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Abstract

The revelation principle is a fundamental theorem in many economics fields. In
this paper, I construct an example to show that a social choice function which
can be implemented in Bayesian Nash equilibrium is not truthfully implementable.
The key point is the cost condition given in Section 2.3: agents pay cost when
carrying out strategies in the indirect mechanism, but will not pay cost in the
direct mechanism by definition. As a result, the revelation principle may not hold
when agents’ strategies are costly in the indirect mechanism.
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1 Introduction

The revelation principle plays an important role in microeconomics theory and
has been applied to many other fields such as auction theory, game theory etc.
According to the wide-spread textbook given by Mas-Colell, Whinston and
Green (Page 884, Line 24 [1]): “The implication of the revelation principle is ...
to identify the set of implementable social choice functions in Bayesian Nash

equilibrium, we need only identify those that are truthfully implementable.”
Related definitions about the revelation principle can be seen in Appendix,
which are cited from Section 23.B and 23.D of MWG’s textbook[1].
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However, in this paper, I will construct a simple labor model to show that
the revelation principle may not hold when agents’ strategies are costly in
the indirect mechanism. The paper is organized as follows. Section 2 is the
main part of this paper: in Section 2.1, we construct a social choice function f
and an indirect mechanism, where agents’ strategies are costly; in Section 2.2,
we prove f can be implemented by the indirect mechanism in Bayesian Nash
equilibrium; in Section 2.3, we propose the cost condition by analyzing the
basic idea behind the revelation principle; in Section 2.4, we prove that f is
not truthfully implementable in Bayesian Nash equilibrium, which contradicts
the revelation principle. Section 3 draws conclusions.

2 Main results

2.1 A labor model

Here we consider a simple labor model which uses some ideas from the first-
price sealed auction model in Example 23.B.5 [1] and the signaling model in
Section 13.C [1]. There are one firm and two workers. The firm wants to hire
a worker, and two workers compete for this job offer. Worker 1 and Worker
2 differ in the number of units of output they produce if hired by the firm,
which is denoted by productivity type.

For simplicity, we make the following three assumptions:
1) The possible productivity types of two workers are: θL and θH , where θH >
θL > 0. Each worker i’s productivity θi (i = 1, 2) is a random variable chosen
independently, and is private information for each worker.
2) Before confronting the firm, each worker gets some education. The possible
levels of education are: eL and eH , where eL = 0, eH > 0. Each worker’s
education is observable to the firm. Education does nothing for a worker’s
productivity.
3) The cost of obtaining education level e for a worker of some type θ is
given by a function c(e, θ) = e/θ. That is, the cost of education is lower for a
high-productivity worker.

The labor model’s outcome is represented by a vector (y1, y2), where yi denotes
the probability that worker i gets the job offer with wage w > 0. Recall
that the firm does not know the exact productivity types of two workers, but
its aim is to hire a worker with productivity as high as possible. This aim
can be represented by a social choice function f(θ⃗) = (y1(θ⃗), y2(θ⃗)), in which
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θ⃗ = (θ1, θ2),

y1(θ⃗) =















1, if θ1 > θ2

0.5, if θ1 = θ2

0, if θ1 < θ2

, y2(θ⃗) =















1, if θ1 < θ2

0.5, if θ1 = θ2

0, if θ1 > θ2

(1)

In order to implement the above f(θ⃗), the firm designs an indirect mechanism
Γ = (S1, S2, g) as follows:
1) A random move of nature determines the productivity types of two workers:
θ1, θ2 ∈ {θL, θH}.
2) Conditional on his type θi, each worker i = 1, 2 chooses his education level
as a bid bi : {θL, θH} → {0, eH}. The strategy set Si is the set of all possible
bids bi(θi), and the outcome function g is defined as:

g(b1, b2) = (p1, p2) =















(1, 0), if b1 > b2

(0.5, 0.5), if b1 = b2

(0, 1), if b1 < b2

(2)

where pi (i = 1, 2) is the probability that worker i gets the offer.

Let u0 be the utility of the firm, and u1, u2 be the utilities of worker 1, 2
respectively, then u0(b1, b2) = p1θ1 + p2θ2 − w, and for i, j = 1, 2, i ̸= j,

ui(bi, bj; θi) =















w − bi/θi, if bi > bj

0.5w − bi/θi, if bi = bj

−bi/θi, if bi < bj

(3)

The item “−bi/θi” occurred in Eq (3) is just the cost paid by agent i of type
θi when he carries out the strategy bi(θi) in the indirect mechanism.

The individual rationality (IR) constraints are: ui(bi, bj; θi) ≥ 0, i = 1, 2.

2.2 f is Bayesian implementable

Proposition 1: If w ∈ (2eH/θH , 2eH/θL), the social choice function f(θ⃗) given
in Eq (1) can be implemented by the indirect mechanism Γ in Bayesian Nash
equilibrium.
Proof: Consider a separating strategy, i.e., workers with different productivity
types choose different education levels,

b1(θ1) =







eH , if θ1 = θH

0, if θ1 = θL
, b2(θ2) =







eH , if θ2 = θH

0, if θ2 = θL
. (4)
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Now let us check whether this separating strategy yields a Bayesian Nash
equilibrium. Assume b∗j(θj) takes this form, i.e.,

b∗j(θj) =







eH , if θj = θH

0, if θj = θL
, (5)

then consider worker i’s problem (i ̸= j). For each θi ∈ {θL, θH}, worker
i solves a maximization problem maxbi h(bi, θi), where by Eq (3) the object
function is

h(bi, θi) = (w−bi/θi)P (bi > b∗j(θj))+(0.5w−bi/θi)P (bi = b∗j(θj))−(bi/θi)P (bi < b∗j(θj))
(6)

We discuss this maximization problem in four different cases:
1) Suppose θi = θj = θL, then b∗j(θj) = 0 by Eq (5).

h(bi, θi) = (w − bi/θL)P (bi > 0) + (0.5w − bi/θL)P (bi = 0)− (bi/θL)P (bi < 0)

=







w − eH/θL, if bi = eH

0.5w, if bi = 0

Thus, if w < 2eH/θL, then h(eH , θi) < h(0, θi), which means the optimal value
of bi(θi) is 0. In this case, b∗i (θL) = 0.

2) Suppose θi = θL, θj = θH , then b∗j(θj) = eH by Eq (5).

h(bi, θi) = (w − bi/θL)P (bi > eH) + (0.5w − bi/θL)P (bi = eH)− (bi/θL)P (bi < eH)

=







0.5w − eH/θL, if bi = eH

0, if bi = 0

Thus, if w < 2eH/θL, then h(eH , θi) < h(0, θi), which means the optimal value
of bi(θi) is 0. In this case, b∗i (θL) = 0.

3) Suppose θi = θH , θj = θL, then b∗j(θj) = 0 by Eq (5).

h(bi, θi) = (w − bi/θH)P (bi > 0) + (0.5w − bi/θH)P (bi = 0)− (bi/θH)P (bi < 0)

=







w − eH/θH , if bi = eH

0.5w, if bi = 0

Thus, if w > 2eH/θH , then h(eH , θi) > h(0, θi), which means the optimal value
of bi(θi) is eH . In this case, b∗i (θH) = eH .
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4) Suppose θi = θj = θH , then b∗j(θj) = eH by Eq (5).

h(bi, θi) = (w − bi/θH)P (bi > eH) + (0.5w − bi/θH)P (bi = eH)− (bi/θH)P (bi < eH)

=







0.5w − eH/θH , if bi = eH

0, if bi = 0

Thus, if w > 2eH/θH , then h(eH , θi) > h(0, θi), which means the optimal value
of bi(θi) is eH . In this case, b∗i (θH) = eH .

From the above four cases, it can be seen that if the wage w ∈ (2eH/θH , 2eH/θL),
the strategy b∗i (θi) of worker i

b∗i (θi) =







eH , if θi = θH

0, if θi = θL
(7)

is the optimal response to the strategy b∗j(θj) of worker j (j ̸= i) given in Eq (5).
Therefore, the strategy profile (b∗

1
(θ1), b

∗

2
(θ2)) is a Bayesian Nash equilibrium

of the game induced by Γ.

Now let us investigate whether the wage w ∈ (2eH/θH , 2eH/θL) satisfies the
individual rationality (IR) constraints. Following Eq (3) and Eq (7), the (IR)
constraints are changed into: 0.5w−bH/θH > 0. Obviously, w ∈ (2eH/θH , 2eH/θL)
satisfies the (IR) constraints.

In summary, if w ∈ (2eH/θH , 2eH/θL), then by Eq(2) and Eq(7), for any

θ⃗ = (θ1, θ2), where θ1, θ2 ∈ {θL, θH}, there holds:

g(b∗
1
(θ1), b

∗

2
(θ2)) =















(1, 0), if θ1 > θ2

(0.5, 0.5), if θ1 = θ2

(0, 1), if θ1 < θ2

, (8)

which is just the social choice function f(θ⃗) given in Eq (1). ✷

2.3 Cost condition

Before we discuss the truthful implementation problem, let us first cite the
basic idea behind the revelation principle given in MWG’s textbook (Page 884,
Line 16, [1]): “If in mechanism Γ = (S1, · · · , SI , g(·)), each agent finds that,
when his type is θi, choosing s∗i (θi) is his best response to the other agents’
strategies, then if we introduce mediator who says ‘Tell me your type, θi, and
I will play s∗i (θi) for you’, each agent will find truth telling to be an optimal
strategy given that all other agents tell the truth. That is, truth telling will
be a Bayesian Nash equilibrium of this direct revelation game”.
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Although this basic idea looks reasonable, it should be emphasized that there
indeed exists an assumption behind the mediator’s announcement “Tell me

your type, θi, I will play s∗i (θi) for you.” The underlying assumption is denoted
as the following cost condition:

Cost condition: After receiving each agent i’s type θi, in order to play s∗i (θi)
for agent i, the mediator must also pay the cost which would be paid by agent
i himself when carrying out s∗i (θi) in the original mechanism Γ.

Obviously, only when the cost condition holds will the mediator’s announce-
ment “I will play s∗i (θi) for you” be credible to the agents. Otherwise none
of agents will believe the mediator’s announcement and hence no agent will
attend the direct mechanism, which means the direct mechanism cannot start
up.

There is another viewpoint to consider the justification of cost condition. Let
us take a look at the proof of revelation principle given in Appendix Proposi-
tion 23.D.1. In Eq (23.D.3), the original mechanism Γ works: each agent i pays
cost by himself when carrying out the strategy s∗i (θi) (i = 1, · · · , I), and the
designer carries out the outcome function g. As a comparison, in Eq (23.D.4),
the direct mechanism works: at this time the strategy set of agent i is just
his type set, Si = Θi, and the designer carries out the outcome function f .
Hence, all things that each agent i has to do in the direct mechanism are only
to announce his type θi, which requires no cost in principle. Put differently, by
Definition 23.B.5 of the direct mechanism, each agent i does not need to pay

any cost by himself, because he only announces a type θi and does not carrying

out s∗i (θi).

Some possible questions to the cost condition are as follows:
Q1: In the above explanation of direct mechanism, the mediator is actually a
virtual role and does not exist at all.
A1: The notion “mediator” occurred in the cost condition can be replaced by
the notion “designer”, and the following discussions are the same.

Q2: In the direct mechanism, after each agent i announces his type θi, he still
pays cost by himself.
A2: This viewpoint is in contrast to the Definition 23.B.5 of direct mechanism
(See Appendix). It should be emphasized that in the direct mechanism, the
action s∗i (θi) is illegal for agent i. Thus, it is unreasonable to require that in
the direct mechanism agent i still pay the cost which is related to the illegal
action s∗i (θi).

Q3: The designer may define the direct mechanism more generally. In partic-
ular, The designer defines a new mechanism in which each agent reports his
type, then the mechanism suggest to them which action to take, and the final
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outcome of the mechanism depends on both the report and the action (i.e.,
education level in this paper).
A3: As Myerson pointed out in Ref [2], the concepts of direct mechanism and
revelation principle are in the field of static or one-stage games. However, the
new mechanism is in the field of dynamic or multistage games and hence is
irrelevant to the cost condition.

Q4: Let us consider the equilibrium in the indirect mechanism. Given the
equilibrium, there is a mapping from vectors of agents’ types into outcomes.
Now let us take that mapping to be a revelation game. It will be the case that
no type of any agent can make an announcement that differs from his true
type and do better.
A4: This viewpoint ignores the costs occurred in mechanism. Similar to the
above analysis of the proof of Proposition 23.D.1, the costs occurred in the
equilibrium in the indirect mechanism are paid by agents themselves. But,
consider the mapping from vectors of agents’ types into outcomes, at this
time each agent will not pay cost according to Definition 23.B.5. As a result,
the utility function of each agent may be changed (See Eq (9) in Section 2.4),
and some agent may find it beneficial for him to differ from his true type.

To sum up, the cost condition is the cornerstone for the direct revelation mech-
anism to start up. However, in Section 2.4, Proposition 2 will show that it is
the cost condition itself that makes a Bayesian implementable social choice

function not be truthfully implementable, which eventually contradicts the rev-

elation principle.

2.4 f is not truthfully implementable in Bayesian Nash equilibrium

Proposition 2: The social choice function f(θ⃗) given in Eq (1) is not truth-
fully implementable in Bayesian Nash equilibrium.
Proof: Consider the direct revelation mechanism Γdirect = (Θ1,Θ2, f(θ⃗)), in

which Θ1 = Θ2 = {θL, θH}, θ⃗ ∈ Θ1 × Θ2. The timing steps of Γdirect are as
follows:
1) A random move of nature determines the productivity types of workers:
θi ∈ Θi (i = 1, 2), and each worker i announces a type θ̂i ∈ Θi to a mediator.
Here θ̂i may not be his true type θi.
2) The mediator plays the strategy b∗i (θ̂i) (i = 1, 2) for each agent i, and
submits the bids to the firm:

b∗i (θ̂i) =







eH , if θ̂i = θH

0, if θ̂i = θL

3) The firm performs the outcome function g(b1, b2), and hires the winner.
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As we have discussed, according to the cost condition, each worker i does not
need to pay the cost bi/θi by himself in the direct mechanism. Hence, the
utility function of each worker i = 1, 2 is changed from Eq (3) to the follows:

ui(θ̂i, θ̂j; θi) =















w, if θ̂i > θ̂j

0.5w, if θ̂i = θ̂j

0, if θ̂i < θ̂j

, i ̸= j (9)

Note that the item “−bi/θi” occurred in Eq (3) disappears now. The utility
matrix of worker i and j can be expressed as follows.
❍
❍
❍
❍

❍
❍❍

θ̂i

θ̂j θL θH

θL [0.5w, 0.5w] [0, w]

θH [w, 0] [0.5w, 0.5w]

Obviously, the dominant strategy for each worker i is to definitely announce
θ̂i = θH , no matter what his true productivity type θi is. Thus, the unique
equilibrium in the direct mechanism Γdirect is the dominant Nash equilibrium
(θ̂i, θ̂j) = (θH , θH), and the unique outcome of Γdirect is that each worker has
the same probability 0.5 to get the job offer. Consequently, the social choice
function f(θ⃗) is not truthfully implementable in Bayesian Nash equilibrium.
✷

3 Conclusions

In this paper, we discuss the justification of revelation principle when agents
pay cost during the process of carrying out strategies in indirect mechanism.
The major difference between this paper and traditional literatures is focused
on the cost condition given in Section 2.3. It can be seen that:
1) In the indirect mechanism Γ, the utility function of each worker i = 1, 2
is given by Eq (3). The cost bi/θi is the key item that makes the separating
strategy profile (b∗

1
(θ1), b

∗

2
(θ2)) be a Bayesian Nash equilibrium if the wage

w ∈ (2eH/θH , 2eH/θL). Thus, the social choice function f can be implemented
in Bayesian Nash equilibrium.

2) In Section 2.3, I point out that the cost condition is underlied behind rev-
elation principle. Following the cost condition, the utility function of each
worker i is represented by Eq (9). According to the utility matrix of work-
ers, the unique equilibrium of the game induced by the direct mechanism is
the dominant Nash equilibrium (θ̂i, θ̂j) = (θH , θH). Hence, the social choice
function f cannot be truthfully implemented in Bayesian Nash equilibrium.
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In summary, the revelation principle may not hold when agents’ strategies are
costly in the indirect mechanism.

Appendix: Definitions in Section 23.B and 23.D [1]

Consider a setting with I agents, indexed by i = 1, · · · , I. Each agent i pri-
vately observes his type θi that determines his preferences. The set of possible
types of agent i is denoted as Θi. The agent i’s utility function over the out-
comes in set X given his type θi is ui(x, θi), where x ∈ X.

Definition 23.B.1: A social choice function is a function f : Θ1×· · ·×ΘI →
X that, for each possible profile of the agents’ types (θ1, · · · , θI), assigns a
collective choice f(θ1, · · · , θI) ∈ X.

Definition 23.B.3: A mechanism Γ = (S1, · · · , SI , g(·)) is a collection of I
strategy sets S1, · · · , SI and an outcome function g : S1 × · · · × SI → X.

Definition 23.B.5: A direct revelation mechanism is a mechanism in which
Si = Θi for all i and g(θ) = f(θ) for all θ ∈ Θ1 × · · · ×ΘI .

Definition 23.D.1: The strategy profile s∗(·) = (s∗
1
(·), · · · , s∗I(·)) is a Bayesian

Nash equilibrium of mechanism Γ = (S1, · · · , SI , g(·)) if, for all i and all
θi ∈ Θi,

Eθ
−i
[ui(g(s

∗

i (θi), s
∗

−i(θ−i)), θi)|θi] ≥ Eθ
−i
[ui(g(ŝi, s

∗

−i(θ−i)), θi)|θi]

for all ŝi ∈ Si.

Definition 23.D.2: The mechanism Γ = (S1, · · · , SI , g(·)) implements the

social choice function f(·) in Bayesian Nash equilibrium if there is a Bayesian
Nash equilibrium of Γ, s∗(·) = (s∗

1
(·), · · · , s∗I(·)), such that g(s∗(θ)) = f(θ) for

all θ ∈ Θ.

Definition 23.D.3: The social choice function f(·) is truthfully implementable

in Bayesian Nash equilibrium if s∗i (θi) = θi (for all θi ∈ Θi and i = 1, · · · , I) is
a Bayesian Nash equilibrium of the direct revelation mechanism Γ = (Θ1, · · · ,ΘI , f(·)).
That is, if for all i = 1, · · · , I and all θi ∈ Θi,

Eθ
−i
[ui(f(θi, θ−i)), θi)|θi] ≥ Eθ

−i
[ui(f(θ̂i, θ−i), θi)|θi], (23.D.1)

for all θ̂i ∈ Θi.

Proposition 23.D.1: (The Revelation Principle for Bayesian Nash Equilib-

rium) Suppose that there exists a mechanism Γ = (S1, · · · , SI , g(·)) that im-
plements the social choice function f(·) in Bayesian Nash equilibrium. Then
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f(·) is truthfully implementable in Bayesian Nash equilibrium.
Proof: If Γ = (S1, · · · , SI , g(·)) implements f(·) in Bayesian Nash equilibri-
um, then there exists a profile of strategies s∗(·) = (s∗

1
(·), · · · , s∗I(·)) such that

g(s∗(θ)) = f(θ) for all θ, and for all i and all θi ∈ Θi,

Eθ
−i
[ui(g(s

∗

i (θi), s
∗

−i(θ−i)), θi)|θi] ≥ Eθ
−i
[ui(g(ŝi, s

∗

−i(θ−i)), θi)|θi](23.D.2)

for all ŝi ∈ Si. Condition (23.D.2) implies, in particular, that for all i and all
θi ∈ Θi,

Eθ
−i
[ui(g(s

∗

i (θi), s
∗

−i(θ−i)), θi)|θi] ≥ Eθ
−i
[ui(g(s

∗

i (θ̂i), s
∗

−i(θ−i)), θi)|θi](23.D.3)

for all θ̂i ∈ Θi. Since g(s∗(θ)) = f(θ) for all θ, (23.D.3) means that, for all i
and all θi ∈ Θi,

Eθ
−i
[ui(f(θi, θ−i), θi)|θi] ≥ Eθ

−i
[ui(f(θ̂i, θ−i), θi)|θi](23.D.4)

for all θ̂i ∈ Θi. But, this is precisely condition (23.D.1), the condition for f(·)
to be truthfully implementable in Bayesian Nash equilibrium.
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