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Abstract

We consider a two-person zero-sum game with two sets of strategic variables which
are related by invertible functions. They are denoted by (𝑠𝐴, 𝑠𝐵) ∈ (𝑆𝐴, 𝑆𝐵) and(𝑡𝐴, 𝑡𝐵) ∈ (𝑇𝐴, 𝑇𝐵) for players A and B. The payoff function of Player A is 𝑢𝐴. Then,
the payoff function of Player B is−𝑢𝐴. 𝑢𝐴 is upper semi-continuous and quasi-concave
on 𝑆𝐴 for each 𝑠𝐵 ∈ 𝑆𝐵 (or each 𝑡𝐵 ∈ 𝑇𝐵), upper semi-continuous and quasi-concave
on 𝑇𝐴 for each 𝑡𝐵 ∈ 𝑇𝐵 (or each 𝑠𝐵 ∈ 𝑆𝐵), and lower semi-continuous and quasi-
convex on 𝑆𝐵 for each 𝑠𝐴 ∈ 𝑆𝐴 (or each 𝑡𝐴 ∈ 𝑇𝐴), lower semi-continuous and quasi-
convex on 𝑇𝐵 for each 𝑡𝐴 ∈ 𝑇𝐴 (or each 𝑠𝐴 ∈ 𝑆𝐴). We do not postulate differentiability
of payoff functions.

We will show that the following four patterns of competition are equivalent, that is,
they yield the same outcome.
1. Player A and B choose 𝑠𝐴 and 𝑠𝐵 (competition by (𝑠𝐴, 𝑠𝐵)).
2. Player A and B choose 𝑡𝐴 and 𝑡𝐵 (competition by (𝑡𝐴, 𝑡𝐵)).
3. Player A and B choose 𝑡𝐴 and 𝑠𝐵 (competition by (𝑡𝐴, 𝑠𝐵)).
4. Player A and B choose 𝑠𝐴 and 𝑡𝐵 (competition by (𝑠𝐴, 𝑡𝐵)).
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1 Introduction

We consider a two-person zero-sum game with two sets of strategic variables which are
related by invertible functions. They are denoted by (𝑠𝐴, 𝑠𝐵) ∈ (𝑆𝐴, 𝑆𝐵) and (𝑡𝐴, 𝑡𝐵) ∈(𝑇𝐴, 𝑇𝐵) for players A and B. The payoff function of Player A is 𝑢𝐴. Then, the payoff
function of Player B is −𝑢𝐴. 𝑢𝐴 is upper semi-continuous and quasi-concave on 𝑆𝐴 for
each 𝑠𝐵 ∈ 𝑆𝐵 (or each 𝑡𝐵 ∈ 𝑇𝐵), upper semi-continuous and quasi-concave on 𝑇𝐴 for
each 𝑡𝐵 ∈ 𝑇𝐵 (or each 𝑠𝐵 ∈ 𝑆𝐵), and lower semi-continuous and quasi-convex on 𝑆𝐵 for
each 𝑠𝐴 ∈ 𝑆𝐴 (or each 𝑡𝐴 ∈ 𝑇𝐴), lower semi-continuous and quasi-convex on 𝑇𝐵 for each𝑡𝐴 ∈ 𝑇𝐴 (or each 𝑠𝐴 ∈ 𝑆𝐴). We do not postulate differentiability of payoff functions.

We will show that the following four patterns of competition are equivalent, that is, they
yield the same outcome.

(1) Player A and B choose 𝑠𝐴 and 𝑠𝐵 (competition by (𝑠𝐴, 𝑠𝐵)).
(2) Player A and B choose 𝑡𝐴 and 𝑡𝐵 (competition by (𝑡𝐴, 𝑡𝐵)).
(3) Player A and B choose 𝑡𝐴 and 𝑠𝐵 (competition by (𝑡𝐴, 𝑠𝐵)).
(4) Player A and B choose 𝑠𝐴 and 𝑡𝐵 (competition by (𝑠𝐴, 𝑡𝐵)).
Relative profitmaximization in duopoly with differentiated goods is an example of zero-

sum game with two alternative strategic variables1. Each firm chooses its output or price.
The results of this paper imply that when firms in duopoly maximize their relative profits,
Cournot and Bertrand equilibria are equivalent, and price-setting behavior and output-
setting behavior are equivalent2.

The key to our results is Lemma 4 in Section 6. This lemma implies that the maximin
strategies in four patterns of competition are equivalent, and the minimax strategies in
four patterns of competition are equivalent.

2 The model

Consider a two-person zero-sum game as follows. There are two players, A and B. They
have two sets of alternative strategic variables, (𝑠𝐴, 𝑠𝐵) ∈ 𝑆𝐴 × 𝑆𝐵 and (𝑡𝐴, 𝑡𝐵) ∈ 𝑇𝐴 × 𝑇𝐵.𝑆𝐴, 𝑆𝐵, 𝑇𝐴 and 𝑇𝐵 are compact sets inmetric spaces. The relations of them are represented
by 𝑠𝐴 = 𝑓𝐴(𝑡𝐴, 𝑡𝐵), and 𝑠𝐵 = 𝑓𝐵(𝑡𝐴, 𝑡𝐵).(𝑓𝐴, 𝑓𝐵) is a continuous invertible function, and so it is a one-to-one and onto function.
We denote 𝑡𝐴 = 𝑔𝐴(𝑠𝐴, 𝑠𝐵), and 𝑡𝐵 = 𝑔𝐵(𝑠𝐴, 𝑠𝐵).
1A game of relative profit maximization in duopoly is a zero-sum game because the sum of the relative
profits of firms is zero.

2About relative profit maximization under imperfect competition please seeMatsumura, Matsushima and
Cato (2013), Satoh and Tanaka (2013), Satoh and Tanaka (2014a), Satoh and Tanaka (2014b), Tanaka
(2013a), Tanaka (2013b) and Vega-Redondo (1997).
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(𝑔𝐴, 𝑔𝐵) is also a continuous invertible function. The payoff function of PlayerA is 𝑢𝐴(𝑠𝐴, 𝑠𝐵)
and the payoff function of Player B is 𝑢𝐵(𝑠𝐴, 𝑠𝐵). Since the game is zero-sum, we have𝑢𝐵(𝑠𝐴, 𝑠𝐵) = −𝑢𝐴(𝑠𝐴, 𝑠𝐵). 𝑢𝐴 is upper semi-continuous and quasi-concave on 𝑆𝐴 for each𝑠𝐵 ∈ 𝑆𝐵 (or each 𝑡𝐵 ∈ 𝑇𝐵), upper semi-continuous and quasi-concave on 𝑇𝐴 for each𝑡𝐵 ∈ 𝑇𝐵 (or each 𝑠𝐵 ∈ 𝑆𝐵), and lower semi-continuous and quasi-convex on 𝑆𝐵 for each𝑠𝐴 ∈ 𝑆𝐴 (or each 𝑡𝐴 ∈ 𝑇𝐴), lower semi-continuous and quasi-convex on 𝑇𝐵 for each𝑡𝐴 ∈ 𝑇𝐴 (or each 𝑠𝐴 ∈ 𝑆𝐴). We do not postulate differentiability of payoff functions3.

3 Competition by (𝑠𝐴, 𝑠𝐵)
First consider competition by (𝑠𝐴, 𝑠𝐵). Let 𝑠∗𝐴 and 𝑠∗𝐵 be the values of 𝑠𝐴 and 𝑠𝐵 which,
respectively, (locally) maximizes 𝑢𝐴(𝑠𝐴, 𝑠𝐵) given 𝑠∗𝐵 and (locally) maximizes 𝑢𝐵(𝑠𝐴, 𝑠𝐵)
given 𝑠∗𝐴 in a neighborhood around (𝑠∗𝐴, 𝑠∗𝐵) in 𝑆𝐴 × 𝑆𝐵. Then,

𝑢𝐴(𝑠∗𝐴, 𝑠∗𝐵) ≥ 𝑢𝐴(𝑠𝐴, 𝑠∗𝐵) for all 𝑠𝐴 ≠ 𝑠∗𝐴,
and 𝑢𝐵(𝑠∗𝐴, 𝑠∗𝐵) ≥ 𝑢𝐵(𝑠∗𝐴, 𝑠𝐵) for all 𝑠𝐵 ≠ 𝑠∗𝐵.
Since 𝑢𝐵 = −𝑢𝐴, this is rewritten as

𝑢𝐴(𝑠∗𝐴, 𝑠𝐵) ≥ 𝑢𝐴(𝑠∗𝐴, 𝑠∗𝐵), for all 𝑠𝐵 ≠ 𝑠∗𝐵.
Thus, we obtain

𝑢𝐴(𝑠∗𝐴, 𝑠𝐵) ≥ 𝑢𝐴(𝑠∗𝐴, 𝑠∗𝐵) ≥ 𝑢𝐴(𝑠𝐴, 𝑠∗𝐵) for all 𝑠𝐴 ≠ 𝑠∗𝐴, and all 𝑠𝐵 ≠ 𝑠∗𝐵.
This is equivalent to

𝑢𝐴(𝑠∗𝐴, 𝑠∗𝐵) = max𝑠𝐴 𝑢𝐴(𝑠𝐴, 𝑠∗𝐵) = min𝑠𝐵 𝑢𝐴(𝑠∗𝐴, 𝑠𝐵).
(𝑠∗𝐴, 𝑠∗𝐵) is a Nash equilibrium of competition by (𝑠𝐴, 𝑠𝐵) game.

On the other hand, by the Sion’s minimax theorem (Sion (1958), Komiya (1988),
Kindler (2005)) we have

𝑣𝑠𝐴 ≡ max𝑠𝐴 min𝑠𝐵 𝑢𝐴(𝑠𝐴, 𝑠𝐵) = min𝑠𝐵 max𝑠𝐴 𝑢𝐴(𝑠𝐴, 𝑠𝐵) ≡ 𝑣𝑠𝐵.
We can show the following lemma.

Lemma 1. The following three statements are equivalent.

(1) There exists a Nash equilibrium in competition by (𝑠𝐴, 𝑠𝐵) game.
3In Satoh and Tanaka (2016) we analyze maximin and minimax strategies in duopoly when payoff func-
tions of firms are differentiable.
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(2) The following relation holds.

𝑣𝑠𝐴 ≡ max𝑠𝐴 min𝑠𝐵 𝑢𝐴(𝑠𝐴, 𝑠𝐵) ≡ min𝑠𝐵 max𝑠𝐴 𝑢𝐴(𝑠𝐴, 𝑠𝐵) = 𝑣𝑠𝐵,
in a neighborhood around (argmax𝑠𝐴 min𝑠𝐵 𝑢𝐴(𝑠𝐴, 𝑠𝐵), argmin𝑠𝐵 max𝑠𝐴 𝑢𝐴(𝑠𝐴, 𝑠𝐵)) in𝑆𝐴 × 𝑆𝐵.

(3) There exists a real number v𝑠, 𝑠𝑚𝐴 and 𝑠𝑚𝐵 such that

𝑢𝐴(𝑠𝑚𝐴, 𝑠𝐵) ≥ v𝑠 for any 𝑠𝐵, and 𝑢𝐴(𝑠𝐴, 𝑠𝑚𝐵) ≤ v𝑠 for any 𝑠𝐴 (1)

in a neighborhood around (𝑠𝑚𝐴, 𝑠𝑚𝐵) in 𝑆𝐴 × 𝑆𝐵.
Proof. (1 → 2)

Let 𝑠∗𝐴 and 𝑠∗𝐵 be the equilibrium strategies. Then,

𝑣𝑠𝐵 = min𝑠𝐵 max𝑠𝐴 𝑢𝐴(𝑠𝐴, 𝑠𝐵) ≤ max𝑠𝐴 𝑢𝐴(𝑠𝐴, 𝑠∗𝐵) = 𝑢𝐴(𝑠∗𝐴, 𝑠∗𝐵)
= min𝑠𝐵 𝑢𝐴(𝑠∗𝐴, 𝑠𝐵) ≤ max𝑠𝐴 min𝑠𝐵 𝑢𝐴(𝑠𝐴, 𝑠𝐵) = 𝑣𝑠𝐴.

On the other hand, min𝑠𝐵 𝑢𝐴(𝑠𝐴, 𝑠𝐵) ≤ 𝑢𝐴(𝑠𝐴, 𝑠𝐵), thenmax𝑠𝐴 min𝑠𝐵 𝑢𝐴(𝑠𝐴, 𝑠𝐵) ≤ max𝑠𝐴 𝑢𝐴(𝑠𝐴, 𝑠𝐵),
and so max𝑠𝐴 min𝑠𝐵 𝑢𝐴(𝑠𝐴, 𝑠𝐵) ≤ min𝑠𝐵 max𝑠𝐴 𝑢𝐴(𝑠𝐴, 𝑠𝐵). Thus, 𝑣𝑠𝐴 ≤ 𝑣𝑠𝐵, and we have𝑣𝑠𝐴 = 𝑣𝑠𝐵.
(2 → 3)

Let 𝑠𝑚𝐴 = argmax𝑠𝐴 min𝑠𝐵 𝑢𝐴(𝑠𝐴, 𝑠𝐵) (themaximin strategy), 𝑠𝑚𝐵 = argmin𝑠𝐵 max𝑠𝐴 𝑢𝐴(𝑠𝐴, 𝑠𝐵)
(the minimax strategy), and let v𝑠 = 𝑣𝑠𝐴 = 𝑣𝑠𝐵. Then, we have

𝑢𝐴(𝑠𝑚𝐴, 𝑠𝐵) ≥ min𝑠𝐵 𝑢𝐴(𝑠𝑚𝐴, 𝑠𝐵) = max𝑠𝐴 min𝑠𝐵 𝑢𝐴(𝑠𝐴, 𝑠𝐵) = v𝑠
= min𝑠𝐵 max𝑠𝐴 𝑢𝐴(𝑠𝐴, 𝑠𝐵) = max𝑠𝐴 𝑢𝐴(𝑠𝐴, 𝑠𝑚𝐵) ≥ 𝑢𝐴(𝑠𝐴, 𝑠𝑚𝐵).

(3 → 1)
From (1) 𝑢𝐴(𝑠𝑚𝐴, 𝑠𝐵) ≥ v𝑠 ≥ 𝑢𝐴(𝑠𝐴, 𝑠𝑚𝐵) for all 𝑠𝐴 ∈ 𝑆𝐴, 𝑠𝐵 ∈ 𝑆𝐵.

Putting 𝑠𝐴 = 𝑠𝑚𝐴 and 𝑠𝐵 = 𝑠𝑚𝐵, we see v𝑠 = 𝑢𝐴(𝑠𝑚𝐴, 𝑠𝑚𝐵) and (𝑠𝑚𝐴, 𝑠𝑚𝐵) is an equilibrium.

Wewrite (𝑠𝑚𝐴, 𝑠𝑚𝐵) = (𝑠∗𝐴, 𝑠∗𝐵). Denote the value of 𝑡𝐴 which is derived from 𝑡𝐴 = 𝑔𝐴(𝑠∗𝐴, 𝑠∗𝐵)
by 𝑡∗𝐴, and denote the value of 𝑡𝐵 which is derived from 𝑡𝐵 = 𝑔𝐵(𝑠∗𝐴, 𝑠∗𝐵) by 𝑡∗𝐵.
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4 Competition by (𝑡𝐴, 𝑡𝐵)
Next consider competition by (𝑡𝐴, 𝑡𝐵). Substituting 𝑓𝐴 and 𝑓𝐵 into 𝑢𝐴 and 𝑢𝐵 yields

𝑢𝐴 = 𝑢𝐴(𝑓𝐴(𝑡𝐴, 𝑡𝐵), 𝑓𝐵(𝑡𝐴, 𝑡𝐵)), 𝑢𝐵 = 𝑢𝐵(𝑓𝐴(𝑡𝐴, 𝑡𝐵), 𝑓𝐵(𝑡𝐴, 𝑡𝐵)).
Let ̃𝑡𝐴 and ̃𝑡𝐵 be the values of 𝑡𝐴 and 𝑡𝐵 which, respectively, (locally)maximizes 𝑢𝐴(𝑓𝐴(𝑡𝐴, 𝑡𝐵), 𝑓𝐵(𝑡𝐴, 𝑡𝐵))
given ̃𝑡𝐵 and (locally) maximizes 𝑢𝐵(𝑓𝐴(𝑡𝐴, 𝑡𝐵), 𝑓𝐵(𝑡𝐴, 𝑡𝐵)) given ̃𝑡𝐴 in a neighborhood
around ( ̃𝑡𝐴, ̃𝑡𝐵) in 𝑇𝐴 × 𝑇𝐵. Then,𝑢𝐴(𝑓𝐴( ̃𝑡𝐴, ̃𝑡𝐵), 𝑓𝐵( ̃𝑡𝐴, ̃𝑡𝐵)) ≥ 𝑢𝐴(𝑓𝐴(𝑡𝐴, ̃𝑡𝐵), 𝑓𝐵(𝑡𝐴, ̃𝑡𝐵)) for all 𝑡𝐴 ≠ ̃𝑡𝐴,
and

𝑢𝐵(𝑓𝐴( ̃𝑡𝐴, ̃𝑡𝐵), 𝑓𝐵( ̃𝑡𝐴, ̃𝑡𝐵)) ≥ 𝑢𝐵(𝑓𝐴( ̃𝑡𝐴, 𝑡𝐵), 𝑓𝐵( ̃𝑡𝐴, 𝑡𝐵)) for all 𝑡𝐵 ≠ ̃𝑡𝐵.
Since 𝑢𝐵 = −𝑢𝐴, this is rewritten as

𝑢𝐴(𝑓𝐴( ̃𝑡𝐴, 𝑡𝐵), 𝑓𝐵( ̃𝑡𝐴, 𝑡𝐵)) ≥ 𝑢𝐴(𝑓𝐴( ̃𝑡𝐴, ̃𝑡𝐵), 𝑓𝐵( ̃𝑡𝐴, ̃𝑡𝐵)) for all 𝑡𝐵 ≠ ̃𝑡𝐵.
Thus, we obtain

𝑢𝐴(𝑓𝐴( ̃𝑡𝐴, 𝑡𝐵), 𝑓𝐵( ̃𝑡𝐴, 𝑡𝐵)) ≥ 𝑢𝐴(𝑓𝐴( ̃𝑡𝐴, ̃𝑡𝐵), 𝑓𝐵( ̃𝑡𝐴, ̃𝑡𝐵)) ≥ 𝑢𝐴(𝑓𝐴(𝑡𝐴, ̃𝑡𝐵), 𝑓𝐵(𝑡𝐴, ̃𝑡𝐵))
for all 𝑡𝐴 ≠ ̃𝑡𝐴, and all 𝑡𝐵 ≠ ̃𝑡𝐵.

This is equivalent to

𝑢𝐴(𝑓𝐴( ̃𝑡𝐴, ̃𝑡𝐵), 𝑓𝐴( ̃𝑡𝐴, ̃𝑡𝐵)) = max𝑡𝐴 𝑢𝐴(𝑓𝐴(𝑡𝐴, ̃𝑡𝐵), 𝑓𝐵(𝑡𝐴, ̃𝑡𝐵))
= min𝑡𝐵 𝑢𝐴(𝑓𝐴( ̃𝑡𝐴, 𝑡𝐵), 𝑓𝐵( ̃𝑡𝐴, 𝑡𝐵)).

Similarly to Lemma 1 we can show.

Lemma 2. The following three statements are equivalent.

(1) There exists a Nash equilibrium in competition by (𝑡𝐴, 𝑡𝐵) game.
(2) The following relation holds.

𝑣𝑡𝐴 ≡ max𝑡𝐴 min𝑡𝐵 𝑢𝐴(𝑓𝐴(𝑡𝐴, 𝑡𝐵), 𝑓𝐵(𝑡𝐴, 𝑡𝐵)) = min𝑡𝐵 max𝑡𝐴 𝑢𝐴(𝑓𝐴(𝑡𝐴, 𝑡𝐵), 𝑓𝐵(𝑡𝐴, 𝑡𝐵)) ≡ 𝑣𝑡𝐵,
in a neighborhood around

(argmax𝑡𝐴 min𝑡𝐵 𝑢𝐴(𝑓𝐴(𝑡𝐴, 𝑡𝐵), 𝑓𝐵(𝑡𝐴, 𝑡𝐵)), argmin𝑡𝐵 max𝑡𝐴 𝑢𝐴(𝑓𝐴(𝑡𝐴, 𝑡𝐵), 𝑓𝐵(𝑡𝐴, 𝑡𝐵)))
in 𝑇𝐴 × 𝑇𝐵.

(3) There exists a real number v𝑡, 𝑡𝑚𝐴 ∈ 𝑇𝐴 and 𝑡𝑚𝐵 ∈ 𝑇𝐵 such that

𝑢𝐴(𝑓𝐴(𝑡𝑚𝐴, 𝑡𝐵), 𝑓𝐵(𝑡𝑚𝐴, 𝑡𝐵)) ≥ v𝑡 for any 𝑡𝐵 ∈ 𝑇𝐵, and 𝑢𝐴(𝑓𝐴(𝑡𝐴, 𝑡𝑚𝐵), 𝑓𝐵(𝑡𝐴, 𝑡𝑚𝐵)) ≤ v𝑡
for any 𝑡𝐴 ∈ 𝑇𝐴 in a neighborhood around (𝑡𝑚𝐴, 𝑡𝑚𝐵) in 𝑇𝐴 × 𝑇𝐵.

Wewrite (𝑡𝑚𝐴, 𝑡𝑚𝐵) = ( ̃𝑡𝐴, ̃𝑡𝐵). Denote the value of 𝑠𝐴 which is derived from 𝑠𝐴 = 𝑓𝐴( ̃𝑡𝐴, ̃𝑡𝐵)
by ̃𝑠𝐴, and denote the value of 𝑠𝐵 which is derived from 𝑠𝐵 = 𝑓𝐵( ̃𝑡𝐴, ̃𝑡𝐵) by ̃𝑠𝐵.
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5 Competition by (𝑡𝐴, 𝑠𝐵)
Next consider competition by (𝑡𝐴, 𝑠𝐵). we have

𝑠𝐴 = 𝑓𝐴(𝑡𝐴, 𝑔𝐵(𝑠𝐴, 𝑠𝐵)), 𝑡𝐵 = 𝑔𝐵(𝑓𝐴(𝑡𝐴, 𝑡𝐵), 𝑠𝐵).
The payoffs of Player A and B are written as

𝑢𝐴(𝑠𝐴, 𝑠𝐵) = 𝑢𝐴(𝑓𝐴(𝑡𝐴, 𝑡𝐵), 𝑠𝐵), 𝑢𝐵(𝑠𝐴, 𝑠𝐵) = 𝑢𝐵(𝑓𝐴(𝑡𝐴, 𝑡𝐵), 𝑠𝐵).
Let ̄𝑡𝐴 and ̄𝑠𝐵 be the values of 𝑡𝐴 and 𝑠𝐵 which, respectively, (locally) maximizes 𝑢𝐴 given̄𝑠𝐵 and (locally) maximizes 𝑢𝐵 given ̄𝑡𝐴 in a neighborhood around ( ̄𝑡𝐴, ̄𝑠𝐵) in 𝑇𝐴 × 𝑆𝐵.
Then, 𝑢𝐴(𝑓𝐴( ̄𝑡𝐴, 𝑡𝐵), ̄𝑠𝐵) ≥ 𝑢𝐴(𝑓𝐴(𝑡𝐴, 𝑡𝐵), ̄𝑠𝐵) for all 𝑡𝐴 ≠ ̄𝑡𝐴,
and

𝑢𝐵(𝑓𝐴( ̄𝑡𝐴, 𝑡𝐵), ̄𝑠𝐵)) ≥ 𝑢𝐵(𝑓𝐴( ̄𝑡𝐴, 𝑡𝐵), 𝑠𝐵)) for all 𝑠𝐵 ≠ ̄𝑠𝐵.
Since 𝑢𝐵 = −𝑢𝐴, this is rewritten as

𝑢𝐴(𝑓𝐴( ̄𝑡𝐴, 𝑡𝐵), 𝑠𝐵)) ≥ 𝑢𝐴(𝑓𝐴( ̄𝑡𝐴, 𝑡𝐵), ̄𝑠𝐵)) for all 𝑠𝐵 ≠ ̄𝑠𝐵.
Thus, we obtain

𝑢𝐴(𝑓𝐴( ̄𝑡𝐴, 𝑡𝐵), 𝑠𝐵)) ≥ 𝑢𝐴(𝑓𝐴( ̄𝑡𝐴, 𝑡𝐵), ̄𝑠𝐵)) ≥ 𝑢𝐴(𝑓𝐴(𝑡𝐴, 𝑡𝐵), ̄𝑠𝐵))
for all 𝑡𝐴 ≠ ̄𝑡𝐴, and all 𝑠𝐵 ≠ ̄𝑠𝐵.

This is equivalent to

𝑢𝐴(𝑓𝐴( ̄𝑡𝐴, 𝑡𝐵), ̄𝑠𝐵) = max𝑡𝐴 𝑢𝐴(𝑓𝐴(𝑡𝐴, 𝑡𝐵), ̄𝑠𝐵) = min𝑠𝐵 𝑢𝐴(𝑓𝐴( ̄𝑡𝐴, 𝑡𝐵), 𝑠𝐵).
Similarly to Lemma 1 we can show.

Lemma 3. The following three statements are equivalent.

(1) There exists a Nash equilibrium in competition by (𝑡𝐴, 𝑠𝐵) game.
(2) The following relation holds.

𝑣𝑡𝑠𝐴 ≡ max𝑡𝐴 min𝑠𝐵 𝑢𝐴(𝑓𝐴(𝑡𝐴, 𝑡𝐵), 𝑠𝐵) = min𝑠𝐵 max𝑡𝐴 𝑢𝐴(𝑓𝐴(𝑡𝐴, 𝑡𝐵), 𝑠𝐵) ≡ 𝑣𝑡𝑠𝐵 ,
in a neighborhood around

(argmax𝑡𝐴 min𝑠𝐵 𝑢𝐴(𝑓𝐴(𝑡𝐴, 𝑡𝐵), 𝑠𝐵), argmin𝑠𝐵 max𝑡𝐴 𝑢𝐴(𝑓𝐴(𝑡𝐴, 𝑡𝐵), 𝑠𝐵))
in 𝑇𝐴 × 𝑆𝐵.
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(3) There exists a real number v𝑡𝑠, 𝑡𝑡𝑠𝐴 ∈ 𝑇𝐴 and 𝑠𝑡𝑠𝐵 ∈ 𝑆𝐵 such that

𝑢𝐴(𝑓𝐴(𝑡𝑡𝑠𝐴, 𝑡𝐵), 𝑠𝐵) ≥ v𝑡𝑠 for any 𝑠𝐵 ∈ 𝑆𝐵, and 𝑢𝐴(𝑓𝐴(𝑡𝐴, 𝑡𝐵), 𝑠𝑡𝑠𝐵) ≤ v𝑡𝑠 for any 𝑡𝐴 ∈ 𝑇𝐴
in a neighborhood around (𝑡𝑡𝑠𝐴, 𝑠𝑡𝑠𝐵) in 𝑇𝐴 × 𝑆𝐵.

Wewrite (𝑡𝑡𝑠𝐴, 𝑠𝑡𝑠𝐵) = ( ̄𝑡𝐴, ̄𝑠𝐵). Denote the value of 𝑠𝐴 which is derived from 𝑠𝐴 = 𝑓𝐴( ̄𝑡𝐴, 𝑔𝐵(𝑠𝐴, ̄𝑠𝐵))
by ̄𝑠𝐴, and denote the value of 𝑡𝐵 which is derived from 𝑡𝐵 = 𝑔𝐵(𝑓𝐴( ̄𝑡𝐴, 𝑡𝐵) ̄𝑠𝐵), by ̄𝑡𝐵. Then,̄𝑡𝐴 and ̄𝑠𝐵 are written as

̄𝑡𝐴 = 𝑔𝐴( ̄𝑠𝐴, ̄𝑠𝐵), and ̄𝑠𝐵 = 𝑓𝐵( ̄𝑡𝐴, ̄𝑡𝐵).
6 Equivalence of four patterns of competition

In this section we show the equivalence of four patterns of competition. First we show the
following lemma which is key to our results.

Lemma 4. The following relations hold.

(1) max𝑡𝐴 min𝑠𝐵 𝑢𝐴(𝑓𝐴(𝑡𝐴, 𝑡𝐵), 𝑠𝐵) = max𝑠𝐴 min𝑠𝐵 𝑢𝐴(𝑠𝐴, 𝑠𝐵).
(2) min𝑠𝐵 max𝑡𝐴 𝑢𝐴(𝑓𝐴(𝑡𝐴, 𝑡𝐵), 𝑠𝐵) = min𝑡𝐵 max𝑡𝐴 𝑢𝐴(𝑓𝐴(𝑡𝐴, 𝑡𝐵), 𝑓𝐵(𝑡𝐴, 𝑡𝐵)).

Proof. (1) min𝑠𝐵 𝑢𝐴(𝑓𝐴(𝑡𝐴, 𝑡𝐵), 𝑠𝐵) is theminimumof 𝑢𝐴 with respect to 𝑠𝐵 given 𝑡𝐴. Let𝑠𝐵(𝑡𝐴) = argmin𝑠𝐵 𝑢𝐴(𝑓𝐴(𝑡𝐴, 𝑡𝐵), 𝑠𝐵), and fix the value of 𝑠𝐴 at𝑓𝐴(𝑡𝐴, 𝑔𝐵(𝑠𝐴, 𝑠𝐵(𝑡𝐴))).
Then, we have

min𝑠𝐵 𝑢𝐴(𝑓𝐴(𝑡𝐴, 𝑔𝐵(𝑠𝐴, 𝑠𝐵(𝑡𝐴))), 𝑠𝐵)
≤ 𝑢𝐴(𝑓𝐴(𝑡𝐴, 𝑔𝐵(𝑠𝐴, 𝑠𝐵(𝑡𝐴))), 𝑠𝐵(𝑡𝐴)) = min𝑠𝐵 𝑢𝐴(𝑓𝐴(𝑡𝐴, 𝑡𝐵), 𝑠𝐵),

where min𝑠𝐵 𝑢𝐴(𝑓𝐴(𝑡𝐴, 𝑔𝐵(𝑠𝐴, 𝑠𝐵(𝑡𝐴))), 𝑠𝐵) is the minimum of 𝑢𝐴 with respect to 𝑠𝐵
given the value of 𝑠𝐴 at 𝑓𝐴(𝑡𝐴, 𝑔𝐵(𝑠𝐴, 𝑠𝐵(𝑡𝐴))). This holds for any 𝑡𝐴. Thus,

max𝑓𝐴(𝑡𝐴,𝑔𝐵(𝑠𝐴,𝑠𝐵(𝑡𝐴)))min𝑠𝐵 𝑢𝐴(𝑓𝐴(𝑡𝐴, 𝑔𝐵(𝑠𝐴, 𝑠𝐵(𝑡𝐴))), 𝑠𝐵) ≤ max𝑡𝐴 min𝑠𝐵 𝑢𝐴(𝑓𝐴(𝑡𝐴, 𝑡𝐵), 𝑠𝐵).
We assume 𝑠𝐵(𝑡𝐴) is single-valued. By the maximum theorem and continuity of
the functions, 𝑢𝐴 and 𝑓𝐴, 𝑠𝐵(𝑡𝐴) is continuous. The values of 𝑠𝐴 in some neigh-
borhood around ( ̄𝑠𝐴, ̄𝑠𝐵) can be realized by appropriately choosing 𝑡𝐴 given 𝑠𝐵 as𝑠𝐴 = 𝑓𝐴(𝑡𝐴, 𝑔𝐵(𝑠𝐴, 𝑠𝐵(𝑡𝐴))). Therefore, this can be rewritten as

max𝑠𝐴 min𝑠𝐵 𝑢𝐴(𝑠𝐴, 𝑠𝐵) ≤ max𝑡𝐴 min𝑠𝐵 𝑢𝐴(𝑓𝐴(𝑡𝐴, 𝑡𝐵), 𝑠𝐵). (2)

7



On the other hand, min𝑠𝐵 𝑢𝐴(𝑠𝐴, 𝑠𝐵) is the minimum of 𝑢𝐴 with respect to 𝑠𝐵 given𝑠𝐴. Let 𝑠𝐵(𝑠𝐴) = argmin𝑠𝐵 𝑢𝐴(𝑠𝐴, 𝑠𝐵), and fix the value of 𝑡𝐴 at 𝑔𝐴(𝑠𝐴, 𝑠𝐵(𝑠𝐴)).
Then, we have

min𝑠𝐵 𝑢𝐴(𝑓𝐴(𝑔𝐴(𝑠𝐴, 𝑠𝐵(𝑠𝐴)), 𝑔𝐵(𝑠𝐴, 𝑠𝐵(𝑠𝐴))), 𝑠𝐵)
≤ 𝑢𝐴(𝑓𝐴(𝑔𝐴(𝑠𝐴, 𝑠𝐵(𝑠𝐴)), 𝑔𝐵(𝑠𝐴, 𝑠𝐵(𝑠𝐴))), 𝑠𝐵(𝑠𝐴)) = 𝑢𝐴(𝑠𝐴, 𝑠𝐵(𝑠𝐴)) = min𝑠𝐵 𝑢𝐴(𝑠𝐴, 𝑠𝐵),
where min𝑠𝐵 𝑢𝐴(𝑓𝐴(𝑔𝐴(𝑠𝐴, 𝑠𝐵(𝑠𝐴)), 𝑔𝐵(𝑠𝐴, 𝑠𝐵(𝑠𝐴))), 𝑠𝐵) is the minimum of 𝑢𝐴 with re-
spect to 𝑠𝐵 given the value of 𝑡𝐴 at 𝑔𝐴(𝑠𝐴, 𝑠𝐵(𝑠𝐴)). This holds for any 𝑠𝐴. Thus,

max𝑔𝐴(𝑠𝐴,𝑠𝐵(𝑠𝐴))min𝑠𝐵 𝑢𝐴(𝑓𝐴(𝑔𝐴(𝑠𝐴, 𝑠𝐵(𝑠𝐴)), 𝑔𝐵(𝑠𝐴, 𝑠𝐵(𝑠𝐴))), 𝑠𝐵) ≤ max𝑠𝐴 min𝑠𝐵 𝑢𝐴(𝑠𝐴, 𝑠𝐵)
We assume 𝑠𝐵(𝑠𝐴) is single-valued. By the maximum theorem and continuity of 𝑢𝐴,𝑠𝐵(𝑠𝐴) is continuous. The values of 𝑡𝐴 in some neighborhood around ( ̄𝑡𝐴, ̄𝑠𝐵) can be
realized by appropriately choosing 𝑠𝐴 given 𝑠𝐵 as 𝑡𝐴 = 𝑔𝐴(𝑠𝐴, 𝑠𝐵(𝑠𝐴)). Therefore,
this can be rewritten as

max𝑡𝐴 min𝑠𝐵 𝑢𝐴(𝑓𝐴(𝑡𝐴, 𝑡𝐵), 𝑠𝐵) ≤ max𝑠𝐴 min𝑠𝐵 𝑢𝐴(𝑠𝐴, 𝑠𝐵). (3)

Combining (2) and (3), we get

max𝑠𝐴 min𝑠𝐵 𝑢𝐴(𝑠𝐴, 𝑠𝐵) = max𝑡𝐴 min𝑠𝐵 𝑢𝐴(𝑓𝐴(𝑡𝐴, 𝑡𝐵), 𝑠𝐵).
(2) max𝑡𝐴 𝑢𝐴(𝑓𝐴(𝑡𝐴, 𝑡𝐵), 𝑠𝐵) is the maximum of 𝑢𝐴 with respect to 𝑡𝐴 given 𝑠𝐵. Let𝑡𝐴(𝑠𝐵) = argmax𝑡𝐴 𝑢𝐴(𝑓𝐴(𝑡𝐴, 𝑡𝐵), 𝑠𝐵), and fix the value of 𝑡𝐵 at 𝑔𝐵(𝑓𝐴(𝑡𝐴(𝑠𝐵), 𝑡𝐵), 𝑠𝐵).

Then, we have

max𝑡𝐴 𝑢𝐴(𝑓𝐴(𝑡𝐴, 𝑔𝐵(𝑓𝐴(𝑡𝐴(𝑠𝐵), 𝑡𝐵), 𝑠𝐵)), 𝑠𝐵)
= max𝑡𝐴 𝑢𝐴(𝑓𝐴(𝑡𝐴, 𝑔𝐵(𝑓𝐴(𝑡𝐴(𝑠𝐵), 𝑡𝐵), 𝑠𝐵)), 𝑓𝐵(𝑡𝐴, 𝑔𝐵(𝑓𝐴(𝑡𝐴(𝑠𝐵), 𝑡𝐵), 𝑠𝐵)))
≥ 𝑢𝐴(𝑓𝐴(𝑡𝐴(𝑠𝐵), 𝑔𝐵(𝑓𝐴(𝑡𝐴(𝑠𝐵), 𝑡𝐵), 𝑠𝐵)), 𝑠𝐵) = max𝑡𝐴 𝑢𝐴(𝑓𝐴(𝑡𝐴, 𝑡𝐵), 𝑠𝐵),

wheremax𝑡𝐴 𝑢𝐴(𝑓𝐴(𝑡𝐴, 𝑔𝐵(𝑓𝐴(𝑡𝐴(𝑠𝐵), 𝑡𝐵), 𝑠𝐵)), 𝑠𝐵) is themaximumof 𝑢𝐴 with respect
to 𝑡𝐴 given the value of 𝑡𝐵 at 𝑔𝐵(𝑓𝐴(𝑡𝐴(𝑠𝐵), 𝑡𝐵), 𝑠𝐵)). This holds for any 𝑠𝐵. Thus,

min𝑔𝐵(𝑓𝐴(𝑡𝐴(𝑠𝐵),𝑡𝐵),𝑠𝐵))max𝑡𝐴 𝑢𝐴(𝑓𝐴(𝑡𝐴, 𝑔𝐵(𝑓𝐴(𝑡𝐴(𝑠𝐵), 𝑡𝐵), 𝑠𝐵)), 𝑓𝐵(𝑡𝐴, 𝑔𝐵(𝑓𝐴(𝑡𝐴(𝑠𝐵), 𝑡𝐵), 𝑠𝐵)))
≥ min𝑠𝐵 max𝑡𝐴 𝑢𝐴(𝑓𝐴(𝑡𝐴, 𝑡𝐵), 𝑠𝐵).

We assume 𝑡𝐴(𝑠𝐵) is single-valued. By the maximum theorem and continuity of
the functions, 𝑢𝐴 and 𝑓𝐴, 𝑡𝐴(𝑠𝐵) is continuous. The values of 𝑡𝐵 in some neigh-
borhood around ( ̄𝑡𝐴, ̄𝑡𝐵) can be realized by appropriately choosing 𝑠𝐵 given 𝑡𝐴 as𝑡𝐵 = 𝑔𝐵(𝑓𝐴(𝑡𝐴(𝑠𝐵), 𝑡𝐵), 𝑠𝐵). Therefore, this can be rewritten as

min𝑡𝐵 max𝑡𝐴 𝑢𝐴(𝑓𝐴(𝑡𝐴, 𝑡𝐵), 𝑓𝐵(𝑡𝐴, 𝑡𝐵)) ≥ min𝑠𝐵 max𝑡𝐴 𝑢𝐴(𝑓𝐴(𝑡𝐴, 𝑡𝐵), 𝑠𝐵). (4)
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On the other hand, max𝑡𝐴 𝑢𝐴(𝑓𝐴(𝑡𝐴, 𝑡𝐵), 𝑓𝐵(𝑡𝐴, 𝑡𝐵)) is the maximum of 𝑢𝐴 with re-
spect to 𝑡𝐴 given 𝑡𝐵. Let 𝑡𝐴(𝑡𝐵) = argmax𝑡𝐴 𝑢𝐴(𝑓𝐴(𝑡𝐴, 𝑡𝐵), 𝑓𝐵(𝑡𝐴, 𝑡𝐵)), and fix the
value of 𝑠𝐵 at 𝑓𝐵(𝑡𝐴(𝑡𝐵), 𝑡𝐵). Then, we have

max𝑡𝐴 𝑢𝐴(𝑓𝐴(𝑡𝐴, 𝑡𝐵), 𝑓𝐵(𝑡𝐴(𝑡𝐵), 𝑡𝐵))
≥ 𝑢𝐴(𝑓𝐴(𝑡𝐴(𝑡𝐵), 𝑡𝐵), 𝑓𝐵(𝑡𝐴(𝑡𝐵), 𝑡𝐵)) = max𝑡𝐴 𝑢𝐴(𝑓𝐴(𝑡𝐴, 𝑡𝐵), 𝑓𝐵(𝑡𝐴, 𝑡𝐵)),

where max𝑡𝐴 𝑢𝐴(𝑓𝐴(𝑡𝐴, 𝑡𝐵), 𝑓𝐵(𝑡𝐴(𝑡𝐵), 𝑡𝐵)) is the maximum of 𝑢𝐴 with respect to 𝑡𝐴
given the value of 𝑠𝐵 at 𝑓𝐵(𝑡𝐴(𝑡𝐵), 𝑡𝐵). This holds for any 𝑡𝐵. Thus,

min𝑓𝐵(𝑡𝐴(𝑡𝐵),𝑡𝐵)max𝑡𝐴 𝑢𝐴(𝑓𝐴(𝑡𝐴, 𝑡𝐵), 𝑓𝐵(𝑡𝐴(𝑡𝐵), 𝑡𝐵)) ≥ min𝑡𝐵 max𝑡𝐴 𝑢𝐴(𝑓𝐴(𝑡𝐴, 𝑡𝐵), 𝑓𝐵(𝑡𝐴, 𝑡𝐵)).
We assume 𝑡𝐴(𝑡𝐵) is single-valued. By the maximum theorem and continuity of the
functions, 𝑢𝐴, 𝑓𝐴 and 𝑓𝐵, 𝑡𝐴(𝑡𝐵) is continuous. The values of 𝑠𝐵 in some neigh-
borhood around ( ̄𝑡𝐴, ̄𝑠𝐵) can be realized by appropriately choosing 𝑡𝐵 given 𝑡𝐴 as𝑠𝐵 = 𝑓𝐵(𝑡𝐴(𝑡𝐵), 𝑡𝐵). Therefore, this can be rewritten as

min𝑠𝐵 max𝑡𝐴 𝑢𝐴(𝑓𝐴(𝑡𝐴, 𝑡𝐵), 𝑠𝐵) ≥ min𝑡𝐵 max𝑡𝐴 𝑢𝐴(𝑓𝐴(𝑡𝐴, 𝑡𝐵), 𝑓𝐵(𝑡𝐴, 𝑡𝐵)). (5)

Combining (4) and (5), we get

min𝑡𝐵 max𝑡𝐴 𝑢𝐴(𝑓𝐴(𝑡𝐴, 𝑡𝐵), 𝑓𝐵(𝑡𝐴, 𝑡𝐵)) = min𝑠𝐵 max𝑡𝐴 𝑢𝐴(𝑓𝐴(𝑡𝐴, 𝑡𝐵), 𝑠𝐵).

Now we show the following propositions.

Proposition 1. (1) Competition by (𝑠𝐴, 𝑠𝐵) and competition by (𝑡𝐴, 𝑠𝐵) are equivalent.
(2) Competition by (𝑡𝐴, 𝑠𝐵) and competition by (𝑡𝐴, 𝑡𝐵) are equivalent.

Proof. (1) We show that the condition for ( ̄𝑠𝐴, ̄𝑠𝐵) and the condition for (𝑠∗𝐴, 𝑠∗𝐵) are the
same. From Lemma (3)

max𝑡𝐴 min𝑠𝐵 𝑢𝐴(𝑓𝐴(𝑡𝐴, 𝑡𝐵), 𝑠𝐵) = min𝑠𝐵 max𝑡𝐴 𝑢𝐴(𝑓𝐴(𝑡𝐴, 𝑡𝐵), 𝑠𝐵) = 𝑢𝐴( ̄𝑠𝐴, ̄𝑠𝐵).
Since any value of 𝑠𝐴 can be realized by appropriately choosing 𝑡𝐴 given 𝑠𝐵, we have
max𝑡𝐴 𝑢𝐴(𝑓𝐴(𝑡𝐴, 𝑡𝐵), 𝑠𝐵) = max𝑠𝐴 𝑢𝐴(𝑠𝐴, 𝑠𝐵) for any 𝑠𝐵. Thus,

min𝑠𝐵 max𝑠𝐴 𝑢𝐴(𝑠𝐴, 𝑠𝐵) = min𝑠𝐵 max𝑡𝐴 𝑢𝐴(𝑓𝐴(𝑡𝐴, 𝑡𝐵), 𝑠𝐵) = 𝑢𝐴( ̄𝑠𝐴, ̄𝑠𝐵).
From Lemma 4 we have max𝑡𝐴 min𝑠𝐵 𝑢𝐴(𝑓𝐴(𝑡𝐴, 𝑡𝐵), 𝑠𝐵) = max𝑠𝐴 min𝑠𝐵 𝑢𝐴(𝑠𝐴, 𝑠𝐵).
Therefore, we obtain

max𝑠𝐴 min𝑠𝐵 𝑢𝐴(𝑠𝐴, 𝑠𝐵) = min𝑠𝐵 max𝑠𝐴 𝑢𝐴(𝑠𝐴, 𝑠𝐵) = 𝑢𝐴( ̄𝑠𝐴, ̄𝑠𝐵).
This is 2 of Lemma 1.
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(2) We show that the condition for ( ̄𝑡𝐴, ̄𝑡𝐵) and the condition for ( ̃𝑡𝐴, ̃𝑡𝐵) are the same.
From Lemma (3)

max𝑡𝐴 min𝑠𝐵 𝑢𝐴(𝑓𝐴(𝑡𝐴, 𝑡𝐵), 𝑠𝐵) = min𝑠𝐵 max𝑡𝐴 𝑢𝐴(𝑓𝐴(𝑡𝐴, 𝑡𝐵), 𝑠𝐵) = 𝑢𝐴(𝑓𝐴( ̄𝑡𝐴, ̄𝑡𝐵), 𝑓𝐵( ̄𝑡𝐴, ̄𝑡𝐵)).
Since any value of 𝑡𝐵 can be realized by appropriately choosing 𝑠𝐵 given 𝑡𝐴, we have
min𝑠𝐵 𝑢𝐴(𝑓𝐴(𝑡𝐴, 𝑡𝐵), 𝑠𝐵) = min𝑡𝐵 𝑢𝐴(𝑓𝐴(𝑡𝐴, 𝑡𝐵), 𝑓𝐵(𝑡𝐴, 𝑡𝐵)) for any 𝑡𝐴. Thus,
max𝑡𝐴 min𝑡𝐵 𝑢𝐴(𝑓𝐴(𝑡𝐴, 𝑡𝐵), 𝑓𝐵(𝑡𝐴, 𝑡𝐵)) = max𝑡𝐴 min𝑠𝐵 𝑢𝐴(𝑓𝐴(𝑡𝐴, 𝑡𝐵), 𝑠𝐵) = 𝑢𝐴(𝑓𝐴( ̄𝑡𝐴, ̄𝑡𝐵), 𝑓𝐵( ̄𝑡𝐴, ̄𝑡𝐵)).
FromLemma4we havemin𝑠𝐵 max𝑡𝐴 𝑢𝐴(𝑓𝐴(𝑡𝐴, 𝑡𝐵), 𝑠𝐵) = min𝑡𝐵 max𝑡𝐴 𝑢𝐴(𝑓𝐴(𝑡𝐴, 𝑡𝐵), 𝑓𝐵(𝑡𝐴, 𝑡𝐵)).
Therefore, we obtain

max𝑡𝐴 min𝑡𝐵 𝑢𝐴(𝑓𝐴(𝑡𝐴, 𝑡𝐵), 𝑓𝐵(𝑡𝐴, 𝑡𝐵)) = min𝑡𝐵 max𝑡𝐴 𝑢𝐴(𝑓𝐴(𝑡𝐴, 𝑡𝐵), 𝑓𝐵(𝑡𝐴, 𝑡𝐵))
= 𝑢𝐴(𝑓𝐴( ̄𝑡𝐴, ̄𝑡𝐵), 𝑓𝐵( ̄𝑡𝐴, ̄𝑡𝐵)).

This is 2 of Lemma 2.

Exchanging A with B we can show the following proposition.

Proposition 2. (1) Competition by (𝑠𝐴, 𝑠𝐵) and competition by (𝑠𝐴, 𝑡𝐵) are equivalent.
(2) Competition by (𝑠𝐴, 𝑡𝐵) and competition by (𝑡𝐴, 𝑡𝐵) are equivalent.
Finally, from these results we get

Proposition 3. Competition by (𝑠𝐴, 𝑠𝐵) and competition by (𝑡𝐴, 𝑡𝐵) are equivalent.
Therefore, all of four patterns of competition are equivalent.

7 Concluding Remark

We have shown that in a two-person zero-sum game with two sets of alternative strategic
variables, any pattern of competition is equivalent, and any selection of strategic variables
is equivalent. We want to extend the results of this paper to a symmetric 𝑛-person zero-
sum game4.

4In an asymmetric situation the equivalence does not hold with more than two players.
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