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Abstract

This paper derives a dynamic conditional beta representation using a Bayesian
semiparametric multivariate GARCH model. The conditional joint distribution of
excess stock returns and market excess returns are modeled as a countably infinite
mixture of normals. This allows for deviations from the elliptic family of distribu-
tions. Empirically we find the time-varying beta of a stock nonlinearly depends on
the contemporaneous value of excess market returns. In highly volatile markets,
beta is almost constant, while in stable markets, the beta coefficient can depend
asymmetrically on the market excess return. The model is extended to allow non-
linear dependence in Fama-French factors.
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1 Introduction

This paper nonparametrically estimates the dynamic conditional beta of a stock using a
Bayesian semiparametric multivariate GARCH model. This extends Engle’s (2015) para-
metric version of dynamic conditional beta to the case of an unknown general continuous
distribution. In this setting the whole distribution can affect the compensation for risk.

Researchers have long studied the beta coefficient of a stock which represents the
nondiversifiable risk arising from exposure to market movements. Traditional approaches
estimate the beta coefficient by regressing excess stock returns on the excess market return
as in the one-factor Capital Asset Pricing Model (CAPM, Sharpe (1964) and Lintner
(1965)), or exploiting more empirically supported asset pricing models, such as Fama-
French three-factor model, which incorporate additional explanatory variables (Fama &
French (1993)). Our multivariate model nests both cases, but allows for time variation
in the conditional second moments. There is a large literature based on multivariate
GARCH (MGARCH) models that link a time varying beta to the conditional second
moments. Some examples include Bollerslev et al. (1988),Giannopoulos (1995), McCurdy
& Morgan (1992) and Choudhry (2002).

Recently Engle (2015) proposes a multivariate normal GARCH model from which
the conditional distribution defines the dynamic beta coefficient. This directly links time-
varying second moments to the time-varying beta in a consistent fashion. The parametric
pricing relationship holds more generally for the elliptic family of distributions. This is
an attractive approach but may be limiting if the parametric distributional assumptions
are not valid.

A key insight of our approach is that if the joint distribution of excess stock returns
and market returns are correctly specified then it follows that their contemporaneous
pricing relationship is completely determined by the associated conditional distribution.
Therefore, we semiparametrically model the conditional distribution as a countably in-
finite mixture of normals. Each normal component in the mixture has a conditional
covariance directed by a MGARCH process. Our model nests the Gaussian and Student-
t distribution as special cases but importantly allows for deviations from the elliptic
family of distributions. This includes asymmetric distributions which the elliptic family
omit being only symmetric. The mixing is over both the mean vector and covariance
matrix.

We follow Jensen and Maheu (2013) to implement a Bayesian semi-parametric
MGARCH model and extend it to allow for asymmetric shocks in volatility. The data
strongly support the semiparametric MGARCH specification over Gaussian and Student-t
distributional alternatives.

In this framework, the conditional distribution of stock returns given the market
excess return (and possibly other factors) can be represented as an infinite mixture with
weights written as functions of the value of the market excess return. Consequently,
the beta coefficient of a security at each time will depend nonparametrically on the
contemporaneous value of market return, as opposed to the beta derived from existing
models which is insensitive to the contemporaneous value of the market return.

Although the time series of the realized conditional betas from the semiparametric
model are similar to the benchmark model we find significant dependence in beta as a
function of the contemporaneous value of the market excess return. In the parametric
models, beta is constant as a function of the market excess return.

When the market is highly volatile, beta is not affected by unexpected shocks in the
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market return. While in a calm market, beta can change dramatically from unexpected
shocks. For stocks which are highly correlated with the market, an unexpected shock
during calm periods increases the beta coefficient. The effect is the reverse for the stocks
with low correlation with the market. In other words, when an asset is highly correlated
with the market, large moves in a stable market increase the conditional covariance
between the market and the asset more than they increase the conditional variance of
the market, resulting in a significant increase in the beta coefficient. When an asset has
low conditional correlation with the market, large moves in a stable market increase the
conditional variance of the market more than they increase the conditional covariance
between the market and the asset, leading to a drop in conditional beta. These are
important contemporaneous dynamics that are absent in other models.

The remainder of the paper is structured as follows. We begin by reviewing the
benchmark model which is an MGARCH model with Student-t innovations. Section 3
provides a general theoretical setting of the multivariate model used in this study. Sec-
tion 4 summarizes key features of the semiparametric MGARCH model and the use of
the Dirichlet process prior. Posterior sampling is detailed in Section 5. The derivation
of the nonparametric dynamic conditional beta is presented in Section 6. Data is intro-
duced in Section 7, and Section 8 assesses the performance of the proposed model and
compares it to the benchmark model. Applications of the MGARCH-DPM model are
found in Section 9 and Section 10 extends the application to the Fama-French three-
factor model. Section 11 concludes and an Appendix defines distributions and collects
the detailed derivations.

2 Benchmark Model

Our benchmark model is a straightforward extension of Engle (2015). Engle (2015) defines
dynamic conditional beta using a multivariate GARCH (MGARCH) model assuming a
multivariate normal distribution as the joint density of stock returns and factors. We
replace the normal distribution with a Student-t to accommodate the fat-tails in the data.
Let the excess stock return on asset i be ri,t and a vector of regressors (factors) including
the excess market return be rf,t = (rf1,t, rf2,t, ..., rfq ,t)

′

. rt = (r
′

i,t, r
′

f,t)
′

is assumed to
follow the MGARCH-t

rt|r1:t−1 ∼ t(µ,Ht, ν), (2.1)

Ht = Γ0 + Γ1 ⊙ (rt−1 − η)(rt−1 − η)′ + Γ2 ⊙Ht−1, (2.2)

where t(µ,Σ, ν) denotes a t-distribution (see appendix) with mean vector µ, scale matrix
Σ and degree of freedom ν and r1:t−1 = {r1, . . . , rt−1} is the information set available at
time t − 1. The scale matrix, Ht, is based on the vector-diagonal multivariate GARCH
model of Ding & Engle (2001) but other MGARCH formulations could be used. The
symbol ⊙ denotes the Hadamard product. The parameter is Γ = {Γ0,Γ1,Γ2, η}, with

the symmetric positive definite matrices parameterized as Γ0 = Γ
1/2
0 (Γ

1/2
0 )′, Γ1 = γ1(γ1)

′,
and Γ2 = γ2(γ2)

′ where Γ0 is a lower triangular (q + 1) × (q + 1) matrix and γ1, γ2 and
η are (q + 1)-vectors. η permits a nonlinear asymmetric response to shocks and can be
considered a multivariate version of the asymmetric GARCH model (Engle & Ng 1993).

Partition rt = (r
′

1,t, r
′

2,t)
′

into a k1 and k2 (k1 + k2 = q + 1) vector and similarly
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µ = (µ
′

1, µ
′

2)
′

and

Ht =
[
H11,t H12,t

H12,t H22,t

]
.

Applying the properties of the Student-t distribution (Roth 2013) the conditional distri-
bution of r1,t given r2,t is

r1,t|r2,t ∼ t(µ1|2, Ht,1|2, ν1|2), (2.3)

µ1|2 = µ1 +H12,tH
−1
22,t(r2,t − µ2), (2.4)

Ht,1|2 =
ν + (r2,t − µ2)

′

H−1
22,t(r2,t − µ2)

ν + k2
(H11,t −H12,tH

−1
22,tH

′

12,t), (2.5)

ν1|2 = ν + k2, (2.6)

where the conditional mean is µ1|2, the conditional scale matrix is Ht,1|2 and the degree
of freedom ν1|2.

This is a useful result in that it tells us how the conditional distribution of r1,t reacts
to any value of r2,t. For instance, if r1,t ≡ ri,t and conditioning on one factor, the excess
market return, r2,t ≡ rm,t, substituting into (2.4) directly gives a dynamic risk premium
for asset i as

E[ri,t|rm,t, Ht] = µi +H12,tH
−1
22,t(rm,t − µm). (2.7)

This tells how the expected excess return of asset i reacts to any value of the market.
If the market shock is zero (rm,t = µm) then the expected value is µi but for all other
realizations the market shock impacts the expected return of the asset. Engle identifies
the dynamic conditional beta that arises from the joint relationship as

βt = H−1
22,tH12,t. (2.8)

This is the derivative of (2.7) with respect to rm,t. A conditional pricing relationship is
obtained by setting r2,t ≡ E[rm,t|r1:t−1] and substituting into (2.7).

There are several advantage to modeling excess returns in this way. First, it con-
fronts the simultaneous nature of the asset return and the factors that price the risk
premium. Rather than specifying a single equation partial equilibrium relationship the
model begins with the full joint dynamics. Second, the joint distribution of the asset and
the factors directly pin down the conditional distribution and the implications for the
risk premium. The dynamic beta is a function of the conditional covariance matrix. This
is a general result that holds for the elliptic family of distributions.

The model is estimated from a Bayesian perspective. The posterior density has the
non-standard form

p(µ,Γ, ν|r1:T ) ∝ p(ν)p(µ)p(Γ)×
T∏

t=1

t(rt|µ,Ht, ν), (2.9)

where t(rt|µ,Ht, ν) is the density of the Student-t distribution, and p(ν)p(µ)p(Γ) is the
prior density for µ,Γ, ν. Posterior draws of the parameters vector are simulated with a
Metropolis-Hastings sampler.

Although attractive, the conditional distribution in (2.3) has some drawbacks. The
conditional beta derived from MGARCH-t model, at each time, is constant with respect
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to the contemporaneous value of market return (Equation 2.8), and consequently, the
conditional expected return of the stock is a linear function of the factor returns. This
pricing relationship will not hold for more general distributions not belonging to the
elliptic family. The elliptic family of distributions are symmetric about their mean and
do not account for asymmetry observed in financial returns.

This model imposes a strong assumption on the functional form of the joint distri-
bution of the data. In this paper, we remove this restrictive assumption by employing
a Dirichlet process mixture (DPM) to model the unknown joint distribution of returns.
This results in a potentially non-constant conditional beta and a nonlinear conditional
expected value of the stock as a function of the contemporaneous value of the market
return.

3 MGARCH-DPM Model

Unlike the benchmark model that assumes a specific parametric joint distribution for the
individual asset returns and the factors, we model this joint distribution nonparametri-
cally by an infinite mixture of normal distributions which can approximate any continuous
multivariate distribution. Recall that rt = (ri,t, rf1,t, ..., rfq ,t)

′

represents the excess return
vector of an individual stock and q factors at time t. The infinite mixture representation
can be written as

rt|Ht, µ, B,W ∼
∞∑

j=1

ωjN(µj, (H
1/2
t )Bj(H

1/2
t )′). (3.1)

where H
1/2
t is the Cholesky decomposition of Ht, µ = {µ1, µ2, . . . }, B = {B1, B2, . . . } and

W = {ω1, ω2, . . . } is the vector of the weights, such that ωj ≥ 0 for all j and
∑∞

j=1 ωj = 1.
The mixing is over the mean vector and the component Bj of the covariance matrix. The
second component, Ht of the covariance matrix captures volatility clustering through
time but is not a function of j.

The conditional mean can be derived in exactly the same way as in the benchmark
model except it will follow an infinite mixture of conditional normal distributions. If
rft = (rf1,t, ..., rfq ,t)

′

then the conditional density of ri,t given rf,t is a mixture distribution
as well and the conditional expectation can be written as the following weighted mixture

E(ri,t|rf,t, Ht) =
∞∑

j=1

qj(rf,t)E(ri,t|rf,t, µj, Bj, Ht). (3.2)

The weights, qj(rf,t) are a function of the factors and affect how much each conditional
expectation, E(ri,t|rf,t, µj, Bj, Ht), in the mixture contributes. The details on the deriva-
tions will be explained later but for now it is important to see that unlike the parametric
model the conditional expectation is not a linear function of the factors. To obtain
the nonparametric conditional beta, we take the derivative of (3.2) with respect to the
desired factor. The conditional beta is not constant in general but it changes as the con-
temporaneous value of the corresponding factor changes. The next section introduces the
Dirichlet process prior to estimate this model. In Section 6 we derive the nonparametric
conditional beta.
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4 A Bayesian Model

In Bayesian inference the Dirichlet process (DP) prior (Ferguson 1973) is a standard prior
used for infinite dimensional objects such as (3.1). A draw from a DP, G ∼ DP (α,G0),
is almost surely a discrete distribution and is governed by two parameters. The concen-
tration parameter α, a positive scalar and a base distribution G0. The nonparametric
distribution G is centered on the base distribution G0, which can be considered as the
prior guess; E(G) = G0. The concentration parameter measures the strength of belief in
G0. The larger α, the stronger belief in G0 and the more distinct elements we have with
appreciable mass. Lo (1984) introduces Dirichlet process mixture (DPM) model in which
G is the mixing measure over a continuous kernel. This has become a standard Bayesian
approach to nonparametric estimation of an unknown continuous distribution. In this
paper, G is the unknown distribution that governs the mixing over the mean vector and
covariance matrix of the normal kernel in our mixture model.

The model (MGARCH-DPM) is an extension of Jensen & Maheu (2013) and allows
for asymmetry in the MGARCH process from shocks to volatility and fat tails without
making any restrictive assumption. The hierarchical form of the model is,

rt|φt, Ht ∼ N(ξt, H
1/2
t Λt(H

1/2
t )′), t = 1, ..., T (4.1)

φt ≡ {ξt,Λt}|G ∼ G, (4.2)

G|α,G0 ∼ DP (α,G0), (4.3)

G0 ≡ N(µ0, D)×W−1(B0, ν0), (4.4)

Ht = Γ0 + Γ1 ⊙ (rt−1 − η)(rt−1 − η)′ + Γ2 ⊙Ht−1. (4.5)

In this model ξt is a (q+1)-vector and Λt is a symmetric positive definite matrix andHt fol-
lows the same MGARCH specification as the benchmark parametric model. W−1(B0, ν0)
represents an inverse Wishart distribution (see appendix) with scale matrix B0 and degree
of freedom ν0.

Sethuraman (1994) characterizes a stick-breaking representation of the DP. Com-
bining this with the normal kernel gives the associated stick breaking representation of
the MGARCH-DPM density as

p(rt|µ,B,W,Ht) =
∞∑

j=1

ωjN(rt|µj, H
1/2
t Bj(H

1/2
t )′), (4.6)

ω1 = v1, ωj = vj

j−1∏

l=1

(1− vl), j > 1, (4.7)

vj
iid
∼ Beta(1, α), (4.8)

µj
iid
∼ N(µ0, D), Bj

iid
∼ W−1(B0, ν0), (4.9)

where N(rt|µj, H
1/2
t Bj(H

1/2
t )′) denotes the multivariate normal density with mean µj and

covariance H
1/2
t Bj(H

1/2
t )′ evaluated at rt. Note that µ and B are the set of unique points

of support in the discrete distribution G while ξt and Λt denote draws from G in (4.2),
with the possibility of repeated draws of µj and Bj.

The model nests several special cases. First, the Gaussian model is obtained when
α → 0 as ω1 = 1, ωj = 0, ∀j > 1 and B1 = I. The Student-t model results from µj being
constant for all j and α → ∞, since G → G0, the inverse Wishart distribution.
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5 Posterior Sampling

To estimate the unknown parameters in (4.1)-(4.5), we apply an MCMC sampler along
with the slice sampler of Walker (2007) and Kalli et al. (2011). Slice sampling introduces
a latent variable, ut ∈ (0, 1), to elegantly convert an infinite sum to a finite mixture
model which makes the sampling feasible. Estimating the joint posterior density of ut

and other model parameters and then integrating out the slice variable ut recovers the
desired posterior density. In practice, this means jointly sampling all parameters including
the slice variable but then discarding ut. Define ut such that the joint density of (rt, ut)
given (W,Θ ≡ (µ,B)) is given by

f(rt, ut|W,Θ) =
∞∑

j=1

1(ut < ωj)N(rt|µj, (H
1/2
t )′BjH

1/2
t ). (5.1)

Let s1:T = {s1, ..., sT} be the configuration set that partitions the data r1:T into
c distinct clusters such that observation rt is assigned parameter θst = (µst , Bst). Let
nj = {#t|st = j} be the number of observations allocated to state j. The full likelihood
is

p(r1:T , u1:T , s1:T |W,Θ) = ΠT
t=11(ut < ωst)N(rt|µst , (H

1/2
t )Bst(H

1/2
t )′), (5.2)

and the joint posterior is proportional to

p(W1:K)Π
K
j=1p(µj, Bj)Π

T
t=11(ut < ωst)N(rt|µst , (H

1/2
t )Bst(H

1/2
t )′) (5.3)

where K is the smallest natural number that satisfies the condition
∑K

j=1 ωj > 1 −

min{ut}
T
t=1 and W1:K denotes the finite set of W and similarly for other parameters µ1:K

and B1:K . Having defined the notation, the steps of the MCMC algorithm are discussed
next.

Steps of MCMC algorithm for MGARCH-DPM

1. The posterior distribution of θj = (µj, Bj), j = 1, ..., K: Using the transformation

zt = H
−1/2
t rt, and applying the results of conditionally conjugate priors for the linear

regression model we have

Bj|r1:T , s1:T , µj,Γ ∼ W−1

(
nj + ν0, B0 +

∑

st=j

(zt −H
−1/2
t µj)(zt −H

−1/2
t µj)

′

)
(5.4)

µj|r1:T , s1:T , Bj,Γ ∼ N(µ̄, D̄) (5.5)

in which

D̄−1 = D−1 +
∑

t|st=j

H
−1/2′

t B−1
j H

−1/2
t , µ̄ = D̄


∑

t|st=j

H
−1/2′

t B−1
j zt +D−1µ0


 . (5.6)
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2. Updating vj, j = 1, ..., K.

vj|S ∼ Beta

(
1 +

T∑

t=1

1(st = j), α +
T∑

t=1

1(st > j)

)
. (5.7)

Then we update W1:K based on (4.7).

3. Updating ut, t = 1, ..., T . ut|s1:T ∼ U(0, ωst). Then update K such that
∑K

j=1 ωj >

1 −min{ut}
T
t=1. Additional ωj and θj will need to be generated from the priors if K

is incremented.

4. Updating s1:T . For each t = 1, ..., T ,

p(st = j|r1:T ) ∝ 1(ωj > ut)N(rt|µj, H
1/2
t Bj(H

1/2
t )′), j = 1, ..., K. (5.8)

5. Updating α: Assuming a gamma prior α ∼ G(a0, b0) (see appendix) α can be sampled
following the two steps below (Escobar & West 1995). Recall that c is the number
of alive clusters defined as the number of clusters in which at least one observation is
allocated. Note that c ≤ K. Then the sampling steps are as follows.

(a) (τ |α, c) ∼ Beta(α + 1, T ).

(b) Sample α from

α|τ ∼ πτG(a0 + c, b0 − log(τ)) + (1− πτ )G(a0 + c− 1, b0 − log(τ)),

where πτ is defined by πτ

1−πτ
= a0+c−1

T (b0−log(τ))
.

6. Updating GARCH parameters Γ = (Γ
1/2
0 , γ1, γ2, η). The conditional posterior is

p(Γ|µ,B, S, r1:T , H1:T ) ∝ p(Γ)×
T∏

t=1

N(rt|µst , H
1/2
t Bst(H

1/2
t )′) (5.9)

which is not of standard form, and we apply a Metropolis-Hastings sampler. Given
the current value Γ of the chain, the proposal Γ′ is sampled Γ′ ∼ N(Γ, V̂ ). The draw
is accepted with probability

min{p(Γ′|µ,B, S, r1:T , H1:T )/p(Γ|µ,B, S, r1:T , H1:T ), 1},

and otherwise rejected. V̂ is proportional to the inverse Hessian matrix of ℓ =
log[p(Γ|µ,B, S, r1:T , H1:T )] evaluated at its posterior mode, Γ̂, which is computed once

at the start of estimation. V̂ is scaled to achieve an acceptance rate between 0.2 and
0.5. In this paper we apply Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm to
approximate the posterior mode of ℓ.

6 Nonparametric Dynamic Conditional Beta

To study the behaviour of the conditional beta of an individual stock, we first consider
a special case of our model, rt = (ri,t, rm,t) where ri,t and rm,t represent an individual
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stock’s excess return and the market excess return, respectively. Applying the posterior
sampling algorithm, we sample model parameters for many iterations and after dropping
a set of burn-in draws we have the following set of sampled parameters:

{(µ
(g)
j , B

(g)
j ), v

(g)
j , j = 1, ..., K(g)}, {s

(g)
t , u

(g)
t , t = 1, ..., T}, H

(g)
1:T = {H

(g)
1 , ..., H

(g)
T }, (6.1)

for g = 1, ...,M where M is the number of MCMC iterations. At each iteration g =
1, ...,M of the algorithm, a draw of G|r1:T , can be written as

G(g) =
K(g)∑

j=1

ω
(g)
j δ

θ
(g)
j

+


1−

K(g)∑

j=1

ω
(g)
j


G0(θ), (6.2)

where θ
(g)
j = (µ

(g)
j , B

(g)
j ) and δ

θ
(g)
j

is a mass point at θ
(g)
j .

Combining this with the normal kernel gives the predictive density for the generic
return (ri,t, rm,t) conditional on G(g) as

p(ri,t, rm,t|r1:T , G
(g)) =

K(g)∑

j=1

ω
(g)
j f(ri,t, rm,t|θ

(g)
j ) +


1−

K(g)∑

j=1

ω
(g)
j



∫

f(ri,t, rm,t|θ)G0(θ)dθ,

(6.3)
where f(ri,t, rm,t|θ) is the multivariate normal density.

To assess the nonlinear regression function E(ri,t|rm,t, r1:T ), or the conditional beta
of the individual stock i, we require the conditional density derived from this predictive
(joint) density of (ri,t, rm,t). Therefore,

p(ri,t|rm,t, r1:T , G
(g)) =

p(ri,t, rm,t|r1:T , G
(g))

p(rm,t|r1:T , G(g))
(6.4)

=
p(ri,t, rm,t|r1:T , G

(g))
∑K(g)

j=1 ω
(g)
j f2(rm,t|θ

(g)
j ) +

(
1−

∑K(g)

j=1 ω
(g)
j

) ∫
f2(rm,t|θ)G0(θ)dθ

=
K(g)∑

j=1

q
(g)
j (rm,t)f(ri,t|rm,t, θ

(g)
j ) +


1−

K(g)∑

j=1

q
(g)
j (rm,t)


 f(ri,t|rm,t, G0), (6.5)

where

q
(g)
j (rm,t) =

ω
(g)
j f2(rm,t|θ

(g)
j )

∑K(g)

j=1 ω
(g)
j f2(rm,t|θ

(g)
j ) +

(
1−

∑K(g)

j=1 ω
(g)
j

) ∫
f2(rm,t|θ)G0(θ)dθ

(6.6)

and f2(rm,t|θ
(g)
j ) is the marginal (normal) density of rm,t and f(ri,t|rm,t, G0) is the con-

ditional distribution using the base measure. The terms q
(g)
j (rm,t) determine which

components in the mixture receive more weight. Clusters that have a marginal den-
sity f2(rm,t|θ

(g)
j ) that has a higher likelihood value for rm,t will receive larger weights.

The marginal density, and hence relative weight of clusters, will change with rm,t as well
as over time through the MGARCH component, Ht. These features will determine the
relative weights on the cluster specific conditional expectations which we derive next.

Our focus is on the conditional mean of ri,t given rm,t. Using the properties of the
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normal distribution the conditional mean directly comes from (6.5) and is

E(ri,t|ri,t, r1:T , G
(g)) =

K(g)∑

j=1

q
(g)
j (rm,t)[µ

(g)
j,1 + β

(g)
jt (rm,t − µ

(g)
j,2 )]+ (6.7)


1−

K(g)∑

j=1

q
(g)
j (rm,t)



∫
[µ1 + βt(rm,t − µ2)]N(rm,t|µ2, (H

(g)1/2

t BH
(g)1/2

′

t )22)p(µ,B)dµdB
∫
N(rm,t|µ2, (H

(g)1/2

t BH
(g)1/2

′

t )22)p(µ,B)dµdB
.

The cluster specific beta is defined as

β
(g)
jt =

(H
(g)1/2

t BjH
(g)1/2

′

t )12

(H
(g)1/2

t BjH
(g)1/2

′

t )22
(6.8)

where the subscript (i, j) on ()ij denotes element (i, j) of the matrix and βt in the sec-

ond line of (6.7) is defined as β
(g)
jt except Bj is replaced with B. The numerator and

denominator in the last term of (6.7) can be approximated by simulation.
Integrating all parameter and distributional uncertainty results in an estimate of

the predictive conditional mean as

E(ri,t|rm,t, r1:T ) ≈
1

M

M∑

g=1

E(ri,t|rm,t, r1:T , G
(g)). (6.9)

The predictive mean of the conditional beta is the derivative of this conditional expecta-
tion of ri,t given rm,t, (6.9) with respect to rm,t. This is,

bm,t(rm,t) =
∂E(ri,t|rm,t, r1:T )

∂rm,t

∣∣∣
rm,t=rm,t

. (6.10)

Full details on this derivative and estimate are provided in the appendix.

7 Data

We use the value-weighted index constructed by the Center of Research in Security Prices
(CRSP) as a proxy for market returns. Daily market excess returns as well as four
individual stock excess returns for IBM, General Electric or GE, Exxon or XOM, and
Amgen or AMGN are obtained from 2000/01/03 to 2013/12/31 (3521 daily observations).
Excess returns are derived after subtracting the risk-free return approximated by the
three-month Treasury bill rate. All returns are scaled by 100. Figure 1 displays the
data and Table 1 reports summary statistics. All individual stocks display skewness and
excess kurtosis. Figure 1 shows that returns with absolute large (small) value tend to be
followed by other large (small) absolute returns reflecting volatility clustering.

8 Model Performance

To compare the MGARCH-DPM model with the parametric MGARCH-t model we com-
pute each model’s predictive likelihood. The predictive likelihood for rL:T , L < T is
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expressed in terms of the one-step-ahead predictive likelihoods,

m(rL:T |r1:L−1,M) = ΠT
t=Lp(rt|r1:t−1,M) (8.1)

where M denotes the particular model (MGARCH-DPM or MGARCH-t), and L > 1
is chosen to eliminate the influence of the priors on model comparison. We can approx-
imate the one-step-ahead predictive likelihoods, p(rt|r1:t−1,M), by averaging the data
density over draws of the unknown parameters conditional on the data history r1:t−1.
This integrates out parameter and distributional uncertainty as

p(rt|r1:t−1,M) =

∫
p(rt|θ, r1:t−1,M)p(θ|r1:t−1,M)dθ (8.2)

≈
1

M

M∑

g=1

p(rt|θ
(g), r1:t−1,M)

where θ(g) is a posterior draw from p(θ|r1:t−1,M) and p(rt|θ
(g), r1:t−1,M) is the data

density given θ(g) and r1:t−1 for model M. Note that we are able to compute H
(g)
t

at each iteration of the MCMC since we have H
(g)
t−1 and GARCH parameters: H

(g)
t =

Γ
(g)
0 + Γ

(g)
1 ⊙ (rt−1 − η(g))(r − η(g))′t−1 + Γ

(g)
2 ⊙H

(g)
t−1.

Based on (8.2), the predictive likelihoods for the two models are estimated as

p(rt|r1:t−1,MGARCH-t) ≈
1

M

M∑

g=1

t(rt|µ
(g), H

(g)
t , ν(g)), (8.3)

p(rt|r1:t−1,MGARCH-DPM) ≈
1

M

M∑

g=1

N(rt|µ
(g)

s
(g)
t

, H
(g)1/2

t B
(g)

s
(g)
t

H
(g)1/2

′

t ). (8.4)

In MGARCH-DPM model, at each iteration g, s
(g)
t is drawn from one of the K(g) + 1

components with weights ω
(g)
j j = 1, . . . , K(g) and 1−

∑K(g)

j=1 ω
(g)
j . When s

(g)
t = K(g) + 1

a new parameter θ ∼ G0 is drawn.
The following priors are used in estimation. In the MGARCH-t model, ν ∼

U(2, 100), and µ ∼ N(0, 0.1I) for both models. For each of GARCH parameters in

both models, we set Γ
1/2
0,ij ∼ N(0, 100)1S, γ1,i ∼ N(0, 100)1S and γ1,i ∼ N(0, 100)1S,

i = 1, . . . , q + 1, j ≤ i as prior distribution where S denotes the following restriction:
diag(Γ

1/2
0 ) > 0, γ11 > 0, γ22 > 0 to impose identification. For the concentration parame-

ter α ∼ G(2, 8). The prior on α controls the number of the distinct components in the
mixture model, although with a large number of observations the effect of the prior is
diminished. For the hyper-parameters of the base measure G0, we set B0 = (ν0 − q− 1)I
which makes E(B) = I and centers the conditional covariance of rt at Ht. ν0 = 8, but
other values for ν0 do not change our conclusions.

Table 2 reports the log-predictive likelihoods for the MGARCH-t and MGARCH-
DPM models, and the log Bayes factor, for the last 500 (L = 3021) observations, from
2012/01/05 to 2013/12/31. Bivariate models based on daily excess returns on IBM, GE,
XOM and AMGN each with excess market returns are considered. The results strongly
support our semi-parametric model relative to the benchmark model. For instance, log-
Bayes factors are all greater than 370. This is very strong evidence of significant deviations
from the Student-t MGARCH model.
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Figure 2 displays the time-series of the market and IBM excess returns as well as
the difference in the log-predictive likelihood of the two models using

log p(rt|r1:t−1,MGARCH-DPM)− log p(rt|r1:t−1,MGARCH-t). (8.5)

Positive values favour the MGARCH-DPM specification. This figure shows that the
MGARCH-DPM model almost always outperforms MGARCH-t model. There are large
differences when the market or IBM returns are extreme.

9 Semiparametric Conditional Beta

This section presents empirical estimates of the nonparametric dynamic conditional beta
from the MGARCH-DPM model for several individual stocks and compares them with
the corresponding counterpart from the parametric MGARCH-t model. Not only does
the beta computed in this way change over time, but also the time-varying conditional
beta is sensitive to the contemporaneous value of excess market return. This implies
that the value of the systematic risk of an asset at each time depends on the level of the
market return.

The model is applied to derive a nonparametric conditional beta (calculated in
Section 6) using excess returns on a single stock and on the market return (q = 1).
This results in a conditional expected return of the individual stock comparable to the
conditional CAPM model. Later, additional factors are explored.

The analysis reported here is based on 25000 iterations of the MCMC algorithm.
The first 15000 draws were dropped as burn-in and the following 10000 used for inference.
The average acceptance rate of GARCH parameters is about 20% and about 30% for
parametric and nonparametric models, respectively.

Tables 3-6 report the posterior mean and the 0.95 probability density intervals of
the fixed parameters for both models and for different stocks. The estimated MGARCH
parameters from the two models are consistent. The tables report c, the number of
components in the mixture used to estimate the unknown density. On average, the joint
density of IBM, XOM, GE with the market is estimated using about 3.6-5.6 components
but the density intervals indicate considerable uncertainty. However, for AMGN and
the market, about 15 components are used, showing that this joint density is far more
complex than the others. These results are compatible with the small degree of freedom
estimated in the benchmark models. Estimates of η1 and η2 are consistently positive
indicating a larger response to the conditional covariance from negative shocks.

Figures 3 - 6 compares the posterior mean of the realized beta over time derived
from both models for each of the stocks. For MGARCH-t model, the posterior mean
of (2.8) is reported while for the MGARCH-DPM model the posterior mean of (6.10) is
evaluated at the realized excess market return value for time t. As seen in the figures,
both models result in very similar time series for the conditional beta.

Figure 7 - 10 illustrates posterior mean of each stock’s conditional beta as a function
of the contemporaneous market excess return using (6.10) at several dates. These figures
show that beta is changing over time and, more importantly, at each time the value of
beta is sensitive to the contemporaneous value of the market excess return. For each
stock there are dates that beta is a constant function of the market return which would
be consistent with the MGARCH-t model. However, each stock has dates in which beta
is nonlinearly dependent on the market return. Moreover, often beta is asymmetrically
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related to the market; when the market excess return increases (large positive values),
conditional beta drops more significantly (Figure 7 - 9).

The nonlinear relationship between beta and the market transfers directly into the
conditional expected excess return. For example, Figure 11 displays the posterior mean
of the conditional expected excess return of IBM given different values of the contem-
poraneous market excess return, derived from (6.9), for dates for which the conditional
betas are illustrated in Figure 7. This figure clearly shows how the nonlinear conditional
beta results in the nonlinear conditional expected return.

To investigate the significance of this nonlinear relationship Figures 12 - 15 display
the posterior mean of the nonparametric conditional beta as a function of the market
excess return as well as the 0.90 density intervals for selected dates for each stock. Beta
derived from the MGARCH-t model is included and is a constant function at each time.
It is clear from these figures that there are significant departures in beta from the constant
beta from the MGARCH-t model.

Finally, Figures 16 - 19 provide a three dimensional version of Figures 7-10 for each
firm. In some periods beta is essentially flat and consistent with the MGARCH-t model
while in other times beta is very sensitive to the market return.

9.1 Summary of Empirical Results

As the empirical results illustrate, the conditional beta is time-varying and at each time
depends on the contemporaneous market excess return, as opposed to the constant beta
of the benchmark model.

The previous results show some periods in which the conditional beta is insensitive
to the value of rm,t (beta is almost constant with respect to rm,t) while in other time
periods beta changes significantly with rm,t. To measure the sensitivity of bm,t(rm,t) to
rm,t at each time t consider the following measure

dt = max
rm,t

bm,t(rm,t)−min
rm,t

bm,t(rm,t), (9.1)

where bm,t(rm,t) is defined in (6.10). Large values of dt indicate that bt(rm,t) is strongly
sensitive to rm,t, while a dt = 0 indicates no sensitivity. The MGARCH-t model has a
dt = 0 for all t. Figure 20 illustrates this dt over time for all individual stocks. Among
these four stocks, the dynamic conditional beta for IBM and XOM have the most and
the least sensitivity to rm,t, respectively. What is apparent is that during relatively high
volatility periods such as 2002-03, 2009 and 2011:6-2012, dt attains its smallest values
over the sample. In these periods shocks to the market are expected to be large. During
lower volatility periods large shocks to the market and firms are unexpected and the
conditional beta adjusts accordingly.

To investigate how bm,t(rm,t) changes with different market conditions Figures 21-24
show the broad trends that we find in all stocks. When the market is highly volatile,
an individual stock’s conditional beta is less affected by unexpected shocks in the con-
temporaneous market return. While in a calm market, the conditional beta changes
remarkably from unexpected shocks to the market. However, the changes depend on the
stocks correlation with the market.

When the market is calm, an unexpected shock increases the conditional beta for a
stock that is highly correlated with the market, while this effect is completely the reverse
for stocks with low correlation with the market. In other words, when an asset is highly
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correlated with the market, a large move in a stable market increases the conditional co-
variance between the market and the asset more than it increases the conditional variance
of the market, resulting in a significant increase in the conditional beta. When an asset is
less correlated with the market, a large move in a stable market increases the conditional
variance of the market more than it increases the conditional covariance between the
market and the asset, leading to a drop in the conditional beta.

It is often the case that the effect on bm,t(rm,t) from rm,t is asymmetric. Frequently
bm,t(rm,t) is more sensitive to large positive values of rm,t compared to negative values.
In addition, when the market is calm, we see both u-shape and inverse u-shape patterns
for the conditional beta of all stocks.

10 Extension to Fama-French three-factor model

Fama & French (1993) assert that the common variation in stock returns is largely cap-
tured by three portfolios consisting of the market portfolio, a mimicking portfolio for
size (rSMB,t), and mimicking portfolio for book-to-market value (rHML,t). Applying
MGARCH-DPM model in four dimensions (q = 3), we estimate a dynamic nonpara-
metric version of the static Fama-French three-factor model. As in the previous bivariate
application, there will be a dynamic nonparametric beta on each factor conditional on a
specified factor value. That is, we estimate the joint model and back out the conditional
distribution of the firm return ri,t and the associated betas given values of rm,t, rSMB,t

and rHML,t. Daily data for rSMB,t and rHML,t are obtained from Kenneth French’s web-
site, from Jan 3, 2000 to Dec 31, 2013 (3521 observations). In this case, the number

of GARCH parameters increases to 26; ( (q+1)(q+2)
2

+ 2(q + 1) + 2(q + 1)). This model,
FF-MGARCH-DPM, replaces (4.1) with

rt ≡ (rIBM,t, rm,t, rSMB,t, rHML,t)|φt, Ht ∼ N(ξt, H
1/2
t Λt(H

1/2
t )′), t = 1, ..., T. (10.1)

Applied to IBM data Table 7 reports the posterior mean of the number of distinct clusters
is about 3.84 and α ≈ 0.35. This is a reduction for both parameters compared to the
previous one factor model.

The nonparametric conditional beta in FF-MGARCH-DPM model is a vector. It
is defined analogously to (6.10) as the partial derivative with respect to the factor. For
instance, beta for size factor is defined as

bSMB,t =
∂E(rIBM,t|rm,t, rSMB,t, rt,HML, r1:T )

∂rSMB,t

∣∣∣ rm,t=rm,t
rSMB,t=rSMB,t
rHML,t=rHML,t

(10.2)

with a similar expression for the other factor coefficients bm,t and bHML,t . Note that
each beta is a potentially nonlinear function of rm,t, rSMB,t, rHML,t. Figure 25 illustrates
the time series patterns of the posterior mean of the realized beta coefficients over time.
This is bm,t, bHML,t and bSMB,t evaluated at the realized values of rm,t, rSMB,t and rHML,t

for our dataset. This figure, consistent with Engle’s (2015) results, shows that the beta
on rHML,t is the most variable. The market beta from the previous one-factor model for
IBM (Section 9) is included in this figure. The pattern of two series is very similar in
both models, which supports the one-factor specification.

Figure 26 shows the posterior mean of bm,t as a function of the market excess return
at several time periods. To produce the plot, the other two factors are set to their sample
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mean value. As we see, even after accounting for size and value factors in the model,
the conditional beta (market coefficient) at each time is sensitive to the value of the
contemporaneous market excess returns.

The three-dimensional Figure 27 illustrates the posterior mean of bm,t, bSMB,t, and
bHML,t as functions of excess market return over time. It is evident that besides market
coefficient, coefficients on rSMB,t, and rHML,t are nonlinearly dependent on the value of
the contemporaneous market excess return.

In summary, our results show that the conditional beta at each time does depend
on the contemporaneous value of the market excess return. The market beta from the
3-factor model are consistent with the findings from the previous one-factor model. The
empirical results show that besides the market beta, coefficients on the other two fac-
tors are also nonlinearly dependent on the value of the contemporaneous market excess
returns.

11 Conclusion

This paper derives a dynamic conditional beta representation using a Bayesian semi-
parametric multivariate GARCH model. We show that predictive Bayes factors strongly
support this semiparametric model over a multivariate GARCH with Student-t innova-
tions. Empirically we find the time-varying beta from our model nonlinearly depends on
the contemporaneous value of excess market return. In highly volatile markets, beta is
almost constant, while in stable markets, the beta coefficient can depend asymmetrically
on the contemporaneous value of the market excess return. The results are robust to an
extension of Fama-French factors and reveal nonlinear dependence in all beta coefficients
of the factors.
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12 Appendix

12.1 Distributions

If r ∼ t(µ,Σ, ν) then the density function of the Student-t (Bauwens et al. 2000) is

f(r|ν, µ,Σ) =
Γ(ν+p

2
)

Γ(ν
2
)πp/2

|Σ|−1/2

[
1 +

1

ν
(r− µ)TΣ−1(r− µ)

]−(ν+p)/2

, ν > 0.

The q × q matrix B follows an inverse Wishart density with a symmetric positive
definite scale matrix B0 and degree of freedom ν0 ≥ q + 1, if its pdf can be written as

f(B|B0, ν0) =
|B0|

ν0/2

2
qν0
2 π

q(q−1)
4 Πq

i=1Γ(
ν0+1−i

2
)
|B|−

ν0+q+1
2 exp

[
−
1

2
tr(B−1B0)

]
,

with E(B) = 1
ν0−q−1

B0.

The pdf of the Gamma distribution G(a, b) with shape parameter a and scale pa-
rameter b is written as

f(x|a, b) =
1

Γ(a)ba
xa−1e−x/b, x ∈ (0,∞), E(x) = ab.

12.2 Derivation of the nonparametric conditional beta

E(ri,t|ri,t, r1:T , G
(g)) =

K(g)∑

j=1

q
(g)
j (rm,t)[µ

(g)
j,1 + β

(g)
jt (rm,t − µ

(g)
j,2 )]+ (12.1)


1−

K(g)∑

j=1

q
(g)
j (rm,t)



∫
[µ1 + βt(rm,t − µ2)]N(rm,t|µ2, (H

(g)1/2

t BH
(g)1/2

′

t )22)p(µ,B)dµdB
∫
N(rm,t|µ2, (H

(g)1/2

t BH
(g)1/2

′

t )22)p(µ,B)dµdB
.

Let

A1 =

∫
[µ1 + βt(rm,t − µ2)]N(rm,t|µ2, (H

(g)1/2

t BH
(g)1/2

′

t )22)p(µ,B)dµdB, (12.2)

A2 =

∫
N(rm,t|µ2, (H

(g)1/2

t BH
(g)1/2

′

t )22)p(µ,B)dµdB. (12.3)

A1 and A2 can be easily approximated by Monte Carlo simulation as follows

A1 ≈
1

N

N∑

n=1

[µn,1 + β
(g)
n,t (rm,t − µn,2)]N(rm,t|µn,2, (H

(g)1/2

t BnH
(g)1/2

′

t )22) (12.4)

A2 ≈
1

N

N∑

n=1

N(rm,t|µn,2, (H
(g)1/2

t BnH
(g)1/2

′

t )22) (12.5)

where µn and Bn, n = 1, ..., N are i.i.d draws from the prior p(µ,B) which in our model
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is N(µ|µ0, D) and W−1(B|B0, ν0), and

β
(g)
nt =

(H
(g)1/2

t BnH
(g)1/2

′

t )12

(H
(g)1/2

t BnH
(g)1/2

′

t )22
. (12.6)

Now we obtain the posterior mean of the nonparametric conditional beta by taking
the derivative of 12.1:

bm,t(rm,t) =
1

M

M∑

g=1

bm,t(rm,t, G
(g)) =

1

M

M∑

g=1

∂E(ri,t|rm,t, r1:T , G
(g))

∂rm,t

∣∣∣
rm,t=rm,t

. (12.7)

After replacing A1 and A2 with their approximations we have

∂E(ri,t|rm,t, r1:T , G(g))

∂rm,t
≈

K(g)
∑

j=1

q
(g)
j (rmt )β

(g)
jt (12.8)

+
K(g)
∑

j=1

q
′(g)
j (rmt )[µ

(g)
j,1 + β

(g)
jt (rmt − µ

(g)
j,2 )]

−
K(g)
∑

j=1

q
′(g)
j (rmt )

∑

n[µn,1 + β
(g)
tn (rmt − µn,2)]N(rmt |µn,2, (H

(g)1/2

t BnH
(g)1/2

′

t )22)
∑

n N(rmt |µn,2, (H
(g)1/2

t BnH
(g)1/2

′

t )22)

+



1−
K(g)
∑

j=1

q
(g)
j (rmt )



 {

∑

n β
(g)
tn N(rmt |µn,2, (H

(g)1/2

t BnH
(g)1/2

′

t )22)
∑

n N(rmt |µn,2, (H
(g)1/2

t BnH
(g)1/2

′

t )22)

+

∑

n[µn,1 + β
(g)
tn (rmt − µn,2)]N ′(rmt |µn,2, (H

(g)1/2

t BnH
(g)1/2

′

t )22)
∑

n N(rmt |µn,2, (H
(g)1/2

t BnH
(g)1/2

′

t )22)

−
[
∑

n[µn,1 + β
(g)
tn (rmt − µn,2)]N(rmt |µn,2, (H

(g)1/2

t BnH
(g)1/2

′

t )22)]
∑

n N ′(rmt |µn,2, (H
(g)1/2

t BnH
(g)1/2

′

t )22)

[
∑

n N(rmt |µn,2, (H
(g)1/2

t BnH
(g)1/2

′

t )22)]2
}

where β
(g)
jt , β

(g)
nt , and q

(g)
j (rmt ) are defined in Equations (6.8), (12.6), and (6.6), respectively,

and N ′(x|.) is the derivative of the pdf of Normal distribution with respect to x. In the
3-factor model the derivations follow similarly but the derivative will be a vector of size
3, each element of which is the coefficient of market excess return, size factor, or value
factor.
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Stock Mean Variance Skewness Kurtosis Max Min
Market 0.017 1.744 -0.070 7.067 11.350 -8.950
IBM 0.028 3.070 0.230 7.834 13.019 -15.567
GE -0.003 4.277 0.323 8.397 19.702 -12.797
XOM 0.032 2.672 0.367 11.163 17.180 -13.950
AMGN 0.034 4.758 0.508 5.907 15.090 13.437

Table 1: Summary statistics of the daily excess returns on the market portfolio, IBM, GE,
XOM and AMGN, from 2000/01/03 to 2013/12/31 (3521 observations).

log-predictive likelihood
Model IBM GE XOM AMGN

MGARCH-DPM −983.27 −964.99 −875.473 −1140.12
MGARCH-t −1353.67 −1369.03 −1300.21 −1571.32

log Bayes factor 370.39 404.031 424.73 431.19

Table 2: This table reports the log-predictive likelihood for the bivariate MGARCH-t and
MGARCH-DPMmodels and the log-Bayes factor, for the last 500 observations, from 2012/03/12
to 2013/12/31. Bivariate data are daily excess market returns coupled with excess returns on
IBM, GE, XOM and AMGN from 2000/01/03 to 2013/12/31.
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IBM MGARCH-DPM MGARCH-t

Parameter Post. Mean 95% DI Post. Mean 95% DI
γ01 0.102 (0.055, 0.146) 0.023 (0.015, 0.037)
γ02 −0.043 (−0.081, 0.003) −0.042 (−0.053,−0.034)
γ03 0.020 (0.001, 0.053) 0.020 (0.002, 0.048)
γ11 0.247 (0.199, 0.307) 0.150 (0.144, 0.160)
γ12 0.267 (0.232, 0.313) 0.224 (0.210, 0.233)
γ21 0.971 (0.965, 0.977) 0.975 (0.971, 0.977)
γ22 0.953 (0.945, 0.961) 0.955 (0.951, 0.961)
µ1 0.025 (0.016, 0.046)
µ2 0.041 (0.022, 0.074)
ν 5.37 (5.01, 5.54)
c 5.6 (3.00, 11.0)
α 0.571 (0.070, 1.61)
η1 0.570 (0.349, 0.714) 0.807 (0.776, 0.864)
η2 0.533 (0.434, 0.618) 0.507 (0.451, 0.644)

Table 3: IBM Estimates: This table displays posterior mean and 95% density intervals (DI) for
the parameters of MGARCH-DPM and MGARCH-t models. Data is daily excess returns on
IBM and excess market returns. Data is from Jan 3, 2000 to Dec 31, 2013 (3521 observations).

XOM MGARCH-DPM MGARCH-t

Parameter Post. Mean 95% DI Post. Mean 95% DI
γ01 0.141 (0.108, 0.182) 0.110 (0.012, 0.200)
γ02 0.014 (−.003, 0.030) 0.016 (−0.058, 0.073)
γ03 0.014 (0.001, 0.041) 0.032 (0.001, 0.082)
γ11 0.250 (0.223, 0.283) 0.228 (0.165, 0.310)
γ12 0.238 (0.198, 0.287) 0.228 (0.175, 0.288)
γ21 0.956 (0.947, 0.965) 0.958 (0.935, 0.977)
γ22 0.960 (0.953, 0.969) 0.958 (0.939, 0.974)
µ1 0.025 (−0.076, 0.129)
µ2 0.022 (−0.050, 0.092)
ν 9.89 (6.16, 13.90)
c 3.6 (2.00, 9.00)
α 0.324 (0.011, 1.15)
η1 0.480 (0.345, 0.591) 0.436 (−0.051, 0.775)
η2 0.524 (0.436, 0.613) 0.514 (0.279, 0.708)

Table 4: XOM Estimates: This table displays posterior mean and 95% density intervals (DI)
for the parameters of MGARCH-DPM and MGARCH-t models. Data is daily excess returns on
XOM and excess market returns. Data is from Jan 3, 2000 to Dec 31, 2013 (3521 observations).
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GE MGARCH-DPM MGARCH-t

Parameter Post. Mean 95% DI Post. Mean 95% DI
γ01 0.061 (0.023, 0.093) 0.031 (0.012, 0.056)
γ02 −0.033 (−0.054,−0.014) −0.029 (−0.039,−0.008)
γ03 0.018 (0.001, 0.052) 0.036 (0.022, 0.052)
γ11 0.196 (0.174, 0.216) 0.170 (0.145, 0.188)
γ12 0.204 (0.181, 0.225) 0.180 (0.168, 0.192)
γ21 0.974 (0.967, 0.981) 0.974 (0.970, 0.981)
γ22 0.964 (0.957, 0.970) 0.971 (0.967, 0.974)
µ1 0.004 (−0.034, 0.029)
µ2 0.049 (0.015, 0.071)
ν 6.47 (5.35, 7.05)
c 5.04 (3.00, 10.0)
α 0.501 (0.060, 1.42)
η1 0.554 (0.414, 0.707) 0.633 (0.555, 0.785)
η2 0.464 (0.395, 0.539) 0.463 (0.416, 0.561)

Table 5: GE Estimates: This table displays posterior mean and 95% density intervals (DI) for
the parameters of MGARCH-DPM and MGARCH-t models. Data is daily excess returns on
GE and excess market returns. Data is from Jan 3, 2000 to Dec 31, 2013 (3521 observations).

AMGN MGARCH-DPM MGARCH-t

Parameter Post. Mean 95% DI Post. Mean 95% DI
γ01 0.137 (0.089, 0.171) 0.084 (0.065, 0.106)
γ02 −0.011 (−0.031, 0.012) −0.028 (−0.044,−0.007)
γ03 0.016 (0.001, 0.039) 0.034 (0.015, 0.059)
γ11 0.211 (0.182, 0.239) 0.165 (0.156, 0.175)
γ12 0.188 (0.172, 0.211) 0.228 (0.195, 0.242)
γ21 0.965 (0.945, 0.958) 0.973 (0.971, 0.976)
γ22 0.951 (0.945, 0.958) 0.956 (0.950, 0.965)
µ1 0.002 (−0.014, 0.035)
µ2 0.038 (0.024, 0.070)
ν 5.81 (5.56, 6.08)
c 15 (7.00, 28.0)
α 2.41 (0.500, 5.21)
η1 0.508 (0.428, 0.596) 0.768 (0.686, 0.876)
η2 0.542 (0.459, 0.630) 0.479 (0.443, 0.566)

Table 6: AMGN Estimates: This table displays posterior mean and 95% density intervals (DI)
for the parameters of MGARCH-DPM and MGARCH-t models. Data is daily excess returns on
AMGN and excess market returns. Data is from Jan 3, 2000 to Dec 31, 2013 (3521 observations).
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# of GARCH parameters Posterior mean of α Posterior mean of c

26 0.35 3.84

Table 7: Posterior mean of the precision parameter and the number of distinct components for
the FF-MGARCH-DPM model. Data is daily excess returns for IBM, the market, SMB, and
HML from 2000/01/03 to 2013/12/31 (3521 observations).
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Figure 1: Daily excess returns on the market, IBM, GE, XOM and AMGN.
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Figure 2: The first panel indicates the difference of log predictive likelihood of the two models cor-
responding to each of the last 500 observations, from 2012/01/05 to 2013/12/31, for MGARCH-t and
MGARCH-DPM. The second and third panel illustrate the time series returns on IBM and the market.
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Figure 3: IBM: Realized conditional beta over time from MGARCH-t and MGARCH-DPM models.
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Figure 4: XOM: Realized conditional beta over time from MGARCH-t and MGARCH-DPM models.
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Figure 5: GE: Realized conditional beta over time from MGARCH-t and MGARCH-DPM models.
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Figure 6: AMGN: Realized conditional beta over time from MGARCH-t and MGARCH-DPM models.
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different dates.

27



-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

-6 -4 -2  0  2  4

B
e
t
a

Market Excess Return

18/09/2009

28/11/2012

08/01/2004

16/02/2011

06/09/2000

19/12/2006

Figure 9: GE: posterior mean of conditional beta as a function of the market excess return for different
dates.

-1

 0

 1

 2

 3

 4

 5

 6

 7

 8

-6 -4 -2  0  2  4

B
e
t
a

Market Excess Return

21/05/2002

21/05/2001

22/03/2004

23/02/2005

07/02/2007

27/09/2012

Figure 10: AMGN: posterior mean of conditional beta as a function of the market excess return for
different dates.
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Figure 12: The posterior mean and 0.90 density intervals of IBM’s conditional beta as a function of
the excess market return from the MGARCH-DPM model. The red line shows the beta coefficients
estimated with MGARCH-t model.
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Figure 13: The posterior mean and 0.90 density intervals of XOM’s conditional beta as a function
of the excess market return from the MGARCH-DPM model. The red line shows the beta coefficients
estimated with MGARCH-t model.
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Figure 14: The posterior mean and 0.90 density intervals of GE’s conditional beta as a function of
the excess market return from the MGARCH-DPM model. The red line shows the beta coefficients
estimated with MGARCH-t model.
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Figure 15: The posterior mean and 0.90 density intervals of AMGN’s conditional beta as a function
of the excess market return from the MGARCH-DPM model. The red line shows the beta coefficients
estimated with MGARCH-t model.
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Figure 16: The posterior mean of IBM’s nonparametric conditional beta as a function of excess market
return and time from 2009-07 to 2010-03 estimated with MGARCH-DPM model.

Figure 17: The posterior mean of XOM’s nonparametric conditional beta as a function of excess market
return and time from 2006-08 to 2007-01 estimated with MGARCH-DPM model.
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Figure 18: The posterior mean of GE’s nonparametric conditional beta as a function of excess market
return and time from 2009-12 to 2010-06 estimated with MGARCH-DPM model.

Figure 19: The posterior mean of AMGN’s nonparametric conditional beta as a function of excess
market return and time from 2005-02 to 2005-08 estimated with MGARCH-DPM model.
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Figure 20: Variability of conditional beta with respect to the contemporaneous value of market excess
returns over time for different stocks. dt = max
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Figure 21: IBM: conditional beta as a function of the market excess return for various dates grouped
by market conditions and correlation.
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Figure 22: XOM: conditional beta as a function of the market excess return for various dates grouped
by market conditions and correlation.
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Figure 23: GE: conditional beta as a function of the market excess return for various dates grouped
by market conditions and correlation.
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Figure 24: AMGN: conditional beta as a function of the market excess return for various dates grouped
by market conditions and correlation.

40



-4

-3

-2

-1

 0

 1

 2

2000 20012001 20022002 20032003 20042004 20052005 20062006 20072007 20082008 20092009 20102010 20112011 20122012 20132013 20142014

B
e
t
a

t

b
m
 (3-factor)

 b
m
 (1-factor)

b
HML

b
SMB

Figure 25: This figure illustrates the time series patterns of the posterior mean of bm,t, bSMB,t, and
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the market, SMB, and HML. Beta from the one-factor model (MGARCH-DPM) is also included.
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Figure 27: This figure shows the posterior mean of the bm,t (top panel), bSMB,t (middle panel),
and bHML,t (bottom panel) as functions of the excess market return from the three-factor model (FF-
MGARCH-DPM).
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