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Abstract

Differences-in-Differences (DID) is one of the most widely used identification strategies in applied eco-
nomics. However, how to draw inferences in DID models when there are few treated groups remains an
open question. We show that the usual inference methods used in DID models might not perform well
when there are few treated groups and errors are heteroskedastic. In particular, when there is variation
in the number of observations per group, inference methods designed to work when there are few treated
groups tend to (under-) over-reject the null hypothesis when the treated groups are (large) small relative to
the control groups. We provide evidence from Monte Carlo simulations and from placebo DID regressions
with the American Community Survey (ACS) and the Current Population Survey (CPS) datasets to show
that this problem is relevant even in datasets with large numbers of observations per group. We then de-
rive an alternative inference method that provides accurate hypothesis testing in situations where there are
few treated groups (or even just one) and many control groups in the presence of heteroskedasticity. Our
method assumes that we can model the heteroskedasticity of a linear combination of the errors. We show
that this assumption can be satisfied without imposing strong assumptions on the errors in common DID
applications. Importantly, we do not need to specify the structure of the serial correlation of the errors.
Our inference method can also be combined with feasible generalized least square (FGLS) estimation. This
way, it is possible to attain an asymptotically uniformly most powerful (UMP) test if the FGLS t-test is
asymptotically UMP, while still provide a test with correct size if the serial correlation is misspecified. With
many pre-treatment periods, we provide an alternative inference method that relies on strict stationarity and
ergodicity of the time series instead of relying on the correct specification of the heteroskedasticity. Finally,
we extend our inference methods to linear factor models when there are few treated groups.
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1 Introduction

Differences-in-Differences (DID) is one of the most widely used identification strategies in applied economics.

However, inference in DID models is complicated by the fact that residuals might exhibit intra-group and

serial correlations.1 Not taking these problems into account can lead to severe underestimation of the DID

standard errors, as highlighted in Bertrand et al. (2004). Still, there is as yet no unified approach to dealing

with this problem. As stated in Angrist and Pischke (2009), “there are a number of ways to do this [deal

with the serial correlation problem], not all equally effective in all situations. It seems fair to say that the

question of how best to approach the serial correlation problem is currently under study, and a consensus has

not yet emerged.”

One of the most common solutions to this problem is to use the cluster-robust variance estimator (CRVE)

at the group level.2 By clustering at the group level, we allow for unrestricted correlation in the within-group

errors. More specifically, we allow not only for correlation in the errors of observations in the same group

x time, but also for correlation in errors of observations in the same group at different time periods. One

important advantage of CRVE is that it also allows for unrestricted heteroskedasticity. The variance of the

DID estimator can be divided into two components: one related to the variance of the treated groups and

another one related to the variance of the control groups. The CRVE takes heteroskedasticity into account

by essentially estimating the variance separately for the treated and for the control groups. Bertrand et

al. (2004) show that CRVE and pairs-bootstrap at the group level work well when the number of groups is

large.3 Even when there are only a small number of groups, it might still be possible to obtain tests with

correct size even with unrestricted heteroskedasticity (for example, Cameron et al. (2008), Brewer et al.

(2013), Canay et al. (2014), Ibragimov and Müller (2013), and MacKinnon and Webb (2015a)). However,

these inference methods will eventually fail when the proportion of treated groups goes to zero or one, even if

there are many groups in total (MacKinnon and Webb (2015b)). The problem is that, with a small number

of treated groups, it is hard to estimate the variance component related to the treated groups using only the

residuals of the treated group. In the polar case where there is only one treated group, the CRVE estimate

of this component of the variance would be identical to zero.4

1We refer to “group” as the unit level that is treated. In typical applications it stands for states, counties, or countries.
2The CRVE was developed by Liang and Zeger (1986). We can think of this method as a generalization of the

heterocedasticity-robust variance matrix due to White (1980).
3Wooldridge (2003) provides an overview of cluster-sample methods in linear models. The author shows that CRVE provides

valid inference when the number of groups increases and groups sizes are fixed.
4Another alternative presented by Bertrand et al. (2004) is to collapse the pre- and post-information. This approach would

take care of the auto-correlation problem. However, in order to allow for heteroskedasticity, one would have to use robust
standard errors, in which case this method would also fail when there are few treated groups.
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An alternative when there are few treated groups is to use information from the control groups in

order to estimate the component of the variance related to the treated groups. Donald and Lang (2007),

henceforth DL, use small sample inference procedures on the group x time DID aggregate model relying on

normality and serially uncorrelated errors.5 Two alternative methods relax the normality assumption and

allow unrestricted serial correlation: Conley and Taber (2011), henceforth CT, and cluster residual bootstrap,

analyzed by Cameron et al. (2008). While these methods work even when there is only one treated group,

they all rely on the assumption that errors (or a linear combination of the errors) are homoskedastic, so that

we can use the residuals of the control groups to assess the distribution of the errors of the treated groups.6

However, this homoskedasticity assumption might be very restrictive in DID applications. In particular,

errors in the group x time DID aggregate model should be inherently heteroskedastic when there is variation

in the numbers of observations used to calculate each group x time average.7

In this paper, we first show that usual inference methods used in DID models might not perform well

when there are only a few treated groups. Methods that allow for unrestricted heteroskedasticity do not

work because they estimate the component of the variance related to the treated groups based on few

observations. Also, alternative methods that use information from the control groups will not work properly

in the presence of heteroskedasticity. In the particular case in which the number of observations per group

varies, these methods tend to (under-) over-reject the null hypothesis when the number of observations in the

treated groups is (large) small relative to the number of observations in the control groups. The problem is

that variation in the number of observations per group invalidates the homoskedasticity assumption, because

larger groups tend to have lower variance. The intuition of this result was already articulated in Assuncao

and Ferman (2015) in an application of CT.8 We formalize this idea and derive conditions under which

this problem would be more relevant. In particular, we show that increasing the number of observations

per group has little impact on the heteroskedasticity when the intra-group correlation approaches zero. In

Monte Carlo simulations and simulations with the American Community Survey (ACS) and the Current

Population Survey (CPS), we provide evidence that this problem can be relevant even in datasets with very

large numbers of observations per group. Therefore, a large number of individual observations per group

should not provide a reasonable justification for homoskedasticity in the group x time model.

5Pengyuan et al. (2013) relax the normality assumption for the 2-periods case using a flexible skew-t distribution family to
model group time effects.

6CT present in their online Appendix an alternative method when there is heteroskedasticity generated by population sizes.
Their method, however, requires the full specification of the variance/covariance matrix.

7In case of individual-level data, all these methods require some kind of aggregation at the group x time level. Therefore,
this problem is relevant whether one has individual-level or aggregate data.

8Assuncao and Ferman (2015) exclude the comparison of placebo estimates when the placebo treated group is much smaller
than the original treated group.
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We then derive an alternative method for inference when there are only few treated groups (or even just

one) and errors are heteroskedastic. The main assumption is that we can model the heteroskedasticity of a

linear combination of the errors.9 Under this assumption, we can re-scale the residuals of the control groups

using the (estimated) heteroskedasticity structure so that they become informative about the distribution

of the errors of the treated groups. Importantly, by focusing on a linear combination of the errors, we do

not need to specify the serial correlation structure and we also circumvent the incidental parameter problem

caused by the estimation of group fixed effects with a finite number of time periods. We show that a cluster

residual bootstrap with this heteroskedasticity correction provides valid hypothesis testing asymptotically

when the number of control groups goes to infinity, even when there is only one treated group. Our Monte

Carlo simulations and simulations with real datasets suggest that our method provides reliable hypothesis

testing when there are around 25 groups in total (1 treated and 24 controls).

Our inference method can also be combined with feasible generalized least squares (FGLS) estimation.

The use of FGLS to improve efficiency of the DID estimator has been proposed by Hausman and Kuersteiner

(2008), Hansen (2007), and Brewer et al. (2013). One important challenge for implementing a FGLS estimator

in the DID setting is that sample analogs for the variance/covariance matrix parameters will be biased when

the number of periods is fixed. While these papers provide bias-corrected estimators for the parameters of

the variance/covariance matrix, they rely on strong assumptions on the structure of the errors, including

homoskedasticity.10 Following Wooldridge (2003), Hansen (2007) and Brewer et al. (2013) combine their

FGLS estimators with cluster-robust inference. This way, their inference is robust to misspecification in

either the serial correlation or the heteroskedasticity structures. However, with few treated groups the use

of CRVE would not work. In this case, we show that it is possible to combine FGLS estimation with our

inference method. If the FGLS estimator is asymptotically equivalent to the GLS estimator and errors are

normally distributed, then we show that our test is asymptotically uniformly most powerful (UMP) when

the number of control groups goes to infinity. If, however, we have misspecification of the serial correlation,

the estimators of the serial correlation parameters are inconsistent, or we do not have normally, then a

t-test based on the FGLS estimator would not be valid, while our test would still provide the correct size.

Therefore, our method provides an important safeguard for the use of FGLS estimation in DID applications

with few treated groups.

9While our method is more general, this assumption would be satisfied in the particular example in which the heteroskedas-
ticity is generated by variation in the number of observations per group.

10Hausman and Kuersteiner (2008) assume that the variance/covariance matrix is block diagonal with the same block for
each group, while Hansen (2007) and Brewer et al. (2013) assume homoskedasticity and constant AR coefficients.
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With only one treated group, the assumption that we can model the heteroskedasticity of a linear com-

bination of the errors can only be relaxed if we impose instead restrictions on the intra-group correlation. If

we assume that, for each group, errors are strictly stationary and ergodic, then we show that it is possible to

apply Andrews’ (2003) end-of-sample instability test to a transformation of the DID model for the case with

many pre-treatment and a fixed number of post-treatment periods. This approach works even when there

is only one treated and one control group. We also consider the use of linear factor models for estimation

of regional policies treatment effects, as suggested by Gobillon and Magnac (2013). This approach requires

both large N and T , but it allows selection into treatment to freely depend on unobserved heterogeneity

terms. We show that our inference methods can be extended to linear factor models when there are only a

few treated groups. Another estimation method for the case with few treated groups is the synthetic control

(SC) estimator (Abadie and Gardeazabal (2003) and Abadie et al. (2010)). Ferman and Pinto (2016) derive

conditions under which the permutation test proposed in Abadie et al. (2010) is asymptotically valid in

the presence of heteroskedasticity. In addition to requiring restrictions on the time series that transitory

shocks are stationary, we show that the permutation test would only be valid if the SC weights converge in

probability to weights that satisfy the SC assumptions, which will not generally be the case.11,12

Our inference method is related to the Randomization Inference (RI) approach proposed by Fisher (1935).

In this approach, one uses a permutation test that calculates the test statistic under all possible combinations

of treatment assignment, and rejects the null if the observed realization in the actual experiment is extreme

enough. The RI approach assumes that treatment assignment is the only stochastic element of the model. In

this case, RI provides exact hypothesis testing regardless of the characteristics of the residuals (Lehmann and

Romano (2008)). We argue that the RI approach would not provide a satisfactory solution to our problem.

First, a permutation test would not provide valid inference if the assignment mechanism is unknown.13

Moreover, even under random assignment, a permutation test would only remain valid for unconditional

tests (that is, before we know which groups were treated). However, as suggested in Mcullagh (1992),

unconditional tests can be “inappropriate and possibly misleading for hypotheses concerning the data at

hand”, while “conditional probability calculation often provides an answer to which no right-thinking person

11In a previous version of this paper, Ferman and Pinto (2015) show that the permutation test proposed in Abadie et al.
(2010) would be asymptotically valid under heteroskedasticity if the SC weights converge in probability to weights that satisfy
the SC assumptions and the transitory shocks are stationary. This discussion is now presented in Ferman and Pinto (2016).

12Powell (2016) and Carvalho et al. (2015) suggest alternative estimation methods for comparative studies that also provides
valid inference with one treated group. However, they rely on both the number of pre- and post-treatment periods going to
infinity.

13This would be the case if, for example, larger states are more likely to switch policies. Rosenbaum (2002) proposes a
method to estimate the assignment mechanism under selection on observables. However, with few treated groups and many
control groups, it would not be possible to reliably estimate this assignment mechanism. Note that it is possible that the DID
identification assumptions are valid even when the assignment mechanism is not uniform.
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could object”.14 In our setting, once one knows that the treated groups are (large) small relative to the

control groups, then one should know that a permutation test that does not take this information into

account would (under-) over-reject the null when the null is true. Therefore, such test would not have the

correct size conditional on the data at hand, providing inappropriate hypothesis testing. One alternative

solution would be to follow Canay et al. (2014). In their setting, they show that it would be possible to

incorporate information on (for example) group sizes if one had functions of the data that have the same

limiting distribution under the null hypothesis in all permutations. Canay et al. (2014) and MacKinnon

and Webb (2015a) consider RI tests using tests statistics that are asymptotically symmetric. However, their

inference methods do not perform well with very few treated groups. In contrast, our method provides a

valid correction for heteroskedasticity even when there is only one treated group.

Finally, our paper is also related to the Behrens-Fisher problem. They considered the problem of hy-

pothesis testing concerning the difference between the means of two normally distributed populations when

the variances of the two populations are not assumed to be equal.15 In order to take intra-group and serial

correlation into account, we consider a linear combination of the errors so that the DID estimator collapses

into a simple difference between treated and control groups’ averages. While there are several solutions to

this problem with good properties even in very small samples, there is, to the extend of our knowledge,

no solution for the case where there is only one observation in one of the groups. Our assumption that,

conditional on a set of observable variables, the distribution of the errors does not depend on treatment

status guarantees that we can learn about the distribution of the treated groups based on the residuals of

the control groups, while still allowing for some heteroskedasticity. Our method would work in any situation

in which the estimator can be rewritten as a comparison of means. For example, this would be the case for

experiments with cluster-level treatment assignment. We focus on the case of DID estimator because the

scenario of very few treated groups and many control groups is more common in this case.

The remainder of this paper proceeds as follows. In Section 2 we present our base model. We briefly

explain the necessary assumptions in the existing inference methods, and explain why heteroskedasticity

usually invalidates inference methods designed to deal with the case of few treated groups. Then we derive

an alternative inference method that corrects for heteroskedasticity even when there is only one treated

14Many authors have recognized the need to make hypothesis testing conditional to the particular data at hand, including
Fisher (1934), Pitman (1938), Cox (1958), Cox (1980), Fraser (1968), Cox and Hinkley (1979), Bradley Efron (1978), Barndorff-
Nielsen (1980), Barndorff-Nielsen (1983), Barndorff-Nielsen (1984), Hinkley (1980), Mcullagh (1984), Casella and Goutis (1995),
and Yates (1984)

15See Behrens (1929), Fisher (1939), Scheffe (1970), Wang (1971), and Lehmann and Romano (2008). Imbens and Kolesar
(2012) show that some methods used for robust and cluster robust inference in linear regressions, such as Bell and McCaffrey
(2002), can be considered as natural extensions of inference procedures designed to the Behrens-Fisher problem.
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group. In Section 3 we extend our inference method to FGLS estimation. In Section 4 we consider an

alternative application of our method that relies on a different set of assumptions when the number of pre-

treatment periods is large. In Section 5, we extend our inference method to linear factor models with few

treated groups. In Section 6 we contrast our inference method with the RI approach. We perform Monte

Carlo simulations to examine the performance of existing inference methods and to compare that to the

performance of our method with heteroskedasticity correction in Section 7, while we compare the different

inference methods by simulating placebo laws in real datasets in Section 8. We conclude in Section 9.

2 Base Model

2.1 A Review of Existing Methods

Consider a group x time DID aggregate model:

Yjt = αdjt + θj + γt + ηjt (1)

where Yjt represents the outcome of group j at time t; djt is the policy variable, so α is the main parameter

of interest; θj is a time-invariant fixed effect for group j, while γt is a time fixed-effect; ηjt is a group x time

error term that might be correlated over time, but uncorrelated across groups. Depending on the application,

“groups” might stand for states, counties, countries, and so on. We assume that djt is nonstochastic.

We start considering a group x time DID aggregate model because it is well known that this way we take

into account any possible individual-level within group x time cell correlation in the errors (DL and Moulton

(1986)). Therefore, we can focus on the inference problems that are still unsettled in the literature, which

is how to deal with serial correlation and heteroskedasticity when there are few treated groups. However,

both the diagnosis of the inference problem with existing methods and the solutions we propose are valid

whether we have aggregate or individual-level data. Note that, without individual-level covariates, the DID

estimator with individual-level data will be numerically the same as the estimator with aggregated data if

we use the number of observations per group x time cell as sampling weights.

There are N1 treated groups and N0 control groups. Let us assume that djt changes to 1 for all treated
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groups starting after date t∗. In this case, the DID estimator will be given by:

α̂ =
1

N1

N1∑

j=1

[
1

T − t∗

T∑

t=t∗+1

Yjt −
1

t∗

t∗∑

t=1

Yjt

]
− 1

N0

N∑

j=N1+1

[
1

T − t∗

T∑

t=t∗+1

Yjt −
1

t∗

t∗∑

t=1

Yjt

]

= α+
1

N1

N1∑

j=1

[
1

T − t∗

T∑

t=t∗+1

ηjt −
1

t∗

t∗∑

t=1

ηjt

]
− 1

N0

N∑

j=N1+1

[
1

T − t∗

T∑

t=t∗+1

ηjt −
1

t∗

t∗∑

t=1

ηjt

]

= α+
1

N1

N1∑

j=1

Wj −
1

N0

N∑

j=N1+1

Wj (2)

where Wj =
1

T−t∗

∑T
t=t∗+1 ηjt − 1

t∗

∑t∗

t=1 ηjt.

It is clear from equation 2 that consistency of α̂ will depend on both N1 → ∞ and N0 → ∞. As shown in

CT, if the number of treated groups (N1) and the number of periods (T ) are fixed, then the DID estimator

is unbiased. However, this estimator is not consistent, since the first term, 1
N1

∑N1

j=1 Wj , would not converge

to zero when N0 → ∞.

The variance of the DID estimator, under the assumption that ηjt are independent across j, is given by:

var(α̂) =

[
1

N1

]2 N1∑

j=1

var(Wj) +

[
1

N0

]2 N∑

j=N1+1

var(Wj) (3)

Note that the variance of the DID estimator is the sum of two components: the variance of the treated

groups pre/post comparison and the variance of the control groups pre/post comparison. We allow for any

kind of correlation between ηjt and ηjt′ , which is captured in the linear combination of the errors Wj .

When there are many treated and control groups, Bertrand et al. (2004) suggest that CRVE at the group

level works well, as this method allows for unrestricted intra-group and serial correlation in the residuals ηjt.

One important point is that this method is not only cluster-robust, but also heteroskedasticity-robust. The

CRVE has a very intuitive formula in the DID framework:16

v̂ar(α̂)
Cluster

=

[
1

N1

]2 N1∑

j=1

Ŵ 2
j +

[
1

N0

]2 N∑

j=N1+1

Ŵ 2
j (4)

where Ŵj =
1

T−t∗

∑T
t=t∗+1 η̂jt − 1

t∗

∑t∗

t=1 η̂jt.

With CRVE, we calculate each component of the variance of the DID estimator separately. In other

words, we use the residuals of the treated groups to calculate the component related to the treated groups,

16Up to a degrees-of-freedom correction.
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and the residuals of the control groups to calculate the component related to the control groups. This way,

CRVE allows for unrestricted heteroskedasticity. While CRVE is very appealing when there are many treated

and many control groups, equation 4 makes it clear why it becomes unappealing when there are few treated

groups. In the extreme case when N1 = 1, we will have Ŵ 2
1 = 0 by construction. Therefore, the variance of

the DID estimator would be severely underestimated (MacKinnon and Webb (2015b)). The same problem

applies to other clustered standard errors corrections such as BRL (Bell and McCaffrey (2002)). It is also

problematic to implement heteroskedasticity-robust cluster bootstrap methods such as pairs-bootstrap and

wild cluster bootstrap when there are few treated groups. In pairs-bootstrap, there is a high probability

that the bootstrap sample will not include a treated unit. Wild cluster bootstrap generates variation in the

residuals of each j by randomizing whether its residual will be η̂jt or −η̂jt. However, in the extreme case with

only one treated, the wild cluster bootstrap would not generate variation in the treated group, since Ŵ1 = 0.

Another alternative presented by Bertrand et al. (2004) is to collapse the pre- and post-information. This

approach would take care of the auto-correlation problem. However, in order to allow for heteroskedasticity,

one would have to use heteroskedasticity-robust standard errors. In this case, this method would also fail

when there are few treated groups.

It is clear, then, that the inference problem in DID models with few treated groups revolves around how

to estimate the component of the DID estimator variance related to the treated group using the residuals η̂jt.

Alternative methods use information on the residuals of the control groups in order to estimate the component

of the variance related to the treated groups. These methods, however, rely on specific assumptions regarding

the error terms. DL assume that the group x time errors are normal, homoskedastic, and serially uncorrelated.

Under these assumptions, the variance of α̂ becomes:

var(α̂) =
1

NT

σ2
η

p(1− p)
(5)

where var(ηjt) = σ2
η and p is the proportion of treated groups. Therefore, under these assumptions, one

could recover the variance of α̂ by estimating σ2
η using the T ×N estimated residuals η̂jt. As suggested by

DL, if T×N is small, then one should compare the test statistic t = α̂/

√
v̂ar(α̂) to the student-t distribution

instead of calculating the critical values based on the normal distribution. The assumption that errors are

serially uncorrelated, however, might be unappealing in DID applications (Bertrand et al. (2004)).

CT provide an interesting alternative inference method that allows for unrestricted auto-correlation in

the error terms. Their method uses the residuals of the control groups to estimate the distribution of the
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DID estimator under the null. The key difference relative to DL is that CT look at a linear combination of

the residuals that takes into account any form of serial correlation instead of using the group x time level

residuals. In the simpler case with only one treated group, α̂−α would converge toW1 when N0 → ∞. In this

case, they use {Ŵj}N0+1
j=2 (a linear combination of the control group residuals) to construct the distribution

of W1. While CT relax the assumption of no auto-correlation, it requires that errors are i.i.d. across groups,

so that {Ŵj}N0+1
j=2 approximates the distribution of W1 when N0 → ∞.

Finally, cluster residual bootstrap methods resample the residuals while holding the regressors constant

throughout the pseudo-samples. The residuals are resampled at the group level, so that the correlation

structure is preserved. It is possible that a treated group receives the residuals of a control group. While this

helps when there are only few treated groups, a crucial assumption is again that errors are homoskedastic.

2.2 Leading Example: Variation in Group Sizes

As seen in Section 2.1, CRVE in DID models with few treated groups severely underestimates the variance

of α̂. Alternative methods such as DL, CT, and cluster residual bootstrap require strong distributional

assumptions on the errors. In particular, they all require some kind of homoskedasticity in the aggregate

group x time model. In this section, we show that the group x time DID aggregate models will be inherently

heteroskedastic when there is variation in the number of observations per group and derive the implications

of this heteroskedasticity for these inference methods. However, it is important to point out that this is not

the only case that might generate heteroskedasticity in the group x time aggregate DID model.

We start with a simple individual-level DID model:

Yijt = αdjt + θj + γt + νjt + ǫijt (6)

where Yijt represents the outcome of individual i in group j at time t; νjt is a group x time error term

(possibly correlated over time), and ǫijt is an individual-level error term. The main features that define

a “group” in this setting are that the treatment occurs at the group level and that errors (νjt + ǫijt) of

two individuals in the same group might be correlated, while errors of individuals in different groups are

uncorrelated. For ease of exposition, we assume that ǫijt are all uncorrelated, while allowing for unrestricted

auto-correlation in νjt. However, our correction will require weaker assumptions on the error structure, as

will be presented in Section 2.3.
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When we aggregate by group x time, our model becomes the same as the one in equation 1:

Yjt = αdjt + θj + γt + ηjt (7)

The important point is that errors in the group x time aggregate model (ηjt) are heteroskedastic across

j, unless M(j, t) is constant across j. More specifically:

ηjt = νjt +
1

M(j, t)

M(j,t)∑

i=1

ǫijt (8)

where M(j, t) is the number of observations in group t at time t. Therefore, assuming for simplicity that

M(j, t) = Mj is constant across j and T is fixed, we have that the variance of Wj conditional on Mj is given

by:

var(Wj |Mj) = var

(
1

T − t∗

T∑

t=t∗+1

ηjt −
1

t∗

t∗∑

t=1

ηjt|Mj

)

= var


 1

T − t∗

T∑

t=t∗+1

νjt −
1

t∗

t∗∑

t=1

νjt +
1

T − t∗

T∑

t=t∗+1


 1

Mj

Mj∑

i=1

ǫijt


− 1

t∗

t∗∑

t=1


 1

Mj

Mj∑

i=1

ǫijt


 |Mj


 =

= A+
B

Mj
(9)

for constants A and B, regardless of the auto-correlation of νjt.
17

We are assuming so far that we have a panel of repeated cross-sections, so that ǫijt are not correlated

over time. If we had a panel and allow for the individual-level residuals to be auto-correlated, then we

would have another term that would depend on the ǫijt auto-correlation parameter divided by the number

of observations, so we would still end up with the same formula, var(Wj |Mj) = A + B
Mj

. This formula

might also remain valid even in situations where, for example, the correlation between two observations in

the same school is stronger than the correlation between two observations in the same state but in different

schools.18 Finally, we do not need to assume that the individual-level model is homoskedastic to have the

formula var(Wj |Mj) = A+ B
Mj

.

17When the number of observations per group is not constant over time, the formula will be: var(Wj) = Ã +

B̃

[(
1

T−t∗

)2∑T
t=t∗+1

1
M(j,t)

+
(

1
t∗

)2∑t∗

t=1
1

M(j,t)

]
, for constants Ã and B̃.

18This would be the case, for example, in a model Yikjt = αdjt + θj + γt + νjt + ωkjt + ǫikjt for student i in school k, state
j and time t. We allow for a common school-level shock ωkjt in addition to the state-level shock νjt. If the number of schools

per state grow at the same rate as the number of observations, then this model would also generate var(Wj |Mj) = A+ B
Mj

.
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This heteroskedasticity in the error terms of the aggregate model implies that, when the number of

observations in the treated groups are (large) small relative to the number of observations in the control

groups, we would (over-) underestimate the component of the variance related to the treated group when we

estimate it using information from the control groups. This implies that inference methods that do not take

that into account would tend to (under-) over-reject the null hypothesis when the number of observations

of the treated groups is (large) small. This will be the case whether one has access to individual-level or

aggregate data.

Note that, if A > 0, this would not be a problem when M(j, t) → ∞. In this case, var(Wj) → A for all j.

In other words, when the number of observations in each group x cell is large, then the correlated part of the

error would dominate. In this case, if we assume that the group x time error νjt is i.i.d., then
var(Wj)
var(W ′

j
) → 1,

which implies that the residuals of the control groups would be a good approximation for the distribution

of the treated groups error even when the number of observations in each group is different. This is one of

the main rationales used in DL to justify the homoskedasticity assumption in the aggregate model.

However, an interesting case occurs when A = 0. In this case, even though var(Wj) → 0 for all j when

Mj → ∞, the ratios
var(Wj)
var(Wj′ )

remain constant (unless
Mj

Mj′
→ 1), which implies that the aggregate model

remains heteroskedastic even asymptotically. Therefore, CT, DL, and cluster residual bootstrap would tend

to (under-) over-reject the null hypothesis when the number of observations of the treated groups are (large)

small relative to the number of observations of the control groups even when there is a large number of

individual observations. While A ≈ 0 implies that the group x time common shock is not strong, note

that this does not mean that standard inference using OLS regression on the individual-level data would be

reliable. Even in the absence of group x time common shocks, OLS standard errors might be underestimated

if there is important serial correlation in the individual level error, ǫijt.

2.3 Inference with Heteroskedasticity Correction

As discussed in Section 2.1, the main challenge in estimating the variance of α̂ when there are few treated

groups is how to estimate the component related to the treated groups. The CRVE estimates this component

of the variance without using information from the control groups. While this approach has the appealing

property of allowing for unrestricted heteroskedasticity, it is unfeasible when the number of treated groups is

small. On the other extreme, other methods surpass the problem of few treated groups by using information

from the control groups. The problem with these approaches is that they require homoskeadsticity.

In this section, we derive an inference method that uses information from the control groups to estimate
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the variance of the treated groups while still allowing for heteroskedasticity. Intuitively, our approach assumes

that we know how the heteroskedasticity is generated, which is the case when, for example, heteroskedasticity

is generated by variation in the number of observations per group. Under this assumption, we can re-scale

the residuals of the control groups using the (estimated) structure of the heteroskedasticity in a way that

allows us to use this information to estimate the distribution of the error for the treated groups. Our method

only requires information on the heteroskedasticity structure for a linear combination of the errors, which

implies that we do not have to impose strong assumptions on the structure of the serial correlation of the

errors. While we motivate our methods based on heteroskedasticity generated by variation in the number of

groups, it is important to note that our method is more general.

More formally, we assume we have a total of N groups where the first N1 groups are treated. For

simplicity, we consider first the case where djt changes to 1 for all treated groups starting after date t∗.

Let Xj be a vector of observable covariates that do not necessarily enter in model 1 and dj be an indicator

variable equal to 1 if group j is treated. We will define our assumptions directly on the linear combination

of the errors Wj =
1

T−t∗

∑T
t=t∗+1 ηjt − 1

t∗

∑t∗

t=1 ηjt. The main assumptions for our method are:

1. {Wj , Xj} is i.i.d. across j ∈ {1, ..., N1}, i.i.d. across j ∈ {N1 +1, ..., N} and independently distributed

across j ∈ {1, ..., N}.

2. Wj |Xj , dj
d
= Wj |X̃j , where X̃j is a subset of Xj .

3. Wj |X̃j has the same distribution across X̃j up to a scale parameter.

4. E[Wj |Xj , dj ] = E[Wj |Xj ] = 0

Note that assumption 1 does not require that treatment is randomly assigned. Instead, we might consider

a case where, for example, larger states are more likely to switch policies than smaller states. Assumption

2 implies that, conditional on a subset of observable covariates, the distribution of Wj will be the same

independently of the treatment status. This is crucial for our method, as it guarantees that we can extrapolate

information from the control groups residuals to estimate the distribution of the treated groups errors. This

assumption would not be required with largeN1 andN0 for inference with heteroskedasticity-robust methods.

In this case, it would be possible to allow for different distributions conditional on treatment status since

there would be enough observations to estimate the variance component related to the treated groups using

only information from the treated groups. In our setting, this would not be feasible since we assume that

the number of treated groups is fixed and small. Assumption 3 implies that the distribution of Wj |Xj
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only depends on Xj through the variance parameter. This assumption reduces the dimensionality of the

problem. It might be possible to relax this assumption and estimate the conditional distribution of Wj |X̃j

non-parametrically. However, this would require very large number of control groups, N0. Finally, condition

4 is the standard identification assumption for DID.

Our method is an extension of the cluster residual bootstrap with H0 imposed where we correct the

residuals for heteroskedasticity. In cluster residual bootstrap with H0 imposed, we estimate the DID re-

gression imposing that α = 0, generating the residuals {ŴR
j }Ni=1. If the errors are homoskedastic, then,

under the null, ŴR
j would have the same distribution across j, which implies that we can resample with

replacement B times from {ŴR
j }Ni=1, generating {ŴR

j,b}Ni=1. Then we can calculate our bootstrap estimates

as α̂b =
1
N1

∑N1

j=1 Ŵ
R
j,b− 1

N0

∑N
j=N1+1 Ŵ

R
j,b. Note that, in our setting, we do not need to work with the group

x time residuals η̂jt to construct our bootstrap estimates. Instead, we can work with a linear combination

of the residuals that takes into account any form of auto-correlation in the residuals. This is one of the key

insights of CT.

As explained in Section 2.1, the problem with cluster residual bootstrap is that it requires the residuals

to be homoskedastic. In Theorem 2 in Appendix A.1, we show that, if we know the variance of each random

variable Wj conditional on Xj , then we can re-scale the residuals ŴR
j,b so that it has (asymptotically) the

same distribution as unit j. First, we normalize each observed ŴR
j′ by Ŵnorm

j′ = ŴR
j′

1√
var(Wj′ |Xj′ )

. Then

we generate a bootstrap sample with the re-scaled residuals W̃j,b = Ŵnorm
j,b

√
var(Wj |Xj). As a result,

this procedure generates bootstrap estimators α̂b = 1
N1

∑N1

j=1 W̃j,b − 1
N0

∑N
j=N1+1 W̃j,b that can be used to

draw inferences about α with the correct size.19 The main assumption we need is that {Wj}Nj=1, which is

a linear combination of the error terms ηjt, are independent across j and have the same distribution up to

the variance parameter.20 It is important to note that we only need the variance of a linear combination

of the errors. This point is crucial for our method, because we do not need to specify the serial correlation

structure of the errors ηjt.

The main problem, however, is that var(Wj |Xj) is generally unknown, so it needs to be estimated. In

Theorem 3 in Appendix A.1, we show that this heteroskedasticity correction works asymptotically when

19As we assume a setting in which the number of treated groups is fixed and small, we have to consider for inference the
distribution of α̂ conditional on {Xj}Nj=1. Note that CT would be valid as unconditional inference if we assume that {Wj , Xj}
is i.i.d. across j ∈ {1, ..., N}. However, CT would not provide a reasonable solution conditional on the data at hand. As
we show in our example in Section 2.2, CT would provide a biased test conditional on the information about group sizes. If
{Wj , Xj} is not identically distributed (as is allowed in assumption 1), then it would be impossible to consistently estimate
var(Wj |dj = 1) for an unconditional test, because we would only have a finite number of treated observations (unless we have
more information about the distribution of Xj |dj). Therefore, it would not be possible to conduct unconditional inference. In
Section 6, we discuss in more detail the case for conditional inference in the RI framework.

20Note that this assumption is weaker than assuming that the sequences {ηj1, ..., ηjT } are independent and have the same
distribution up to a variance parameter across j.
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N0 → ∞ if we have a consistent estimator for var(Wj |Xj). That is, we can use ̂var(Wj |Xj) to generate

˜̂
W j,b = ŴR

j,b

√
̂var(Wj |Xj)

̂var(Wj,b|Xj,b)
. Since we only need a consistent estimator for var(Wj |Xj), in theory, one

could estimate the conditional variance function non-parametrically. In practice, however, a non-parametric

estimator would likely require a large number of control groups.

In our leading example where heteroskedasticity is generated by variation in group sizes, we show in

Section 2.2 that we can derive a parsimonious function for the conditional variance without having to

impose a strong structure on the error terms. More specifically, in this example, the conditional variance

function would be given by var(Wj |Xj , dj) = var(Wj |Mj) = A + B
Mj

, for constants A and B, where Xj

is the set of observable variables including Mj . We show in Lemma 4 in Appendix A.1 that we can get

a consistent estimator for var(Wj |Mj) by regressing (ŴR
j )2 on 1

Mj
and a constant.21 Note that we do

not need individual-level data to apply this method, provided that we have information on the number of

observations that were used to calculate the group x time averages. While we present our method for the

group x time aggregate model, we show below that it is straightforward to extend our method to the case

with individual-level data.

Finally, a problem with cluster bootstrap methods when there are few clusters is that there will be few

possible combinations of bootstrap samples (Cameron et al. (2008), Webb (2014), and MacKinnon and Webb

(2015a)). To ameliorate this problem, we apply the idea of wild cluster bootstrap to our method. Therefore,

for each j, we sample either
˜̂
W j,b with probability 0.5 or −˜̂W j,b with probability 0.5. This procedure

provides a smoother bootstrap distribution. MacKinnon and Webb (2015a) recommend a similar procedure

for permutation tests.

Summarizing, our bootstrap procedure, for this specific case, consists of:

1. Calculate the DID estimate:

α̂ =
1

N1

N1∑

j=1

[
1

T − t∗

T∑

t=t∗+1

Yjt −
1

t∗

t∗∑

t=1

Yjt

]
− 1

N0

N∑

j=N1+1

[
1

T − t∗

T∑

t=t∗+1

Yjt −
1

t∗

t∗∑

t=1

Yjt

]

2. Estimate the DID model with H0 imposed (Yjt = α0djt + θj + γt + ηjt), and obtain {ŴR
j }Ni=1. Usually

the null will be α0 = 0.

3. Estimate var(Wj |Mj) by regressing
(
ŴR

j

)2
on a constant and 1

Mj
.

21When the number of observations per group is not constant over time, we regress (ŴR
j )2 on[(

1
T−t∗

)2∑T
t=t∗+1

1
M(j,t)

+
(

1
t∗

)2∑t∗

t=1
1

M(j,t)

]
and a constant.
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4. Use ̂var(Wj |Mj) to obtain the normalized residuals Ŵnorm
j′ = ŴR

j′
1√
̂var(Wj′ |Mj′ )

5. Do B iterations of this step. On the bth iteration:

(a) Resample with replacement N times from {Ŵnorm
j }Ni=1 to obtain

{
˜̂
W j,b

}N

i=1

, where
˜̂
W j,b =

Ŵnorm
j,b

√
̂var(Wj |Mj) with probability 0.5 and −Ŵnorm

j,b

√
̂var(Wj |Mj) with probability 0.5.

(b) Calculate α̂b =
1
N1

∑N1

j=1
˜̂
W j,b − 1

N0

∑N
j=N1+1

˜̂
W j,b.

6. Reject H0 at level a if and only if α̂ < α̂b[a/2] or α̂ > α̂b[1− a/2], where α̂b[q] denotes the qth quantile

of α̂1, ..., α̂B.

The method described above works when all the treated groups start treatment in the same period t∗.

Consider a general case where there are N0 control groups and Nk treated groups that start treatment after

period t∗k, with k = 1, ...,K. We show in Appendix A.2 that, for large N0, the DID estimator is a weighted

average of K DID estimators, each one using one k > 0 as treated groups and k = 0 as control groups. The

weights are given by
Nk(T−t∗k)t

∗

k∑
K
k=1

Nk(T−t∗
k
)t∗

k

. Therefore, the weights increase with the number of treated groups

that start treatment after t∗k (Nk) and are higher when t∗k divides the total number of periods in half. Let

ŴR,k
j = 1

T−t∗
k

∑T
t=t∗

k
+1 η̂

R
jt − 1

t∗
k

∑t∗k
t=1 η̂

R
jt. We generalize our method to this case by estimating K functions

̂var(W k
j |Mj) by regressing (ŴR,k

j )2 on a constant and 1
Mj

. Each function ̂var(W k
j |Mj) provides the proper

rescale for the residuals of the DID regression using k as the treated groups. We then calculate α̂b as a

weighted average of these K DID estimators.

We also show in Appendix A.3 that our method applies to DID models with both individual- and group-

level covariates. With covariates at the group x time level, we estimate the OLS DID regressions in steps 1

and 2 of the bootstrap procedure with covariates. The other steps remain the same. If we have individual-

level data, then we run the individual-level OLS regression with covariates in step 2 and then aggregate the

residuals of this regression at the group x time level. The other steps in the bootstrap procedure remain the

same.

3 Improving Efficiency with a FGLS

One important feature of our inference method is that we do not need to specify the structure of the

serial correlation. Since the linear combination Wj does not depend on θj , we circumvent the incidental

parameter problem caused by the estimation of group fixed effects. However, it might be possible to improve
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efficiency by exploiting the serial correlation with a FGLS-DID estimator. This strategy, however, presents

some challenges. First, one needs to impose some structure on the entire variance/covariance matrix. Also,

the residual η̂jt depends on the group fixed effects estimator, which will not be consistent if T is fixed.

This complicates the estimation of the variance/covariance matrix even if parametric assumptions on the

variance/covariance matrix are correct. Finally, with few treated groups, the FGLS estimator might not be

normally distributed even when N0 → ∞. We show now that it is possible to combine FGLS estimation

with our inference method. This will allow for robust inference in case the serial correlation is misspecified,

estimators for the serial correlations parameters are biased, or errors are not normally distributed.

Since we assume that errors are uncorrelated across j, the variance/covariance matrix of ηjt is block

diagonal with T × T blocks given by Ωj . We assume that Ωj = Ω(X̃j). Let Ω̂(X̃j) be an estimator of Ω(X̃j)

that converges to Ω̄(X̃j) (we allow Ω̂(X̃j) to be biased). The FGLS estimator using Ω̂(X̃j) will be a linear

estimator α̂FGLS =
∑T

t=1

∑N
j=1 âjtYjt. In Appendix A.4, we show that, in the case with only one treated

group, α̂FGLS

d→∑T
t=1 ā1tη1t, where ā1 = (ā11, ..., ā1T )

′ is defined by:

ā1 = argmin
a1

a′1Ω̄(X̃1)a1 (10)

subject to:

T∑

t=t∗+1

a1t = 1 and

T∑

t=1

a1t = 0 (11)

Therefore, defining the linear combination W ∗
j =

∑T
t=1 ā1tηjt, we show in Appendix A.4 that all results

from Section 2.3 applies to the FGLS estimator. The only difference is that the assumptions should be

based on the linear combination W ∗
j instead of on the linear combination Wj . Note that Ŵ ∗R

j
d→ W ∗

j , so

we would not have an incidental parameter problem by looking at the linear combination W ∗
j .

22 For our

leading example presented in Section 2.2, we would still have var(W ∗
j |Mj) = A+ B

Mj
.

So far, we only assumed that Ω̂(X̃j) converges to Ω̄(X̃j). So our inference method would be valid even

if Ω̄(X̃j) 6= Ω(X̃j). If ηjt is multivariate normal and Ω̄(X̃j) = Ω(X̃j), then we show in Appendix A.4 that

our test has asymptotically the same power as a t-test based on the infeasible GLS estimator, which is

the uniformly most powerful (UMP) test in this case.23 Therefore, by combining our method with FGLS

estimation we provide a test that is asymptotically UMP if all these assumptions are satisfied. Importantly,

22Another difference relative to the OLS DID is that the we have to estimate ājt. However, since we have a consistent
estimator for ājt, this does not impose any problem to apply our method.

23The main intuition of the proof is that, even under the alternative hypothesis, we have that Ŵ ∗R
j

d→ W ∗
j for all j in the

control group when N0 → ∞ but N1 is small and fixed. Since the probability of resampling a treated group goes to zero, then
the bootstrap distribution will approximate the distribution of α̂FGLS under the null even when the null is false.
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if the serial correlation is misspecified, the estimators of the serial correlation parameters are biased, or the

error is not normally distributed, then our test would still have the correct size while a t-test based on the

FGLS estimator would be biased.

A final point is how to provide a consistent estimator Ω̂(X̃j). This is not a trivial challenge since, with

fixed T , η̂jt
d→ ηjt − 1

T

∑T
t′=1 ηjt′ 6= ηjt. Therefore, we would get biased estimators if we simply use sample

analogs based on DID residuals. If we assume homoskedasticity and constant AR(p) parameters, then

Hansen (2007) provides a consistent estimator for Ω(X̃j) = Ω. However, if we consider our leading example

in Section 2.2 and assume that νjt and ǫijt follow an AR(p) model, then it is not straightforward to extend

Hansen’s (2007) strategy. The main challenge is that we would not have the linearity that Hansen (2007)

uses to derive the bias and provide the bias correction (see Appendix A.4). Imposing more assumptions,

we provide in Appendix A.4 a consistent estimator for Ω̂(Mj) for the case that all serial correlation comes

from the ǫijt and Mj is large. These results suggest that the possibility of deriving a consistent estimator for

Ω(X̃j) is case specific and relies on potentially strong assumptions on the structure of the serial correlation.

Therefore, our inference method provides an important safeguard for FGLS estimation in DID settings when

there are few treated groups. More specifically, we provide an alternative to cluster-robust inference in FGLS

when it is not possible to estimate the CRVE.

4 Heteroskedasticity Correction with Large t
∗

One of the main features of our inference method presented in Section 2.3 is that we collapse the time series

structure when we consider the linear combination of the errors Wj , so that the inference problem becomes

equivalent to a comparison of means between treated and control groups. This is why our inference method

does not require any specification of the time series structure. However, in the case with only one treated

group, this implies that we would have in practice only one observation for the treated group to estimate

the distribution of the treated group error. This is why a crucial assumption of our method is that we know

how the heteroskedasticity is generated (that is, Wj |Xj , dj
d
= Wj |X̃j). Under this assumption, the residuals

of the control groups are informative about the distribution of the treated group errors. We can only relax

this assumption if we impose some structure on the time series.

We now show that, under strict stationarity and ergodicity of the time series, we can apply Andrews’

(2003) end-of-sample instability test to a transformation of the DID model if we have a large number of pre-

treatment periods and a small number of post-treatment periods. The main idea is that with large t∗ and
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small T − t∗ the DID estimator would converge in distribution to a linear combination of the post-treatment

errors. Therefore, under strict stationarity and ergodicity, we can use blocks of the pre-treatment periods

to estimate the distribution of α̂. This is essentially the idea of the method suggested in CT, but exploiting

the time instead of the cross-section variation.

If we collapse the cross-section variation using the transformation Ỹt =
1
N1

∑N1

j=1 Yjt − 1
N0

∑N
j=N1+1 Yjt,

then:

Ỹt =





θ̃ + η̃t, for t = 1, ..., t∗

α+ θ̃ + η̃t, for t = t∗ + 1, ..., T

(12)

where θ̃ = 1
N1

∑N1

j=1 θj − 1
N0

∑N
j=N1+1 θt and η̃t =

1
N1

∑N1

j=1 ηjt − 1
N0

∑N
j=N1+1 ηjt.

Therefore, this is a particular case of Andrews’ (2003) end-of-sample instability test in a model that

includes only a constant.24 We want to test whether the average of Ỹt is different after the treatment. With

group-level covariates, we can estimate the OLS DID model and then construct Ỹt using Yjt −X ′
jtβ̂. Since

β̂ is consistent, this approach will work under strict stationarity and ergodicity of ηjt. The same approach

works if we have individual-level covariates.25

This approach might be interesting because we do not need to assume the structure of the heteroskedas-

ticity. Also, this approach works even if we have as few as one treated and one control group. However,

this approach is unfeasible if there are few pre-treatment periods. Moreover, the stationarity assumption

might be violated if, for example, there is variation in the number of observations per group across time. For

example, if we divide the US states in the CPS by quartiles of number of observations for each year from

1979 to 2014, then 35 out of the 51 states belonged to 3 or 4 different quartiles depending on the survey year.

In this scenario, our method using the function ̂var(Wj |Mj) would still provide a valid alternative, provided

that we have a large number of control groups and we know how the heteroskedasticity was generated.

5 Linear Factor Model - Large t
∗ and Large N0

We now show that the inference methods we propose can be expanded to linear factor models with few

treated groups. This method has been studied in the panel data setting in Bai (2009) and analyzed in

24Note that the DID estimator would be given by α̂ = 1
T−t∗

∑T
t=t∗+1 Ỹt − 1

t∗

∑t∗

t=1 Ỹt.
25With group-level covariates, we consider a model Yjt = αdjt + X′

jtβ + θj + γt + ηjt. With individual-level covariates, we

consider a model Yijt = αdjt+X′
ijtβ+ θj +γt+νjt+ ǫijt. In this case, we have to impose the strict stationarity and ergodicity

assumptions on ηjt = νjt +
1

M(j,t)

∑M(j,t)
i=1 ǫijt.
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detail for estimating treatment effects of regional policies as a generalization of DID in Gobillon and Magnac

(2013).

Gobillon and Magnac (2013) consider a model in which the potential outcome in the absence of treatment

is given by:

Yjt(0) = xjtβ + f ′
tλj + ηLFM

jt (13)

where xjt are covariates, λi is a L× 1 vector of individual effects or factor loadings, and ft is a L× 1 vector

of time effects or factors. The treatment effect is given by αjt, so that:

Yjt(1) = Yjt(0) + αjt (14)

This model allows for more flexibility relative to the usual DID model. As shown in Gobillon and Magnac

(2013), we can go back to the usual DID model by setting the restrictions λi = (θi, 1)
′ and ft = (1, γt)

′.

They assume that we know the number of factors in the true DGP and that the factors are sufficiently strong

so that the consistency condition for factors and factor loadings is satisfied.

As suggested in Gobillon and Magnac (2013), it is possible to estimate this model in two steps. In the

first step, we estimate the linear factor model in equation 13 using the sample composed of non-treated

observations over the whole period and treated observations in the pre-treatment (t ≤ t∗). If t∗ and N0 tend

to ∞, then we get consistent estimators for β, ft and λt. In the second step, we estimate the counterfactual

term imputing the estimated β, ft and λt. More specifically, we have that the average treatment on the

treated effect in period t is given by:

E[Yjt(1)− Yjt(0)| treated ] = E[αjt| treated ] = E[Yjt − xjtβ − λ′
ift| treated ] (15)

Therefore, we can use the empirical counterpart α̂t =
1
N1

∑N1

j=1

[
Yjt − xjtβ̂ − λ̂′

if̂t

]
to estimate E[αjt| treated ].

If we let N0 and t∗ go to ∞ while N1 is fixed, then:

α̂t =
1

N1

N1∑

j=1

[
Yjt − xjtβ̂ − λ̂′

if̂t

]
→ 1

N1

N1∑

j=1

[Yjt − xjtβ − λ′
ift] =

= E[αjt| treated ] +
1

N1

N1∑

j=1

ηLFM
jt (16)
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If we want to estimate the average treatment on the treated as defined in Gobillon and Magnac (2013),

we just need to use α̂ = 1
T−t∗

∑T
t=t∗+1 α̂t. As N0 and t∗ go to ∞ while N1 and T − t∗ are fixed, α̂− α will

converge to 1
T−t∗

∑T
t=t∗+1

[
1
N1

∑N1

j=1 η
LFM
jt

]
. In other words, with fixed N1 and fixed T − t∗, the error of the

linear factor model estimator will be dominated by the error of the treated groups.

This result is a natural extension of CT.26 The key point is that common factors and factor loads

are consistently estimated, so we can use the residuals from the linear factor model η̂LFP
jt to estimate the

distribution of ηLFM
jt . Since we have both t∗ → ∞ andN0 → ∞, we have two alternatives in this case. We can

exploit the cross-section variation using the estimated residuals from the control groups, 1
T−t∗

∑T
t=t∗+1 η̂

LFM
jt

for j > N1, to approximate the distribution of the errors of the treated groups, 1
T−t∗

∑T
t=t∗+1 η

LFM
jt for

j ≤ N1. Under homoskedasticity across j, this is essentially the method presented in CT applied to linear

factor models with few treated groups. If errors are heteroskedastic, then we can use our method, provided

that we know how the heteroskedasticity was generated. Alternatively, we can exploit the time series variation

as shown in Section 4 provided that ηLFM
jt is strictly stationary and ergodic.

6 Randomization Inference and Permutation Tests

We assume in our model that treatment assignment is nonstochastic, while the stochastic elements in the

model come from ηjt, νjt, and ǫijt. This departs crucially from Randomization Inference (RI), which considers

that the only stochastic component of the model is the treatment assignment (Fisher (1935)). In RI, one

calculates the test statistic under all possible combinations of treatment assignment, and rejects the null

if the observed realization in the actual experiment is extreme enough. This idea is closely related to CT.

In fact, CT propose an alternative way to implement their method which is heuristically motivated by the

literature on permutation tests and RI. As stated in Lehmann and Romano (2008), RI provides exact test

statistics based solely on the null of no treatment effects and the fact that treatment was randomly assigned,

not depending on any assumption regarding the characteristics of outcome, covariates and residuals. Young

(2015) argues that many published papers in Economics that use standard inference methods in randomized

experiments produce invalid testing, and proposes the use of RI methods. While we agree that RI provides

a powerful inference method in randomized experiments, we believe this approach would not provide a

satisfactory inference method in our setting.

First, permutation tests should take into account the treatment assignment mechanism. In standard

26Note that we get an equivalent formula in the DID model if we let N0 and t∗ go to ∞ while N1 and T − t∗ are fixed.
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permutation tests where one considers all possible combinations of treatment/control status, it is implicitly

assumed that all units had uniform assignment probability. This random assignment assumption guarantees

that the randomization distribution provides the exact distribution of the test statistic (for an unconditional

test). However, this assumption might be unreasonable in many DID applications. For example, one might

believe that larger states switch policies more often than smaller states. Note that the DID identification

assumption can still be valid in this scenario, while the assumption of uniform assignment probability is vio-

lated. Therefore, a standard permutation test that considers all possible combinations of treatment/control

status would not provide valid inference. In this scenario, permutation tests that take into account the

assignment mechanism would be valid. However, the assignment mechanisms will usually be unknown to the

econometrician in DID applications. Moreover, with only one or just a few treated groups there is little hope

in reliably estimating the assignment mechanism from the data. Therefore, with unknown assignment mech-

anisms, the assumptions for the RI approach would not be satisfied, while our method would still provide

valid inference.

We argue now that, even under uniform assignment probability, RI would usually provide an unsatisfac-

tory solution to the inference problem in our setting. The key point is that, while a standard permutation

test would provide a valid unconditional test (that is, before we know the information on the size of the

treated groups), it would not provide a reasonable inference solution for a researcher given the data he has

at hand. The case for conditional inference traces back Fisher (1934), Pitman (1938), and Cox (1958). As

Mcullagh (1992) argues, unconditional tests can be “inappropriate and possibly misleading for hypotheses

concerning the data at hand”, while “conditional probability calculation often provides an answer to which no

right-thinking person could object”. In our example described in Section 2.2, if one has information on group

sizes, then we argue it would be more reasonable to consider a test conditional on this information. The

reason is that once one knows that the treated groups are (large) small relative to the control groups, then

one knows that a permutation test that ignores this information would (under-) over-reject the null when

the null is true, even if the assignment probabilities were uniform. In this case, this test would no longer

have the correct size given the data at hand. One way of incorporating this information in a permutation

test would be to apply the permutation conditional on the information of group sizes. However, if there

are few control groups with the same size as the treated groups, then one would not have many possible

permutations. In the extreme case where there is one treated group and no control group of the same size,

this conditional permutation test would generate a p-value interval of [0, 1].

Canay et al. (2014) provide alternative randomization tests that can incorporate information on group
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sizes. Differently from the traditional RI theory (Fisher (1935)), Canay et al. (2014) assume that the

limiting distribution of a function of the data exhibits approximate symmetric under the null, and not exact

symmetry as in the traditional randomization tests. In their setting, they can work with asymptotic results

in nature. Their approach might be useful in our setting because, in this alternative framework, one could

do a permutation test using a test statistic that does not depend asymptotically on the size of the groups.

As an application of their method, Canay et al. (2014) suggest an inference method for DID with a

finite number of treated groups (N1) and many control groups (N0). The main idea of their method is to

consider N1 DID estimators where in each one they use one of the treated groups and all control groups to

construct a DID estimator for α (say, α̂j , for j = 1, ..., N1). With the sequence (α̂1, ..., α̂N1
) they construct

a test statistic given by T = | ¯̂α−α0|
sα̂/

√
N1

, where ¯̂α = 1
N1

∑N1

j=1 α̂j and sα̂ = 1
N1−1

∑N1

j=1(α̂j − ¯̂α)2. Then they

consider sign changes given by (g1α̂1, ..., gN1
α̂N1

) where gj ∈ {−1, 1} and recalculate the test statistic. Let

T (1) ≤ T (2) ≤ ... ≤ T (N1) be the ordered values of the test statistic considering all sign change transformation,

and let T (k) be the N1(1 − a)th largest value of the test statistics, where a is the significance level. The

test will reject with probability 1 if T > T (k) and with probability zero if T < T (k). If T = T (k), we would

have to randomize whether we reject the null, so that asymptotically the test has the correct size. This

randomization when T = T (k) translates into an important drawback for their method when there are very

few treated groups. For example, if N1 = 2 then there would be a 50% probability (under the null) that

rejection will be decided by randomization.27 While the test would still be unbiased, it would have poor

power, as they point out in remark S.2.5 (Canay et al. (2014)).28 This happens because they rely only on

variation among the treated units. Since we also exploit variation from the control groups, our method does

not suffer from this problem even when we have only one treated group.

Finally, in a recent paper, MacKinnon and Webb (2015a) suggest a permutation test on a t-statistic,

which is constructed using CRVE. Based on Canay et al. (2014) approach, their method works when the

numbers of treated and control groups are large enough, as asymptotically the t-statistic would have the

same distribution under the null for all permutations. However, their method does not work well with very

few treated groups. In particular, their method collapses to CT when there is only one treated group. The

reason is that CRVE would assign an estimated variance for the treated group equal to zero, so there would

27In the extreme case with N1 = 1 it would not be possible to calculate their test statistic, since sα̂ would be equal to zero.
If we consider other alternatives for the test statistic such as | ¯̂α−α0|, then all sign transformations would generate exactly the
same value for the test statistics. In this case, the test would collapse to randomly deciding whether to reject the null with
probability 5%. Therefore, although the test would reject with correct size under the null, the power would also be equal to 5%
for any alternative hypothesis.

28Canay et al. (2014) also consider a setting with both N1 and N0 finite. This alternative would also have poor power with
very few treated groups.
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not be much variation in the estimated variance of the placebo estimators. The key point is that one goes

back to the original problem of estimating the variance of the treated groups using CRVE with few treated

groups. By contrast, our method provides a valid correction for heteroskedasticity even when there is only

one treated group.

7 Monte Carlo Evidence

In this section, we provide Monte Carlo evidence of different hypothesis testing methods in DID. We assume

that the underlying data generating process (DGP) is given by:

Yijt = νjt + ǫijt (17)

In our simulations, we estimate a DID model given by equation 6 where only j = 1 is treated and T = 2,

and then we test the null hypothesis of α = 0 using different hypothesis testing methods. We consider

variations in the DGP along three dimensions:

1. The number of groups: N0 + 1 ∈ {25, 50, 100, 400}.

2. The intra-group correlation: νjt and ǫijt are drawn from normal random variables. We hold constant

the total variance var(νjt + ǫijt) = 1, while changing ρ =
σ2

ν

σ2
ν+σ2

ǫ
∈ {.01%, 1%, 4%}.

3. The number of observations within group: we draw for each group j the number of observations per

period from a discrete uniform random variable with range [M,M ] ∈ {[50, 200], [200, 800], [50, 950]}.29

For each case, we simulated 100,000 estimates. We present rejection rate results for inference using robust

standard errors in the individual-level OLS regression, CT, DL, and for the cluster residual bootstrap with

and without our heteroskedasticity correction. We do not include in the simulations methods that allow for

unrestricted heteroskedasticity. As explained in Section 2.1, these methods do not work well when there is

only one treated group. We also do not include the method suggested by MacKinnon and Webb (2015a) in

the simulations because their method collapses to CT when there is only one treated group.

29In the Monte Carlo simulations, we always consider the case M(j, t) = Mj . In the simulations with real datasets in Section
8, there is variation in M(j, t) across t.

24



7.1 Test Size

We present in Table 1 results from simulations using 400 groups (one treated and 399 controls) for different

numbers of observations per group and for different values of the intra-group correlations. In panel A, we

present results when the number of individual observations per group varies from 50 to 200. Column 1 shows

that average rejection rates for a test with 5% significance using robust standard errors in the individual level

DID regression. The rejection rate is slightly higher than 5% when the intra-group correlation ρ = 0.01%

(5.4%), but increases sharply for larger values of the intra-group correlation. The rejection rate is 19% when

ρ = 1% and 42% when ρ = 4%. When we use DL, CT, or cluster residual bootstrap without correction, the

average rejection rate is always around 5% (columns 3, 5, and 7). However, this average rejection rate hides

an important variation with respect to the number of observations in the treated group (M1).

In Figure 1.A, we show rejection rates for cluster residual bootstrap without correction conditional on

the size of the treated group.30 The rejection rate is around 14% when the treated group is in the first decile

of number of observations per group, while it is only 0.8% when the treated group is in the 10th decile. Note

also that this distortion in rejection rates is not confined to the extremes of the distribution of group sizes.

For example, the rejection rate is 3% when the treated group is in the 6th decile of number of observations

per group. We summarize this variation in rejection rates by looking at the absolute difference in rejection

rates for each decile of M1 relative to the average rejection rate. Then we average these absolute differences

across deciles. We present these results in columns 4, 6, and 8 for the methods without heteroskedasticity

correction. Conditional on the number of observations of the treated group, these methods present an average

variation in the rejection rates of 3.4-3.9 percentage points for a 5% significance test.

We present rejection rates by decile of the treated group for cluster residual bootstrap without correction

when ρ = 1% and when ρ = 4% in Figures 1.B and 1.C, respectively. As expected, this variation in rejection

rates becomes less relevant when the intra-group correlation becomes stronger. This happens because the

aggregation from individual to group x time averages induces less heteroskedasticity in the residuals when

a larger share of the residual is correlated within group. Still, even when ρ = 4% the difference in rejection

rates by number of observations in the treated group remains relevant. The rejection rate is around 6.5%

when the treated group is in the first decile of number of observations per group, while it is 4.2% when the

treated group is in the 10th decile. The average absolute difference in rejection rates for DL, CT, and for

the residual bootstrap without correction is around 0.7 percentage points in this scenario.

Given that inference using these methods is problematic when there is variation in the number of obser-

30Results for DL and CT are similar.

25



vations per group, we consider our residual bootstrap method with heteroskedasticity correction derived in

Section 2.3. We present rejection rates by decile of the treated group when the intra-group correlation is

0.01%, 1%, and 4% in Figures 1.D to 1.F. Average rejection rates using our method are always around 5%

and, more importantly, there is no variation with respect to the number of observations in the treated group.

These results are also presented in columns 9 and 10 of Table 1. The average absolute difference in rejection

rates is only around 0.1-0.2 percentage points, regardless of the value of the intra-group correlation.

In panel B of Table 1, we present the simulation results when the number of observations per group

increases from [50, 200] to [200, 800]. We increase the number of observations per group while holding the

ratio between the number of observations in different groups constant. Note that increasing the number

of observations per group worsens the over-rejection problem of inference relying on robust OLS standard

errors. When we consider DL, CT, and residual bootstrap without correction, increasing the number of

observations per group ameliorates the problem of (over-) under-rejecting the null when M1 is (small) large

relative to the number of observations in the control groups when ρ = 1% or ρ = 4%. In particular, when

ρ = 4% the average absolute difference in rejection rates across deciles of M1 is only 0.3 percentage points.

However, increasing the number of observations has no detectable effect when the intra-group correlation is

0.01%. In this case, the individual component of the residual becomes more relevant. Therefore, the ratio

between the variance of W1 and the variance of Wj becomes less sensitive with respect to the number of

observations per group. As explained in Section 2.2, in the extreme case with ρ = 0, heteroskedasticity

would still be a problem even when M → ∞.

In panel C of Table 1, we present the simulation results when the number of observations varies from

50 to 950. Therefore, the average number of observations remains constant, but we have more variation in

M relative to the simulations in panel B. As expected, more variation in the number of observations per

group worsens the inference problem we highlight in CT, DL, and residual bootstrap without correction. On

the contrary, our residual bootstrap with heteroskedasticity correction remains accurate irrespective of the

variation in the number of observations per group.

As presented in Section 2.3, our method works asymptotically when N0 → ∞. This assumption is

important for two reasons. First, as in any other cluster bootstrap method, a small number of groups

implies a small number of possible distinct pseudo-samples. In this case, the bootstrap distribution will not

be smooth even with many bootstrap replications (Cameron et al. (2008)). In order to mitigate this problem,

we apply the insight of wild cluster bootstrap to our method, so that we can generate more variation in

the bootstrap samples, as explained in Section 2.3. Additionally, our method requires that we estimate
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var(Wj |Mj) using the group x time aggregate data so that we can apply our heteroskedasticity correction.

If there are only a few groups, then our estimator of var(Wj |Mj) will be less precise. In particular, it might

be the case that ̂var(Wj |Mj) < 0 for some j, which implies that we would not be able to normalize the

residual of observation j. When ̂var(Wj |Mj) < 0 for some j, we use the following rule: if Â < 0, then we use

̂var(Wj |Mj) =
1

Mj
, as Â < 0 would suggest that there is not not a large intra-group correlation problem. If

B̂ < 0, then we use ̂var(Wj |Mj) = 1, as B̂ < 0 would suggest that there is not much heteroskedasticity. It

is important to note that asymptotically this rule would not be relevant, since var(Wj |Mj) > 0 for all M .

We had ̂var(Wj |Mj) > 0 for all j in more than 99.97% of our simulations with N = 400. However, when

there are fewer control groups, the function var(Wj |Mj) will be estimated with less precision.

We present in Tables 2 to 4 and in Figures 2 to 4 the simulation results when the total number of groups

are 100, 50, and 25. Average rejection rates are always lower than 5.3% when the total number of groups is

100 or 50, which is reasonably close to the correct size of the test. More importantly, the average absolute

difference in rejection rates is always lower than 0.5 percentage points, suggesting that there is not much

variation in rejection rates depending on the size of the treated group. These results are confirmed in Figures

2 and 3. When we have 25 groups, then average rejection rates are slightly higher, at around 5.5%, and

we start to have more variation in rejection rates depending on the size of the treated group. As shown in

Figure 4, there is some distortion in rejection rates when the treated group is in the first decile of group

size. Still, our method provides reasonably accurate hypothesis testing with 25 groups. In particular, our

method provides substantial improvement relative to alternative methods when the intra-group correlation

is not too strong.

As a robustness check, we consider a DGP where νjt ∼ χ2(1)/
√
2 instead of being normally distributed.31

Note that, in this case, it would not be true that Wj |Mj is identically distributed up to a scale parameter.

The simulation results under this alternative DGP are presented in Table 5 for N ∈ {25, 50, 100, 400} and

ρ ∈ {0.01%, 1%, 4%}. In all simulations we consider Mj uniformly distributed between 50 and 200. We

consider inference using residual bootstrap with and without heteroskedasticity correction. Our simulation

results suggest that our method still provides reliable inference in this setting. The simulation results are

very similar to the case where νjt is normally distributed. In particular, our method substantially improves

relative to a bootstrap without correction when the intra-group correlation is not too strong. In Section 8

we provide evidence that our inference method also improves inference relative to alternative methods in

simulations with real datasets, where we do not have control over the DGP.

31We divide by
√
2 so that var(νjt) = 1. This makes these simulations more comparable to the case νjt ∼ N(0, 1).
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7.2 Test Power

We have focused so far on Type I error. We saw in Section 7.1 that our method is efficient in providing tests

that reject the null with the correct size when the null is true. We are interested now in whether our tests

have power to detect effects when the null hypothesis is false. We run the same simulations as in Section 7.1,

with the difference that we now add an effect of β standard deviations for observation {ijt} when djt = 1.

Given that we know the DGP in our Monte Carlo simulations, we can calculate the variance of α̂ given the

parameters of the model and generate a t-statistic t = α̂
σα̂

. Note that with two periods and one treated

group, with N0 → ∞, the DID OLS estimator is asymptotically equivalent to the GLS estimator where

the full structure of the variance/covariance matrix is known. Therefore, since the errors in our DGP are

normally distributed, we also know that a test based on this t-statistic is the uniformly most powerful test

(UMP) for this particular case. Given our results from Section 3, we know that our inference method has

asymptotically the same power of the UMP test.

In Figure 5, we present power results for different intra-group correlation parameters and for different

distributions of group sizes when there are 400 groups (1 treated and 399 control groups) separately when

the treated group is above and below the median of number of observations per group. The most important

feature in these graphs is that, for this particular DGP, the power of our method converges to the power of

the UMP test when we have many control groups in all intra-group correlation and group size scenarios. It

is also interesting to note that the power is higher when the treated group is larger. This is reasonable, since

the main component of the variance of the DID estimator with few treated and many control groups comes

from the variance of the treated groups. The difference in power for above- and below-median treated groups

vanishes when the intra-group correlation increases. This happens because a higher intra-group correlation

makes the model less heteroskedastic, so the size of the treated group would be less related to the precision

of the estimator. Finally, the power of the test decreases with the intra-group correlation which reflects that,

for a given number of observations per group, a higher intra-group correlation implies more volatility in the

group x time regression.

When we have 25 groups (1 treated and 24 control), then the power of our method is slightly lower

than the power of the UMP test (Figure 6). This is partially explained by fact that we need to estimate

the function var(Wj |Mj) and, with a finite number of control groups, this function would not be precisely

estimated. Still, the power of our method is relatively close to the power of the UMP test, especially when

the intra-group correlation is not high.
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8 Simulations with Real Datasets

The results presented in Section 7 suggest that heteroskedasticity generated by variation in group sizes

invalidates inference methods that rely on homoskedasticity such as DL, CT, and cluster residual bootstrap,

while our method performs well in correcting for heteroskedasticity when there are 25 or more groups.

However, a natural question that arises is whether these results are “externally valid.” In particular, we

want to know (i) whether heteroskedasticity generated by variation in group sizes is a problem in real datasets

with large number of observations, and (ii) whether our method works in real datasets, where we do not

have control over the DGP. More specifically, our DGP in Section 7 implies that the real variance of Wj

would have exactly the relationship var(Wj |Mj) = A + B
Mj

, which might not be the case in real datasets.

To illustrate the magnitude of the heteroskedasticity problem and to test the accuracy of our method, we

conduct simulations of placebo interventions using two different real datasets: the American Community

Survey (ACS) and the Current Population Survey (CPS).32

We consider two different group levels for the ACS based on the geographical location of residence: Public

Use Microdata Areas (PUMA) and states. Simulations using placebo interventions at the PUMA level would

be a good approximation to our assumption that N1 is small while N0 → ∞. Simulations using placebo

interventions at the state level would mimic situations of DID designs that are commonly used in applied

work where the treatment unit is a state, with a dataset that includes a very large number of observations

per group x time cell. We also consider the CPS for simulations with more than two periods. As shown in

Bertrand et al. (2004), this dataset exhibits an important serial correlation in the residuals, so we want to

check whether our method method is efficient in correcting for that.

We use the ACS dataset for the years 2005 to 2013, and the CPS Merged Outgoing Rotation Groups for

the years 1979 to 2014. We extract information on employment status and earnings for women between ages

25 and 50, following Bertrand et al. (2004). We present in Table 6 the distribution of number of observations

per group x cell for the PUMA-level ACS (column 1), for the state-level ACS (column 2) and for the state-

level CPS (column 3). There are, on average, 778 observations in each PUMA x time cell in the ACS. This

number, however, hides an important heterogeneity in cell sizes. The 10th percentile of PUMA x time cell

sizes is 174, while the 90th percentile is 1,418. There is also substantial heterogeneity in state x time cell

sizes in the ACS. While the average cell size is 10,138, the 10th percentile is 1,250, while the 90th percentile

is 21,099. Finally, the state x time cells in the CPS have substantially fewer observations compared to the

32We created our ACS extract using IPUMS (Ruggles et al. (2015)).
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ACS. While the average cell size is 771, the 10th percentile is 392, and the 90th percentile is 1709.

For the ACS simulations, we consider pairs of two consecutive years and estimate placebo DID regressions

using one of the groups (PUMA or state) at a time as the treated group. Note that this differs from Bertrand

et al. (2004) simulations, as they randomly selected half of the states to be treated. In each simulation, we

test the null hypothesis that the “intervention” has no effect (α = 0) using robust standard errors, and

bootstrap with and without our heteroskedasticity correction. Since we are looking at placebo interventions,

if the inference method is correct, then we would expect to reject the null roughly 5% of the time for a test

with 5% significance level. For each pair of years, the number of PUMAs that appear in both years ranges

from 427 to 982, leading to 5,188 regressions in total. For the state-level simulations, we have 51× 8 = 408

regressions (we include Washington, D.C.). For the CPS simulations, we used 2, 4, 6, or 8 consecutive years,

always using the first half of the years as pre-treatment and the second half as post-treatment. This leads

to 1479 to 1785 regressions, depending on the number of years used in each regression.

8.1 American Community Survey (ACS) Results

In Panel A of Table 7, we present results from simulations using the PUMA-level treatments using the

ACS. In column 1, we show rejection rates using OLS robust standard errors in the individual-level DID

regression. Rejection rates for a 5% significance test are 7.2% when the outcome variable is employment, and

8.1% when it is log wages. This over-rejection suggests that there is important intra-group correlation that

the robust individual-level standard error does not take into account. In column 3 of Table 7, we present

results for the bootstrap without the heteroskedasticity correction (results for DL and CT are simular). As

in the Monte Carlo simulations, average rejection rates without correction are very close to 5%. However,

there is substantial variation when we look at rejection rates conditional on the size of the treated group.

We present in column 4 of Table 7 the difference in rejection rates when the number of observations in

the treated group is above and below the median.33 For both outcome variables, the rejection rate is 8

percentage points lower when the treated group has a group size above the median. This implies a rejection

rate of almost 9% when the treated group is below the median, and slightly lower than 1% when the treated

group is above the median. In columns 5 and 6 of Table 7, we present the rejection rates using bootstrap

with our heteroskedasticity correction. For both outcomes, average rejection rate has the correct size of 5%

and, more importantly, there is virtually no difference between rejection rates when the treated group is

33Given that we have a limited number of simulations, we do not calculate the average absolute difference in rejection rates
across deciles, as we do in the Monte Carlo simulations. For the PUMA-level simulations, there are only approximately 500
simulations for each decile. For the state-level simulations there would be only around 40 simulations for each decile.
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above or below the median. Therefore, our method was successful in correcting for the heteroskedasticity

problem even in a setting where we do not have control over the DGP.

We present in Panel B of Table 7 the results for state-level simulations. The most striking result in

this table is that rejection rates using bootstrap without correction still depend on the size of the treated

group. This happens in a dataset with, on average, more than 10,000 observations per group x time cell.

In particular, the rejection rate in the simulations with log wages as the outcome variable is zero when

the treated group is below the median, and 10% when the treated group is above the median. We present

rejection rates using bootstrap with our heteroskedasticity correction in columns 5 and 6. Average rejection

rates are around 5%, and we cannot reject that there is no difference in rejection rates above and below

the median. However, this test of our method is under-powered, since we estimate rejection rates in the

state-level models based on only 408 simulations. In order to provide more precision to estimate the rejection

rates of our method, we simulate DID placebo regressions randomly selecting 50 PUMAs in each simulation,

which generates many more placebo estimates. These results are presented in panel C of Table ACS. We

also present results DID placebo regressions randomly selecting 25 PUMAs in each simulation in Panel D of

Table 7. Remarkably, our method still provides hypothesis testing with correct size regardless of the size of

the treated group when N = 50 and when N = 25.

8.2 Current Population Survey (CPS) Results

We present the simulation results using the CPS in Table 8. Panel A presents rejection rates of DID models

using 2 years of data, while Panels B, C, and D present rejection rates using respectively 4, 6, and 8 years.

Inference with OLS robust standard errors on the individual-level model becomes worse when we include

more years of data in the model (column 1). This result is consistent with the findings in Bertrand et al.

(2004). The key point is that the panel structure of the CPS Merged Outgoing Rotation Groups generates

serial correlation in the errors. We present rejection rates for the residual bootstrap without correction in

columns 3 and 4. The average rejection rates are close to 5% irrespective of the number of periods, which was

expected given that this method takes serial correlation into account by looking at a linear combination of

the residuals (as in CT). However, since this linear combination of the residuals is heteroskedastic, rejection

rates based on this method vary with the size of the treated group. We present rejection rates using bootstrap

with our heteroskedasticity correction in columns 5 and 6. As in the ACS simulations, we cannot reject that

rejection rates have the correct size on average and that rejection rates do not depend on the size of the

treated group in all simulations. Therefore, our method is efficient in correcting for heteroskedasticity in a
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scenario that serial correlation is important without the need to specify the structure of the serial correlation.

8.3 Power with Real Data Simulations

We saw in Sections 8.1 and 8.2 that our method provides tests with correct size in simulations with the

ACS and the CPS. We now present power results from simulations with these datasets in Figure 7. Figure

7.A shows power results using the ACS with state-level treatment. When the treated group is above the

median, our method is able to detect an effect size of 0.06 log points with probability greater than 70%.

When the treated group is below the median, we are only able to attain this power for effects greater than

0.1 log points. This again reflects that the variance of α̂ is higher when the treated group is smaller. Figures

7.B to 7.E present results for simulations using the CPS with different numbers of time periods. The power

in the CPS simulations is considerably lower than in the ACS simulations. The power to reject an effect

of 0.06 log points when the treated group is above the median ranges from 26% to 41%, depending on the

number of periods used in the simulations. This happens because the ACS has a much larger number of

observations than the CPS. Even though we have only one treated group in all simulations, the larger number

of observations in the ACS implies that the group x time variance of the error would be smaller.34

As opposed to the power results presented in Section 7.2, we do not know the true variance of α̂, so it

is not possible to compare the power of our method with the power of the UMP test. Still, results from the

Monte Carlo simulations suggest that the power of our method should be very close to the power of a UMP

test.

9 Conclusion

This paper shows that usual inference methods used in DID models might not perform well in the presence

of heteroskedasticity when the number of treated groups is small. Then we derive an alternative infer-

ence method that corrects for heteroskedasticity when there are few treated groups (or even just one) and

many control groups. With few pre-treatment periods, the main assumption is that we can model the het-

eroskedasticity of a linear combination of the errors. By focusing on this linear combination, we circumvent

the incidental parameter problem and avoid imposing strong assumptions on the serial correlation. We focus

34For some CPS simulations, the power when the treated group is below the median crosses the power when the treated

group is above the median when the effect size is large. This happens because a large effect size would imply that Ŵ 2
1 (which is

calculated from a model with H0 imposed) would be large, which would bias our estimate of var(Wj |Mj). Note that this does

not invalidate the method, since ̂var(Wj |Mj) is consistent under the null. Also, this distortion only appears when the power of
the test was already above 90%.
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on the example of variation in group sizes, in which it is possible to derive a parsimonious function for the

conditional variance as a function of the number of observations per group under very mild assumptions on

the errors. However, our model is more general and can be applied in any situation in which we are able

to assume a structure on the variance of a linear combination of the errors, Wj . It is important to note

that there is no heteroskedasticity-robust inference method in DID when there is only one treated group.

Therefore, although our method is not robust to any form of unknown heteroskedasticity, it provides an

important improvement relative to existing methods that rely on homoskedasticity. Our method can also

be combined with FGLS estimation, providing a safeguard in situations a where a t-test based on the FGLS

estimator would be invalid. With many pre-treatment periods, we provide an alternative inference method

that relies on strict stationarity and ergodicity of the time series instead of the assumption on how the

heteroskedasticity was generated. Finally, we extend our inference method to linear factor models with few

treated groups, an estimation method that has been recently proposed as an alternative to DID when there

are many pre-treatment periods and many control groups.
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Figure 1: Rejection Rates in MC Simulations by Decile of M1, N = 400

1.A: w/o correction, ρ = 0.01% 1.B: w/o correction, ρ = 1% 1.C: w/o correction, ρ = 4%
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Notes: These figures present the rejection rates conditional on the decile of the number of observation of the treated group

when N = 400 and M ∈ [50, 200]. These rejection rates are based on Monte Carlos simulations explained in Section 7. Figures

1.A to 1.C present results using the residual bootstrap without correction, while Figures 1.D to 1.F present results using the

residual bootstrap method with our heteroskedasticity correction, as explained in Section 2.3.

Figure 2: Rejection Rates in MC Simulations by Decile of M1, N = 100
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Notes: These figures present the rejection rates conditional on the decile of the number of observation of the treated group

when N = 100 and M ∈ [50, 200]. These rejection rates are based on Monte Carlos simulations explained in Section 7. Figures

2.A to 2.C present results using the residual bootstrap without correction, while Figures 2.D to 2.F present results using the

residual bootstrap method with our heteroskedasticity correction, as explained in Section 2.3.
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Figure 3: Rejection Rates in MC Simulations by Decile of M1, N = 50
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Notes: These figures present the rejection rates conditional on the decile of the number of observation of the treated group

when N = 50 and M ∈ [50, 200]. These rejection rates are based on Monte Carlos simulations explained in Section 7. Figures

3.A to 3.C present results using the residual bootstrap without correction, while Figures 3.D to 3.F present results using the

residual bootstrap method with our heteroskedasticity correction, as explained in Section 2.3.

Figure 4: Rejection Rates in MC Simulations by Decile of M1, N = 25
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4.D: with correction, ρ = 0.01% 4.E: with correction, ρ = 1% 4.F: with correction, ρ = 4%
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Notes: These figures present the rejection rates conditional on the decile of the number of observation of the treated group

when N = 25 and M ∈ [50, 200]. These rejection rates are based on Monte Carlos simulations explained in Section 7. Figures

4.A to 4.C present results using the residual bootstrap without correction, while Figures 4.D to 4.F present results using the

residual bootstrap method with our heteroskedasticity correction, as explained in Section 2.3.
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Figure 5: Test Power by Treated Group Size - Monte Carlo Simulations with N = 400

5.A: M ∈ [50, 200], ρ = 0.01% 5.B: M ∈ [50, 200], ρ = 1% 5.C: M ∈ [50, 200], ρ = 4%
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Notes: These figures present the power of the bootstrap with heteroskedasticity correction as a function of the effect size

separately when the treated group is above and below the median of group size. The standard deviation of the individual level

observation is equal to one across the different scenarios. Therefore, the effect size is in standard deviation terms. Results are

based on simulations with total number groups N = 400.

Figure 6: Test Power by Treated Group Size - Monte Carlo Simulations with N = 25
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6.D: M ∈ [50, 950], ρ = 0.01% 6.E: M ∈ [50, 950], ρ = 1% 6.F: M ∈ [50, 950], ρ = 4%
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Notes: These figures present the power of the bootstrap with heteroskedasticity correction as a function of the effect size

separately when the treated group is above and below the median of group size. The standard deviation of the individual level

observation is equal to one across the different scenarios. Therefore, the effect size is in standard deviation terms. Results are

based on simulations with total number groups N = 25.
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Figure 7: Test Power by Treated Group Size - Simulations with Real Dataset

7.A: ACS 7.B: CPS with T = 2 7.C: CPS with T = 4
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7.D: CPS with T = 6 7.E: CPS with T = 8
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Notes: These figures present the power of the bootstrap with heteroskedasticity correction for simulations using real datasets.

Results are presented separately when the treated group is above and below the median of group size. The outcome variable

is log wages, and effect sizes are measured in log points. Figure 7.A presents results using the ACS, while Figures 7.B to 7.E

present results using the CPS with varying number of periods.
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Table 1: Rejection Rates in MC Simulations with N0 + 1 = 400

Inference Method
Donald Conley Bootstrap Bootstrap

Robust OLS and Lang and Taber w/o correction with correction
Absolute Absolute Absolute Absolute Absolute

ρ Mean Difference Mean Difference Mean Difference Mean Difference Mean Difference
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Panel A: M ∈ [50, 200]
0.01% 0.054 0.002 0.053 0.039 0.050 0.036 0.049 0.034 0.051 0.001

1% 0.192 0.036 0.050 0.019 0.050 0.018 0.049 0.017 0.050 0.002

4% 0.420 0.059 0.049 0.007 0.050 0.006 0.050 0.007 0.050 0.002

Panel B: M ∈ [200, 800]
0.01% 0.057 0.002 0.053 0.036 0.051 0.034 0.049 0.034 0.049 0.002

1% 0.415 0.065 0.051 0.008 0.049 0.006 0.050 0.008 0.050 0.002

4% 0.661 0.051 0.049 0.004 0.051 0.003 0.050 0.003 0.050 0.002

Panel C: M ∈ [50, 950]
0.01% 0.057 0.003 0.054 0.061 0.051 0.057 0.050 0.057 0.051 0.002

1% 0.396 0.098 0.051 0.019 0.051 0.019 0.049 0.018 0.050 0.001

4% 0.637 0.093 0.051 0.006 0.049 0.006 0.050 0.006 0.049 0.002
Note: This table presents results from Monte Carlo simulations with 400 groups, as explained in Section 7. In all simulations, only one group
is treated. Each line presents simulation for different values of intra-group correlation, while each panel presents results for different numbers of
observations per group. We consider 5 inference methods: hypothesis testing using robust standard errors from the individual level regression, DL,
CT, cluster residual bootstrap without correction, and cluster residual bootstrap with our heteroskedasticity correction. For the bootstrap methods,
we imposed H0, and we used the wild bootstrap idea of randomizing whether we multiply the residuals by 1 or -1. For each inference method,
we report the average rejection rate for a 5% significance level test. We also report a measure of how rejection rates depend on the number of
observations in the treated group, which we call “absolute difference”. To construct this measure, we calculate the absolute difference in rejection
rates for each decile of M1 relative to the average rejection rate, and then we average these absolute differences across deciles. We run 100,000
simulations for each M × ρ×N0 scenario. The standard error for the average rejection rates is around 0.07 percentage points, while the standard
error for the absolute difference is around 0.04-0.07 percentage points.
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Table 2: Rejection Rates in MC Simulations with N0 + 1 = 100

Inference Method
Donald Conley Bootstrap Bootstrap

Robust OLS and Lang and Taber w/o correction with correction
Absolute Absolute Absolute Absolute Absolute

ρ Mean Difference Mean Difference Mean Difference Mean Difference Mean Difference
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Panel A: M ∈ [50, 200]
0.01% 0.054 0.003 0.054 0.036 0.049 0.032 0.051 0.034 0.052 0.003

1% 0.193 0.032 0.052 0.017 0.049 0.018 0.052 0.017 0.052 0.002

4% 0.418 0.062 0.052 0.008 0.047 0.007 0.051 0.007 0.051 0.002

Panel B: M ∈ [200, 800]
0.01% 0.057 0.001 0.052 0.037 0.049 0.032 0.050 0.033 0.050 0.002

1% 0.415 0.058 0.050 0.008 0.049 0.008 0.052 0.007 0.052 0.002

4% 0.658 0.049 0.050 0.004 0.048 0.003 0.052 0.002 0.053 0.002

Panel C: M ∈ [50, 950]
0.01% 0.057 0.002 0.057 0.060 0.049 0.053 0.050 0.054 0.052 0.003

1% 0.400 0.095 0.050 0.019 0.049 0.018 0.050 0.017 0.051 0.002

4% 0.636 0.089 0.049 0.006 0.048 0.005 0.052 0.006 0.051 0.001
Note: This table presents results from Monte Carlo simulations with 100 groups, as explained in Section 7. In all simulations, only one group
is treated. Each line presents simulation for different values of intra-group correlation, while each panel presents results for different numbers of
observations per group. We consider 5 inference methods: hypothesis testing using robust standard errors from the individual level regression, DL,
CT, cluster residual bootstrap without correction, and cluster residual bootstrap with our heteroskedasticity correction. For the bootstrap methods,
we imposed H0, and we used the wild bootstrap idea of randomizing whether we multiply the residuals by 1 or -1. For each inference method,
we report the average rejection rate for a 5% significance level test. We also report a measure of how rejection rates depend on the number of
observations in the treated group, which we call “absolute difference”. To construct this measure, we calculate the absolute difference in rejection
rates for each decile of M1 relative to the average rejection rate, and then we average these absolute differences across deciles. We run 100,000
simulations for each M × ρ×N0 scenario. The standard error for the average rejection rates is around 0.07 percentage points, while the standard
error for the absolute difference is around 0.04-0.07 percentage points.
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Table 3: Rejection Rates in MC Simulations with N0 + 1 = 50

Inference Method
Donald Conley Bootstrap Bootstrap

Robust OLS and Lang and Taber w/o correction with correction
Absolute Absolute Absolute Absolute Absolute

ρ Mean Difference Mean Difference Mean Difference Mean Difference Mean Difference
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Panel A: M ∈ [50, 200]
0.01% 0.052 0.003 0.054 0.035 0.046 0.030 0.052 0.033 0.053 0.003

1% 0.192 0.037 0.051 0.017 0.046 0.014 0.051 0.016 0.053 0.003

4% 0.420 0.057 0.050 0.006 0.045 0.005 0.052 0.006 0.053 0.003

Panel B: M ∈ [200, 800]
0.01% 0.057 0.002 0.053 0.034 0.047 0.029 0.051 0.031 0.052 0.003

1% 0.415 0.060 0.049 0.007 0.047 0.006 0.052 0.006 0.052 0.003

4% 0.663 0.047 0.049 0.002 0.047 0.002 0.051 0.002 0.052 0.003

Panel C: M ∈ [50, 950]
0.01% 0.056 0.002 0.057 0.060 0.046 0.048 0.050 0.052 0.052 0.004

1% 0.398 0.099 0.051 0.019 0.047 0.017 0.051 0.015 0.051 0.004

4% 0.635 0.089 0.050 0.006 0.046 0.005 0.051 0.003 0.051 0.005
Note: This table presents results from Monte Carlo simulations with 50 groups, as explained in Section 7. In all simulations, only one group is
treated. Each line presents simulation for different values of intra-group correlation, while each panel presents results for different numbers of
observations per group. We consider 5 inference methods: hypothesis testing using robust standard errors from the individual level regression, DL,
CT, cluster residual bootstrap without correction, and cluster residual bootstrap with our heteroskedasticity correction. For the bootstrap methods,
we imposed H0, and we used the wild bootstrap idea of randomizing whether we multiply the residuals by 1 or -1. For each inference method,
we report the average rejection rate for a 5% significance level test. We also report a measure of how rejection rates depend on the number of
observations in the treated group, which we call “absolute difference”. To construct this measure, we calculate the absolute difference in rejection
rates for each decile of M1 relative to the average rejection rate, and then we average these absolute differences across deciles. We run 100,000
simulations for each M × ρ×N0 scenario. The standard error for the average rejection rates is around 0.07 percentage points, while the standard
error for the absolute difference is around 0.04-0.07 percentage points.
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Table 4: Rejection Rates in MC Simulations with N0 + 1 = 25

Inference Method
Donald Conley Bootstrap Bootstrap

Robust OLS and Lang and Taber w/o correction with correction
Absolute Absolute Absolute Absolute Absolute

ρ Mean Difference Mean Difference Mean Difference Mean Difference Mean Difference
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Panel A: M ∈ [50, 200]
0.01% 0.052 0.002 0.053 0.033 0.078 0.038 0.053 0.032 0.055 0.004

1% 0.193 0.032 0.051 0.016 0.079 0.020 0.053 0.015 0.055 0.005

4% 0.424 0.055 0.050 0.006 0.079 0.008 0.054 0.005 0.056 0.006

Panel B: M ∈ [200, 800]
0.01% 0.056 0.002 0.053 0.031 0.077 0.037 0.051 0.029 0.056 0.006

1% 0.417 0.060 0.049 0.009 0.078 0.008 0.054 0.005 0.056 0.006

4% 0.664 0.048 0.050 0.005 0.079 0.003 0.055 0.001 0.054 0.007

Panel C: M ∈ [50, 950]
0.01% 0.057 0.003 0.056 0.055 0.076 0.059 0.047 0.045 0.056 0.004

1% 0.403 0.091 0.052 0.015 0.077 0.019 0.052 0.015 0.056 0.007

4% 0.643 0.084 0.052 0.004 0.080 0.006 0.054 0.005 0.055 0.007
Note: This table presents results from Monte Carlo simulations with 25 groups, as explained in Section 7. In all simulations, only one group is
treated. Each line presents simulation for different values of intra-group correlation, while each panel presents results for different numbers of
observations per group. We consider 5 inference methods: hypothesis testing using robust standard errors from the individual level regression, DL,
CT, cluster residual bootstrap without correction, and cluster residual bootstrap with our heteroskedasticity correction. For the bootstrap methods,
we imposed H0, and we used the wild bootstrap idea of randomizing whether we multiply the residuals by 1 or -1. For each inference method,
we report the average rejection rate for a 5% significance level test. We also report a measure of how rejection rates depend on the number of
observations in the treated group, which we call “absolute difference”. To construct this measure, we calculate the absolute difference in rejection
rates for each decile of M1 relative to the average rejection rate, and then we average these absolute differences across deciles. We run 100,000
simulations for each M × ρ×N0 scenario. The standard error for the average rejection rates is around 0.07 percentage points, while the standard
error for the absolute difference is around 0.04-0.07 percentage points.
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Table 5: Rejection Rates in MC Simulations with νjt ∼ χ2(1)/
√
2

Bootstrap Bootstrap
w/o correction with correction

Absolute Absolute
ρ Mean Difference Mean Difference

(1) (2) (3) (4)
Panel A: N = 400

0.01% 0.050 0.035 0.050 0.002

1% 0.050 0.013 0.050 0.002

4% 0.050 0.003 0.050 0.003

Panel B: N = 100
0.01% 0.051 0.035 0.053 0.002

1% 0.052 0.013 0.052 0.003

4% 0.051 0.004 0.051 0.003

Panel A: N = 50
0.01% 0.051 0.033 0.053 0.003

1% 0.052 0.012 0.053 0.004

4% 0.053 0.003 0.053 0.004

Panel B: N = 25
0.01% 0.051 0.029 0.055 0.005

1% 0.052 0.012 0.056 0.007

4% 0.055 0.003 0.056 0.007
Note: This table replicates the Monte Carlo simulation results
presented in Table 1 to 4 with νjt ∼ χ2(1)/

√
2. All simulations

consider M ∈ [50, 200].
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Table 6: Number of Observations per Group x Time cell

ACS CPS
PUMA State State
(1) (2) (3)

Average 778.12 10,137.79 771.23

1% 129 883 119
5% 157 1,037 355
10% 174 1,250 392
25% 218 2,527 464
50% 338 7,205 546
75% 703 11,509 775
90% 1,418 21,099 1,709
95% 2,469 32,961 1,937
99% 9,555 62,752 3,297

Note: This Table presents the distribution of
number of observations per groups in the sim-
ulations with real datasets (Section 8). Col-
umn 1 presents information for PUMA-level
ACS simulations, column 2 presents information
for state-level ACS simulations, while column 3
presents information for state-level CPS simu-
lations.
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Table 7: Simulations with the ACS Survey

Inference Method
Bootstrap Bootstrap

Robust OLS w/o correction with correction
Outcome Mean Diff Mean Diff Mean Diff
Variable (1) (2) (3) (4) (5) (6)

Panel A: ACS with PUMA level interventions
Employment 0.072*** 0.010 0.050 -0.082*** 0.049 -0.003

(0.004) (0.008) (0.003) (0.006) (0.003) (0.006)

Log(wages) 0.081*** 0.000 0.050 -0.086*** 0.050 0.002
(0.004) (0.008) (0.003) (0.006) (0.003) (0.007)

Panel B: ACS with state level interventions
Employment 0.064 0.003 0.044 -0.087*** 0.051 -0.013

(0.011) (0.021) (0.016) (0.028) (0.011) (0.020)

Log(wages) 0.081** -0.021 0.054 -0.106** 0.056 -0.032
(0.015) (0.031) (0.022) (0.042) (0.015) (0.030)

Panel C: ACS with PUMA level interventions, N = 50
Employment 0.072*** 0.001 0.045* -0.072*** 0.050 -0.005

(0.004) (0.007) (0.003) (0.005) (0.003) (0.005)

Log(wages) 0.084*** -0.001 0.046 -0.073*** 0.052 -0.001
(0.004) (0.008) (0.003) (0.005) (0.003) (0.005)

Panel D: ACS with PUMA level interventions, N = 25
Employment 0.069*** 0.009 0.041*** -0.062*** 0.050 -0.007

(0.004) (0.007) (0.003) (0.004) (0.002) (0.004)

Log(wages) 0.082*** 0.000 0.042*** -0.064*** 0.051 -0.001
(0.004) (0.008) (0.003) (0.004) (0.003) (0.005)

Note: This table presents rejection rates for the simulations using ACS data. For each pair of
consecutive years, we run a DID regression using one group as treated and the other groups as a
control. The outcome variable is employment status or log(wages) for women aged between 25 and
40. Then we test the hypothesis that the effect of the “intervention” is equal to zero using different
inference methods: hypothesis testing using robust standard errors from individual level DID model,
bootstrap without and bootstrap with our heteroskedasticity correction. Panel A reports results
when groups are defined as PUMAs, while Panel B reports results when groups are defined as states.
In Panels C and D we present results with PUMA-level treatments using 50 and 25 randomly selected
PUMAs (for each PUMA x year we simulated with 5 different randomly chosen sets of control PUMAs,
leading to 25,940 simulations). We report average rejection rate and the difference in rejection rates
when the size of the treated group is above or below the median. Given that we have a limited
number of simulations, we do not calculate the average absolute difference in rejection rates across
deciles, as we do in the Monte Carlo simulations. We present in brackets standard errors for the
rejection rates. Standard errors are clustered at the treated group level. For average rejection rates
(columns 1, 3, and 5), * means that we reject at 10% that the average rejection rate is equal to 5%,
while for the differences in rejection rates (columns 2, 4, and 6) * means that we reject at 10% that
rejection rate for M1 above and below the median are equal. ** means that we reject at 5%, while
*** means that we reject at 1%.
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Table 8: Simulations with the CPS Survey

Inference Method
Bootstrap Bootstrap

Robust OLS w/o correction with correction
Outcome Mean Diff Mean Diff Mean Diff
Variable (1) (2) (3) (4) (5) (6)

Panel A: 2 years
Employment 0.047 -0.003 0.046 -0.043*** 0.053 0.004

(0.007) (0.011) (0.007) (0.012) (0.007) (0.012)

Log(wages) 0.066*** -0.011 0.046 -0.047*** 0.052 -0.002
(0.006) (0.012) (0.007) (0.011) (0.006) (0.012)

Panel B: 4 years
Employment 0.062* 0.016 0.046 -0.042*** 0.052 -0.012

(0.007) (0.013) (0.007) (0.013) (0.007) (0.013)

Log(wages) 0.102*** 0.024 0.048 -0.041*** 0.050 0.009
(0.011) (0.023) (0.007) (0.013) (0.008) (0.015)

Panel C: 6 years
Employment 0.087*** 0.001 0.053 -0.046*** 0.054 -0.018

(0.009) (0.017) (0.007) (0.014) (0.006) (0.014)

Log(wages) 0.143*** 0.059* 0.047 -0.044*** 0.051 0.000
(0.014) (0.035) (0.008) (0.014) (0.009) (0.017)

Panel C: 8 years
Employment 0.135*** 0.044 0.043 -0.040*** 0.046 -0.009

(0.013) (0.028) (0.008) (0.015) (0.007) (0.014)

Log(wages) 0.207*** 0.043 0.045 -0.029* 0.049 0.006
(0.015) (0.036) (0.009) (0.016) (0.010) (0.017)

Note: This table presents rejection rates for the simulations using CPS data. In each simulation,
we run a DID regression using one group as treated and the other groups as a control. The outcome
variable is employment status or log(wages) for women aged between 25 and 40. Then we test the
hypothesis that the effect of the “intervention” is equal to zero using different inference methods:
hypothesis testing using robust standard errors from individual level DID model, bootstrap without
and bootstrap with our heteroskedasticity correction. Panel A reports results of DID models using
2 consecutive years of data, while Panels B and C report results of DID models using respectively
4 and 6 consecutive years of data. We report average rejection rate and the difference in rejection
rates when the size of the treated group is above or below the median. Given that we have a limited
number of simulations, we do not calculate the average absolute difference in rejection rates across
deciles, as we do in the Monte Carlo simulations. We present in brackets standard errors for the
rejection rates. Standard errors are clustered at the treated group level. For average rejection rates
(columns 1, 3, and 5), * means that we reject at 10% that the average rejection rate is equal to
5%, while for the differences in rejection rates (columns 2, 4, and 6) * means that we reject at 10%
that rejection rate for M1 above and below the median are equal. ** means that we reject at 5%,
while *** means that we reject at 1%.
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A Supplemental Appendix: Inference in Differences-in-Differences

with Different Group Sizes

A.1 Proof of the Main Results

This supplemental appendix contains the main theorems and proofs of the paper “Inference in Differences-in-Differences with

Different Group Sizes”. We use the same notation as in the main paper.

The aggregated model is:

Yjt = αdjt + θj + βXjt + γt + ηjt (18)

where Xjt is a kx1 vector of covariates. For simplicity, we start with the case that β = 0 and then extend to the case with

covariates.

We assume T periods of time (t = 1, .., T ) and N1 treated groups and N0 control groups in such a way that N0 +N1 = N.

Consider the restricted model in which we impose the null hypothesis, H0 : α = α0,

Yjt = α0djt + θj + γt + ηjt

We will work with a linear combination of the residuals of this regression,

ŴR
j =

1

T − t∗

T∑

t=t∗+1

η̂Rjt −
1

t∗

t∗∑

t=1

η̂Rjt

We can calculate the DID coefficient α̂ based on a linear combination of ŴR
j . Define the operator▽Yj = 1

T−t∗

∑T
t=t∗+1 Yjt−

1
t∗

∑t∗

t=1 Yjt. We can write α̂ as:

α̂ =
1

N1

N1∑

j=1

▽Yj − 1

N0

N∑

j=N1+1

▽Yj =
1

N1

N1∑

j=1

(▽Ŷ R
j + ŴR

j )− 1

N0

N∑

j=N1+1

(▽Ŷ R
j + ŴR

j )

Since Ŷ R
jt = α0djt+θ̂j+γ̂t, then▽Ŷ R

j = α0+
1

T−t∗

∑T
t=t∗+1 γ̂t− 1

t∗

∑t∗

t=1 γ̂t for j = 1, ..., N1 and▽Ŷ R
j = 1

T−t∗

∑T
t=t∗+1 γ̂t−

1
t∗

∑t∗

t=1 γ̂tfor j = N1 + 1, ..., N .

Therefore:

α̂− α0 =
1

N1

N1∑

j=1

ŴR
j − 1

N0

N∑

j=N1+1

ŴR
j

We define Wj as a linear combination of the error terms,

Wj =
1

T − t∗

T∑

t=t∗+1

ηjt −
1

t∗

t∗∑

t=1

ηjt

We impose assumptions about the behavior of Wj . We assume that T is fixed. In the leading example of the paper, we

assume that the heteroskedaticity is generated by variation of the groups’ sample size. In this appendix, we deal with the

general case, and then specialize to this example.

Assumption 1 (Independence): {Wj , Xj} is i.i.d. across j ∈ {1, ..., N1}, i.i.d. across j ∈ {N1 + 1, ..., N} and indepen-

dently distributed across j ∈ {1, ..., N}.

Assumption 2 (Distribution): Wj |Xj , dj
d
= Wj |X̃j , where X̃j is a subset of Xj .

49



Assumption 3 (Heteroskedasticity): Wj |X̃j has the same distribution across X̃j up to a scale parameter.

Assumption 4 (Exogeneity): E[Wj |Xj , dj ] = E[Wj |Xj ] = 0.

Lemma 1 Under assumptions 1-4, under the null, ŴR
j

d→ Wj , for j = 1, 2, ..., N

Proof. Note that η̂Rjt is the residual of a OLS regression under the null hypothesis, and it can be written as

η̂Rjt = yjt − α0djt − θ̂j − γ̂t = ˜̃ηjt

where ˜̃ηjt = ηjt − ηj − ηt + η, with ηj = 1
T

T∑
t=1

ηjt, ηt =
1
N

N∑
i=1

ηjt and η = 1
TN

T∑
t=1

N∑
i=1

ηjt

Therefore:

ŴR
j =

1

T − t∗

T∑

t=t∗+1

(
ηjt − ηj − ηt + η

)
− 1

t∗

t∗∑

t=1

(
ηjt − ηj − ηt + η

)

=
1

T − t∗

T∑

t=t∗+1

(ηjt − ηt)−
1

t∗

t∗∑

t=1

(ηjt − ηt)

= Wj − 1

N

N∑

j′=1

Wj′ = Wj + op (1) as N0 → ∞, by assumptions 1 and 4.

In general, if we know the variance of Wj |X̃j , we could re-scale the residuals ŴR
j and use a cluster residual bootstrap on the

re-scaled residuals even if the model is heteroskedastic. The idea is to normalize ŴR
j such that Ŵnorm

j = ŴR
j ·
√

1

V ar
[
WR

j

∣∣∣Xj

] ,

generate a bootstrap sample using the re-scaled residuals W̃j,b = Ŵnorm
j,b

·
√

V ar [Wj |Xj ], and the use the residuals W̃j,b to

estimate α̂b − α0,

α̂b − α0 =
1

N1

N1∑

j=1

W̃j,b −
1

N0

N∑

j=N1+1

W̃j,b

where b indicates each re-sampling, b = 1, ...,B. In each re-sampling, we calculate α̂b. We reject H0 at level α if and only

if α̂ − α0 < (α̂b − α0) [
α
2
] or α̂ − α0 > (α̂b − α0) [1 − α

2
], where (α̂b − α0) [q] denotes the qth quantile of the distribution of

{(α̂1 − α0) , ..., (α̂B − α0)}.

Let’s X̃ be the matrix with X̃j for j = 1, ..., N

Theorem 2 Define d∗
1−α

2

and d∗α
2

as the (1− α
2
)th and a

2
th quantile of the empirical distribution of (α̂b − α0) given X, for b =

1, ...,B. Assuming that we know the variance of Wj |X̃j , under assumptions 1, 2, 3 and 4 Pr
[
d∗
1−α

2

≤ α̂− α0 ≤ d∗α
2

∣∣∣α0, X
]
→p

1− α.

Proof. We divide this proof in two parts. Define Γ (w) ≡ Pr
[∑N1

j=1 Wj < w|X̃j

]
and Γ̂b (w) = Pr

[∑N1

j=1 W̃j,b < w|X̃j , b
]
.

First we show that Γ̂b (w) converges in probability to Γ (w) uniformly on any compact subset of the support of W , as N0 → ∞

and B → ∞. Then, we show that Pr
[
d∗
1−α

2

≤ α̂− α0 ≤ d∗α
2

∣∣∣α0, X
]
→p 1− α.

Under our assumptions, Wj |X̃j ’s are independent across j and have the same distribution except by the variance, we can
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write

Γ (w) = Pr




N1∑

j=1

Wj < w|X̃j




=

∫
...

∫
1





N1∑

j=1

Wj < w



 dF

1|X̃1
(W1) · dF 2|X̃2

(W2) · ... · dFN1|X̃N1

(
WN1

)

and

Γ̂b (w) = Pr




N1∑

j=1

W̃j,b < wj,b|X̃j,b




=

∫
...

∫
1





N1∑

j=1

Wj < w



 dF̂

1|X̃1
(W1) · dF̂ 2|X̃2

(W2) · ... · dF̂N1|X̃N1

(
WN1

)

In order to estimate this distribution, we use F̂
j|X̃j

(.) which is the empirical CDF obtained using the re-scaled residuals

W̃j,b = ŴR
j,b

·
√

V ar[Wj |Xj ]
V ar[Wj,b|Xj,b]

,

F̂
j|X̃j

(wj) =
1

B

B∑

b=1

1{W̃j,b < wj,b}

=
1

B

B∑

b=1

1

{
ŴR

j,b ·
√

V ar [Wj |Xj ]

V ar
[
Wj,b

∣∣Xj,b

] < wj ·
√

V ar [Wj |Xj ]

V ar
[
Wj,b

∣∣Xj,b

]
}

where wj,b = wj · cjb, with cjb =

√
V ar[Wj |Xj ]

V ar[Wj,b|Xj,b]
. In this case, cjb is a constant.

Define F̂ ∗
j|X̃j

(wj) =
1
B

∑B
b=1 1{W ′

j,b
< wj,b}, where W ′

j,b
= Wj,b · cjb. Note that

sup
wj∈Θ

∣∣∣F̂j|X̃j
(wj)− F

j|X̃j
(w)
∣∣∣ = sup

wj∈Θ

∣∣∣F̂j|X̃j
(wj)− F̂ ∗

j|X̃j
(wj) + F̂ ∗

j|X̃j
(wj)− F

j|X̃j
(w)
∣∣∣

≤ sup
wj∈Θ

∣∣∣F̂j|X̃j
(wj)− F̂ ∗

j|X̃j
(wj)

∣∣∣+ sup
wj∈Θ

∣∣∣F̂ ∗
j|X̃j

(wj)− F
j|X̃j

(w)
∣∣∣

sup
wj∈Θ

∣∣∣F̂j|X̃j
(wj)− F̂ ∗

j|X̃j
(wj)

∣∣∣ = sup
wj∈Θ

∣∣∣∣∣
1

B

B∑

b=1

(
1{ŴR

j,b < wj,b} − 1{W ′
j,b < wj,b}

)∣∣∣∣∣

≤ 1

B

B∑

b=1

sup
wj∈Θ

∣∣∣1{ŴR
j,b < wj,b} − 1{W ′

j,b < wj,b}
∣∣∣

= op (1)

In the last equality, we use the result of lemma 1, ŴR
j converges in distribution to Wj .

Now, we work with the second term.

sup
wj∈Θ

∣∣∣F̂ ∗
j|X̃j

(wj)− F
j|X̃j

(w)
∣∣∣ ≤ sup

wj∈Θ

∣∣∣F̂ ∗
j|X̃j

(wj)− F̃
j|X̃j

(wj)
∣∣∣+

sup
wj∈Θ

∣∣∣F̃j|X̃j
(wj)− F

j|X̃j
(w)
∣∣∣
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where F̃
j|X̃j,b

(
wj,b

)
is the cumulative distribution function of W̃j′ = Wnorm

j′
·
√

V ar [Wj |Xj ]. Note that W̃j′ are i.i.d. across

j. By the Glivenko-Cantelli Theorem,

sup
wj∈Θ

∣∣∣F̂ ∗
j|X̃j

(wj)− F̃
j|X̃j

(wj)
∣∣∣ = op (1)

By assumptions 2-4,

sup
wj∈Θ

∣∣∣F̃j|X̃j
(wj)− F

j|X̃j
(w)
∣∣∣ = op (1)

By the results above,

sup
wj∈Θ

|Γ (w)− Γb (w)| = op (1)

Now, we show that Pr
[
d∗
1−α

2

≤ α̂− α0 ≤ d∗α
2

∣∣∣α0, X
]
→p 1− α. As N0 → ∞,

α̂− α0
d→ 1

N1

N1∑

j=1

ŴR
j and α̂b − α0 =

1

N1

N1∑

j=1

W̃j,b

Using the results above, we can show that

Pr
[
d∗1−α

2

≤ α̂− α0 ≤ d∗α
2

∣∣∣α0, X
]
= Pr

[
d∗1−α

2

≤ α̂b − α0 ≤ d∗α
2

∣∣∣α0, X
]
+ op (1)

= 1− α

The approach proposed to estimate W̃j,b is unfeasible since we do know not the variances of Wj ’s. Theorem 3 shows that

if we have a consistent estimator of

√
V ar[Wj |Xj ]

V ar[Wj,b|Xj,b]
, we can construct

̂̃
W j,b = ŴR

jb
·
√

̂V ar[Wj |Xj ]
̂V ar[Wj,b|Xj,b]

, and use the approach

proposed above.

Theorem 3 Define d∗
1−α

2

and d∗α
2

as the (1− α
2
)th and a

2
th quantile of the empirical distribution of (α̂b − α0) given X, for

b = 1, ...,B. If for each j

√
̂V ar[Wj |Xj ]
̂V ar[Wj,b|Xj,b]

is a consistent estimator for

√
V ar[Wj |Xj ]

V ar[Wj,b|Xj,b]
, under assumptions 1, 2, 3 and 4

Pr
[
d∗1−α

2

≤ α̂− α0 ≤ d∗α
2

∣∣∣α0, X
]
→p 1− α

Proof. Now, we do not know the variance of Wj . In this case, we define F̂
j|X̃j

(ŵj) =
1
B

∑B
b=1 1

{
̂̃
W j,b < ŵj

}

sup
wj∈Θ

∣∣∣F̂j|X̃j
(ŵj)− F

j|X̃j
(w)
∣∣∣ = sup

wj∈Θ

∣∣∣F̂j|X̃j
(ŵj)− F̂

j|X̃j
(wj) + F̂

j|X̃j
(wj)− F̂ ∗

j|X̃j
(wj) + F̂ ∗

j|X̃j
(wj)− F

j|X̃j
(w)
∣∣∣

≤ sup
wj∈Θ

∣∣∣F̂j|X̃j
(ŵj)− F̂

j|X̃j
(wj)

∣∣∣+ sup
wj∈Θ

∣∣∣F̂ ∗
j|X̃j

(ŵj)− F̂ ∗
j|X̃j

(wj)
∣∣∣+ sup

wj∈Θ

∣∣∣F̂ ∗
j|X̃j

(wj)− F
j|X̃j

(w)
∣∣∣

We show in the previous theorem that supwj∈Θ

∣∣∣∣F̂ ∗
j|X̃jb

(ŵj)− F̂ ∗
j|X̃j

(wj)

∣∣∣∣ = op(1) and supwj∈Θ

∣∣∣∣F̂ ∗
j|X̃j

(wj)− F
j|X̃j

(w)

∣∣∣∣ =

52



op (1). We only need to work with the first term,

sup
wj∈Θ

∣∣∣F̂j|X̃j
(ŵj)− F̂

j|X̃j
(wj)

∣∣∣ = sup
wj∈Θ

∣∣∣∣∣
1

B

B∑

b=1

1{W ′
j,b < wj · ĉjb} − 1

B

B∑

b=1

1{W ′
j,b < wj · cjb}

∣∣∣∣∣

≤ 1

B

B∑

b=1

sup
wj∈Θ

∣∣∣1{W ′
j,b < wj · ĉjb} − 1{W ′

j,b < wj · cjb}
∣∣∣

p→ 0 since ĉjb
p→ cjb .

For the leading example in the paper, the conditional variance of Wj on Xj only depends on M(j, t) and it is given by:

V ar
[
Wj |Mj1, ...,MjT

]
= A+ B̃


 1

(T − t∗)2

T∑

t=t∗+1

1

M (j, t)
+

1

(t∗)2

t∗∑

t=1

1

M (j, t)




= A+ B̃ · h (M (j, t))

where A and B̃ are constants, and h (M (j, t)) ≡ 1
(T−t∗)2

∑T
t=t∗+1

1
M(j,t)

+ 1
(t∗)2

∑t∗

t=1
1

M(j,t)
. For simplicity, we work with

the case in which M (j, t) = Mj . In this case, the variance simplifies to V ar [Wj |Mj ] = A+ B
Mj

for a constant B. We assume

that the distribution of Mj does not vary with N0.

We propose a consistent estimator of

√
̂V ar[Wj |Mj ]
̂V ar[Wj,b|Mj,b]

based on an ordinary least squares estimator. We estimate a linear

regression that relates
(
ŴR

j

)2
with 1

Mj
and constant. We obtain Â as the least squares coefficient associated with the constant,

and B̂ as the coefficient associated with 1
Mj

, and then we use A and B to construct a consistent estimator for the V ar[WR
j |Mj

]
,

̂
V ar

[
WR

j

∣∣∣Mj

]
= Â+

B̂

Mj

We use these two estimators to estimate the ratio ĉjb ≡

√√√√
̂

V ar
[
WR

j

∣∣∣Mj

]

̂
V ar

[
WR

j,b

∣∣∣Mj

] . Lemma 4 shows that is ĉjb is a consistent estimator

for

√
V ar[W1|M1]

V ar[Wj |Mj ]
.

Lemma 4 Under assumptions 1, 2, 3 and 4, for our leading example, ĉjb is a consistent estimator for cjb =

√
V ar[Wj,b|Mj,b]
V ar[Wj |Mj ]

.

Proof.

V ar [Wj |Mj ] = A+
B

Mj

and E [Wj |Mj ] = 0

So we can write

E

[
(Wj)

2
∣∣∣Mj

]
= A+

B

Mj

or

(Wj)
2 = A+

B

Mj

+ ω

where E [ω|Mj ] = 0. Using the result of lemma 1 and the continuity theorem, we estimate A and B by ordinary least squares

regression of ŴR
j on a constant, and 1

Mj
. We obtain consistent estimators as N0 → ∞ and Mj does not vary with N0.
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A.2 Extension: Two or more treated periods

So far, we consider that that treatment happens only at t∗. Now, we extend the proofs to the case that treatment happens in

different periods. We assume that there N0 control groups and Nk treated groups that started treatment at t∗
k
, for k = 1, ...,K.

We will say that j ∈ N0 to refer to a group j that belongs to the control group and j ∈ Nk with k > 0 to refer to a treated

group j that started treatment at t∗
k
. In this case, N = N0 +

K∑

k=1

Nk.

First, we show that in this case, we can write the estimator α̂ as a linear combination of 1
Nk

∑
j∈Nk

∇kYj− 1
N0

∑
j∈N0

∇kYj ,

where ∇kYj = 1
T−t∗

k

∑
t>t∗

k
Yjt − 1

t∗
k

∑
t≤t∗

k
Yjt. Also, let Wk

j = 1
T−t∗

k

∑
t>t∗

k
ηjt − 1

t∗
k

∑
t≤t∗

k
ηjt.

Define d̃jt as

d̃jt = djt −
1

N

N∑

j′=1

dj′t −
1

T

T∑

t′=1

djt′ +
1

N

1

T

N∑

j′=1

T∑

t′=1

dj′t′

By the Frisch-Waugh-Lovell theorem we know that

α̂ =

∑
j

∑
t d̃jtYjt

∑
j

∑
t d̃

2
jt

We will first analyze the denominator. For j ∈ N0, we have that:

d̃jt = 0− 1

N

K∑

k=1

1[t > t∗k]×Nk − 0 +
1

NT

K∑

k=1

(T − t∗k)Nk

Since d̃2jt does not depend on j, then

∑

j∈N0

d̃2jt =
N0

N2


 1

T 2

(
K∑

k=1

(T − t∗k)Nk

)2

+

(
K∑

k=1

1[t > t∗k]Nk

)2

− 2

T

(
K∑

k=1

(T − t∗k)Nk

)(
K∑

k=1

1[t > t∗k]Nk

)


Since Nk with k > 0 is fixed, as N0 → ∞
∑

j∈N0

d̃2jt
N0→∞−→ 0

For j ∈ Nk with k > 0 we have

d̃jt = djt −
1

N

K∑

k′=1

1[t > t∗k′ ]×Nk′ − 1

T
(T − t∗k) +

1

NT

K∑

k′=1

(T − t∗k′ )Nk′

When N0 → ∞:

d̃2jt =

(
djt −

1

T
(T − t∗k)

)2

= d2jt +
1

T 2
(T − t∗k)

2 − 2
djt

T
(T − t∗k) (19)

Therefore:

T∑

t=1

d̃2jt = t∗k

(
1

T 2
(T − t∗k)

2

)
+ (T − t∗k)

(
1 +

1

T 2
(T − t∗k)

2 − 2
1

T
(T − t∗k)

)

=
1

T 2

[
t∗k(T − t∗k)

2 + (T − t∗k)(t
∗
k)

2
]
=

t∗
k
(T − t∗

k
)

T
(20)
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This implies that the denominator becomes (as N0 → ∞):

N∑

j=1

T∑

t=1

d̃2jt =
1

T

K∑

k=1

Nk [t∗k(T − t∗k)] (21)

Now we will analyze the numerator. For a j ∈ N0, we have that:

d̃jt =
1

NT

K∑

k=1

(T − t∗k)Nk − 1

N

K∑

k=1

1[t > t∗k]×Nk

=
1

N

K∑

k=1

Nk

[
(T − t∗

k
)

T
− 1[t > t∗k]

]
(22)

∑

t

djtYjt =
1

N

(
N1

(T − t∗1)

T
+ . . .+NK

(T − t∗K)

T

) ∑

t≤t∗
1

Yjt+

1

N

(
N1

(−t∗1)

T
+N2

(T − t∗2)

T
+ . . .+NK

(T − t∗K)

T

) ∑

t∗
1
<t≤t∗

2

Yjt+

1

N

(
N1

(−t∗1)

T
+N2

(−t∗2)

T
+N3

(T − t∗3)

T
+ . . .+NK

(T − t∗K)

T

) ∑

t∗
2
<t≤t∗

3

Yjt+

...

1

N

(
N1

(−t∗1)

T
+N2

(−t∗2)

T
+ . . .+NK

(−t∗K)

T

) ∑

t>t∗
K

Yjt

= −N1

N


 t∗1

T

∑

t>t∗
1

Yjt −
(T − t∗1)

T

∑

t≤t∗
1

Yjt


− . . .− NK

N


 t∗K

T

∑

t>t∗
K

Yjt −
(T − t∗K)

T

∑

t≤t∗
K

Yjt


 (23)

As N0 → ∞:

∑

j∈N0

∑

t

djtYjt =
∑

j∈N0

K∑

k=1

−Nk

N


 t∗

k

T

∑

t>t∗
k

Yjt −
(T − t∗

k
)

T

∑

t≤t∗
k

Yjt




For j ∈ Nk with k > 0 as N0 → ∞: we have:

d̃jt = djt −
1

T
(T − t∗k) (24)

Then (when N0 → ∞),
∑

t

djtYjt =
t∗
k

T

∑

t>t∗
k

Yjt −
(T − t∗

k
)

T

∑

t≤t∗
k

Yjt

Therefore,

α̂
N0→∞−→

K∑

k=1

Nk[t
∗
k
(T − t∗

k
)]

∑K
k′=1 Nk′

[
t∗
k′
(T − t∗

k′
)
]


 1

Nk

∑

j∈Nk

∇kYj − 1

N0

∑

j∈N0

∇kYj




Note that

K∑

k=1

Nk[t
∗
k
(T − t∗

k
)]

∑K
k′=1 Nk′

[
t∗
k′
(T − t∗

k′
)
]


 1

Nk

∑

j∈Nk

∇kYj − 1

N0

∑

j∈N0

∇kYj




= α0 +
K∑

k=1

Nk[t
∗
k
(T − t∗

k
)]

∑K
k′=1 Nk′

[
t∗
k′
(T − t∗

k′
)
]


 1

Nk

∑

j∈Nk

Ŵk,R
j − 1

N0

∑

j∈N0

Ŵk,R
j



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In the general case, if we knew the variance of Wk
j , then we could generate a bootstrap sample using the re-scaled residuals

W̃k
j,b

= Ŵk,R
j

√
V ar

[
Wk

j

∣∣∣Mj

]

V ar
[
Wk

j,b

∣∣∣Mj,b

] , and use the residuals W̃k
j,b

to estimate α̂b − α0,

α̂− α0 =
K∑

k=1

Nk[t
∗
k
(T − t∗

k
)]

∑K
k′=1 Nk′

[
t∗
k′
(T − t∗

k′
)
]


 1

Nk

∑

j∈Nk

W̃k
j,b −

1

N0

∑

j∈N0

W̃k
j,b




and use the same hypothesis test stated in the previous section. If the variance of Wj is unknown, then we can estimate this

variance using theorem 4.

A.3 Extension: Model with Covariates

In this case, we work with the aggregate model that includes the covariates:

Yjt= αdjt+θj+βXjt+γt+ηjt (25)

where Xjt is a k x1 vector of covariates. We consider the case in which treatment happens only at t∗.

By the OLS normal equations:

α̂ =

∑
j

∑
t d̃jt

(
Yjt − β̂Xjt

)

∑
j

∑
t d̃

2
jt

and,

α̂
N0→∞−→

K∑

k=1

Nk[t
∗
k
(T − t∗

k
)]

∑K
k′=1 Nk′

[
t∗
k′
(T − t∗

k′
)
]


 1

Nk

∑

j∈Nk

∇kY ∗
j − 1

N0

∑

j∈N0

∇kY ∗
j




In this case, under H0 and for the treatment group,

∇kYj=
1

T − t∗
k

∑

t>t∗
k

(
Yjt − β̂Xjt

)
− 1

t∗
k

∑

t≤t∗
k

(
Yjt − β̂Xjt

)

= α0+
(
β̂ − β

)

 1

T − t∗
k

∑

t>t∗
k

Xjt −
1

t∗
k

∑

t≤t∗
k

Xjt




+
1

T − t∗
k

∑

t>t∗
k

γt−
1

t∗
k

∑

t≤t∗
k

γt

+
1

T − t∗
k

∑

t>t∗
k

ηjt−
1

t∗
k

∑

t≤t∗
k

ηjt

By proposition 1 in Conley and Taber (2011), β̂
p→β . Therefore:

α̂
N0→∞−→ α0+

K∑

k=1

Nk[t
∗
k
(T − t∗

k
)]

∑K
k′=1 Nk′

[
t∗
k′
(T − t∗

k′
)
]


 1

Nk

∑

j∈Nk

Wk
j − 1

N0

∑

j∈N0

Wk
j




and we have the same result as in the previous section.

A.4 FGLS Estimation

In this section, we prove the main results of section 3. Under the assumption that the errors are uncorrelated across j, the

variance/covariance matrix of f ηjt is block diagonal with T × T . We define Ωj as one of the blocks. Under assumption 2,
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Ωj ≡ Ω(X̃j). Note that Ω
(
X̃j

)
is a symmetric matrix that allows for heteroskedasticity and serial correlation. Suppose that

we know Ω
(
X̃j

)
. In this case, we can appply the standard GLS theory to the problem. The linear model is:

yj = αdj + θj + γt + ηj

where yj is a Tx1 vector with {yj,t}Tt=1, dj is a Tx1 vector with {dj,t}Tt=1 and ηj is a Tx1 vector with {ηj,t}Tt=1. The GLS

estimator will be based on the following model:

Ω
(
X̃j

)− 1

2
yj = αΩ

(
X̃j

)− 1

2
dj +Ω

(
X̃j

)− 1

2
θj +Ω

(
X̃j

)− 1

2
γt +Ω

(
X̃j

)− 1

2
ηj

Note that the GLS estimator is the Gauss-Markov estimator in this problem. In other words, it has the lowest variance

among all the linear unbiased estimator. The GLS is in the class of linear unbiased estimator that can be represented by:35

Ω(α̃) =



α̃ (a) =

T∑

t=1

N∑

j=1

atjyjt :
T∑

t=t∗+1

ajt = 1,
T∑

t=1

ajt = 0 for all j and
N∑

j=1

ajt = 0 for all t





Note that the variance of any estimator in this class is:

V ar [ α̃ (a)|D,X] =

N∑

j=1

a
′

jΩ
(
X̃j

)
aj

where aj =




a1j

...

aTj



. The GLS estimator is the estimator in the class Ω(α̃) that has the minimum variance. In other words, it

is the estimator that solves the following optimization problem:

min
a1,..,aN

N∑

j=1

a
′

jΩ
(
X̃j

)
aj s.t.

T∑

t=t∗+1

a1t = 1,
T∑

t=1

ajt = 0 for all j,
N∑

j=1

ajt = 0 for all t (26)

Let ã (N0) = (ã1 (N0) , ..., ãN (N0)) be the unique solution of the minimization problem above.

Lemma 5 Define a∗1 as the unique solution for following the minimization problem:

min
a1

a
′

1Ω
(
X̃1

)
a1 s.t.

T∑

t=t∗+1

at1 = 1,
t∗∑

t=1

at1 = −1

As N0 → ∞,

35We show that the restrictions imposed on the ajt are necessary and sufficient for unbiasedness of the linear estimators.

Consider any linear estimator α̃ (a) =
T∑

t=1

N∑
j=1

ajtyjt:

E [ α̃ (a)|D,X] = E




T∑

t=1

N∑

j=1

ajtyjt

∣∣∣∣∣∣
D,X


 = α




T∑

t=1

N∑

j=1

ajtdjt


+

N∑

j=1

θj

T∑

t=1

ajt +
T∑

t=1

γt

N∑

j=1

ajt +
T∑

t=1

N∑

j=1

ajtE [ηjt|X,D]

Assuming that E [ηjt|X,D] = 0, in order to have an unbiased estimator, we need:

T∑

t=1

N∑

j=1

ajtdjt =
T∑

t=t∗+1

a1t = 1,
T∑

t=1

ajt = 0 for all j,
N∑

j=1

ajt = 0 for all t
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ã1 (N0)
p→ a∗1 and ãj (N0)

p→ 0 for j = 2, ..., N

Proof. By contradiction, suppose that ã1 (N0) does not converge in probability to a∗1. If this is the case, ∃ ε and c1 > 0 such

that Pr
[∣∣ã1 (N0)− a∗1

∣∣ > ε
]
≥ c1 ∀N0. For every ã1 (N0) :

∣∣ã1 (N0)− a∗1
∣∣ > ε, we have that

ã1 (N0)
′

Ω
(
X̃1

)
ã1 (N0)− a∗

′

1 Ω
(
X̃1

)
a∗1 ≥ c2

for some positive constant c2. One possible solution for the minimization problem 26 is:

a1 = a∗1 and aj = − a∗1
N − 1

This solution satisfies all the constraints in the minimization problem, including the restriction that a1t = −∑N
j=2 ajt for all

t. Therefore, we have an upper bound for the optimization function when N0 → ∞,

ã1 (N0)
′

Ω
(
X̃1

)
ã1 (N0) ≤

ã1 (N0)
′

Ω
(
X̃1

)
ã1 (N0) +

N∑

j=2

a
′

j (N0) Ω
(
X̃j

)
aj (N0)

≤ a∗
′

1 Ω
(
X̃1

)
a∗1 +

1

(N − 1)2

N∑

j=2

a∗
′

1 Ω
(
X̃j

)
a∗1

So by the expression above,

ã1 (N0)
′

Ω
(
X̃1

)
ã1 (N0)− a∗

′

1 Ω
(
X̃1

)
a∗1 ≤ 1

(N − 1)2

N∑

j=2

a∗
′

1 Ω
(
X̃j

)
a∗1 = op(1)

However, as we showed before if ã1 (N0) does not converge in probability to a∗1, ã1 (N0)
′

Ω
(
X̃1

)
ã1 (N0)−a∗

′

1 Ω
(
X̃1

)
a∗1 ≥ c2

for some positive constant c2. So, by contradiction,

ã1 →p a∗1

Using this result, the value of the objective function that we are minimizing when N0 → ∞ is:

a∗
′

1 Ω
(
X̃1

)
a∗1 +

N∑

j=2

a
′

j (N0) Ω
(
X̃j

)
aj (N0) ≤ a∗

′

1 Ω
(
X̃1

)
a∗1 + op (1)

so the best choice of aj (N0) is one that converges in probability to zero as N0 → ∞.

By Lemma 5, we have that

α̂GLS − α0 →d

T∑

t=1

a∗1tη1t

Assumption 5(Consistent Variance Matrix): There is an estimator Ω̂
(
X̃j

)
that converges in probability to a positive

semidefinite matrix, called Ω
(
X̃j

)
.

Now, we work a FGLS estimator using Ω̂
(
X̃j

)
as an estimator for Ω(X̃j). The FGLS estimator will converge to

α̂FGLS − α0 →d

T∑

t=1

a1tη1t
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where a1t depends on the elements of the matrix Ω
(
X̃1

)
.

We combine our method with FGLS by using W ∗
j =

T∑
t=1

a∗1tηjt. In order to apply our method, we need to impose

assumptions 1-4 on the behavior of W ∗
j :

1*
{
W ∗

j , Xj

}
is i.i.d across j ∈ {1, ..., N1}, i.i.d across j ∈ {N1 + 1, ..., N} and independently distributed across j ∈ {1, ..., N} .

2* W ∗
j

∣∣∣Xj , dj
d
= W ∗

j

∣∣∣ X̃j .

3* W ∗
j

∣∣∣ X̃j has the same distribution across X̃j up to a scale parameter.

4* E

[
W ∗

j

∣∣∣Xj , dj

]
= E

[
W ∗

j

∣∣∣Xj

]
= 0.

These assumptions can be implied by primitive conditions on ηjt,for j = 1, ..., N and t = 1, ..., T.

In our leading example,

V ar
[
W ∗

j

∣∣Xj , dj
]
= V ar

[
W ∗

j

∣∣Mj

]
= A∗ +

B∗

Mj

where A∗ and B∗ will depend on
{
a∗1t
}T
t=1

and the variance-covariance matrix of ηjt.

We apply our method to W ∗
j =

T∑
t=1

a∗1tηjt. For each control unit, we construct Ŵ ∗R
j =

T∑
t=1

â∗1tη̂jt using the estimator

of the variance-covariance matrix, Ω̂
(
X̃j

)
. Then, we generate a bootstrap sample of

{
Ŵ ∗R

j,b

}
. As in the main procedure,

we generate the normalized Ŵ ∗R
j,b

=
Ŵ∗R

j,b√
V ar

[
W∗

j

∣∣∣X̃j

] , and then we generate a bootstrap sample using the re-scaled residuals,

̂̂
W

∗

j,b = Ŵ ∗R
j,b

·
√

V ar
[
W ∗

1

∣∣ X̃j

]
. This procedure generates bootstrap estimators, α̂FGLS,b − α0 =

̂̂
W

∗

j,b.

We reject H0 at level α if and only if α̂FGLS − α0 <
(
α̂FGLS,b − α0

) [
α
2

]
or α̂FGLS − α0 >

(
α̂FGLS,b − α0

) [
1− α

2

]
,

where
(
α̂FGLS,b − α0

)
[q] denotes the qth quantile of the distribution of

{(
α̂FGLS,1 − α0

)
, ...,

(
α̂FGLS,B − α0

)}
.

Theorem 6 Define c
1−

α
2

and cα
2

as the
(
1− α

2

)
th and α

2
th quantile of the empirical distribution of α̂FGLS,b − α0 given X,

for b = 1, ...,B. Assuming that we know the variance of W ∗
j |X̃j , under assumptions 1*-4*,

Pr
[
c
1−

α
2

≤ α̂FGLS,b − α0 ≤ cα
2

]
→p 1− α

Proof. The proof is very similar to the proof of Theorem 2, so we skip some steps. First, we need to show that Γ∗
b

=

Pr
[
W̃ ∗

j,b
< w

∣∣∣ X̃j , b
]
converges in probability to Γ∗ = Pr

[
W ∗

1 < w
∣∣ X̃1

]
. Under assumption 1*,

Γ∗
b =

∫
1 {W ∗

1 < w} · dF̂ ∗
j|X̃j

(
W ∗

j

)

Γ∗ =

∫
1 {W ∗

1 < w} · dF
1|X̃1

(W ∗
1 )

In this case, we estimate the empirical CDF F̂ ∗
j|X̃j

(.) using the re-scaled residuals, W̃ ∗
j,b

= Ŵ ∗R
j,b

·
√

V ar[W∗

1
|X̃1]√

V ar
[
W∗

j

∣∣∣X̃j

] ,

F̂ ∗
j|X̃j

(wj) =
1

B

B∑

b=1

1
{
W̃ ∗

j,b < wj,b

}

Define F̃ ∗
j|X̃j

(wj) =
1
B

B∑
b=1

1
{
W̃ ∗

j,b
< wj,b

}
, where W̃ ∗

j,b
= W̃ ∗R

j,b
·
√

V ar[W∗

1
|X̃1]√

V ar
[
W∗

j

∣∣∣X̃j

] , with W̃ ∗R
j,b

comes from a bootstrap sample

of W̃ ∗R
j =

T∑
t=1

a∗1tη̂jt and F ∗
j|X̃j

(wj) =
1
B

B∑
b=1

1
{
W ∗

j,b
< wj,b

}
.
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sup
wj∈Θ

∣∣∣∣F̂
∗
j|X̃j

(wj)− F
1|X̃1

(w1)

∣∣∣∣ ≤ sup
wj∈Θ

∣∣∣∣F̂
∗
j|X̃j

(wj)− F̃ ∗
j|X̃j

(wj)

∣∣∣∣+

sup
wj∈Θ

∣∣∣∣F̃
∗
j|X̃j

(wj)− F ∗
j|X̃j

(wj)

∣∣∣∣+

sup
wj∈Θ

∣∣∣∣F
∗
j|X̃j

(wj)− F
1|X̃1

(w1)

∣∣∣∣

By assumption 5, supwj∈Θ

∣∣∣∣F̂ ∗
j|X̃j

(wj)− F̃ ∗
j|X̃j

(wj)

∣∣∣∣ = op (1) .

Using the proof of Lemma 1, supwj∈Θ

∣∣∣∣F̃ ∗
j|X̃j

(wj)− F ∗
j|X̃j

(wj)

∣∣∣∣ = op (1).

Under assumptions 1-4, and by the Glivenko-Cantelli Theorem, supwj∈Θ

∣∣∣∣F ∗
j|X̃j

(wj)− F
1|X̃1

(w1)

∣∣∣∣ = op (1) .

At the end, Pr
[
c
1−

α
2

≤ α̂FGLS − α0 ≤ cα
2

]
→p 1− α.

It is important to note that in this section we are dealing with the case of one treated group and many control groups.

However, we can extend all the results to the case of few treated groups (more than one).

Now, we compare the power of of GLS test with the inference procedure that combines our main methodology with FGLS.

First, notice that in our case, the inference procedure is respect to one dimensional parameter, α, and it well know from the

literature that uniformly most powerful test (UMP) will exist for one sided alternative, and uniformly most powerful unbiased

test (UMPU) for two sided alternative. In addition, since the GLS is the Gauss-Markov estimator, under normality the t-test

based on the GLS estimator with known variance-covariance matrix is the UMP (or UMPU) test (Hausman and Kuersteiner,

2004). In order to show the power result, we need to add the normality assumption.

Assumption 6 (Normality): ηj | dj follows a normal distribution with mean zero and variance Ω
(
X̃j

)
.

Theorem 7 Under assumptions 1-6, if Ω̄
(
X̃j

)
= Ω

(
X̃j

)
, then the power of the inference procedure based on the bootstrap

of the FGLS converge to the power of UMP test against one sided fixed alternative.

Proof. Without lost of generality, we are going to look to the following one-sided test:

H0 : α ≤ α0 and H1 : α > α0

Since we are considering, for simplicity, the case with only one treated group, then, under assumptions 1 and 6:

α̂GLS − α0 →d N
(
0, (σ∗

1)
2
)

where σ∗
1 =

√
var(W ∗

1 |X1).

For a fixed alternative, the power of a t-test based on the unfeasible GLS is:

β∗ (α) = Pr

[(
α̂GLS − α0

σ∗
1

)
> z1−α

]
= Pr

[(
α̂GLS − α

σ∗
1

)
> z1−α − α− α0

σ∗
1

]

Notice that, under assumptions 1-6, if Ω̄
(
X̃j

)
= Ω

(
X̃j

)
, then:

α̂FGLS − α0 →d N
(
0, (σ∗

1)
2
)

Let c1−α =
(
α̂FGLS,b − α0

)
[1− α]. Then, under fixed alternatives, the power of the procedure that combines FGLS with
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bootstrap is,

β (α) = Pr [α̂FGLS − α > c1−α − (α− α0)]

= Pr

[
α̂FGLS − α

σ∗
1

>
c1−α − (α− α0)

σ∗
1

]

Since α̂FGLS − α̂GLS = op(1), then it suffices to show that
c1−α

σ∗

1

→p z1−α even under the alternative to show that

β(α) →p β∗(α).

We argue first that, under the alternative, supwj∈Θ

∣∣∣∣F̂ ∗
j|X̃j

(wj)− F ∗
1|X̃1

(w1)

∣∣∣∣ = op(1). Notice that Ŵ ∗R
j →d W ∗

j for all j

in the control group, even if the null is false. Now notice that, with a small and fixed number of treated groups, the probability

of resampling a treated group converges to zero as N0 → ∞. Therefore, our Theorem 6 would apply even under the alternative.

Finally, since, under normality, the quantiles of α̂FGLS are well defined, then we can apply the continuity theorem to show

that
c1−α

σ∗

1

converges in probability to z1−α.

Finally, we consider the estimation of Ω̂(X̃j) in our leading example in which heteroskedasticity is generated by variation

in group sizes, so ηjt is defined as in formula 8. We first show that the estimator of the AR parameters do not have the

linearity that Hansen (2007) uses to derive the bias and provide his bias correction. Then we show that it would be possible to

consistently estimate Ω(X̃j) if we impose stronger assumptions on the errors. This is important because the hypothesis testing

with the FGLS estimator relies on the consistency of the Ω̂(X̃j) estimator. Therefore, combining our inference method with

FGLS provides a safeguard in case Ω̂(X̃j) is not consistent.

For simplicity, assume that the number of observations is constant across time for each group (M(j, t) = Mj) and that νjt

and ǫijt follow an AR(1) process with parameters ρν and ρǫ. We also assume that ǫijt is i.i.d. across i. In this case, the diagonal

elements of Ω(Mj) would be given by σ2
ν + 1

Mj
σ2
ǫ while the non-diagonal elements would be given by ρpνσ

2
ν + 1

Mj
ρpǫσ

2
ǫ . Note

that, differently from Hansen (2007) who assumes that the model is homoskedastic, we need to consistently estimate ρν , σ2
ν , ρǫ

and σ2
ǫ .

36 If we could observe ηjt, then we could estimate all these parameters using a non-linear least squares estimates, given

that E[ηjtηjt′ |Mj ] = ρ
|t−t′|
ν σ2

ν + 1
Mj

ρ
|t−t′|
ǫ σ2

ǫ . The problem, however, is that we can only observe η̂jt
d→ ηjt − 1

T

∑T
t′=1 ηjt′ ,

which implies that:

E
[
η̂jtη̂jt′ |Mj

]
=

[
(ρν)

|t−t′|σ2
ν − 1

T

T∑

τ=1

(
(ρν)

|t′−τ | + (ρν)
|t−τ |

)
σ2
ν

]
+

1

Mj

[
(ρǫ)

|t−t′|σ2
ǫ − 1

T

T∑

τ=1

(
(ρǫ)

|t′−τ | + (ρǫ)
|t−τ |

)
σ2
ǫ

]

Therefore, the non-linear least squares estimator would be biased when T is fixed. Moreover, we do not have the linearity

that Hansen (2007) uses to derive the bias and provide the bias correction.

If we assume that all serial correlation comes from ǫjt, then we would have that:

Yijt −
1

Mj

Mj∑

i=1

Yijt = ǫijt −
1

Mj

Mj∑

i=1

ǫijt

If Mj is large, then Yijt− 1
Mj

∑Mj

i=1 Yijt
d→ ǫijt. We do not have a problem of incidental parameter here. Therefore, we can

regress Yijt − 1
Mj

∑Mj

i=1 Yijt on Yijt−1 − 1
Mj

∑Mj

i=1 Yijt−1 to get consistent estimators for ρǫ. The diagonal elements of Ω(Mj)

36In Hansen (2007), Ω = σ2
ηΣ where Σ only depends on the AR(p) parameters. Therefore, he does not need to estimate σ2

η

to construct the FGLS estimator.
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are given by σ2
ν + 1

Mj
σ2
ǫ while the off-diagonal elements are given by 1

Mj
ρpǫσ

2
ǫ . Note that:

1

T

T∑

t=1

1

N

N∑

j=1

1

Mj

Mj∑

i=1


Yijt −

1

Mj

Mj∑

i=1

Yijt




2

→ σ2
ǫ

We still need to estimate the diagonal elements. We can do that looking at η̂2jt. Note that:

η̂jt →d ηjt −
1

T

T∑

t′=1

ηit′

= νjt −
1

T

T∑

t′=1

νjt′ +
1

Mj

Mj∑

i=1

[
ǫijt −

1

T

T∑

t′=1

ǫijt′

]

=
T − 1

T
νjt −

1

T

T∑

t′ 6=t

νjt′ +
1

Mj

Mj∑

i=1

[
ǫijt −

1

T

T∑

t′=1

ǫijt′

]

Therefore, since we are assuming that all serial correlation comes from ǫ, then:

E
[
η̂2jt
]

=

[
(T − 1)(T − 2)

T 2

]
σ2
ν + Γ(ρǫ, σ

2
ǫ )

where Γ(ρǫ, σ2
ǫ ) is known function of ρǫ and σ2

ǫ . Since we have consistent estimators for both ρǫ and σ2
ǫ , we can get an unbiased

estimator for σ2
ν .
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