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1 Introduction

Dynamic Stochastic General Equilibrium (DSGE) models with nominal rigidi-

ties have become useful tools in the analysis of monetary policy (Schorfheide

(2000); Smets and Wouters (2003, 2007)). However, the rigidity mechanism

is only a consensus to the extent that persistence in inflation is needed to

fit the empirical data. An inertial behavior of inflation usually requires the

assumption of price indexation to the last period’s inflation rate. Prominent

examples of indexation with Calvo and Rotemberg pricing (Calvo (1983);

Rotemberg (1982)) are Smets and Wouters (2003, 2007) and Ireland (2007).

However, less interest has been given to the persistence from a costly first

difference of inflation (Pesaran (1991) refers to this first difference as a “speed

change”). According to this view, adjustment costs arise whenever the infla-

tion rate differs from its last period’s level. The importance of adjustment

costs from inflation differences has been studied by Ireland (2001). By esti-

mating a DSGE framework with maximum likelihood methods, Ireland (2001)

concludes that these costs are not relevant.

In this paper, I make one main contribution. By using Bayesian estima-

tion techniques and U.S. data, I establish that the costly inflation difference

of Pesaran (1991) should in fact be considered at the firm level. However, I

depart in several ways from Ireland (2001). First, my measure is the squared

absolute first difference of inflation (following the speed-change idea of Pesaran

(1991)), as opposed to the squared relative change of inflation formulated by

Ireland (2001). Second, I use a more recent dataset for the U.S. economy

that includes another time period as in Ireland (2001). Finally, I use Bayesian

methods instead of a maximum likelihood estimation.

As a starting point, I draw attention to the costs from inflation first

differences by looking at U.S. inflation during the period 1983Q1–2008Q2.

Figure 1 shows the squared first difference of the inflation rate based on the

GDP deflator. I normalized the series with its corresponding variance to ac-
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count for the fluctuation range over the whole sample. The crux of figure

1 is that the series reflects a distinct view of the prime cause of adjustment

costs, namely first-difference adjustment costs in the spirit of Pesaran (1991).

The observation that substantiates this paper is the occurrence of highly pro-

nounced costs during extended periods of time. Since the costs induced by

“speed changes” (in the terminology of Pesaran (1991)) have been sizable, I

ask whether they must be incorporated into the microeconomic problem of the

firm. By answering this question, I clarify whether the aggregate costs from

inflation first differences can be explained at the level of the representative

monopolistic firm.

Figure 1: Costs from the first difference of inflation in the United States during
the time period 1983Q1–2008Q2. Notes: The inflation rate πt is computed as the
first difference of the GDP deflator in natural logarithms. The costs from the first
difference of inflation are calculated as the squared first difference of the inflation
rate normalized by its sample variance.

I seek to answer the above-mentioned question using quarterly U.S. data
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and a framework that has become widespread in the analysis of monetary

policy: a standard cashless New Keynesian model (Woodford (2003)). As a

centerpiece of the model, I derive the New Keynesian Phillips curve assuming

costs from inflation first differences at the firm level. Subsequent Bayesian

estimations are tied up with two main objectives. One objective is to deter-

mine the size of the parameter that governs these costs. The second objective

is to compare the explanatory power to alternative model versions. To that

end, I estimate another three competing DSGE models, each with a distinct

friction and therefore a distinct New Keynesian Phillips curve. The Bayesian

methodology then puts me in the position to evaluate the models in accor-

dance to their marginal likelihoods. The alternative rigidity views considered

here are common in the DSGE literature. I consider the standard adjust-

ment cost structure of Rotemberg (1982), its extension with indexation by

Ireland (2007), and the indexation extension under Calvo pricing by Chris-

tiano, Eichenbaum, and Evans (2005).

The estimation results let me conclude that aggregate first-difference

inflation costs can be best described by a corresponding specification at the

firm level. I first confirm that the parameter governing the costs from inflation

first differences is empirically relevant. Moreover, I find that the consideration

of first-difference inflation costs increases the relative marginal likelihood of a

DSGE model to its greatest value.

Bayesian estimation techniques have become popular when it comes to

evaluating a DSGE model with empirical data. Important contributions are,

for instance, An and Schorfheide (2007) and Otrok (2001). Further applica-

tions can be found in Krause, López-Salido, and Lubik (2008), Schorfheide

(2000), and Smets and Wouters (2003, 2007). I pursue a strategy that is

closest to Rabanal and Rubio-Ramı́rez (2005). Using marginal likelihoods,

Rabanal and Rubio-Ramı́rez (2005) rank New Keynesian models that differ

in their New Keynesian Phillips curves. A common weakness of such rankings

is the dependence of marginal likelihoods on assigned priors. Therefore, I ad-
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just marginal likelihoods using the training-sample method by Sims (2003).

Applications of this procedure can be found in Kriwoluzky and Stoltenberg

(2014, 2015).

The rest of the paper is organized as follows. Section 2 outlines an

adjustment cost structure that considers the first difference of inflation at the

firm level. Section 3 presents a set of DSGE models that differ in their New

Keynesian Phillips curves. I present and discuss estimation results in section

4. Section 5 summarizes and concludes.

2 Adjustment Costs

A basic DSGE model represents an economy with a continuum of monopolistic

firms. Apart from its own demand function, a profit-maximizing firm i ∈ [0,1]
takes into account that adjusting its price level Pt (i) is costly.1 I summarize

these costs in Ωt (i). The literature usually assumes that Ωt (i) is scaled up

by aggregate real output Yt (see for an example Ireland (2004)). This aims to

reflect a rise in adjustment costs due to increased aggregate activity. Thus,

the overall adjustment costs the firm has to cope with are given by Ωt (i)Yt.
The problem of intertemporal profit maximization is

max
Pt(i)

Et

∞

∑
j=0

∆t,t+j (P̃t+j (i)Yt+j (i) −MCt+j (i)Yt+j (i) −Ωt+j (i)Yt+j) , (1)

subject to Yt (i) = P̃ −ǫt Yt. The expression P̃t = Pt (i) /Pt stands for the relative

price, ǫ denotes the constant elasticity of substitution, MCt is real marginal

cost, and ∆t,t+j = βjuc (t + j) /uc (t) is the stochastic discount factor. Adjust-

ment costs from price changes are commonly formulated according to Rotem-

1The typical interpretation for the emergence of adjustment costs is that customer rela-
tionships worsen as the price is changed (Rotemberg (1982)).
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berg (1982). The corresponding structure is

ΩRt (i) =
ψ

2
[πt (i)]2 , (2)

where πt (i) = (Pt (i) − Pt−1 (i)) /Pt−1 (i) represents the (net) inflation rate

computed with the price of firm i and ψ denotes a scaling parameter. I argue

in this paper that costs from the first difference of firm-level inflation are ap-

propriate because aggregate fluctuations of these costs have been important

(see figure (1)). The corresponding adjustment cost structure is modeled as

in Pesaran (1991):2

ΩPt (i) = υ2 [πt (i) − πt−1 (i)]
2
, (3)

where υ is a scaling parameter. Therefore, (adjustment) costs arise when-

ever changes in the first difference of inflation πt (i) − πt−1 (i) occur. This

means that the price-setting problem of the firm is subject to a more elab-

orate structure than in the standard formulation by Rotemberg (1982). To

make the implications of this sophistication clear, note that the structure (3)

can be rewritten as

ΩPt (i) = υ2 [πt (i)]
2 +

υ

2
[πt−1 (i)]2 − υπt (i)πt−1 (i) . (4)

The first term corresponds to price adjustment costs (see equation (2)) and

discrepancies to Rotemberg (1982) are due to the second and third terms. A

price adjustment by the firm gives rise to costs from relative price changes

(first term). These costs translate to the next period (second term), which

generates dynamically persistent adjustment costs.3 The third term enters

the expression with a negative sign because the deviation [πt (i) − πt−1 (i)]2

2Similar formulations can be found in Ireland (2001), Price (1992), Fuhrer and Moore
(1995), Brayton et al. (1997), Nelson (1998), and Tinsley (2002).

3A firm not adjusting its price (πt (i) = 0) still encounters price adjustment costs
υ
2
[πt−1 (i)]

2
from the last period.
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decreases after a movement of πt (i) in the same direction as πt−1 (i). The

Bayesian estimation results I present further below indicate that structure

(3) is empirically more relevant than structure (2). This suggests that per-

sistent adjustment costs (second term in (4)) and intertemporal offsetting

effects (third term in (4)) at the firm level are important for the description

of aggregate data.

I emphasize the empirical benefit of assuming the structure (3) within

a fully specified DSGE model. As with any other price-related friction, the

consideration of structure (3) leads to a very specific New Keynesian Phillips

curve. The first-order condition of problem (1) leads to

π̂t = γ–1π̂t−1 + γ+1Et [π̂t+1] − γ+2Et [π̂t+2] + γy (σ + η) (ŷt − ŷnt ) . (5)

Here, k̂t defines the percentage deviation of a generic variable kt from its steady

state value k. Moreover, the natural output level ŷnt depends on shocks that I

declare in later sections. The γ-weights depend on deep structural parameters

specified below, and the household preference parameters σ = −uccy/uc > 0,

η = υlll/υl > 0 represent the coefficient of relative risk aversion and the inverse

of the Frisch elasticity of labor supply. In this paper, the comparison of

alternative nominal frictions involves estimating alternative versions of the

γ-weights in an otherwise common DSGE model.

The next section presents the set of common equations and the alterna-

tive versions of the New Keynesian Phillips curve.

3 Economic Models

I put together a collection of representative agent models that can be com-

pared to each other in terms of explanatory power. Each framework includes a

distinctive New Keynesian Phillips curve and a set of equations that is shared

by all models (as in Rabanal and Rubio-Ramı́rez (2005)). The DSGE model
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that is key to this paper contains the New Keynesian Phillips curve calcu-

lated with costs from the inflation first difference (equation (3)). I denote

this model asM1. The empirical fit ofM1 is compared to models containing

well-known pricing frictions. For example,M2 includes Rotemberg price ad-

justment costs with indexation to aggregate inflation (as in Ireland (2007)).

This model is nested in the sense that the forward-looking Rotemberg set-

ting is the core underlying inflation model. A model with Calvo pricing and

non-nested indexation (following Christiano et al. (2005)) is also considered.

I label this model as M3. Finally, M4 contains the purely forward-looking

New Keynesian Phillips curve that results from standard adjustment costs

(Rotemberg (1982)).

The following subsection introduces the equations common to all models.

3.1 Common Equations

The equations shared by the models M1–M4 are taken from a textbook

cashless New Keynesian economy with a representative household (Woodford

(2003)). The Euler equation is given by

σ (Etŷt+1 −Etŷ
n
t+1) = σ (ŷt − ŷnt ) + R̂t −Etπ̂t+1 − R̂n

t . (6)

The natural rates of output ŷnt and interest R̂n
t are given in the flexible-price

environment as

ŷnt =
1

σ + η
((1 + η) ât + σg̃t − µ̂t) (7)

and

R̂n
t = σ [(g̃t − ŷnt ) −Et (g̃t+1 − ŷnt+1)] , (8)

where ât is a productivity shock to labor as the only production factor, g̃t =

(gt − g) /y is a government expenditure shock, and µ̂t is a wage-markup shock.
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I assume the following simple interest rate rule:

R̂t = φππ̂t + φy (ŷt − ŷnt ) + r̂t, (9)

where r̂t is a monetary policy shock.4 The shocks ât, g̃t, and r̂t are supposed

to follow stationary AR(1) processes, whereas the shock µ̂t is i.i.d. The wage-

markup shock calls for real wages as an observable variable. I include the

following equation for real wages ŵt:

ŵt = µ̂t + η (ŷt − ât) + σ (ŷt − g̃t) . (10)

A specific DSGE model is obtained by closing the common system (6)–

(10) with an equation that specifies the driving forces of inflation. The fol-

lowing subsection presents the set of New Keynesian Phillips curves defining

the modelsM1–M4.

3.2 New Keynesian Phillips Curves

All versions of the New Keynesian Phillips curve are summarized in equation

(5). Table 1 presents the weights γ-1, γ+1, γ+2, γy depending on structural

parameters. Here, θ and ψ are the standard price rigidity parameters of

Calvo (1983) and Rotemberg (1982). Similarly, α is the indexation parameter

of Ireland (2007). Note that apart from M4, the models M1–M3 include a

New Keynesian Phillips curve that contains a backward inflation term.

Two properties of M1 have to be emphasized. First, the adjustment

cost scaling parameter υ decreases the output gap elasticity γy. The same

(qualitative) effect is present in the other models with respect to the price

rigidity parameters ψ, α, θ, and ω. Second, the forward-looking New Keyne-

4Therefore, the shocks driving ŷnt are observed by the policy maker. Replacing the
output gap ŷt − ŷnt with real output ŷt or an output gap with efficiency output does not
alter my conclusions.
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sian Phillips curve is not nested by υ, which mirrors the Calvo setting with

non-nested indexation by Christiano et al. (2005).5

Table 1: Inflation weights in the New Keynesian Phillips curves.

Weight M1 M2 M3 M4

Pesaran (1991) Ireland (2007) Christiano et al. (2005) Rotemberg (1982)

γ–1
1

1+2β
α

1+αβ
1

1+β −

γ+1

(2+β)β
1+2β

β
1+αβ

β
1+β β

γ+2

β2

1+2β − − −

γy
ǫ−1

υ(1+2β)
ǫ−1

ψ(1+αβ)
(1−βθ)(1−θ)
θ(1+β)

ǫ−1
ψ

Notes: M1 is the model with adjustment costs from the first difference of inflation
(Pesaran (1991)), M2 is the Rotemberg model with indexation (Ireland (2007)),
M3 is the Calvo model with non-nested indexation (Christiano et al. (2005)), and
M4 is the standard Rotemberg model (Rotemberg (1982)).

This leads to inflation weights γ−1, γ+1 (and γ+2) that are solely determined

by the discount factor β. I relax this assumption in later sections and nest

the forward-looking New Keynesian Phillips curve intoM1 by adding (2) and

(3). In this case, υ becomes a nesting parameter also appearing in γ−1, γ+1,

and γ+2. Setting υ = 0 then eliminates (3), and all inflation weights with the

exception of γ+1 vanish. For the time being, I treat the non-nested version of

M1 as my core specification: M1 does not contain any (nested) uncertainty

on the forward- and backward-looking nature of inflation.

In the following section, I apply U.S. data to the modelsM1–M4.

5The analysis of Christiano et al. (2005) considers the price-setting scheme Pt (i) =
π
ϕ
t−1Pt−1 (i) with perfect indexation (ϕ = 1). However, nested indexation requires ϕ ∈ [0,1].
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4 Estimation

The following subsections present the time series and the equations relating

model variables to observables. Bayesian estimations require parameter pri-

ors and fixed parameter values, which I also present in further detail. After

estimating the models M1–M4, I summarize and compare posterior param-

eter estimates. Moreover, I rank the explanatory power of the models using

adjusted marginal data densities. Marginal densities are adjusted with the

training sample method by Sims (2003). I briefly review this method, which

I employ in order to rule out any influence of specified priors.

4.1 Data and Priors

The set of observable variables is determined by the shocks appearing in

the common equations. Therefore, I choose the same set of observables as

Rabanal and Rubio-Ramı́rez (2005) and Kriwoluzky and Stoltenberg (2014,

2015): real output ŷobs.t , inflation π̂obs.
t , the federal funds rate R̂obs.

t , and the

real wage rate ŵobs.
t . The corresponding dataset YT = [ŷobs.t π̂obs.

t R̂obs.
t ŵobs.

t ]
′

consists of quarterly U.S. values for the time period 1983Q1–2008Q2.6 Be-

fore estimation, I detrend each time series by removing a linear quadratic

time trend. The observation equation that links the detrended variables

6Real GDP is taken from the U.S. Bureau of Economic Analysis (BEA), se-
ries BEA NIPA table 1.1.6, line 1. Nominal GDP is taken from the U.S. Bureau
of Economic Analysis (BEA), series BEA NIPA table 1.1.5, line 1. The implicit
GDP deflator is calculated as the ratio of nominal to real GDP. The civilian non-
institutional population is taken from the Federal Reserve Economic Database (FRED),
http://research.stlouisfed.org/fred2/series/CNP16OV?cid=104. The interest rate series
is also taken from FRED, http://research.stlouisfed.org/fred2/series/FEDFUNDS.
Nominal hourly wages for the total private industry is taken from
http://research.stlouisfed.org/fred2/series/ahetpi/10.
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Y detr.
T = [ŷdetr.t π̂detr.

t R̂detr.
t ŵdetr.

t ]
′
to the variables in the model is given by

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ŷdetr.t

π̂detr.
t

R̂detr.
t

ŵdetr.
t

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

0 4 0 0

0 0 4 0

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ŷt

π̂t

R̂t

ŵt

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (11)

I proceed to describe the priors for the estimated parameters. An overview is

given in table 2. I set the prior distributions of most common parameters as in

Smets and Wouters (2007). The existing literature also enables me to impose

well-known priors on most price rigidity parameters. However, there are no

obvious hints for υ. In order to make this prior as uninformative as possible, I

choose the prior that would be chosen for ψ in the standard Rotemberg model.

Equalizing the output gap coefficient of the forward-looking New Keynesian

Phillips curveM4 to the output gap coefficient under standard Calvo pricing

(σ + η) (1 − βθ) (1 − θ) /θ leads to ψ = θ (ǫ − 1) (1 − θ)−1 (1 − θβ)−1. If the as-

sumed prior mean of the Calvo parameter θ is 0.5 (a price duration of half a

year), then ψ ≈ 10. Therefore, I assume for ψ and υ a normal distribution with

mean 10 and a standard deviation (henceforth in brackets) of (4). Moreover,

θ is assumed to follow a beta distribution with standard deviation (0.2). I

assume for the inflation indexation parameter α a beta-distribution with 0.5

(0.2). Having described the model-specific priors (for υ, ψ, θ, and α), I turn

to the common-model parameters. The persistence of the AR(1) shock pro-

cesses is determined by parameters ρa, ρg, ρr, for which I employ a relatively

uninformative beta-distribution with mean 0.5 and standard deviation (0.2).

Prior shocks σa = σg = σr = σµ = 0.02 are identical across the modelsM1–M4.

Relative risk aversion σ is assumed to follow a gamma distribution around 1

(logarithmic consumption utility). The same prior is chosen for the inverse

of the Frisch elasticity η. The interest rate rule coefficients are assumed to

have prior means φπ = 1.7, φy = 0.125, and I impose a normal and gamma
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distribution with standard deviations (0.5) and (0.05), respectively. The em-

ployed dataset does not allow to identify the elasticity of substitution ǫ and

the discount factor β. I specify them as ǫ = 6 and β = 0.99. These values are

assumed to match a steady state monopolistic markup of 20% and a quarterly

real interest rate of 1.01% (see Woodford (2003)).

Table 2: Prior distribution of the struc-
tural parameters.

Parameter Distribution Mean Std

υ normal 10 2

ψ normal 10 2

θ beta 0.5 0.2

α beta 0.5 0.2

σ gamma 1 0.25

η gamma 1 0.25

φπ normal 1.7 0.5

φy gamma 0.125 0.05

ρa beta 0.5 0.2

ρg beta 0.5 0.2

ρr beta 0.5 0.2

σa inv-gamma 0.02 inf

σg inv-gamma 0.02 inf

σr inv-gamma 0.02 inf

σµ inv-gamma 0.02 inf

Each model is subject to the same procedure. First, I obtain estimates

by approximating the posterior mode. Second, I execute a random walk

Metropolis-Hastings algorithm to evaluate the posterior distribution. In this

exercise, I run two independent chains of 500,000 draws. I discard the first

400,000 draws of each chain and calculate statistics with the remaining ones.

For example, the log marginal data density (log marginal likelihood) is the

modified harmonic mean estimator (Geweke (1999)) based on 100,000 draws.

I take into account that a simple likelihood comparison is not a sat-

isfactory approach to rank the explanatory power of DSGE models because

the estimated marginal likelihood of a model depends on its joint prior dis-
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tribution (Kriwoluzky and Stoltenberg (2014, 2015)). This implies that any

likelihood-based ranking can be arbitrarily affected by the choice of priors. In

this paper, each modelMi, i = 1, . . . ,4 has a singular collection of parameters

due to a distinctive New Keynesian Phillips curve. Therefore, the selected

price rigidity priors affect the model comparison pursued here. I circum-

vent this problem by re-estimating the models with a training sample (Sims

(2003)). This training sample Y detr.
T,0 consists of the first 50 observations of the

full sample Y detr.
T . After re-estimating a model, the log marginal likelihood

estimated with Y detr.
T,0 is subtracted from the number estimated with Y detr.

T . To

clarify the method, note that each model Mi, i = 1, . . . ,4 contains a random

vector of deep parameters Ξi. Moreover, I denote a particular realization from

the joint posterior distribution as ξi. The measurement of explanatory power

is done with the adjusted log marginal data density

lnp (Y detr.
T,1 ∣Mi) = lnp (Y detr.

T ∣Mi) − lnp (Y detr.
T,0 ∣Mi) , i = 1 . . .4, (12)

where

p (Y detr.
T,0 ∣Mi) = ∫

ξi∈Ξi

p (Y detr.
T,0 ∣ξi,Mi)p (ξi)dξi , i = 1 . . .4, (13)

denotes the marginal data density of the training sample. I compute the

empirical fit of the models M2–M4 relative to M1 using the posterior odds

ratio:

POMj ,M1 =
p (Y detr.

T,1 ∣Mj)

p (Y detr.
T,1 ∣M1)

, j = 2 . . .4. (14)

A ratio smaller than one indicates the inferiority of modelMj against model

M1.

13



4.2 Posterior Results

Table 3 summarizes the posterior moments and gives two main insights. First,

the posterior mean and the posterior uncertainty values are in line with re-

lated studies (see, for example, Smets and Wouters (2007)). Second, monetary

policy had an aggressive stance towards deviations of inflation from its target.

This is consistent with the common perception in the literature. The mean

of the Calvo parameter indicates that prices are reset roughly every second

quarter. Moreover, the implicit slope of the New Keynesian Phillips curve

(σ + η)γy is well below unity in all models.

Table 3: Posterior estimates of the structural parameters in each model.

M1 M2 M3 M4

Parameter Mean Std Mean Std Mean Std Mean Std

υ 9.55 1.55 - - - - - -

ψ - - 10.62 1.66 - - 10.08 1.89

θ - - - - 0.48 0.04 - -

α - - 0.72 0.14 - - - -

σ 1.77 0.25 1.80 0.26 1.86 0.26 1.56 0.24

η 0.98 0.16 0.96 0.16 0.92 0.15 1.14 0.20

φπ 4.23 0.31 4.22 0.32 4.15 0.32 4.48 0.31

φy 0.15 0.05 0.13 0.05 0.14 0.05 0.13 0.05

ρa 0.98 0.006 0.98 0.006 0.98 0.006 0.98 0.005

ρg 0.88 0.02 0.88 0.02 0.88 0.02 0.90 0.02

ρr 0.81 0.04 0.81 0.04 0.80 0.04 0.83 0.04

σa 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003

σg 0.008 0.008 0.008 0.008 0.009 0.009 0.009 0.009

σr 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003

σµ 0.008 0.008 0.007 0.007 0.007 0.007 0.008 0.008

Notes: see the notes for table 1.

The explanatory power of the modelsM1–M4 is summarized in table 4.

A widely accepted observation is that a history dependence of inflation (con-

tained in M1–M3) improves the fit of an otherwise forward-looking model

(M4). The crucial finding in this paper is that modelM1 exhibits the high-

est adjusted marginal likelihood. The posterior odds ratios indicate that the
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persistence and autocovariation mechanisms contained in M1 are more ad-

equate to fit the data compared to the indexation schemes in M2 and M3.

The adjustment costs from the first difference of inflation lead to the strongest

improvement of model fit in an otherwise forward-looking setting.

Table 4: Log marginal data densities and model probabilities.

M1 M2 M3 M4

Pesaran (1991) Ireland (2007) Christiano et al. (2005) Rotemberg (1982)

lnp (Y detr.
T ∣Mi) 1539.4262 1538.4185 1538.8316 1528.9993

lnp (Y detr.
T,0 ∣Mi) 730.5219 730.3664 730.4182 725.8862

lnp (Y detr.
T,1 ∣Mi) 808.9043 808.0521 808.4134 803.1131

POMj ,M1 – 0.4265 0.6121 0.0031

Notes: Y detr.
T is the full sample of detrended series (1983Q1–2008Q2),

Y detr.
T,0 is the training sample (first 50 observations), and Y detr.

T,1 is the
comparison sample (last 53 observations). POMj ,M1 ; j = 2, . . . ,4 is the
posterior odds ratio. See also the notes for table 1.

Note thatM1 does not nest the forward-looking modelM4. In contrast,

M4 is contained in M2: setting α = 0 reproduces M4. The results in table

4 suggest that nesting inflation persistence via an additional parameter may

unnecessarily worsen the explanatory power of a model: M1 andM3 are able

to outperform modelM2 without an inflation persistence nesting parameter.

For the sake of clarity, I first explore whether nesting the standard Rotemberg

structure (2) into the first-difference adjustment cost structure (3) changes my

estimation results. A simple way to accomplish this is by adding (2) and (3):

ΩRt (i) +ΩPt (i) . (15)

This equation now represents the adjustment cost structure that firm i has to

take into account whenever choosing Pt (i). By construction, υ now represents

a nesting parameter: setting υ = 0 gives the Rotemberg structure ΩRt (i). This

is mirrored in the New Keynesian Phillips curve that results from (15), which

I label asM1,4. The parameter υ now appears in all weights (γ−1, γ+1, γ+2, γy),
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and setting υ = 0 leads to model M4. I repeat the estimation exercise with

this New Keynesian Phillips curve and find a posterior mean of the nesting

parameter υ which is positive, with a low posterior uncertainty (table 5).7

Table 5: Selected estimates and marginal likelihoods of the nested modelM1,5.

υ ψ lnp (Y detr.
T ∣M1,4) lnp (Y detr.

T,0 ∣M1,4) lnp (Y detr.
T,1 ∣M1,4)

9.02 (2.11) 4.60 (3.83) 1536.6165 728.3781 808.2384

Notes: see the notes for table 4.

This indicates that the inflation-difference frictions entering ΩPt remain im-

portant for the description of the data. Moreover, the posterior mean of the

standard Rotemberg parameter ψ is positive, but statistically insignificant.

These results suggest that only inflation frictions (nested by υ), but not price

rigidities (nested by ψ) are necessary for the model to be consistent with the

data. However, I showed in equation (4) that inflation-difference adjustment

costs can be disentangled into a term à la Rotemberg (1982), a persistence

term, and an autocorrelation term. Since adjustment costs from inflation dif-

ferences already allow for price frictions à la Rotemberg (1982), the additional

parameter ψ is estimated to be insignificant. Consequently, I find that the

nesting adjustment cost structure (15) leads to a lower marginal likelihood

than the non-nested model (3): the explanatory power of the DSGE model

worsens due to nested Rotemberg adjustment costs that are insignificant (see

tables 4 and 5). A worsening of model fit also appears when estimating model

M3 under the assumption of nested indexation. I allow in the corresponding

price-setting scheme Pt (i) = πϕ
t−1Pt−1 (i) for ϕ ∈ [0,1]. The resulting model is

labeled asM3,4. Setting the corresponding nesting parameter ϕ equal to zero

7I find that increasing the role of the data for the estimates of υ and ψ gives clearer
posterior significance results. Therefore, I assign in this exercise a higher prior uncertainty
to the parameters υ and ψ, namely a standard deviation of 4. All remaining posterior
parameter estimates are roughly the same.
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then leads to model M4. In contrast, imposing ϕ = 1 gives the non-nested

model M3. Posterior results for model M3,4 are presented in table 6.8 The

indexation parameter ϕ is estimated to be significant. This is due to the in-

ability of other model parameters to capture the inflation persistence present

in the data. However, the additional nesting parameter adds uncertainty to

the estimation, such that the marginal likelihood worsens.

To conclude the analysis, notice that the model with adjustment costs

from the first difference of inflation M1 has the highest marginal likelihood

within the class of non-nested models. ModelM1,4 has the highest marginal

likelihood within the class of nested models.9 Therefore, adjustment costs

from inflation differences (or “speed changes”, according to Pesaran (1991))

are important when formulating a DSGE model.

Table 6: Selected estimates and marginal likelihoods of the nested modelM4,5.

ϕ θ lnp (Y detr.
T ∣M3,4) lnp (Y detr.

T,0 ∣M3,4) lnp (Y detr.
T,1 ∣M3,4)

0.70 (0.16) 0.52 (0.04) 1537.1597 729.3551 807.8046

Notes: see the notes for table 4.

5 Conclusions

In this paper, I documented that adjustment costs from the first difference of

inflation should be an important microeconomic element in DSGE models. In

a first step, I observed that these costs have been substantial for the aggregate

U.S. economy. In a second step, I employed Bayesian estimations to confirm

that these costs should be considered at the level of the representative mo-

nopolistic firm. The estimations included five DSGE models differing in their

8The prior for ϕ is the same as for α in modelM2.
9The nested models in this paper areM2,M1,4, andM3,4. The non-nested models are

M1 andM3.
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price rigidity assumption. I found that a DSGE framework with adjustment

costs from inflation differences (in the terminology of Pesaran (1991) denoted

as “speed changes”) has the highest probability to fit U.S. data. The inflation

difference specification therefore captures data properties that other nominal

rigidity settings (Rotemberg (1982); Ireland (2007); Christiano, Eichenbaum,

and Evans (2005)) cannot.
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