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Abstract

We construct a tractable neoclassical growth model that generates

Pareto’s law of income distribution and Zipf’s law of the firm size

distribution from idiosyncratic, firm-level productivity shocks. Executives

and entrepreneurs invest in risk-free assets as well as their own firms’

risky stocks, through which their wealth and income depend on firm-level

shocks. By using the model, we evaluate how changes in tax rates can

account for the evolution of top incomes in the U.S. The model matches

the decline in the Pareto exponent of the income distribution and the

trend of the top 1% income share in recent decades.
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1 Introduction

For the past three decades, there has been a secular trend of the concentration

of income among the top earners in the U.S. economy. According to Alvaredo

et al. (2013), the top 1% income share, the share of the total income accruing

to the richest 1% of the population, grew from around 8% in the 1970s to 18%

by 2010, on par with the high level of concentration in the 1930s.

Along with the increasing trend in the top income share, a widening dispersion

of income within the top income group has also been observed over the same

periods. The right tail of the income distribution is well fitted by a Pareto

distribution, as known as Pareto’s law of incomes. When income follows a

Pareto distribution with a slope parameter λ, the ratio of the number of people

who earn more than x1 to those who earn more than x2 is equal to (x1/x2)
−λ

for any income levels x1 and x2. Thus, the parameter λ, which is called the

Pareto exponent, measures the degree of equality among the rich. Notably, the

estimated Pareto exponent historically shows a close connection with the top

income share (see, e.g., Atkinson et al., 2011). The Pareto exponent declined

from 2.5 in 1970 to 1.6 in 2010, implying that a widening dispersion of income

within the top income group occurred along with a secular increase in the top

1% income share.

The purpose of this study is to develop a tractable dynamic general equilibrium

model that explains Pareto’s law and to analyze the causes of income concentration

and dispersion. We pay special attention to the top marginal income tax rate

as a driving force of income dispersion among the rich, in line with Piketty

and Saez (2003). Piketty et al. (2011) report that among OECD countries, the

countries that have experienced a sharp rise in their top 1% income share are

also the ones that have reduced the top marginal income tax rate drastically.

This study examines how a decrease in the top marginal income tax rate

contributes to income concentration and dispersion in a heterogeneous-agent
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dynamic general equilibrium model.

While our main focus is on the income distribution, we require the model

to be consistent with firm-side stylized facts because a substantial part of

top income in recent decades has been derived from business income such as

corporate executive compensation and entrepreneurial income (Piketty and

Saez, 2003; Atkinson et al., 2011; Bakija et al., 2012). Although executives

and entrepreneurs are different in many respects, they are similar in that

their earnings strongly depend on firms’ performance (Bitler et al., 2005;

Moskowitz and Vissing-Jorgensen, 2002; Edmans et al., 2009; Clementi and

Cooley, 2009; Frydman and Saks, 2010). This is clear for an entrepreneur,

and it increasingly holds true for an executive because of the widespread

use of stock options as a form of executive compensation (see Frydman and

Jenter, 2010 for a survey). Since a firm’s performance is determined by its

productivity in standard neoclassical models, a model of the evolution of top

income in this framework should be consistent with the stylized facts of firm

productivity. One of these facts is Zipf’s law of firms, which states that the firm

size distribution follows a special case of a Pareto distribution with exponent

λ = 1. Zipf’s law is closely related to Gibrat’s law, which observes that a

firm’s growth rate is independent of its size (Gabaix, 2009; Luttmer, 2010).1

For example, Luttmer (2007) generates Zipf’s law from firms’ idiosyncratic

productivity shocks in standard models. We construct our model in line with

this literature.2

The contribution of this study is summarized as follows. First, we present

a parsimonious neoclassical growth model that generates Zipf’s and Gibrat’s

laws of firms and Pareto’s law of incomes from idiosyncratic, firm-level productivity

shocks. In the model, the dispersion of firm size and value solely results from

the firm-level productivity shocks. Executives and entrepreneurs (collectively

1Some deviations from Gibrat’s law are reported for young and small firms, as pointed
out by Gabaix (2009) and Luttmer (2010). However, since our focus is on the right tail
of income that is mainly affected by large productive firms, we set aside this issue in our
analysis.

2Our model is consistent with another observation that the firm productivity distribution
also follows a Pareto distribution (Mizuno et al., 2012).
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called entrepreneurs in our model) can invest in their own firms’ risky stocks

or in risk-free assets. The dispersion of entrepreneurs’ income is determined

by the risk taken with their after-tax portfolio returns. To develop the model,

we introduce transferable product lines and financial intermediaries that are

new to the literature. The model is simple enough to allow for the analytical

derivation of the stationary distributions of firms and income. Furthermore,

the household income process is determined by partial differential equations

(PDEs), enabling the straightforward numerical computation of an equilibrium

transition path.

Second, by using the model, we evaluate how an unanticipated and permanent

cut in the top marginal income tax rate affects the evolution of top incomes.

A tax cut that favors risky stocks relative to risk-free assets would induce

entrepreneurs to hold more risky stocks, leading to a more diffusive income

process and a more dispersed distribution of entrepreneurs’ income and wealth.

Similarly, the tax cut would induce managers and firms to redesign their

contracts toward an increased share of executive stock options to capture the

benefit of the tax cut. To model this effect, we regard top marginal income tax

in the real world as a tax on the risky stocks of entrepreneurs’ and executives’

own firms in the model, whereas taxes on equities in the real world are a tax

on risk-free assets that are converted from a large variety of risky securities by

financial intermediaries in the model. In the transition dynamics, a one-time

tax cut leads to a slow-moving evolution of the distribution. The evolution

of the distribution is analytically derived as PDEs. By using the PDEs with

calibrated parameters, we numerically compute the transition dynamics of the

income distribution assuming that the tax cut occurred in 1970. We show

that our model matches the decline in the Pareto exponent of the income

distribution and the trend of increasing top income shares observed in the

U.S. in recent decades.

Third, we explore the general equilibrium implications of our model. Our

model implies that a tax cut has no quantitative effects on the per-capita

output and the capital–output ratio of the aggregate economy. In our model,

a cut in the tax imposed on a financial asset does not quantitatively affect the
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return of the asset, because the asset price endogenously changes to offset the

effect of tax change. The stable asset return leads to stable per-capita output

and capital–output ratio. This irrelevance of tax relates to the well-known

property of the “new” explanation of dividend taxation (Sinn, 1991 and McGrattan

and Prescott, 2005)—namely, that a change in dividend tax alone does not

affect investment decisions. This property of the model is consistent with the

stable growth rate of per-capita GDP and of the capital–output ratio observed

in the postwar U.S. The irrelevance of tax to asset returns also produces

implications with inequality. While we share views on the importance of a

tax cut with Piketty and Saez (2003) and Piketty et al. (2011), in our model,

a cut in the top marginal income tax rate will not in itself affect the income

distribution, if there are no alternative assets. Instead, an income tax cut

relative to other taxes—such as capital gains or corporate taxes—will affect

the distribution through changes in entrepreneurs’ portfolio choices. We show

that the model’s predictions on portfolio choice are consistent with observed

measures of executives’ incentive pay.

Our study builds on several others that investigate why the income distribution

follows a Pareto distribution. Gabaix and Landier (2008) construct a model

of executive pay. By assuming that the firm size distribution follows Zipf’s

law and the CEO’s talent follows a certain distribution, they show that the

CEO’s pay follows a Pareto distribution. By using the model, they interpret

that rising CEO pay in the U.S. in recent decades has resulted from rising firm

values. Their model has the advantage of being consistent with both Zipf’s

law of firms and Pareto’s law of incomes, similar to ours. However, their

model predicts a constant Pareto exponent. Jones and Kim (2014) extend the

model to be consistent with the recent decline in the Pareto exponent of the

income distribution in the U.S. Compared to these studies, the contribution

of ours is to build a model that generates both Zipf’s and Pareto’s laws

from the productivity shocks of firms, without assuming particular underlying

distributions.

Another thread of the literature, dating back to Champernowne (1953) and

Wold and Whittle (1957), explains Pareto’s law of incomes by idiosyncratic
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shocks on household wealth.3 Most of these studies use partial equilibrium

or endowment models that abstract from production.4 As Jones (2015) notes,

however, analyses that abstract from general equilibrium forces tend to generate

unsatisfactory comparative statics. Recently, Nirei and Aoki (2016) and Benhabib

et al. (2015) extend the framework to standard Bewley models, that is, dynamic

general equilibrium models of heterogeneous households with production, and

show that idiosyncratic shocks on firms’ productivities generate Pareto’s law

of incomes in the environment. Our study follows this approach. In our model,

behaviors of both households and firms are essential in determining Pareto’s

law. Compared with previous studies, we feature a model that explains not

only Pareto’s law of incomes but also Zipf’s law of firms, both generated from

the productivity shocks of firms. Previous studies can explain only one of these

laws, because the entrepreneur of a firm possesses all of the firm’s capital and

thus the entrepreneur’s wealth becomes proportional to the firm’s size. We

resolve this problem by incorporating the entrepreneur’s portfolio choice into

the model, in which an entrepreneur owns only a part, not all, of the firm’s

residual claim. This feature of the model characterizes our explanation as to

how the recent tax cut has affected the evolution of top incomes.

The closest studies to ours are perhaps Kim (2013) and Jones and Kim

(2014). Kim (2013) builds a human capital accumulation model with idiosyncratic

shocks that generate Pareto’s law of incomes and analyzes the impact of the

cut in top marginal income tax in recent decades on the Pareto exponent of the

income distribution. Jones and Kim (2014) extend the human capital model to

an endogenous growth setting, incorporating creative destruction. In contrast

to their studies, we build a model that also explains Zipf’s law of firms.5 The

3This approach requires some additional features to prevent the income and wealth
distributions from diverging in order to obtain Pareto’s law. The overlapping generations
setting used by Dutta and Michel (1998) and Benhabib et al. (2011 and 2016), and the lower
bound on savings used in Nirei and Souma (2007), Nirei and Aoki (2016) and Benhabib et al.
(2015) are examples of the features that prevent the distribution from diverging.

4Exceptions include Dutta and Michel (1998) and Toda (2014) who construct general
equilibrium models with production. The properties of these models are similar to those of
endowment models, as they are AK (and AL) type models in which the asset returns and
wage income are independent of allocation in production.

5Kim (2013) does not consider the firm-side problem. In Jones and Kim (2014),
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model predictions also differ. For example, an income tax cut in their model

encourages human capital accumulation among top income earners, resulting

in a higher per-capita output in the U.S. in recent decades than in previous

periods or in other countries such as France. By contrast, in our model, an

income tax cut does not directly affect capital accumulation.

Finally, our model is closely related to the general equilibrium models

of firm size distribution that explain Zipf’s law of firms (for a survey, see

Luttmer, 2010). Following the literature, we generate Zipf’s law of firms

through Gibrat’s law and a minimum limit of firms. As an extension of

this literature, we devise a model of firms with multiple product lines and

entrepreneur-specific shocks that yields a reflected random growth in firm size.

The rest of the paper is organized as follows. Section 2 presents the

dynamic general equilibrium model. Section 3 discusses the firm-side properties

of the model and derives Zipf’s law of firms. Section 4 describes the aggregate

dynamics of the model and defines the equilibrium. Section 5 illustrates how

the household wealth and income distributions follow a Pareto distribution

in the steady state. Section 6 analyzes how a tax cut affects top incomes in

our model and compares the results with the data. Finally, in Section 7, we

present our concluding remarks.

2 Model

We build a Bewley economy with a continuum of households (workers and

entrepreneurs), a continuum of firms, and financial intermediaries. A simple

sketch of the model is as follows. Each firm has a continuum of products.

Firms can trade the products, by which they maintain the minimum number

of employees that is exogenously imposed. Each firm bears an idiosyncratic

productivity shock that is specific to entrepreneurs who manage the firm.

Thus, the idiosyncratic shock hits the production of all the products of a firm.

This property results in Gibrat’s law, which generates Zipf’s law of firm size

the entrepreneurs’ income distribution becomes proportional to the firm size distribution
because each entrepreneur acquires all of the firms’ rent.
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by combining with the minimum firm size requirement. Competitive financial

intermediaries convert a proportion of risky stocks into risk-free assets. Entrepreneurs

are compensated by stocks, and they choose how to divide their portfolio

between risky stocks and risk-free assets. The value of the stocks depends on

the firms’ idiosyncratic productivity shocks. Thus, the productivity shocks

generate Pareto distributions of entrepreneurs’ wealth and income. In this

environment, income tax affects the Pareto distribution through the portfolio

choice of the entrepreneurs. In what follows, we present a formal dynamic

general equilibrium model and derive the PDEs that describe the transition of

the wealth distribution.

2.1 Households

There is a continuum of households with measure 1. As in Blanchard (1985),

each household is discontinued by a Poisson hazard rate ν and is replaced by a

newborn household that has no bequest.6 Households participate in a pension

program. If a household dies, all of its non-human capital is distributed to

living households. A living household receives the pension premium rate ν

times its financial assets.

Households consist of entrepreneurs and workers. Measure E of households

are entrepreneurs and the remaining 1 − E are workers. An entrepreneur

as well as a worker provides one unit of labor and earns wage income wt.

Households also receive a government transfer tr t. Among these households,

only entrepreneurs manage firms. An entrepreneur has the benefit of holding

the stocks of his firm relatively cheaper, as is explained subsequently. Whether

a household is born as an entrepreneur or a worker is exogenously determined.

An entrepreneur stochastically switches to a worker at constant hazard rate

pf .
7 Hence, there are two types of workers: workers who were born as workers,

whom we call innate workers, and workers who were born as entrepreneurs,

6Our model assumes away the bequest motive of households. A justification for the
assumption is that as Kaplan and Rauh (2013) argue, “[t]hose in the Forbes 400 are less
likely to have inherited their wealth or to have grown up wealthy.”

7It is possible to extend the model by incorporating the transition of a worker to become
an entrepreneur.
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whom we call former entrepreneurs.8

Household i chooses sequences of consumption ci,s and an asset portfolio

to maximize the expected discounted log utility

Et

∫ ∞

t

e−(β+ν)s ln ci,s ds,

where β is the discount rate. A worker holds his wealth in (i) a risk-free

bond bi,t and (ii) human capital ht that consists of current and future wage

incomes wt and government transfers tr t. The risk-free bond yields return rft

(and pension premium ν) with certainty. The human capital is defined by

ht ≡
∫∞

t
(wu + tru)e

−
∫ u
t (ν+rfs )dsdu, whose return is

(ν + rft )ht = (wt + tr t) + dht/dt.

An entrepreneur can hold (iii) risky stocks of his firm si,t as an asset in

addition to (i) and (ii). Let qi,t and di,t be the price and dividend of the risky

stocks, respectively. Then, the return on the risky stock is described by the

following stochastic process:

((1− τ e)di,tdt+ dqi,t)/qi,t = µq,tdt+ σq,tdBi,t,

where τ e is the tax rate on the risky stock, Bi,t is the Wiener process, and

µq,t and σq,t are endogenous parameters determined in equilibrium. Note that

the risky stocks obtained by entrepreneurs in the model capture the incentive

scheme for executive compensation in the real world. Therefore, we calibrate

the tax on risky stocks τ e by the top marginal income tax rate in our numerical

analysis. In Section 6.7, we compare our formulation of executive pay with

that in previous studies and compare our model’s prediction with the data.

Let ai,t ≡ si,tqi,t+ bi,t+ht denote the wealth of a household (we refer to the

8 In the model, either the death rate ν or the rate of exiting entrepreneur pf must be
strictly positive in order to generate Pareto’s law of incomes. We introduce both types of
hazard events for a quantitative reason. Without either of these two types, the mobility
of a household’s wealth or income level becomes very slow, or the Pareto exponent of the
income distribution becomes very low, compared with the data (see Gabaix et al., 2015 and
Jones and Kim, 2014).
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sum of assets as wealth) and xi,t ≡ si,tqi,t/ai,t the share of risky stocks. The

household’s wealth accumulates according to the following process:

dai,t = (ν(si,tqi,t + bi,t) + µq,tsi,tqi,t + rft bi,t + (ν + rft )ht − ci,t)dt+ σq,tsi,tqi,tdBi,t

= µa,tai,tdt+ σa,tai,tdBi,t, (1)

where

µa,t ≡ ν + µq,txi,t + rft (1− xi,t)− ci,t/ai,t

σa,t ≡ σq,txi,t.

Note that dBi,t forms a multiplicative shock to the current wealth level ai,t.

Let V i denote the value function of household characteristics i, where i = e

if the household is an entrepreneur, i = ℓ if he is a worker, i = w if he is an

innate worker, and i = f if he is a former entrepreneur. An innate worker

w and a former entrepreneur f do not change their household characteristics

(i.e., i′ = i, where i′ denotes the characteristics in the next period), while an

entrepreneur e may change to f in the next period. Let St denote a set of

aggregate state variables defined in Section 4. By using these notations, the

household’s dynamic programming problem is specified as follows:

V i(ai,t,St) = max
ci,t,xi,t

ln ci,tdt+ e−(β+ν)dt
Et[V

i′(ai,t+dt,St+dt)] (2)

subject to (1).

The household problem is a variant of Merton’s dynamic portfolio problem

(Campbell and Viceira, 2002 for a reference). It is well known that the solution

to the problem under the log utility follows the myopic rules,

xi,t =





µq,t−r
f
t

σ2
q,t

, if i = e,

0, otherwise,
(3)

vi,t =β + ν, (4)

where vi,t is the consumption–wealth ratio (see Appendix A for the derivations),

10



and satisfies the transversality condition

lim
T→∞

e−(β+ν)T
E0

[
V i(ai,T ,ST )

]
= 0. (5)

Note that the household decision rules (3)–(5) do not depend on the probability

of an entrepreneur switching to a worker pf . This property, which results from

the log utility assumption, is convenient when we numerically solve transition

dynamics.

2.2 Firms and the financial market

A continuum of firms with measure E produces differentiated goods. Each

firm is managed by an entrepreneur. As in McGrattan and Prescott (2005),

each firm issues shares, and owns and self-finances capital. We assume that

the ownership of a share of a firm incurs transaction costs, except for the case

where an entrepreneur directly owns stocks of his firm in the form of non-voting

shares. Financial intermediaries also own the firm’s shares by bearing the

transaction costs. The financial intermediaries combine the shares of all firms

and issue risk-free bonds to households. Thus, financial intermediaries provide

the means for households to diversify the firms’ idiosyncratic shocks. At the

competitive level of the risk-free rate, workers prefer to hold risk-free bonds

rather than to own shares by paying transaction costs. The transaction cost

is denoted by ι per dividend de,t of a firm managed by entrepreneur e. Since

financial intermediaries own all of the voting shares, firms maximize expected

profits following the interest of financial intermediaries. Then, the market

value of a firm achieves the net present value of the after-tax profits discounted

by the risk-free rate rft . We make these assumptions to simplify the analysis.

2.2.1 Financial intermediary’s problem

In this model, returns and risks on risky stocks are ex ante identical across

firms, and shocks on the risky stocks are uncorrelated with each other. Then,

a financial intermediary maximizes residual profit by diversifying the risks on
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risky stocks and issuing risk-free assets as follows:

max
sfe,t

Et

[∫ E

0

{
(1− τ f )(1− ι)de,tdt+ dqe,t

}
sfe,tde

]
− rft dt

(∫ E

0

qe,ts
f
e,tde

)
,

where sfe,t is the shares of firm e owned by the financial intermediary and τ f

is the dividend tax, which is different from the tax rate on risky stocks τ e.

We interpret τ f in the numerical analysis as a combination of capital gains

and corporate income taxes. In Section 6, we account for the evolution of top

incomes by the change in the difference between these tax rates. The solution

of the problem leads to

rft qe,tdt = Et[(1− τ f )(1− ι)de,tdt+ dqe,t]. (6)

2.2.2 Firm’s problem

Firm e owns a continuum measure n̄(e) portfolio of product lines, and each

product line produces a differentiated good. The total measure of product

lines in the economy is constant and normalized to 1. Firms can buy and sell

the product lines through merger and acquisition (M&A), as we explain more

precisely later.

The product n ∈ [0, n̄(e)] of firm e ∈ [0, E] is produced with a Cobb–Douglas

production technology:

yn,e,t = zn,e,tk
α
n,e,tℓ

1−α
n,e,t,

where yn,e,t is output, zn,e,t is productivity, kn,e,t is the capital input, and ℓn,e,t

is the labor input. The productivity of the product line evolves as

dzn,e,t = µzzn,e,tdt+ σzzn,e,tdBe,t,

where Be,t follows the Wiener process. Note that dBe,t does not depend on n.

That is, we assume that productivity shocks are perfectly correlated between

the product lines within firm e, but uncorrelated with shocks in other firms. A

possible interpretation of the correlation of shocks is that the shocks are caused
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by managerial decisions. Note that the productivity levels, rather than shocks,

can be different between product lines even within a firm. This can occur

when the initial productivity levels vary across products or when a firm buys

product lines from other firms. dBe,t is a multiplicative shock to productivity,

because the shock is multiplied by its productivity level zn,e,t. Under the

formulation, when the firm’s size is proportional to its productivity, as shown

below, Gibrat’s law of firms holds; that is, the growth rate of the firm is

independent of the firm’s size.

The above setting is reminiscent of those in Klette and Kortum (2004) and

Luttmer (2011), who construct models of the firm heterogeneity. We construct

such a model to derive Zipf’s law in a tractable way. There are a few remarks

about our model. First, the product lines in our model are continuous, while

in Klette and Kortum (2004) and Luttmer (2011), they are discrete. This

is for tractability and ease of calculation. Second, each product line incurs

productivity shocks that are common within a firm. The setting is different

from Klette and Kortum (2004) and Luttmer (2011), in which shocks affect the

number of product lines firms own and product lines do not incur productivity

shocks.

A firm chooses the investment level dkn,e,t and employment ℓn,e,t of a

product line to maximize the value of the product line qn,e,t = q(kn,e,t, zn,e,t,St):

rft q(kn,e,t, zn,e,t,St)dt =Et

[
max

dkn,e,t,ℓn,e,t

(1− τ f )(1− ι)dn,e,tdt+ dq(kn,e,t, zn,e,t,St)

]
.

(7)

Here, the dividend dn,e,t of the product line consists of

dn,e,tdt = (pn,e,tyn,e,t − wtℓn,e,t − δkn,e,t) dt− dkn,e,t,

where pn,e,t and yn,e,t are, respectively, the price and quantity of the good, kn,e,t

is the capital invested in the product line, wt is the wage rate, and δ is the

depreciation rate. The value and dividends of a firm are equal to the sums of
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qn,e,t and dn,e,t over the firm’s product portfolio:

qe,t =

∫ n̄(e)

0

qn,e,t dn, and de,t =

∫ n̄(e)

0

dn,e,t dn.

By solving the maximization problem, we obtain the following conditions

(see Appendix B for details):

MPKt ≡ rft + δ =
∂pn,e,tyn,e,t
∂kn,e,t

, (8)

wt =
∂pn,e,tyn,e,t
∂ℓn,e,t

. (9)

Note that in the model, the marginal product of capital (MPK) becomes the

same across product lines and between firms, because the stochastic discount

factor of financial intermediaries is not correlated with the shock of firm e. In

addition, note that taxes do not distort MPK because the taxes in the model

are imposed on dividends. As argued in the “new view” literature of dividend

taxation (Sinn, 1991 and McGrattan and Prescott, 2005), these do not distort

MPK.

A key factor to obtain Zipf’s law of firm size is to impose a minimum level

of firm size (Gabaix, 2009; Luttmer, 2010). Following Rossi-Hansberg and

Wright (2007), we assume a minimum level of employment ℓmin for each firm,

that is,

∫ n̄(e)

0

ℓn,e,t dn ≥ ℓmin.

We assume that a firm maintains the minimum level of employment by purchasing

product lines from other firms when the firms’ employment level becomes

smaller than ℓmin. At a price equal to the value of a product line qn,e,t, all

firms are indifferent between buying and selling the product line. An acquiring

firm pays the price by newly issuing stocks. For simplicity, we assume that all

firms sell a proportion of their product lines, so that the value of the product

lines sold during time [t, t+ dt] is equal to mqe,tdt. The rate m is determined

endogenously, so that the transactions of product lines clear in aggregate.
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Provided that the initial distribution of zn,e,0 within firm e is non-degenerate,

it is always possible to find a reallocation of product lines that satisfies the

needs of acquiring firms.

Our model of M&A provides a convenient mechanism by which the minimum

size is maintained and, at the same time, a firm’s value qe,t is linearly related to

productivity, as we show in Section 3. From this linearity, we confirm that an

acquiring firm can recover the minimum employment level ℓmin by purchasing

product lines with values totaling qmin − qe,t.

2.3 Aggregation and market conditions

We now consider the market conditions for the aggregate economy. We use

upper-case letters to denote the aggregate variables throughout the paper.

Goods produced in the product lines are aggregated according to

Yt =

(∫ E

0

∫ n̄(e)

0

y
ϕ−1
ϕ

n,e,t dnde

) ϕ
ϕ−1

, ϕ > 1. (10)

We assume that the aggregate good Y is produced competitively and normalize

the price of the aggregate good to 1. The other aggregate variables are simply

summed up over households or the product lines of firms. For example, let Ct

and Kt be the aggregate consumption and capital. Then, Ct ≡
∫ 1

0
ci,t di and

Kt ≡
∫ E
0

∫ n̄(e)
0

kn,e,t dnde.

The market-clearing condition for final goods is

Ct +
dKt

dt
− δKt + ι

(
1− Ae,txe,t

Qt

)
Dt =Yt,

where Ae,t is the wealth (the sum of financial assets and human capital)

owned by entrepreneurs, Qt is the aggregate financial asset, and Dt is the

aggregate dividends. (1− Ae,txe,t/Qt) is the share of stocks owned by financial

intermediaries in the aggregate financial asset. Thus, the last term on the

left-hand side of the equation indicates the proportion of the final goods used

for transaction costs when financial intermediaries convert the stocks into

15



risk-free bonds.

The total measures of existing product lines and labor supply are normalized

to 1. Thus, the market-clearing condition for product lines is

∫ E

0

∫ n̄(e)

0

dnde =

∫ E

0

n̄(e)de = 1.

Correspondingly, the labor market-clearing condition is

∫ E

0

∫ n̄(e)

0

ℓn,e,t dnde = 1. (11)

The market-clearing condition for the shares of firm e is

se,t + sfe,t =1,

where se,t is the shares owned by firm e’s entrepreneur according to (3) and

sfe,t is the shares owned by financial intermediaries. We assume that all tax

revenues are rebated to households as lump-sum government transfers in each

period. Finally, the market-clearing condition for the risk-free bonds is

∫ 1

0

bi,tdi =

∫ E

0

qe,ts
f
e,tde.

3 Firm-Side Properties

Before we define the equilibrium and solve the model, we review some of the

firm-side properties. Closed-form expressions for the product line variables

(ℓn,e,t, kn,e,t, dn,e,t) are obtained, given r
f
t . The heterogeneity of the product line

variables stems solely from productivity. We then show that the stationary

distribution of firm productivity depends only on the minimum employment

level ℓmin and the entrepreneur measure E, and that Zipf’s law of firm size is

obtained when ℓmin is sufficiently small.

16



3.1 Firm-side variables

We express the product line variables as functions of relative productivity,

which we denote by z̃n,e,t ≡ zϕ−1
n,e,t/E

{
zϕ−1
n,e,t

}
. Note that E

{
zϕ−1
n,e,t

}
is the average

of zϕ−1
n,e,t over all product lines in the economy. We obtain the following relations

by using the firm’s first-order conditions (FOCs) (8) and (9), together with the

aggregation condition (10) and the labor market condition (11) (see Appendix

B for the derivations):

ℓn,e,t =
pn,e,tyn,e,t

pyt
=
kn,e,t

kt
=
qn,e,t
qt

= z̃n,e,t, (12)

ddn,e,t = dtz̃n,e,tdt− (ϕ− 1)σzktz̃n,e,tdBe,t, (13)

where

pyt ≡
(
α(ϕ− 1)/ϕ

MPKt

) α
1−α

E

{
zϕ−1
n,e,t

} 1
ϕ−1

1
1−α

, (14)

kt ≡
(
α(ϕ− 1)/ϕ

MPKt

) 1
1−α

E

{
zϕ−1
n,e,t

} 1
ϕ−1

1
1−α

, (15)

qt ≡ dt

∫ ∞

t

(1− τ f )(1− ι) exp

{
−
∫ u

t

(rfs − µd,s)ds

}
du, (16)

dt ≡ (1− (1− α)(ϕ− 1)/ϕ)pyt − (δ + µk,t) kt,

where µk,t and µd,t are the expected growth rates of kn,e,t and dn,e,t, respectively.

Note that the dispersion of the product line variables is solely determined by

relative productivity z̃. This property significantly simplifies the computation

of the transition paths.

3.2 Zipf’s law of firm size

In this study, we measure the size of a firm by its employment. By using (12),

the employment growth of a firm is derived as

d ln ℓe,t = −
(
(ϕ− 1)2σ2

z

2
+m

)
dt+ (ϕ− 1)σzdBe,t. (17)
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In the above equation,m is the measure of the product lines sold to other firms.

Given this differential equation for firm size (employment), the Fokker–Planck

equation (also called the Kolmogorov forward equation) for the probability

density of the firm size distribution fs(ln ℓ, t) is obtained as

∂fs(ln ℓ, t)

∂t
= −

(
(ϕ− 1)2σ2

z

2
+m

)
∂fs(ln ℓ, t)

∂ ln ℓ
+

(ϕ− 1)2σ2
z

2

∂2fs(ln ℓ, t)

∂(ln ℓ)2
.

In this section, we solve an invariant distribution for firms. When ∂fs(ln ℓ, t)/∂t =

0, the Fokker–Planck equation with the constraint ℓe,t ≥ ℓmin has a solution in

an exponential form,

fs(ln ℓ) = F0 exp(−λ ln ℓ), (18)

where the coefficients satisfy

F0 = λℓλmin, λ = 1 +
m

(ϕ− 1)2σ2
z/2

. (19)

Equation (18) shows that the distribution of ln ℓe,t follows an exponential

distribution. Through a change of variables, it is shown that the distribution

of ℓe,t follows a Pareto distribution whose Pareto exponent is λ. When ℓe,t

follows a Pareto distribution, we obtain

1 =

∫ E

0

ℓe,tde = E ×
∫ ∞

ℓmin

ℓe,tfs(ln ℓe,t)
d ln ℓe,t
dℓe,t

dℓe,t =
λℓmin

λ− 1
.

By rearranging this equation, we obtain

λ =
1

1− ℓmin

1/E

. (20)

This equation shows that λ approaches 1 if ℓmin is sufficiently small compared

with average employment per firm 1/E. Hence, we obtain Zipf’s law for firms’

employment le,t as well as for firms’ sales pe,tye,t or capital input ke,t, when the

minimum size of a firm is sufficiently small.
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4 Aggregate Dynamics and Equilibrium of the

Model

In this model, we obtain the dynamics of the aggregate variables independently

of the heterogeneities within entrepreneurs, innate workers, and former entrepreneurs.

This separation between aggregates and cross-sectional heterogeneity stems

from the model property that the household’s policies are independent of its

wealth level and that the firm’s policies are linear in relative productivity. We

first summarize these properties and then define the equilibrium of the model.

4.1 Aggregate dynamics of the model

The growth rate of the aggregate output on the balanced growth path is

g ≡
{(

µz −
σ2
z

2

)
+ (ϕ− 1)

σ2
z

2

}
/(1− α),

which is confirmed by aggregating (14). We detrend the aggregate variables by

growth rate g and denote them by tilde, for example K̃t ≡ Kt/

(
egt · E

{
zϕ−1
n,e,0

} 1
ϕ−1

1
1−α

)
.

Let Ãe,t, Ãw,t, and Ãf,t denote the detrended aggregate wealth (the sum

of financial assets and human capital) of entrepreneurs, innate workers, and

former entrepreneurs, respectively, while H̃t is detrended aggregate human

capital. The sum of Ãe,t, Ãw,t, and Ãf,t is equal to the aggregate wealth of

all households Ãt. We denote the set of the detrended aggregate variables by

S̃t ≡ (Ãe,t, Ãw,t, Ãf,t, H̃t, K̃t), whereas St ≡ egtS̃t denotes the original aggregate

variables.

We show below that the aggregate dynamics of the detrended variables are

reduced to ordinary differential equations:

dS̃t
dt

= µ
S̃
(S̃t) ≡

(
dÃe,t
dt

,
dÃw,t
dt

,
dÃf,t
dt

,
dH̃t

dt
,
dK̃t

dt

)
, (21)

and price variables (rft , µq,t, σq,t) are functions of S̃t. Given S̃t, the aggregate

dynamics (21) and price functions are obtained through the following steps:
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1. Given K̃t, from (15), rft and MPKt are obtained by

rft + δ = MPKt =
α(ϕ− 1)/ϕ

K̃1−α
t

.

2. Given Ãt and H̃t, we obtain C̃t = (β + ν)Ãt from (4) and Q̃t = Ãt − H̃t.

Given MPKt, Ỹt = pyt/e
gt is pinned down. Given the variables obtained

above and (3), dK̃t/dt is, jointly with D̃t and xe,t, computed by the

following equations,

dK̃t

dt
=Ỹt − δK̃t − C̃t − ι

(
1− Ãe,txe,t

Q̃t

)
D̃t − gK̃t,

D̃t =(1− (1− α)(ϕ− 1)/ϕ)Ỹt − (δ + g)K̃t −
dK̃t

dt
,

and (3). Note that µq,t and σq,t in (3) are the functions of K̃t, Q̃t, and

D̃t (see Appendix B.2).

3. Given the variables obtained above, (dÃe,t/dt, dÃw,t/dt, dÃf,t/dt) are

computed as follows:

dÃe,t
dt

=(µae,t − g) Ãe,t + (ν + pf )EH̃t − (ν + pf )Ãe,t,

dÃw,t
dt

=(µaℓ,t − g) Ãw,t + (ν − (ν + pf )E)H̃t − νÃw,t,

dÃf,t
dt

=(µaℓ,t − g) Ãf,t + pf Ãe,t − νÃf,t,

where µae,t and µaℓ,t are the µa,t’s of an entrepreneur and a worker,

respectively, and are computed by (1) and (4). Finally, given the variables

obtained above, dH̃t/dt is computed by

dH̃t

dt
= −(w̃t + t̃r t) + (ν + rft − g)H̃t, (22)

where w̃t = ((1−α)(ϕ−1)/ϕ)Ỹt and t̃r t =
{
Ãe,txe,t
Q̃t

τ e +
(
1− Ãe,txe,t

Q̃t

)
τ f
}
D̃t.
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4.2 Definition of a competitive equilibrium

By using the property of the aggregate dynamics, we now define the equilibrium

of the model. To simplify the analysis, we specify the initial conditions in the

following manner. First, the initial capital of a product line is proportional to

the product line’s productivity, that is, k̃n,e,0 ∝ z̃n,e,0. Then, the initial value of

the product line is also proportional to productivity, that is, q̃n,e,0 = z̃n,e,0Q̃0,

where Q̃0 = Ã0 − H̃0. Second, the initial firm size distribution follows (18)

and (19). Third, we assume that all stocks are initially owned by households,

and except for those held by entrepreneurs, these stocks are sold to financial

intermediaries in period 0.9 Let sie,0 be the initial shares of firm e held by

household i (then,
∫ 1

0
sie,0di = 1).

A competitive equilibrium of the model, given the law of motion of the

product line’s productivities {zn,e,t}t, the initial capital of product lines in

firms k̃n,e,0 ∝ z̃n,e,0, the initial shares of firms held by households sie,0, taxes τ
e

and τ f , and the measure of entrepreneurs E, is a set of household variables

{xi,t, vi,t, ãi,t}i,t, price variables q̃e,0 and {wt, rft , µq,t, σq,t}t, and aggregate variables

{S̃t}t, such that

• the household variables {xi,t, vi,t, ãi,t}t, where ãi,0 =
∫ E
0
q̃e,0s

i
e,0de + H̃0,

are chosen according to the household’s decisions on (3) and (4), and the

law of motion for wealth (1), and satisfy the transversality condition (5),

• the price variables q̃e,0 and {wt, rft , µq,t, σq,t}t are determined so that

markets for labor, final goods, product lines, shares, and risk-free bonds

clear, given S̃t and initial price condition q̃n,e,0 = z̃n,e,0Q̃0,

• and the aggregate variables {S̃t}t evolve according to (21).

9We assume that the sellout to financial intermediaries is mandatory. We can relax the
assumption and allow households by paying transaction costs ι to hold risky stocks of the
firms not managed by them.
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5 Stationary Distribution of Households’ Wealth

In this model, stationary wealth distributions are derived analytically for

each type of household. We show below that the wealth distributions of

entrepreneurs, innate workers, and former entrepreneurs are all Pareto distributions.

We also discuss that the wealth, income, and consumption distributions of

all households follow a Pareto distribution at the upper tail, whose Pareto

exponent coincides with that of the wealth distribution of entrepreneurs.

5.1 Wealth distribution of entrepreneurs

An entrepreneur’s wealth ãe,t, if he does not die, evolves as

d ln ãe,t =

(
µae − g − σ2

ae

2

)
dt+ σaedBi,t.

We omit the time subscript for variables that are constant in the steady state.

The initial wealth of entrepreneurs of age t′ in period t is ht−t′ . The

logarithm of the wealth of the entrepreneurs alive at t, relative to their initial

wealth, is given by ln(ae,t/ht−t′) = ln ãe,t − (ln h̃t−t′ − gt′), which follows a

normal distribution with mean (µae − σ2
ae/2)t

′ and variance σ2
aet

′.

We obtain the wealth distribution of entrepreneurs by combining the above

property with the assumption of the constant probability of death. The

probability density function of the log wealth of entrepreneurs, fe(ln ã), becomes

a double-exponential distribution (see Appendix D for the derivations in this

section).10

fe(ln ã) =




fe1(ln ã) ≡ (ν+pf )E

θ
exp

(
−ψ1(ln ã− ln h̃)

)
if ã ≥ h̃,

fe2(ln ã) ≡ (ν+pf )E

θ
exp

(
ψ2(ln ã− ln h̃)

)
otherwise,

10We normalize the probability density functions of entrepreneurs, innate workers, and
former entrepreneurs, namely fe(ln ã), fw(ln ã), and ff (ln ã), respectively, such that

∫ ∞

−∞

{fe(ln ã) + fw(ln ã) + ff (ln ã)} d(ln ã) = 1.
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where

ψ1 ≡
µae − g − σ2

ae/2

σ2
ae

(
θ

µae − g − σ2
ae/2

− 1

)
, ψ2 ≡

µae − g − σ2
ae/2

σ2
ae

(
θ

µae − g − σ2
ae/2

+ 1

)
,

θ ≡
√

2(ν + pf )σ2
ae + (µae − g − σ2

ae/2)
2.

This result shows that the wealth distribution of entrepreneurs follows a double-Pareto

distribution (Reed, 2001; Benhabib et al., 2016; Toda, 2014), whose Pareto

exponent at the upper tail is ψ1.

5.2 Wealth distribution of innate workers

A worker’s wealth ãℓ,t, if he does not die, evolves as

d ln ãℓ,t = (µaℓ − g) dt.

Under the wealth process, the probability density function of innate workers,

fw(ln ã), becomes

fw(ln ã) =




(ν − (ν + pf )E)

1
|µaℓ−g|

exp
(
− ν
µaℓ−g

(ln ã− ln h̃)
)

if ln ã−ln h̃
µaℓ−g

≥ 0,

0 otherwise.

The result shows that the log wealth of innate workers follows an exponential

distribution, which implies that their wealth levels follow a Pareto distribution.

With the parameter values in the numerical analysis, the trend growth of

workers’ wealth is close to the trend growth of the economy, that is, µaℓ ≈ g.

Then, the detrended wealth of innate workers is concentrated at the level

around h̃.

5.3 Wealth distribution of former entrepreneurs

The wealth distribution of former entrepreneurs is determined by the entrepreneurs’

wealth distribution, the Poisson rate pf with which each entrepreneur leaves

the firm, and the wealth process after the entrepreneur becomes a worker. We

can analytically derive the stationary wealth distribution of former entrepreneurs.
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Here, for brevity, we only report the probability density function of former

entrepreneurs, ff (ln ã), for the case µaℓ ≥ g:

ff (ln ã) =





pf
ν−ψ1(µaℓ−g)

fe1(ln ã)−
(

1
ν−ψ1(µaℓ−g)

− 1
ν+ψ2(µaℓ−g)

)
pffe1(ln h̃)

× exp
(
− ν
µaℓ−g

(ln ã− ln h̃)
)

if ln ã ≥ ln h̃,

pf
ν+ψ2(µaℓ−g)

fe2(ln ã) otherwise.

The probability density function for the region ã ≥ h̃ consists of two exponential

terms. As the wealth level increases, the second exponential term, which

represents the innate workers’ distribution, declines faster than the first term,

the entrepreneurs’ distribution. Therefore, the Pareto exponent of the former

entrepreneurs’ wealth distribution becomes the same as that of entrepreneurs

in the tail of the distribution (the same result applies to the case µaℓ < g).

5.4 Pareto exponents of the wealth and income distributions

for all households

The distributions of entrepreneurs, innate workers, and former entrepreneurs

determine the overall wealth distribution of households. We make two remarks

on the overall distribution. First, the Pareto exponent at the upper tail of

the households’ wealth distribution is the same as that of the entrepreneurs’

wealth distribution ψ1. This is because the distribution of the smallest Pareto

exponent dominates at the upper tail as noted above (see, e.g., Gabaix, 2009).

Second, the income and consumption distributions at the upper tail also

follow the Pareto distribution with the same Pareto exponent as that of wealth

ψ1. This is because, in our model, the income and consumption of a household

are always proportional to the household’s wealth level.

6 Numerical Analysis

In this section, we numerically analyze how a reduction in the top marginal

tax rate accounts for the evolution of top incomes in recent decades. In the
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baseline experiment, we assume that an unexpected and permanent tax cut

occurs in 1970. As a robustness check, we also conduct numerical exercises

feeding the exact time path for these taxes into our model.

We choose 1970 as the year of the structural change, based on several

empirical studies suggesting that inequality began to grow after the 1970s

(see, e.g., Katz and Murphy, 1992; Piketty and Saez, 2003). Some political

scientists also point out that U.S. politics began to favor industries after the

1970s (Hacker and Pierson, 2010). Indeed, top marginal earned income tax

declined from 77% to 50% around 1970 alone (see Figure 1). This would make

entrepreneurs anticipate a subsequent cut in top earned income tax, the most

important variable in our analysis to account for the evolution of top incomes.

These factors suggest that a structural change has occurred since the 1970s.

In our model, a tax cut affects top incomes by changing entrepreneurs’

incentives to invest in risky stocks. In the tax parameter set we calibrate

below, the tax rate on risky stock τ e becomes lower after 1970 relative to

the tax rate on the risk-free asset τ f . This shift in tax structure induces

entrepreneurs to increase the share of risky stocks in their asset portfolios,

which leads to a decline in the Pareto exponent and an increase in top income

share in our model.

6.1 Tax rates

In our model, entrepreneurs’ holdings of own risky stocks correspond to the

incentive pay for executives, such as employee stock options. Thus, we set

the tax on risky stocks τ e in our model to be equal to the top marginal

earned income tax imposed on top executive pay. Meanwhile, the tax on

risk-free assets τ f captures the taxes that households bear when they hold

equities through financial intermediaries. Thus, we set the tax on risk-free

assets according to 1− τ f = (1− τ cap)(1− τ corp), where τ cap and τ corp are the

marginal tax rates for capital gains and corporate income, respectively. These

tax rates are calibrated by using the top statutory marginal federal tax rates

reported in Saez et al. (2012) (see Figure 1 and Table 1).
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Figure 1: Federal tax rates (percent)
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Note: The data are taken from Table A1 of Saez et al. (2012).

Table 1: Tax rates (percent)

Pre-1970 Post-1970
Earned income tax, τ ord 71.8 37.9
Capital gain tax, τ cap 32.3 15.0

Corporate income tax, τ corp 49.0 35.0
τ e 71.8 37.9
τ f 65.5 44.8

Notes: The values in the upper half of the table are calibrated from the top statutory

marginal federal tax rates in Figure 1, taken from Saez et al. (2012). The tax rate on risky

stocks τe is set to be equal to τord. The tax rate on risk-free assets τf is calculated by

1− (1− τ cap)(1− τ corp).

6.2 Calibration

The parameters are calibrated to the annual frequency data as in Table 2. The

first five parameter values are standard. We assume for ν that the average

length of life after a household begins working is 50 years. ϕ is set to 3.33,

implying that 30% of a firm’s sales is rent. The value of ϕ is lower than

the standard value, because our model’s treatment of entrepreneurial income

is different from the data—in our model, an entrepreneur’s income derives

mainly from the firm’s dividend, whereas in the data, executive compensation

is categorized as labor income in most situations. A lower ϕ is chosen to

take this into account. In addition, if ϕ is too high, the total value of an

entrepreneur’s risky stocks may exceed the total value of financial assets in

the economy, provided that entrepreneurs choose si,t according to (3). A low

ϕ should be chosen to avoid this.
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For pf , we assume that the average term of office of an entrepreneur or an

executive is 20 years. ℓmin is set to unity, that is, the minimum employment

level is one person. The fraction of entrepreneurs in all households is set as

E = 0.05, implying that the average employment of a firm is 20 persons. This

is consistent with the data reported in Davis et al. (2007). Under E = 0.05,

the Pareto exponent of the firm size distribution in the model is 1/(1−0.05) ≈
1.0526, which is consistent with Zipf’s law.11 Note that the Pareto exponent

of firm size does not depend on the tax rate. In our model, a tax cut affects

only the income distribution but not the firm size distribution, which we find

consistent with the data.

To calibrate firm-level volatility, we consider two cases. In Case A, we

match with the average firm-level volatility of publicly traded firms, and in

Case B, we match with that of both publicly traded and privately held firms.

We match the estimates of firm-level employment volatility in Davis et al.

(2007) with the model counterpart (ϕ−1)σz. The calibrated values are shown

in Table 2. In Cases A and B, the transaction cost of financial intermediaries

ι is calibrated to match the Pareto exponent in the pre-1970 steady state with

the 1970 observation 2.53.

To cross-check the calibration of firm-level volatility using employment

data, we compare the calibrated values with the firm’s asset value volatilities.

In our model, asset value volatility coincides with employment volatility (ϕ−
1)σz. Moskowitz and Vissing-Jorgensen (2002, Table 6) report the standard

deviation of the market equity returns of all public firms between 1953 to 1999

to be 17.0% and that of the smallest decile of public firms to be 41.1%. Several

studies report the magnitude of the idiosyncratic volatility of stocks or risky

assets owned by households. Flavin and Yamashita (2002), using the Panel

Study of Income Dynamics from 1968 to 1992, find that the standard deviation

11Note that under these parameters, for small firms, the value of an entrepreneur’s risky
stock calculated by (3) exceeds the value of his firm. To resolve this problem, we assume
that such an entrepreneur jointly runs a business with other entrepreneurs, such that the
asset value of the entrepreneurs’ risky stocks does not exceed the value of the joint firms.
We assume that the productivity shocks of the joint firms move in the same direction. A
possible reason for this assumption is that productivity shocks are caused by managerial
decisions.
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Table 2: Calibrated parameters

β Discount rate 0.03
ν Probability of death 1/50
α Capital share 0.36
δ Depreciation rate 0.06
g Steady-state growth rate 0.02
ϕ Elasticity of substitution 3.33
pf Probability of an entrepreneur quitting 1/20
ℓmin Minimum level of employment 1
E Share of entrepreneurs in households 0.05

Case A Case B
(ϕ− 1)σz Firm-level volatility of employment 25% 45%

ι Transaction costs of financial intermediaries 0.502 0.601

Notes: The values of the firm-level volatility of employment are taken from Figure 2.6 of

Davis et al. (2007). In Case A, firm-level volatility is equal to that of publicly traded firms

in the data. In Case B, firm-level volatility is equal to that of both publicly traded and

privately held firms in the data.

of stocks owned by U.S. households is 24.2%. Calvet et al. (2007) report that

the idiosyncratic volatility of assets in the portfolio of Swedish households

around 2000 is 21.1%. Fagereng et al. (2016) find that the standard deviation

of risky assets of Norwegian households in 2013 is 23.4%. In sum, the estimates

on asset value volatilities fall near the range between Cases A and B.

6.3 Computation of transition dynamics

We compute the Pareto exponent of the household’s income distribution and

the top 1% income share before and after 1970. We assume that before 1970,

the economy is in the pre-1970 steady state. In our experiment, taxes change

unexpectedly and permanently in 1970, and the economy moves toward the

post-1970 steady state.

An advantage of our model is that the dynamics of the aggregate variables

can be computed separately from the dynamics of the cross-sectional distributions.

The transition dynamics of a set of the aggregate variables, S̃t ≡ St/e
gt =
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(Ãe,t, Ãw,t, Ãf,t, H̃t, K̃t) defined in Section 4.1, are computed by a shooting

algorithm that pins down their initial values. When taxes change unexpectedly

in 1970, prices also change suddenly, which affects the wealth distribution.

We assume that while perfect risk-sharing for the unexpected change in asset

values is achieved for the risk-free bonds and human capital, it does not

work for the risky assets. Then, the wealth shares of entrepreneurs, innate

workers, and former entrepreneurs, namely Ae,1970/A1970, Aw,1970/A1970, and

Af,1970/A1970, change accordingly. The remaining initial variables, Ã1970 and

H̃1970, are determined by using the shooting algorithm (for details, see Appendix

C.1).

Next, given the transition of the aggregate variables calculated above,

we compute the variables that determine the entrepreneurs’ and workers’

wealth processes, µae,t, σae,t, and µaℓ,t. By using these variables, the transition

dynamics of the distribution can be computed by numerically solving the

Fokker–Planck equations for the wealth distributions of entrepreneurs and

workers, fe(ln ã, t) and fℓ(ln ã, t) ≡ fw(ln ã, t) + ff (ln ã, t), respectively, as

follows:12

∂fe(ln ã, t)

∂t
=−

(
µae,t −

σ2
ae,t

2
− g

)
∂fe(ln ã, t)

∂ ln ã
+
σ2
ae,t

2

∂2fe(ln ã, t)

∂(ln ã)2

− (ν + pf )fe(ln ã, t),

∂fℓ(ln ã, t)

∂t
=− (µaℓ,t − g)

∂fℓ(ln ã, t)

∂ ln ã
+ pffe(ln ã, t)− νfℓ(ln ã, t).

We impose the boundary conditions that limã→∞ fi(ln ã, t) = 0 and that the

probability density function of the wealth distribution at the lower bound

ãLB, fi(ln ãLB, t), moves linearly for 50 years between the pre-1970 and the

post-1970 steady-state values.13 Finally, we define a household’s income as

νai,t + µq,txi,tai,t + rft (1 − xi,t)ai,t. The income distribution can be computed

after the aggregate dynamics and wealth distributions are obtained.

12We use the PDE solver in MATLAB. We set 44000 mesh points to ln ã between the
lower bound ln ãLB (see footnote 13 for details) and 110 and 500 mesh points to time t
between 1970 and 2020.

13 ãLB is set to be higher than h̃ at the pre- and post-1970 steady states.
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6.4 Aggregate transition after the tax cut

Before analyzing the evolution of the income and wealth distributions, we

first look at the aggregate dynamics of the transition economy. An important

implication of the model is that a tax cut does not significantly affect capital

accumulation or the capital–output ratio of the economy. This result comes

from the property that investment in capital is financed by retained earnings.

Then, the tax change does not affect the return on stocks ((1 − τ e)di,tdt +

dqi,t)/qi,t, because qi,t in the denominator of the equation changes to offset the

effect of tax change (1− τ e) in the numerator.

Figures 2(a) and 2(b) plot the computed transitions of detrended per-capita

output and the capital–output ratio of the model economy under Cases A and

B. In the plot, per-capita output is normalized to 1, before the tax cut and

the transition for 50 years after the tax cut is shown. Although the variables

increase after the tax cut, we note that the magnitudes are quantitatively

negligible: for example, detrended per-capita output only increases by 1 percentage

point 20 years after the tax cut. Thus, the computed transition confirms our

prediction that a tax cut has almost no quantitative impacts on per-capita

output or the capital–output ratio.

Figures 2(c) and 2(d) plot the transition of prices. We observe that the

risk-free rate and detrended wage rate are almost unchanged after the tax cut.

This is another consequence of the fact that the tax cut has negligible effects

on capital accumulation in our model.

The prediction of the model that the tax change has negligible effects on

capital accumulation is in sharp contrast to previous models of the income

distribution such as Nirei and Aoki (2016), Toda (2014), and Kim (2013).

We note that the prediction is consistent with the facts in the U.S. that

the capital–output ratio has not changed significantly over the post-World

War II years; nor has the level of per-capita GDP increased above the trend

line recently. In contrast to the capital–output ratio, the value of detrended

financial asset Q̃t jumps after the tax cut, which is caused by the increase in

after-tax dividends. This mechanism is the same as the model in McGrattan

and Prescott (2005) and consistent with their interpretation on the rise in the
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equity value of U.S. firms since the 1970s.

Figures 2(e) and 2(f) show the wealth accumulation rates of entrepreneurs

and workers before and after the tax cut. Note that the gap in wealth

accumulation rates between entrepreneurs and workers significantly and permanently

widens after the tax cut. This widened gap is caused by the increased difference

in risky and risk-free returns. The key mechanism of rising inequality in our

model is this increased difference between the risky and risk-free rates after

the tax cut.

6.5 Pareto exponent and the top 1% income share

Figures 3(a) and 3(c) show the Pareto exponent of the income distribution

in the calibrated model for Cases A and B, along with the historical U.S.

Pareto exponent. While we referred to the “Pareto exponent” in the model

analysis as an asymptotic exponent in the right tail distribution, we need to fix

the tail range when we estimate the exponent with finite data. We calculate

the exponent from the slope of the complementary cumulative distribution

of household wealth Pr(ãi,t > ã) between the top 0.1% and top 1% in the

calibrated model as well as in the U.S. data. We hereafter refer to this

as an “empirical Pareto exponent.” For the model prediction, we plot the

stationary empirical Pareto exponents for the pre- and post-1970 periods and

the transition path of the empirical Pareto exponent between them.

We find that in both Cases A and B, the model traces data for the empirical

Pareto exponent well. Although ι is set to match the level of the empirical

Pareto exponent at the initial steady state, it is nontrivial that the model

matches both the level and the changes in the empirical Pareto exponent

afterward. For example, suppose that we need to set a low (high) ι to match

the empirical Pareto exponent at the initial steady state. Then, the changes

in the empirical Pareto exponent during the transition become slower (faster)

than the data because the volatility of each entrepreneur’s wealth decreases

(increases).

Figures 3(b) and 3(d) plot the top 1% income shares for Cases A and B.
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Figure 2: Response of the aggregate variables after the tax cut
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(a) Output and capital: Case A
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(b) Output and capital: Case B
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(c) Price levels: Case A
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(d) Price levels: Case B
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(e) Wealth growth rates: Case A
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(f) Wealth growth rates: Case B

Notes: Figures (a) and (b) plot detrended per-capita output (the first axis) and the

capital–output ratio (the second axis). Figures (c) and (d) plot the detrended aggregate

financial wealth value, risk-free rate, and detrended wage rate. Figures (e) and (f) plot the

wealth growth rates of an entrepreneur and a worker, µae and µaw. The horizontal axis

shows the years after the tax cut. Detrended per-capita output and prices before the tax

cut are normalized to 1.
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Figure 3: The evolution of the income and wealth distributions
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(a) Empirical Pareto exponent: Case A
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(b) Top 1% income share: Case A
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(c) Empirical Pareto exponent: Case B
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(d) Top 1% income share: Case B

Note: Data are taken from Alvaredo et al. (2013). The empirical Pareto exponent is

calculated in the range between the top 0.1% and top 1%.

Under these specifications, the model captures the trend in the top 1% share

of income after 1970, although the model’s prediction of the pre-1970 steady

state is lower in level than the data reveal. Other factors, such as rewards for

executives’ talents as argued by Gabaix and Landier (2008) and bargaining

and rent extraction by executives as emphasized by Piketty et al. (2011), may

account for this gap. Note that the top 1% income share in Case B increases

somewhat more slowly than that in Case A. This is because the firm’s volatility

becomes higher in Case B. This makes xe,t lower by (3), which results in the

lower volatility of the entrepreneur’s wealth.

In Figure 4, we plot the complementary cumulative distributions of the

household’s detrended wealth Pr(ãi,t > ã) at the pre- and post-1970 steady

states and the transition paths. We find that the wealth distribution converges
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Figure 4: Household’s wealth distributions
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(a) Case A
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(b) Case B

Notes: The figures plot the complementary cumulative distributions of a household’s wealth

Pr(ãi,t > ã) normalized by the average wealth each year. For example, “1985 (transition)”

indicates the wealth distribution in 1985 normalized by the 1985 average wealth. The figure

on the left presents the distributions for Case A, whereas the figure on the right presents

them for Case B.

to the new distribution from the low wealth region first, whereas the convergence

is slow in the high wealth region. We also find that the convergence is

somewhat faster in Case A than in Case B, similar to the computed transition

of the empirical Pareto exponent.

Gabaix et al. (2015) show that standard models with random wealth growth

cannot generate the rise in inequality as fast as that observed in the data,

unless the wealth growth process includes a high growth type. Our model

is consistent with their view. In our model, the heterogeneity in the mean

wealth growth rate between entrepreneurs and workers and the probability

of an entrepreneur becoming a worker pf generate the rapid decline in the

empirical Pareto exponent.

6.6 Gradual change in tax rates

In the benchmark cases, we assume a sudden tax change in 1970. This might

seem a too convenient assumption, because the actual tax changes were more

gradual. To check the robustness of our analysis above, we compute the
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Figure 5: The evolution of the income distribution: changing taxes
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(c) Empirical Pareto exponent: Case B
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Note: Data are taken from Alvaredo et al. (2013).

transition path under the exact time series of the tax rates. Owing to the

log utility, in which a household’s decision rule is myopic, the model economy

can be computed in the same way as before. The results are shown in Figure

5 and are similar to the benchmark cases.

6.7 Incentive pay for executives

In reality, executives obtain incentive pay such as stock options, whose value

moves in line with the firm’s performance. In our model, this is represented

by entrepreneurs holding risky stocks of their firms. Here, we discuss whether

our formulation is realistic.

Our formulation of executive pay is similar to those of Edmans et al.

(2009) and Edmans et al. (2012). These studies theoretically derive that under
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the optimal incentive scheme in a moral hazard problem, as in our model, a

proportion of the executive’s wealth, denoted by xe,t in our model, is invested

in his firm’s stocks. Moreover, Edmans et al. (2009) find evidence that an

empirical counterpart of xe,t, (23), is cross-sectionally independent of firm size.

This property is satisfied in theirs and in our models.

We can also check whether the value of xe,t in our model is quantitatively

consistent with the empirical estimate. An empirical counterpart of xe,t is

computed by

x% increase in the executive’s wealth

1% increase in firm rate of return
, (23)

because from (1),

xe,t =
d(ae,t)/ae,t

µq,tdt+ σq,tdBe,t

.

Clementi and Cooley (2009) estimate (23) from CEO compensation data in the

U.S. for 1993–2008 provided by the EXECUCOMP database. The empirical

value of (23) ranges from 1.14 to 1.24 (see Table 3). In our calibration, xe,t in

the post-1970 steady state is 1.53 for Case A and 0.99 for Case B. Therefore,

the empirical value of xe,t is between those of Case A and Case B.

Related to xe,t, Edmans et al. (2009) define and provide empirical estimates

of a wealth–performance sensitivity measure, which they refer to as BI :

BI ≡ x% increase in the CEO’s wealth

1% increase in firm rate of return
× the CEO’s wealth

the CEO’s pay
. (24)

BI is a slight modification of (23). Edmans et al. (2009) report that the

empirical BI measured in 1999 is 9.04 (Table 3). In our model, BI in the

post-1970 steady state is 12.71 for Case A and 8.45 for Case B.14 The empirical

values of BI can also be calculated from the long-run data on CEO pay by

14The model’s counterpart of BI in (24) is calculated from

d(ae,t)/ae,t
µq,tdt+ σq,tdBe,t

ae,t

νai,t + µq,txi,tai,t + rft (1− xi,t)ai,t
=

xe,t

µa,t + β + ν
.
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Table 3: Incentive elasticities

Case A Case B
xe,t (Pre-1970) 0.71 0.45
xe,t (Post-1970) 1.53 0.99
BI (Pre-1970) 8.16 5.16
BI (Post-1970) 12.71 8.45

Data

xe,t (1993–2008) 1.14–1.24
BI (1961–2005) 5.04
BI (1999) 9.04

Notes: For the definitions, see (23)–(24). The values for xe,t (1993–2008) are the estimates by

Clementi and Cooley (2009). BI (1961–2005) is computed from Figures 5 and 6 in Frydman

and Saks (2010). For BI (1999), the estimate is provided by Edmans et al. (2009).

Frydman and Saks (2010).15 Because the long-run values of BI calculated

from the data of Frydman and Saks (2010) are stable for 1961–2005, we only

show the mean in Table 3. The empirical value, 5.06, is close to our model’s

pre-1970 steady state values of BI , 8.16 for Case A and 5.16 for Case B.

There are also differences between our model and the models of Edmans

et al. (2009) and Edmans et al. (2012). In their models, a single structural

parameter, the disutility of effort, affects the proportion of an entrepreneur’s

wealth invested in his firm’s stocks. By contrast, several factors affect this

proportion in our model; for example, an increase in the volatility of firm

value decreases the proportion of an entrepreneur’s total wealth invested in

risky stocks xe,t (see (3)). This prediction is consistent with the evidence

surveyed in Frydman and Jenter (2010, Section 2.3).

6.8 Welfare analysis

To investigate how the tax change affected the welfare of households, we

calculate the utility level of an entrepreneur and an innate worker (that is, a

worker from the beginning of his life) in the pre- and post-1970 steady states.

Table 4 shows the detrended initial utility level, defined by V i(h̃,S), under

Cases A and B (for the details of the derivations, see Appendix E).

In both cases, the utility level of an entrepreneur becomes higher in the

15The values are calculated by dividing the “dollar change in wealth for a 1% increase in
the firm’s rate of return” by “total compensation,” both of which are taken from Figures 5
and 6 of Frydman and Saks (2010).

37



Table 4: Welfare analysis
Case A

V e(h̃,S) V w(h̃,S)
Pre-1970 8.66 7.21
Post-1970 12.01 6.74

Case B

V e(h̃,S) V w(h̃,S)
Pre-1970 7.73 6.25
Post-1970 10.96 5.96

Notes: The table calculates the detrended initial utility level of an entrepreneur and an

innate worker at the pre- and post-1970 steady states. The detrended initial utility level is

defined by V i(h̃,S). The table on the left presents these calculations for Case A, whereas

the table on the right presents them for Case B.

post-1970 steady state, whereas that of an innate worker becomes lower. These

results are consistent with the view that the rich have benefited from the tax

change at the expense of the poor.

7 Conclusion

We proposed a model of wealth and income inequalities that explains both

Zipf’s law of firms and Pareto’s law of incomes from the idiosyncratic productivity

shocks of firms. Empirical studies show that the Pareto exponent of income

varies over time, whereas Zipf’s law of firm size is stable. This paper consistently

explains these distributions with an analytically tractable model. We derive

closed-form expressions for the stationary distributions of firm size and individual

income. The transition dynamics of those distributions are also explicitly

derived and are then used for the numerical analysis.

Our model features an entrepreneur who can invest in his own firm as well

as in risk-free assets. The entrepreneur incurs a substantial transaction cost

if he diversifies the risk in his portfolio returns. When a tax on risky returns

is reduced, the entrepreneur increases the share of his own firm’s stock in his

portfolio. This, in turn, increases the variance of his portfolio returns, resulting

in a wider dispersion of wealth among entrepreneurs.

By calibrating the model, we analyzed the extent to which changes in tax

rates account for the recent evolution of top incomes in the U.S. We find

that the model matches the decline in the Pareto exponent of the income
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distribution and the trend in the top 1% income share.

There remain some discrepancies between the model and data. First, the

model’s prediction of the top 1% income share is somewhat lower than that

seen in the data. Second, we did not attempt to account for top wealth

shares. Note that in our model, the tail exponent of the wealth distribution is

identical to that of the income distribution. This may seem counterfactual at

first. However, it is important to note that the total wealth of a household in

our model includes both financial and human assets. A quantitative analysis

of the wealth distribution needs to be left for future research, which would

appropriately take into account human wealth in the estimation.
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A Derivations of the household problem

This appendix shows the derivations of the household problem in Section 2.1.

As shown in Section 4.1, the aggregate dynamics of the model are described

by St, whose evolution can be written as

dSt = µS(St)dt.

From Ito’s formula, V i(ai,t,St) can be rewritten as follows:

dV i(ai,t,St) =
∂V i

t

∂ai,t
dai,t +

1

2

∂2V i
t

∂a2i,t
(dai,t)

2 +
∂V i

t

∂St
· dSt

+
(
V ℓ(ai,t,St)− V i(ai,t,St)

)
dJi,t,

where Ji,t is the Poisson jump process that describes the probability of an

entrepreneur leaving his firm and becoming a worker.

dJi,t =




0 with probability 1− pfdt

1 with probability pfdt.

Thus,

Et[dV
i
t ]

dt
= µa,tai,t

∂V i
t

∂ai,t
+

(σa,tai,t)
2

2

∂2V i
t

∂a2i,t
+ µ′

S
(St) ·

∂V i
t

∂St
+ pf

(
V ℓ
t − V i

t

)
,

where µ′
S
(St) is the transposed vector of µS(St). By substituting into (2), we

obtain a Hamilton–Jacobi–Bellman equation as follows:

0 = max
ci,t,xi,t

ln ci,t − (β + ν)V i
t + µa,tai,t

∂V i
t

∂ai,t
+

(σa,tai,t)
2

2

∂2V i
t

∂a2i,t

+ µ′
S
(St) ·

∂V i
t

∂St
+ pf

(
V ℓ
t − V i

t

)
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= max
ci,t,xi,t

ln ci,t − (β + ν)V i
t +

σ2
q,t

2
x2i,ta

2
i,t

∂2V i
t

∂a2i,t

+ ((ν + µq,t)xi,tai,t + (ν + rft )(1− xi,t)ai,t − ci,t)
∂V i

t

∂ai,t

+ µ′
S
(St) ·

∂V i
t

∂St
+ pf

(
V ℓ
t − V i

t

)
. (25)

The FOCs with respect to ci,t and xi,t are summarized as follows:

c−1
i,t =

∂V i
t

∂ai,t
, (26)

xi,t =




− ∂V i

t /∂ai,t

(∂2V i
t /∂a

2
i,t)ai,t

µq,t−r
f
t

σ2
q,t

, if i = e,

0, otherwise.
(27)

Furthermore, (25) has to satisfy the transversality condition (5).

Following Merton (1969) and Merton (1971), this problem is solved by the

following value function and linear policy functions:

V i
t = Bi

t ln ai,t +H i(St), (28)

ci,t = vi,tai,t,

qi,tsi,t = xi,tai,t,

bi,t = (1− xi,t)ai,t − ht.

We obtain this solution by guess–and–verify. The FOC (26) becomes

(vi,t)
−1 = Bi

t.

Condition (27) is rewritten as

xi,t =





µq,t−r
f
t

σ2
q,t

, if i = e,

0, otherwise.

Substituting these results into (25), we find that

vi,t =β + ν.
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B Derivation of the firm problem

B.1 FOCs of the firm problem

This appendix shows the derivations of the firm problem described in Section

2.2.2. The value of a product line qn,e,t = q(kn,e,t, zn,e,t,St) is a function of

kn,e,t, zn,e,t, and the aggregate dynamics St (see Appendix A). By applying

Ito’s formula to qn,e,t, we obtain

dq(kn,e,t, zn,e,t,St) =

(
∂qn,e,t
∂zn,e,t

dzn,e,t +
∂qn,e,t
∂kn,e,t

dkn,e,t +
∂qn,e,t
∂St

· dSt
)
+

1

2

∂2qn,e,t
∂z2n,e,t

(dzn,e,t)
2

=

(
µz
∂qn,e,t
∂zn,e,t

+
1

2
σ2
z

∂2qn,e,t
∂z2n,e,t

)
dt+

∂qn,e,t
∂kn,e,t

dkn,e,t

+ µ′
S
(St) ·

∂qn,e,t
∂St

+ σz
∂qn,e,t
∂zn,e,t

dBe,t.

From the above equation, the FOCs of (7) for ℓn,e,t and dkn,e,t are

(1− τ f )(1− ι) =
∂qn,e,t
∂kn,e,t

,

wt =
∂pn,e,tyn,e,t
∂ℓn,e,t

.

By the envelope theorem,

rft
∂qn,e,t
∂kn,e,t

dt =(1− τ f )(1− ι)

(
∂pn,e,tyn,e,t
∂kn,e,t

dt− δdt

)
.

By rearranging the equation, we obtain

rft =
∂pn,e,tyn,e,t
∂kn,e,t

− δ.

B.2 Firm-side variables

This appendix briefly explains the derivations of the firm-side variables described

in Section 3.1 and used in Section 4.1. Our goal here is to rewrite the firm-side

variables as the functions ofMPKt and exogenous variables. The basic strategy

is as follows:
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1. From FOCs (8) and (9), we rewrite kn,e,t and ℓn,e,t as the functions of

MPKt, wt, Yt, and exogenous variables.

From (9),

wt = (1− α)(ϕ− 1)/ϕ Y
1−(ϕ−1)/ϕ
t z

(ϕ−1)/ϕ
n,e,t k

α(ϕ−1)/ϕ
n,e,t ℓ

(1−α)(ϕ−1)/ϕ−1
n,e,t .

Rewriting this,

ℓn,e,t =

(
(1− α)(ϕ− 1)/ϕ

wt
Y

1−(ϕ−1)/ϕ
t z

(ϕ−1)/ϕ
n,e,t k

α(ϕ−1)/ϕ
n,e,t

) 1
1−(1−α)(ϕ−1)/ϕ

.

(29)

On the other hand, from (8),

MPKt = α(ϕ− 1)/ϕ Y
1−(ϕ−1)/ϕ
t z

(ϕ−1)/ϕ
n,e,t k

α(ϕ−1)/ϕ−1
n,e,t ℓ

(1−α)(ϕ−1)/ϕ
n,e,t . (30)

By substituting (29) into (30) and rearranging,

k
α(ϕ−1)/ϕ

1−(1−α)(ϕ−1)/ϕ

n,e,t =

(
α(ϕ− 1)/ϕ

MPKt
Y

1−(ϕ−1)/ϕ
t

) α(ϕ−1)/ϕ
1−(ϕ−1)/ϕ

×
(
(1− α)(ϕ− 1)/ϕ

wt
Y

1−(ϕ−1)/ϕ
t

) α(ϕ−1)/ϕ(1−α)(ϕ−1)/ϕ
(1−(ϕ−1)/ϕ)(1−(1−α)(ϕ−1)/ϕ)

z
η

α(ϕ−1)/ϕ
1−(ϕ−1)/ϕ

n,e,t , (31)

where η ≡ (ϕ−1)/ϕ
1−(1−α)(ϕ−1)/ϕ

. Substituting (31) into (29),

ℓn,e,t =

(
α(ϕ− 1)/ϕ

MPKt
Y

1−(ϕ−1)/ϕ
t

) α(ϕ−1)/ϕ
1−(ϕ−1)/ϕ

×
(
(1− α)(ϕ− 1)/ϕ

wt
Y

1−(ϕ−1)/ϕ
t

) 1−α(ϕ−1)/ϕ
1−(ϕ−1)/ϕ

zϕ−1
n,e,t (32)

2. By using the labor market condition (11), we remove wt from these

equations.

47



By substituting (32) into the labor market condition (11) and rearranging,

(
α(ϕ− 1)/ϕ

MPKt
Y

1−(ϕ−1)/ϕ
t

) α(ϕ−1)/ϕ
1−(ϕ−1)/ϕ

×
(
(1− α)(ϕ− 1)/ϕ

wt
Y

1−(ϕ−1)/ϕ
t

) 1−α(ϕ−1)/ϕ
1−(ϕ−1)/ϕ

=
1

E

{
zϕ−1
n,e,t

} , (33)

or,

(
(1− α)(ϕ− 1)/ϕ

wt
Y

1−(ϕ−1)/ϕ
t

) (1−α)(ϕ−1)/ϕ
1−(ϕ−1)/ϕ

=





(
α(ϕ− 1)/ϕ

MPKt
Y

1−(ϕ−1)/ϕ
t

)−α(ϕ−1)/ϕ
1−(ϕ−1)/ϕ 1

E

{
zϕ−1
n,e,t

}





(1−α)(ϕ−1)/ϕ
1−α(ϕ−1)/ϕ

. (34)

Here, E is the operator of the cross-sectional average of all firms. Then,

substituting (33) into (32),

ℓn,e,t =


 zϕ−1

n,e,t

E

{
zϕ−1
n,e,t

}


 . (35)

Rewriting (31),

kn,e,t =

(
α(ϕ− 1)/ϕ

MPKt
Y

1−(ϕ−1)/ϕ
t

) 1−(1−α)(ϕ−1)/ϕ
1−(ϕ−1)/ϕ

×
(
(1− α)(ϕ− 1)/ϕ

wt
Y

1−(ϕ−1)/ϕ
t

) (1−α)(ϕ−1)/ϕ
1−(ϕ−1)/ϕ

zϕ−1
n,e,t. (36)

Substituting (34) into (36),

kn,e,t =

(
α(ϕ− 1)/ϕ

MPKt
Y

1−(ϕ−1)/ϕ
t

) 1
1−α(ϕ−1)/ϕ

×




zϕ−1
n,e,t

E

{
zϕ−1
n,e,t

} (1−α)(ϕ−1)/ϕ
1−α(ϕ−1)/ϕ


 . (37)

3. By using the results, the production function, and the aggregate good
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function (10), we remove Yt from the equations of the firm-side variables.

Substituting (35) and (37) into yn,e,t = zn,e,tk
α
n,e,tℓ

1−α
n,e,t and rearranging,

yn,e,t =

(
α(ϕ− 1)/ϕ

MPKt
Y

1−(ϕ−1)/ϕ
t

) α
1−α(ϕ−1)/ϕ

×




z
1

1−(ϕ−1)/ϕ

n,e,t

E

{
zϕ−1
n,e,t

} (1−α)
1−α(ϕ−1)/ϕ


 .

Substituting this equation into Yt =
(∫ E

0

∫ n̄(e)
0

y
(ϕ−1)/ϕ
n,e,t dnde

) 1
(ϕ−1)/ϕ

,

Y
1−(ϕ−1)/ϕ
t =

(
α(ϕ− 1)/ϕ

MPKt

)α(1−(ϕ−1)/ϕ)
1−α

× E

{
zϕ−1
n,e,t

}(1−(ϕ−1)/ϕ)[ 1−α(ϕ−1)/ϕ
(1−α)(ϕ−1)/ϕ

−1]
. (38)

Substituting (38) into (37),

kn,e,t =

(
α(ϕ− 1)/ϕ

MPKt

) 1
1−α

E

{
zϕ−1
n,e,t

} 1
ϕ−1

1
1−α


 zϕ−1

n,e,t

E

{
zϕ−1
n,e,t

}




=

(
α(ϕ− 1)/ϕ

MPKt

) 1
1−α

E

{
zϕ−1
n,e,t

} 1
ϕ−1

1
1−α

ℓn,e,t. (39)

Substituting (35) and (39) into (38),

pn,e,tyn,e,t = Y
1−(ϕ−1)/ϕ
t y

(ϕ−1)/ϕ
n,e,t (40)

=

(
α(ϕ− 1)/ϕ

MPKt

) α
1−α

E

{
zϕ−1
n,e,t

} 1
ϕ−1

1
1−α


 zϕ−1

n,e,t

E

{
zϕ−1
n,e,t

}




=

(
α(ϕ− 1)/ϕ

MPKt

) α
1−α

E

{
zϕ−1
n,e,t

} 1
ϕ−1

1
1−α

ℓn,e,t. (41)
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Rewriting (35),

ℓn,e,t = ℓt z
ϕ−1
n,e,t, where ℓt ≡


 1

E

{
zϕ−1
n,e,t

}


 .

Rewriting (41),

pn,e,tyn,e,t = pytℓt z
ϕ−1
n,e,t, where pyt ≡

(
α(ϕ− 1)/ϕ

MPKt

) α
1−α

E

{
zϕ−1
n,e,t

} 1
ϕ−1

1
1−α

.

Rewriting (39),

kn,e,t = ktℓtz
ϕ−1
n,e,t, where kt ≡

(
α(ϕ− 1)/ϕ

MPKt
E

{
zϕ−1
n,e,t

} 1
ϕ−1

) 1
1−α

. (42)

We obtain ℓn,e,t, pn,e,tyn,e,t, and kn,e,t (12)–(15). To compute ddn,e,t, we first

need to compute dkn,e,t.

4. We compute dkn,e,t as follows. From (42),

dkn,e,t = d(ktℓtz
ϕ−1
n,e,t)

=
dktℓt
dt

zϕ−1
n,e,tdt+ ktℓt dz

ϕ−1
n,e,t.

Note that

dzϕ−1
n,e,t =

(
(ϕ− 1)

(
µz −

σ2
z

2

)
+

(ϕ− 1)2σ2
z

2

)
zϕ−1
n,e,tdt+ (ϕ− 1)σzz

ϕ−1
n,e,tdBe,t.

Then,

dkn,e,t = d(ktℓtz
ϕ−1
n,e,t)

=
dktℓt
dt

zϕ−1
n,e,tdt+ ktℓt dz

ϕ−1
n,e,t

= kn,e,t {µk,tdt+ (ϕ− 1)σzdBe,t} .
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Here,

µk,t ≡g −
1

1− α

drft /dt

MPKt
and g ≡

{(
µz −

σ2
z

2

)
+ (ϕ− 1)

σ2
z

2

}
/(1− α).

5. We obtain ddn,e,t (13) by substituting these results into the following

relationship:

ddn,e,t =(pn,e,tyn,e,t − wtℓn,e,t − δkn,e,t)dt− dkn,e,t

=(1− (1− α)(ϕ− 1)/ϕ)pn,e,tyn,e,tdt− δkn,e,tdt− dkn,e,t.

Then, ddn,e,t is rewritten as follows:

ddn,e,t = dtℓtz
ϕ−1
n,e,tdt− ktℓtz

ϕ−1
n,e,t(ϕ− 1)σzdBe,t,

where dt ≡ (1− (1− α)(ϕ− 1)/ϕ)pyt − (δ + µk,t) kt.

We obtain qn,e,t (16) through the following steps. Here, we allow taxes to

change for the numerical analysis and add time subscript t to take into account

tax changes.

6. By multiplying (6) by e−
∫ u
t rfs ds and integrating,16 we obtain

qn,e,t =

∫ ∞

t
Et

[
(1− τ fu )(1− ι)dn,e,ue

−
∫ u
t rfs ds

]
du

=

∫ ∞

t

(1− τ fu )(1− ι)e−
∫ u
t rfs ds

Et [dn,e,u] du.

16The Ito process version of integration by parts

∫ T

t

XsdYs = XtYt −XtYt −
∫ T

t

YsdXs −
∫ T

t

dXsdYs

is used here. Define ∆t,u ≡ e−
∫

u

t
rfs ds. Then,

∫ ∞

t

∆t,udqn,e,u = qn,e,u∆t,u |∞t −
∫ ∞

t

qn,e,u(−rfu)∆t,udu.
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7. Et[dn,e,u] in the above equation is further computed as follows:

Et[dn,e,u] =duℓu Et[z
ϕ−1
n,e,u]

=dtℓt
duℓu

dtℓt
× exp

{∫ u

t

(
(ϕ− 1)

(
µz −

σ2
z

2

)
+

(ϕ− 1)2σ2
z

2

)
ds

}
· zϕ−1

n,e,t

=dtℓtz
ϕ−1
n,e,t exp

{∫ u

t

(
d ln(dsℓs)

ds
+ (ϕ− 1)

(
µz −

σ2
z

2

)
+

(ϕ− 1)2σ2
z

2

)
ds

}

=dtℓtz
ϕ−1
n,e,t exp

{∫ u

t

µd,sds

}
, where µd,t ≡

d ln dt
dt

.

By using this equation, we obtain (16):

qn,e,t =qtℓtz
ϕ−1
n,e,t, where qt ≡ dt

∫ ∞

t

(1− τ fu )(1− ι) exp

{
−
∫ u

t

(rfs − µd,s)ds

}
du.

Note that if (rft − µd,t) and taxes are constant as in the steady state,∫∞

t
exp

{
−
∫ u
t
(rfs − µd,s)ds

}
du = 1/(rf − g) and

qe,t =
(1− τ f )(1− ι)de,t

rf − g
.

From the above results, we show the following properties that are used in

Section 4.1.

1. The aggregate detrended dividend D̃t is obtained by aggregating dn,e,tdt

(13) and detrending by egt,

D̃t =(1− (1− α)(ϕ− 1)/ϕ)Ỹt − (δ + g)K̃t −
dK̃t

dt
.

Here, we use the property

1

1− α

drft /dt

MPKt
=
dK̃t

dt

/
K̃t.

2. Using the above relations, the return on a risky stock of firm e, {(1− τ et )de,tdt+ dqe,t} /qe,t,
is rewritten as the function of aggregate variables and exogenous shocks.
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First note that for each product line,

dqn,e,t =qn,e,t
d ln(dtℓt)

dt
dt+ qn,e,t

dzϕ−1
n,e,t

zϕ−1
n,e,t

+ qn,e,t



− (1− τ ft )(1− ι)

∫∞

t
(1− τ fu )(1− ι) exp

{
−
∫ u
t
(rfs − µd,s)ds

}
du

+
(rft − µd,t)

∫∞

t
(1− τ fu )(1− ι) exp

{
−
∫ u
t
rfs − µd,s)ds

}
du

∫∞

t
(1− τ fu )(1− ι) exp

{
−
∫ u
t
(rfs − µd,s)ds

}
du



 dt

=
{
−(1− τ ft )(1− ι)dn,e,t + rft qn,e,t

}
dt+ qn,e,t(ϕ− 1)σzdBe,t.

Integrating dn,e,t (13), qn,e,t (16), and the above relation, over the product

lines of firm e, and substituting the results into the return on a risky stock

{(1− τ et )de,tdt+ dqe,t} /qe,t = µq,tdt+ σq,tdBe,t, we obtain

µq,t =



r

f
t +

(1− τ et )− (1− τ ft )(1− ι)
∫∞

t
(1− τ fu )(1− ι) exp

{
−
∫ u
t
(rfs − µd,s)ds

}
du



 ,

σq,t =(ϕ− 1)σz

×



1− K̃t

D̃t

(1− τ et )∫∞

t
(1− τ fu )(1− ι) exp

{
−
∫ u
t
(rfs − µd,s)ds

}
du



 .

In order to compute the return on risky stocks from aggregate variables

and exogenoush shocks, we need to know the value of∫∞

t
(1− τ fu )(1− ι) exp

{
−
∫ u
t
(rfs − µd,s)ds

}
du. We calculate the value as

follows. Integrating (16), we obtain

∫ ∞

t

(1− τ fu )(1− ι) exp

{
−
∫ u

t

(rfs − µd,s)ds

}
du =

Qt

Dt

.
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C Details of the aggregate dynamics

C.1 Shooting algorithm

The initial values of aggregate total and human capital, Ã1970 and H̃1970, are

determined by using the shooting algorithm through the following steps:

1. Set H̃A1970 ≡ H̃1970/Ã1970. Further, set the upper and lower bounds of

H̃A1970, H̃AH , and H̃AL.

(a) Set Ã1970. In addition, set the upper and lower bounds of Ãt, ÃH

and ÃL.

(b) Compute the dynamics of the aggregate variables as explained in

Section 4.1. If the chosen path is above the saddle path, then adjust

Ã1970 down. If the chosen path is below the saddle path, then adjust

Ã1970 up.

(c) By repeating the procedure, we obtain an appropriate Ã1970.

2. Find year T where the distance of (K̃T , C̃T ) is closest to the post-1970

steady state-values, (K̃∗, C̃∗).

3. Compute H̃AT . If the H̃AT is above the post-1970 steady-state value,

then adjust H̃A1970 down. Otherwise, adjust H̃A1970 up.

4. By repeating the procedure, we obtain an appropriate H̃A1970.

Note that since C̃t = vi,tÃt, the above procedure is similar to the shooting

algorithm used in standard growth models. To compute the variables used

below, we assume that after time T ∗, when the dynamics of Kt and Ct are

the closest to the post-1970 steady state, the economy switches to that steady

state.
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D Derivations of the household wealth distributions

in the steady state

This appendix shows the derivations of the household wealth distributions

described in Section 5.

D.1 Wealth distribution of entrepreneurs

The discussion in Section 5.1 indicates that the probability density function

of entrepreneurs aged t′ with a detrended log total wealth level of ln ãi is

fe(ln ãi|t′) =
1√

2πσ2
aet

′
exp

(
−(ln ãi − (ln h̃+ (µae − g − σ2

ae/2)t
′))2

2σ2
aet

′

)
.

The probability density function of entrepreneurs whose age is t′ is

fe(t
′) =((ν + pf )E) exp (−(ν + pf )t

′) .

By combining them, we can calculate the probability density function of

the entrepreneurs’ wealth distribution, fe(ln ãi), by

fe(ln ãi) =

∫ ∞

0

dt′ fe(t
′)fe(ln ãi|t′).

To derive fe(ln ãi) in Section 5.1, we apply the following formula to the above

equation:

∫ ∞

0

exp(−at− b2/t)/
√
tdt =

√
π/a exp(−2|b|

√
a), for a > 0.

D.2 Wealth distribution of innate workers

We calculate the wealth distribution of innate workers as follows:

fw(ln ãi) =fw(t
′)fw(ln ãi|t′)

∣∣∣∣
dt′

d ln ãi

∣∣∣∣

= (ν − (ν + pf )E) exp(−νt′) · 1(ln ãi = ln h̃+ (µaℓ − g)t′) · 1

|µaℓ − g|
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=




(ν − (ν + pf )E)

1
|µaℓ−g|

exp
(
− ν
µaℓ−g

(ln ãi − ln h̃)
)

if ln ãi−ln h̃
µaℓ−g

≥ 0,

0 otherwise.

Note that 1(ln ãi = ln h̃ + (µaℓ − g)t′) is an indicator function that takes 1 if

ln ãi = ln h̃+ (µaℓ − g)t′) and 0 otherwise.

D.3 Wealth distribution of former entrepreneurs

We derive the wealth distribution of former entrepreneurs as follows. Let

t′m ≡ (ln ãi − ln h̃)/(µaℓ − g). First, we consider the case where µaℓ ≥ g. If

ln ãi ≥ ln h̃, then

ff (ln ãi) =

∫ t′m

0

dt′ pffe1(ln ãi − (µaℓ − g)t′)× exp(−νt′)

+

∫ ∞

t′m

dt′ pffe2(ln ãi − (µaℓ − g)t′)× exp(−νt′)

=

[ −pf
ν − ψ1(µaℓ − g)

fe1(ln ãi − (µaℓ − g)t′)× exp(−νt′)
]t′m

0

+

[ −pf
ν + ψ2(µaℓ − g)

fe2(ln ãi − (µaℓ − g)t′)× exp(−νt′)
]∞

t′m

=
pf

ν − ψ1(µaℓ − g)
{−fe1(ln ãi − (µaℓ − g)t′m)× exp(−νt′m) + fe1(ln ãi)}

+
pf

ν + ψ2(µaℓ − g)
{−0 + fe2(ln ãi − (µaℓ − g)t′m)× exp(−νt′m)} .

By substituting the following relations into the above equation, ln ãi − (µaℓ −
g)t′m = ln h̃, fe1(ln h̃) = fe2(ln h̃), and t

′
m = (ln ãi − ln h̃)/(µaℓ − g), we obtain,

ff (ln ãi) =
pf

ν − ψ1(µaℓ − g)
fe1(ln ãi)

−
(

1

ν − ψ1(µaℓ − g)
− 1

ν + ψ2(µaℓ − g)

)
pffe1(ln h̃)

× exp

(
− ν

µaℓ − g
(ln ãi − ln h̃)

)
.
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If ln ãi < ln h̃,

ff (ln ãi) =

∫ ∞

0

dt′pffe2(ln ãi − (µaℓ − g)t′)× exp(−νt′)

=
pf

ν + ψ2(µaℓ − g)
fe2(ln ãi).

Next, we consider the case where µaℓ < g. If ln ãi ≥ ln h̃, then

ff (ln ãi) =

∫ ∞

0

dt′pffe1(ln ãi − (µaℓ − g)t′)× exp(−νt′)

=
pf

ν − ψ1(µaℓ − g)
fe1(ln ãi).

If ln ãi < ln h̃,

ff (ln ãi) =

∫ t′m

0

dt′pffe2(ln ãi − (µaℓ − g)t′)× exp(−νt′)

+

∫ ∞

t′m

dtpffe1(ln ãi − (µaℓ − g)t′)× exp(−νt′)

=
pf

ν + ψ2(µaℓ − g)
fe2(ln ãi)

−
(

1

ν + ψ2(µaℓ − g)
− 1

ν − ψ1(µaℓ − g)

)
pffe1(ln h̃)

× exp

(
− ν

µaℓ − g
(ln ãi − ln h̃)

)
.

E Details on the welfare analysis

In this appendix, we calculate the ex ante utilities of an entrepreneur and a

worker in the steady state, which were used in Section 6.8. The value function

is written as follows:

V i(ai,S) = Bi
t ln ai +H i(S). (43)

We then derive the utility (value function) of a worker V w(ai,S). By substituting

(3) and (4) into (25) and rearranging, we obtain Hw(S) in (43) in the steady
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state as follows:

Hw(S) =
1

β + ν

[
ln(β + ν) +

rf − β

β + ν

]
.

By using this equation, the value function of a worker in the steady state,

whose total wealth is ai, can be calculated by

V w(ai,S) =
ln ai
β + ν

+Hw(S).

Next, from the above results, we derive the utility (value function) of an

entrepreneur. From (25), we obtainHe(S) in (43) in the steady state as follows:

He(S) =
1

β + ν + pf

[
pfHw(S) + ln(β + ν) +

rf − β + (µq − rf )xe/2

β + ν

]
.

The value function of an entrepreneur in the steady state, whose total wealth

is ai, can be calculated by

V e(ai,S) =
ln ai
β + ν

+He(S).

Section 6.8 calculates the detrended utility level defined by

V i(h̃,S) =
ln h̃

β + ν
+H i(S).
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