games. On the other hand, for the Kalai-Smorodinsky solution axiomatization

results are nontrivially different for the two-person and n-person games (when

14



n ≥ 3) as shown by the work of Thomson (1983).5 Thus, one may conjecture

that the axiomatization of the KSNC solution could also be different for the two

types of games.
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