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1 Introduction

Recent empirical analyses of over-the-counter (OTC) markets point to a high level

of heterogeneity among intermediaries with respect to transaction frequency, terms

of trade, and inventories. 1 Some intermediaries appear to be central in the network

of trades: They trade very often, and hold large and volatile inventories. Moreover,

they face systematically different terms of trade. In the corporate bond market, for

example, central intermediaries earn higher markups compared to peripheral inter-

mediaries. 2 On the other hand, central intermediaries in the market for asset-backed

securities earn lower markups. 3 In this paper, I provide a theoretical model that

captures the economic incentives of intermediaries which give rise to these empirical

trading patterns.

More precisely, I consider an infinite horizon dynamic model, in the spirit of Duffie,

Gârleanu, and Pedersen (2005), in which investors meet in pairs to trade an asset. I go

beyond the literature by considering investors who can differ in their search intensities,

time-varying hedging needs, and asset holdings. I provide an analytical characteriza-

tion of the steady state equilibrium that includes the distribution of asset holdings,

bilateral trade quantities, and prices. The rich heterogeneity in the model allows me

to reproduce the observed trading patterns in OTC markets, and, therefore, provides

a natural laboratory for policy analysis. In a special case of my model, I show that, in

markets where central intermediaries earn higher markups, the further concentration

of intermediation activity in the hands of these central intermediaries is beneficial for

social welfare, while it is harmful in markets where central intermediaries earn lower

markups. This suggests that the empirical relationship between markups and central-

ity helps predict the potential effects of regulatory actions, such as the Volcker rule

and MiFID I/II, which aim at reducing the concentration of intermediation activity.

In my model, intermediation arises endogenously as a result of the interaction of

investor heterogeneity and search frictions. I model heterogeneity in search intensity

1 The heterogeneity among intermediaries is documented for the corporate bond market (Hendershott,
Li, Livdan, & Schürhoff, 2015; Di Maggio, Kermani, & Song, 2016; O’Hara, Wang, & Zhou, 2016),
the municipal bond market (Li & Schürhoff, 2012), the fed funds market (Bech & Atalay, 2010),
the overnight interbank lending market (Afonso, Kovner, & Schoar, 2014), the market for asset-
backed securities (Hollifield, Neklyudov, & Spatt, 2014), and the market for credit default swaps
(Siriwardane, 2015).
2 See O’Hara et al. (2016).
3 See Hollifield et al. (2014).
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among investors as heterogeneity in the number of trading specialists with whom the

investors are endowed. Specialists randomly contact each other to trade a risky asset

on behalf of investors. Thus, in effect, investors with higher number of specialists

have higher search intensities. Conditional on a contact, both price and quantity are

determined endogenously by bilateral bargaining. Importantly, the quantity traded

is endogenous since I do not impose the usual {0, 1} holding restriction of the litera-

ture. This generalization allows me to analyze how financial intermediaries optimally

manage their inventories’ sizes and facilitate trading.

The model can rationalize the trading patterns observed in OTC markets: namely,

the heterogeneity across intermediaries in transaction frequency, terms of trade, and

inventories. I show that "fast investors" (who have higher search intensities) have

relatively stable marginal valuations that are close to the average marginal valuation

of the market, so they become endogenously central. Therefore, as observed in the

data, fast investors hold larger and more volatile inventories to provide intermediation

to slow investors. In return, these fast investors charge a speed premium as the price

of the liquidity they provide. I show that the relationship between the centrality of an

investor and the intermediation markups she earns arises as a result of two competing

effects: stable marginal valuations and speed premium. Her stable marginal valuations

tend to reduce the markups she charges, by making inventory-holding less risky. If

this is the dominant effect, we observe a negative relationship between centrality and

markups. When the speed premium is dominant, we observe a positive relationship

between centrality and markups. I find that the speed premium is dominant when

search frictions are severe or investors experience liquidity shocks very frequently.

The main analytical difficulty posed by this model is keeping track of the endoge-

nous joint distribution of asset holdings, hedging needs, and search intensities. How-

ever, using convolution methods, I show that marginal valuations, terms of trade, and

the first conditional moment of equilibrium distribution can be found in closed form

up to effective discount rates that solve a functional equation, so that the analysis

remains relatively tractable. I also provide a recursive characterization of higher or-

der conditional moments of the equilibrium distribution. Therefore, one contribution

of this paper to the literature is methodological: It drops the restrictions on asset

positions, without forgoing the investor heterogeneity or fully decentralized trading

structure. With this level of generality, my model offers a workhorse framework, which

allows for further study of positive and normative issues surrounding OTC markets.
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The main mechanism behind different trading behaviors of fast and slow investors

is that heterogeneity in search intensities leads to heterogeneous effective discount

rates at which investors discount their future expected utility flow. The effective

discount rate is lower for fast investors because they are able to transition to a future

state faster by rebalancing their holdings. This increases the importance of the option

value of search, and decreases the importance of the current utility flow from holding

the asset. In other words, low effective discount rates lead to the lower sensitivity of

marginal valuations to current asset holdings. Therefore, fast investors put less weight

on their asset positions and more weight on their cash earnings when bargaining

with counterparties. Each bilateral negotiation results in a trade size that is more

in line with the slower counterparty’s hedging need and a trade price that contains

a premium benefitting the faster counterparty. Controlling for the level of marginal

valuation, fast investors provide more intermediation due to this effective discount

rate channel. In addition, fast investors engage in higher simultaneous buying and

selling activity due to the higher intensity of matching with counterparties. However,

the effective discount rate channel leads to an increase in the intermediation level

above and beyond that direct effect. As in the data, not only do fast investors trade

more often, but they also trade larger quantities on average, in each match.

Finally, I present a special case of my model to conduct analytical comparative

statics analysis. Specifically, I analyze how a mean-preserving spread of investors’

search intensities affects the welfare. Investors trade off between the benefit of hedg-

ing and the cost of risk-bearing when they invest in the asset. An increase in the

heterogeneity in search intensities causes the further concentration of intermediation

activity in the hands of those main intermediaries and, in turn, leads to a higher

hedging benefit and a higher cost of risk-bearing at the same time. If search frictions

are severe or investors experience liquidity shocks very often, the increase in hedging

benefit becomes dominant, and we observe an increase in welfare. Otherwise, the cost

of risk-bearing becomes dominant, and we observe a decline in welfare. This result

relates the welfare impact of concentration to the sign of the relationship between

centrality and markups. In markets with a positive relationship between centrality

and markups (e.g. corporate bond market) the impact of a mean-preserving spread

of search intensities on social welfare turns out to be positive, while it is negative in

markets with a negative relationship between centrality and markups (e.g. the market

for asset-backed securities).
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These results inform the debate on the effects of a section of the Dodd-Frank Act,

often referred as "the Volcker rule," which bans proprietary trading by banks and

their affiliates. It is commonly agreed that the Volcker rule effectively reduces the

ability of intermediaries to provide liquidity. 4 Accordingly, in my model, I capture

this in a stylized way by a mean-preserving contraction in search intensities. My model

predicts different welfare impacts for different markets. While it would be beneficial

for markets with a negative relation between centrality and markups, it would be

harmful for markets with a positive relation between centrality and markups.

1.1 Related literature

A fast-growing body of literature, spurred by Duffie et al. (2005), has recently applied

search-theoretic methods to asset pricing. The early models in this literature, such as

Duffie, Gârleanu, and Pedersen (2007), Weill (2008), and Vayanos and Weill (2008), 5

studied theories of fully decentralized markets in a random search and bilateral bar-

gaining environment and used these theories to present a better understanding of the

individual and aggregate implications of distinctively non-Walrasian features of those

markets. These models maintain tractability by limiting the investors to two asset

positions, 0 or 1. Another part of this body of literature, with papers by Gârleanu

(2009) and Lagos and Rocheteau (2007, 2009), eliminates the {0, 1} restriction on

holdings by introducing a partially centralized market structure. 6 In their frame-

work, investors are able to trade in a centralized market but only infrequently and by

paying an intermediation fee to exogenously designated dealers who have continuous

access to the centralized market. These models show that investors’ decisions at the

intensive margin provide them with the flexibility to respond to changes in market

conditions.

My model is the first model that introduces ex ante heterogeneity in search inten-

sities into a fully decentralized market model with unrestricted asset holdings. To the

4 See Duffie (2012b).
5 The framework of Duffie et al. (2005) has also been adopted to analyze a number of issues, such as
market fragmentation (Miao, 2006), clientele effects (Vayanos & Wang, 2007), the congestion effect
(Afonso, 2011), commercial aircraft leasing (Gavazza, 2011), liquidity in corporate bond market (He
& Milbradt, 2014), the co-existence of illiquid and liquid markets (Praz, 2014), the liquidity spillover
between bond and CDS markets (Sambalaibat, 2015), the supply of liquid assets (Geromichalos &
Herrenbrueck, 2016), and the endogenous bargaining delays (Tsoy, 2016).
6Other papers that use the same trading framework include Lagos, Rocheteau, and Weill (2011),
Lester, Rocheteau, and Weill (2015), Pagnotta and Philippon (2015), and Randall (2015).
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best of my knowledge, in the literature, there are only two other papers with het-

erogeneity in search intensity: Neklyudov (2014) and Farboodi, Jarosch, and Shimer

(2016). Both restrict the asset positions so that they lie in {0, 1}. Relative to these

models, an important additional insight of my model is that fast investors can differ-

entiate themselves from slow investors by offering more attractive trade quantities to

their counterparties. In this way, they can charge a speed premium, and earn higher

markups depending on the level of frictions. In the {0, 1} models, fast investors typi-

cally earn lower markups because of the lower variability of their reservation values.

The combination of unrestricted holdings and fully decentralized trade is essential

for the analysis I conduct because fully decentralized trade is necessary for endogenous

intermediation, and unrestricted holdings are necessary for the study of optimal inven-

tory holding behavior. To my knowledge, there are two papers with this combination.

Afonso and Lagos (2015) study trading dynamics in the fed funds market. In their

model, banks are homogeneous in terms of preferences and search intensities. The ba-

sic insight from their model on "endogenous intermediation" applies to my model as

well. They show that banks with average asset holdings endogenously become "mid-

dlemen" of the market by buying from banks with excess reserves and selling to banks

with low reserves. Relative to Afonso and Lagos (2015), my contribution is to solve for

a stochastic steady-state with two new dimensions of heterogeneity: hedging need and

search intensity. As I explain above, these are important for explaining stylized OTC

market facts and obtaining new policy implications. Cujean and Praz (2015) study

the impact of information asymmetry between counterparties. Although their model

also features unrestricted asset holdings and a fully decentralized market structure,

my work is different from theirs in that they assume all investors have the same search

intensity. In order to analyze the microstructure of OTC markets, I introduce search

heterogeneity but keep the usual symmetric information assumption of the literature.

Then, I study the resulting topology of trading relations.

My paper is also related to the literature on the trading networks of financial

markets. Recent works include Babus and Kondor (2012), Farboodi (2014), Gof-

man (2011), Malamud and Rostek (2012), and Wang (2016). Atkeson, Eisfeldt, and

Weill (2015), Chang and Zhang (2015), Colliard and Demange (2014), Farboodi

et al. (2016), Farboodi, Jarosch, and Menzio (2016), Hugonnier, Lester, and Weill

(2014), Neklyudov (2014), Neklyudov and Sambalaibat (2015), and Shen, Wei, and

Yan (2015) develop hybrid models, which are at the intersection of the search and the
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network literatures. The special case of my model with a homogeneous search intensity

can be considered an extension of Hugonnier et al. (2014) with risk-averse investors

and unrestricted asset holdings. They show that investors with average exogenous val-

uations specialize as intermediaries. In my setup with unrestricted holdings, investors

with the "correct" amount of assets become intermediaries rather than the ones who

have the average exogenous valuation. In other words, in my setup, intermediaries

might be "low valuation-low holding," "average valuation-average holding," or "high

valuation-high holding" investors.

The remainder of the paper is organized as follows: Section 2 describes the model.

Section 3 studies the equilibrium of the model, while Section 4 assesses the empirical

implications of the endogenous asset positions in OTC markets given by the equilib-

rium. Section 5 is the conclusion.

2 Environment

Time is continuous and runs forever. I fix a probability space (Ω,F ,Pr) and a filtration

{Ft, t ≥ 0} of sub-σ-algebras satisfying the usual conditions (see Protter, 2004). There

is a continuum of investors with a total measure normalized to 1. There is one long-

lived asset in fixed supply denoted by A. This asset is traded over the counter, and

pays an expected dividend flow denoted bymD. There is also a perishable good, called

the numéraire, which all investors produce and consume.

2.1 Preferences

I borrow the specification of preferences and trading motives from Duffie et al. (2007).

Investors’ level of risk aversion and time preference rate are denoted by γ and r

respectively. The instantaneous utility function of an investor is u(ρ, a) + c, where

u(ρ, a) ≡ amD −
1

2
rγ
(
a2σ2D + 2ρaσDση

)
(1)

is the instantaneous quadratic benefit to the investor from holding a ∈ R units of

the asset when of type ρ ∈ [−1,+1], and c ∈ R denotes the net consumption of the

numéraire good. An investor’s net consumption becomes negative when she produces

the numéraire to make side payments.

This utility specification is interpreted in terms of risk aversion. Since the parameter
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mD is an expected rather than actual dividend flow, this cash flow needs to be adjusted

for risk. The term a2σ2D represents the instantaneous variance of the asset payoff where

σD is the volatility of the asset payoff. The term 2ρaσDση captures the instantaneous

covariance between the asset payoff and some background risk with volatility ση.

Therefore, the investor’s type ρ captures the instantaneous correlation between the

asset payoff and the background risk. In Appendix A, I derive this quadratic utility

specification from first principles. 7 I leave the microfoundation of this specification

to the Appendix because the reduced-form imparts the main intuitions without the

burden of derivations.

Importantly, the correlation between the asset payoff and the background risk is

heterogeneous across investors, creating the gains from trade. In the context of differ-

ent markets, this heterogeneity can be interpreted in different ways such as hedging

demands or liquidity needs. In the case of a credit derivatives market, for example, the

correlation captures the exposure to credit risk. If a bank’s exposure to the credit risk

of a certain bond or loan is high, the correlation between the bank’s income and the

payoff of the derivative written on that specific bond or loan will be negative, imply-

ing that the derivative provides hedging to the bank. Therefore, that bank will have

a high valuation for the derivative. Another bank with a short position in the bond

will have a positive correlation and, consequently, a low valuation for the derivative.

I assume that each investor’s type itself is stochastic. Namely, an investor receives

idiosyncratic correlation shocks at Poisson arrival times with intensity α > 0. Arrival

of these shocks is independent from other stochastic processes and across investors.

For simplicity, I assume that types are not persistent, and upon the arrival of an idio-

syncratic shock, the investor’s new type is drawn according to the cdf F on [−1,+1].

2.2 Trade

All trades are fully bilateral. I assume that investors with different search efficiencies

co-exist in a sense that will now be described.

Following Weill (2008), I assume that investor i is endowed with a measure λi of

"trading specialists," who search for other investors’ trading specialists for trade op-

7 I assume that investors have CARA preferences over the numéraire good, and they can invest in a
riskless asset traded in a Walrasian market, and in a risky asset traded over the counter. Moreover,
the investor receives a random income whose correlation with the payoff of risky asset is ρ. These
assumptions give rise to my reduced-form specification, up to a suitable first-order approximation.
See Duffie et al. (2007), Vayanos and Weill (2008), and Gârleanu (2009) for a similar derivation.
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portunities. The measure of an investor’s trading specialists determine how efficiently

she searches. A given specialist finds a counterparty with an intensity µ > 0, reflecting

the overall search efficiency of the market. Therefore, investor i finds a counterparty

at total instantaneous rate µλi. Conditional on contact, the counterparty is chosen

randomly from the pool of all trading specialists.

The cross-sectional distribution of the measure of trading specialists is given by

cdf Ψ(λ) on [0, 1]. 8 The parameter λ is distributed independently from the cor-

relation type ρ in the cross-section, and from all the stochastic processes in the

model. Each contact between investor (ρ, a, λ) and investor (ρ′, a′, λ′) is followed by a

symmetric Nash bargaining game over quantity q [(ρ, a, λ) , (ρ′, a′, λ′)] and unit price

P [(ρ, a, λ) , (ρ′, a′, λ′)]. The number of assets the investor (ρ, a, λ) purchases is de-

noted by q [(ρ, a, λ) , (ρ′, a′, λ′)]. Thus, she will become an investor of type (ρ, a +

q [(ρ, a, λ) , (ρ′, a′, λ′)] , λ) after this trade, while her counterparty will become type

(ρ′, a′ − q [(ρ, a, λ) , (ρ′, a′, λ′)] , λ′). The per unit price the investor (ρ, a, λ) will pay is

denoted by P [(ρ, a, λ) , (ρ′, a′, λ′)].

3 Equilibrium

In this section, I define a stationary equilibrium for this economy. Then, as a bench-

mark case, I solve the Walrasian counterpart of this economy. Finally, I characterize

the stationary decentralized market equilibrium.

3.1 Definition

First, I will define the investors’ value functions, taking as given the equilibrium joint

distribution of investor types, asset holdings, and the measure of trading specialists.

Then, I will write down the conditions that the equilibrium distribution satisfies.

3.1.1 Investors

Let J(ρ, a, λ) be the maximum attainable utility of an investor of type (ρ, a, λ). In

steady state, the Bellman principle implies that the growth rate of any investor’s

8 Because scaling µ and all λs up and down, respectively, by the same factor has no effect, I normalize
the upper bound of the support to 1.
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continuation utility must be the discount rate r (see Duffie, 2012a). Thus, it satisfies

rJ(ρ, a, λ) = u(ρ, a) + α

1∫

−1

[J(ρ′, a, λ)− J(ρ, a, λ)]dF (ρ′)

+

1∫

0

∞∫

−∞

1∫

−1

2µλ
λ′

Λ
{J(ρ, a+ q [(ρ, a, λ) , (ρ′, a′, λ′)] , λ)− J(ρ, a, λ)

−q [(ρ, a, λ) , (ρ′, a′, λ′)]P [(ρ, a, λ) , (ρ′, a′, λ′)]}Φ(dρ′, da′, dλ′), (2)

where

{q [(ρ, a, λ) , (ρ′, a′, λ′)] , P [(ρ, a, λ) , (ρ′, a′, λ′)]}

= argmax
q,P

[J(ρ, a+ q, λ)− J(ρ, a, λ)− Pq]
1
2 [J(ρ′, a′ − q, λ′)− J(ρ′, a′, λ′) + Pq]

1
2 ,

(3)

s.t.

J(ρ, a+ q, λ)− J(ρ, a, λ)− Pq ≥ 0,

J(ρ′, a′ − q, λ′)− J(ρ′, a′, λ′) + Pq ≥ 0.

The first term on the RHS of the equation (2) is the investor’s utility flow; the sec-

ond term is the expected change in the investor’s continuation utility, conditional on

switching types, which occurs with Poisson intensity α; and the third term is the

expected change in the continuation utility, conditional on trade, which occurs with

Poisson intensity 2µλ. The potential counterparty is drawn randomly from the popula-

tion, with the likelihood, λ
′

Λ
, that is proportional to her measure of trading specialists,

where Λ =
1∫
0
λ′dΨ(λ′). 9 The joint cdf of the stationary distribution of types, asset

holdings, and search intensities is Φ(ρ′, a′, λ′). Terms of trade, q [(ρ, a, λ) , (ρ′, a′, λ′)]

and P [(ρ, a, λ) , (ρ′, a′, λ′)], maximize the symmetric Nash product (3) subject to the

usual individual rationality constraints.

9 The total matching rate is 2µλ because the investor finds a counterparty at rate
1∫
0

µλλ
′

Λ dΨ
(
λ′
)
, and

another investor finds her at rate
1∫
0

µλ′ λΛdΨ
(
λ′
)
. This matching function is a variant of the CRS

matching function of Shimer and Smith (2001).
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3.1.2 Market clearing and the distribution of investors’ states

Let Φ(ρ∗, a∗, λ∗) denote the joint cumulative distribution of correlations, asset hold-

ings, and the measure of specialists in the stationary equilibrium. Since Φ(ρ∗, a∗, λ∗)

is a joint cdf, it should satisfy

1∫

0

∞∫

−∞

1∫

−1

Φ(dρ∗, da∗, dλ∗) = 1. (4)

The clearing of the market for the asset requires that

1∫

0

∞∫

−∞

1∫

−1

a∗Φ(dρ∗, da∗, dλ∗) = A. (5)

Since the heterogeneity in search intensity is ex ante, I impose

λ∗∫

0

∞∫

−∞

1∫

−1

Φ(dρ, da, dλ) = Ψ (λ∗) (6)

for all λ∗ ∈ supp(Ψ) to ensure that the equilibrium distribution is consistent with the

cross-sectional distribution of λs.

Finally, the conditions for stationarity are

−αΦ(ρ∗, a∗, λ∗)(1− F (ρ∗)) + α

λ∗∫

0

a∗∫

−∞

1∫

ρ∗

Φ(dρ, da, dλ)F (ρ∗) (7)

−

λ∗∫

0

a∗∫

−∞

ρ∗∫

−1



1∫

0

∞∫

−∞

1∫

−1

2µλ
λ′

Λ
I{q[(ρ,a,λ),(ρ′,a′,λ′)]≥a∗−a}Φ(dρ

′, da′, dλ)


Φ(dρ, da, dλ)

+

λ∗∫

0

∞∫

a∗

ρ∗∫

−1



1∫

0

∞∫

−∞

1∫

−1

2µλ
λ′

Λ
I{q[(ρ,a,λ),(ρ′,a′,λ′)]<a∗−a}Φ(dρ

′, da′, dλ)


Φ(dρ, da, dλ) = 0

for all (ρ∗, a∗, λ∗) ∈ supp(Φ).

The first term of the first line is the outflow due to idiosyncratic shocks. In-

vestors who belong to Φ(ρ∗, a∗, λ∗) receive correlation shocks at rate α, and they

leave Φ(ρ∗, a∗, λ∗) with probability 1−F (ρ∗), i.e., if their new type is higher than ρ∗.

Similarly, the second term of the first line is the inflow due to idiosyncratic shocks.

Investors who do not belong to Φ(ρ∗, a∗, λ∗) but have an asset holding less than a∗
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and a total measure of specialists less than λ∗ receive correlation shocks at rate α,

and they enter Φ(ρ∗, a∗, λ∗) with probability F (ρ∗), i.e., if their new type is less than

ρ∗.

The second line represents the outflow due to trade. Conditional on a contact,

investors who belong to Φ(ρ∗, a∗, λ∗) leave Φ(ρ∗, a∗, λ∗) if they buy a sufficiently high

number of assets, i.e., if they buy at least a∗−a units where a is the number of assets

before trade. Similarly, the third line represents the inflow due to trade. Investors who

do not belong to Φ(ρ∗, a∗, λ∗) but have a correlation less than ρ∗ and a total measure

of specialists less than λ∗ enter Φ(ρ∗, a∗) if they sell a sufficiently high number of

assets, i.e., if they sell at least a − a∗ units, where a is the number of assets before

trade. Note that selling at least a − a∗ units is equivalent to buying at most a∗ − a

units, and hence I write q [(ρ, a, λ) , (ρ′, a′, λ′)] < a∗ − a inside the indicator function.

A stationary equilibrium is defined as follows:

Definition 1 A stationary equilibrium is (i) a pricing function P [(ρ, a, λ) , (ρ′, a′, λ′)],

(ii) a trade size function q [(ρ, a, λ) , (ρ′, a′, λ′)], (iii) a function J(ρ, a, λ) for con-

tinuation utilities, and (iv) a joint distribution Φ(ρ, a, λ) of types, asset holdings,

and the measure of specialists, such that

• Steady-state: Given ii), iv) solves the system (4)-(7).

• Optimality: Given i), ii), and iv), iii) solves the investor’s problem (2) subject to

(3).

• Nash bargaining: Given iii), i) and ii) satisfy (3).

3.2 The Walrasian benchmark

I solve the stationary equilibrium of a continuous frictionless Walrasian market as a

benchmark. Then, I use the outcome of this benchmark to better understand the effect

of trading frictions on market outcomes. Since, in this market, every investor can trade

instantly, there is one market-clearing price and all investors with the same correlation

type hold the same number of assets. The flow Bellman equation of investors in this

Walrasian market is

rJW (ρ, a) = u (ρ, a) + α

1∫

−1

max
a′

{
JW (ρ′, a′)− JW (ρ, a)− PW (a′ − a)

}
dF (ρ′),
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where PW is the market-clearing price. The first term is the investor’s utility flow.

The second term is the expected change in the investor’s continuation utility, condi-

tional on switching types, which occurs with Poisson intensity α. Since investors have

continuous access to the market, they rebalance their holding as soon as they receive

an idiosyncratic shock. The FOC for the asset position and the envelope condition 10

are

JW2 (ρ
′, a′) = PW

and

rJW2 (ρ, a) = u2 (ρ, a) + α
(
−JW2 (ρ, a) + PW

)
,

where u2 (., .) represents the partial derivative with respect to the second argument.

Combining these two conditions, I get the optimal demand of the investor with ρ:

aW (ρ;PW ) =
1

γσ2D

(
mD

r
− PW

)
−
ση
σD

ρ.

The market-clearing condition

1∫

−1

aW (ρ;PW )dF (ρ) = A

implies that the equilibrium objects are:

aW (ρ) = A−
ση
σD

(ρ− ρ)

for all ρ ∈ supp(F ); and

PW =
u2 (ρ,A)

r
=
mD

r
− γσ2DA− γσDσηρ,

where

ρ ≡

1∫

−1

ρ′dF (ρ′) .

The implication of the equilibrium is intuitive: The equilibrium holding is a decreas-

ing function of correlation ρ. As ρ increases, the hedging benefit of the asset decreases

and investors hold less of it. The investor with the average correlation holds the per

10 To write down these conditions, I assume that JW (ρ, .) is strictly concave and continuously differ-
entiable. This assumption is verified ex post.
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capita supply. The coefficient of the current correlation in the optimal holding is ση
σD
.

The volatility of the background risk, ση, has a positive impact on the dispersion of

investors’ holdings because they have a higher incentive to hold or stay away from

the asset when their background is more volatile. On the other hand, the volatility

of the asset payoff, σD, has a negative impact on the dispersion of investors’ holdings

because the importance of the cost of risk-bearing relative to the hedging demand

rises when the asset payoff is more volatile. Thus, investors’ positions become closer

to each other as required by efficient risk-sharing.

The instantaneous trading volume in the Walrasian market is

V
W = α

1∫

−1

1∫

−1

∣∣∣aW (ρ′)− aW (ρ)
∣∣∣ dF (ρ) dF (ρ′) = α

ση
σD

1∫

−1

1∫

−1

|ρ′ − ρ| dF (ρ) dF (ρ′) .

This is basically the multiplication of the flow of investors who receive idiosyncratic

shock, α, and the change in the optimal holding of those investors. When I charac-

terize the OTC market equilibrium, I will show that the Walrasian market outcomes

differ markedly from the OTC outcomes. As a preview, in the Walrasian equilibrium,

(i) there is no price dispersion, (ii) no one provides intermediation (apart from the

Walrasian auctioneer), and, therefore, (iii) net and gross trade volume coincide.

Finally, I calculate the sum of all investors’ continuation utilities as a measure of

welfare, following Gârleanu (2009):

W
W =

mD

r
A−

γσ2D
2
A2 − γσDσηρA+

γσ2η
2
var [ρ] .

The last term of the welfare exclusively captures the hedging benefit from being

able to access the centralized market instantly following an idiosyncratic shock. The

frictions of the OTC market will affect the welfare through this term.

3.3 Characterization

3.3.1 Individual trades

Terms of individual trades, q [(ρ, a, λ) , (ρ′, a′, λ′)] and P [(ρ, a, λ) , (ρ′, a′, λ′)], are de-

termined by a bargaining game, à la Nash (1950), with the solution given by the

optimization problem (3). I guess and verify that J(ρ, ., λ) is continuously differen-

tiable and strictly concave for all ρ and λ. This allows me to set up the Lagrangian of
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this problem, and find the first-order necessary and sufficient conditions (see Theorem

M.K.2., p. 959, and Theorem M.K.3., p. 961, in Mas-Colell, Whinston & Green, 1995)

for optimality by differentiating the Lagrangian. The trade size, q [(ρ, a, λ) , (ρ′, a′, λ′)],

solves

J2(ρ, a+ q, λ) = J2(ρ
′, a′ − q, λ′), (8)

where J2 represents the partial derivative with respect to the second argument. Notice

that the quantity which solves the equation (8) is also the maximizer of the total trade

surplus, i.e.,

q [(ρ, a, λ) , (ρ′, a′, λ′)] = argmax
q

J(ρ, a+q, λ)−J(ρ, a, λ)+J(ρ′, a′−q, λ′)−J(ρ′, a′, λ′).

The continuous differentiability and strict concavity of J(ρ, ., λ) guarantees the exis-

tence and uniqueness of the trade quantity q [(ρ, a, λ) , (ρ′, a′, λ′)]. Then, the transac-

tion price, P [(ρ, a, λ) , (ρ′, a′, λ′)], is determined such that the total trade surplus is

split equally between the parties:

P =
J(ρ, a+ q, λ)− J(ρ, a, λ)− (J(ρ′, a′ − q, λ′)− J(ρ′, a′, λ′))

2q
(9)

if J2(ρ, a, λ) 6= J2(ρ
′, a′, λ′); and P = J2(ρ, a, λ) if J2(ρ, a, λ) = J2(ρ

′, a′, λ′). Substi-

tuting the trade quantity and price into (2), I get

rJ(ρ, a, λ) = u (ρ, a) + α

1∫

−1

[J(ρ′, a, λ)− J(ρ, a, λ)]dF (ρ′)

+

1∫

0

∞∫

−∞

1∫

−1

2µλ
λ′

Λ

1

2

[
max
q

{J(ρ, a+ q, λ)− J(ρ, a, λ)

+J(ρ′, a′ − q, λ′)− J(ρ′, a′, λ′)}] Φ(dρ′, da′, dλ′). (10)

In order to solve for J(ρ, a, λ), I follow a guess-and-verify approach. The complete

solution is given in the Appendix. In the models with {0, 1} holding, investors’ trad-

ing behavior is determined by their reservation value, which is the difference between

the value of holding the asset and that of not holding the asset. The counterpart of

the reservation value in my model with unrestricted holdings is the marginal contin-

uation utility or the marginal valuation, in short. To find the marginal valuation, I
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differentiate the equation (10) with respect to a, applying the envelope theorem:

rJ2(ρ, a, λ) = u2 (ρ, a) + α

1∫

−1

[J2(ρ
′, a, λ)− J2(ρ, a, λ)]dF (ρ

′)

+

1∫

0

∞∫

−∞

1∫

−1

µλ
λ′

Λ
{J2(ρ, a+ q [(ρ, a, λ) , (ρ′, a′, λ′)] , λ)− J2(ρ, a, λ)}Φ(dρ

′, da′, dλ′),

(11)

where

u2(ρ, a) = mD − rγσ2Da− rγσDσηρ.

Since the utility function is quadratic, the marginal utility flow is linear. The equation

(11) is basically a flow Bellman equation that has a linear return function with a slope

coefficient independent of ρ. Therefore, the solution J2(ρ, a, λ) is linear in a if and

only if q [(ρ, a, λ) , (ρ′, a′, λ′)] is linear in a. Conjecturing that q [(ρ, a, λ) , (ρ′, a′, λ′)] is

linear in a, and that the slope coefficient of a in the marginal valuation is − rγσ2
D

r̃(λ)
for

r̃ (λ) > 0, 11 the FOC (8) implies that

J2(ρ, a+ q [(ρ, a, λ) , (ρ
′, a′, λ′)] , λ) =

r̃ (λ) J2(ρ, a, λ) + r̃ (λ′) J2(ρ
′, a′, λ′)

r̃ (λ) + r̃ (λ′)
, (12)

i.e., the post-trade marginal valuation of both investors is equal to the weighted

average of their initial marginal valuations with the weights being the reciprocal of

the slope coefficient of a in the marginal valuation. Note that the post-trade marginal

valuation will be equal to the midpoint of the investors’ initial marginal valuations if

they are endowed with the same measure of specialists.

In principle, optimal trading rules, interacting in complex ways with the equilibrium

distribution, make a fully bilateral trade model with unrestricted holdings difficult to

solve. So far, the literature has side-stepped this difficulty by considering models with

value functions that can be characterized before solving for the endogenous distrib-

ution. This is not the case in my model. As can be seen from (11) and (12), search

intensity interacts with correlation and asset holding in the Bellman equation for the

11 These conjectures are verified in the proof of Theorem 1. Here r̃ (λ) is an important endogenous
coefficient that determines the sensitivity of an investor’s marginal valuation to his current asset
holding; i.e., it effectively determines the cost of inventory holding. Since this coefficient depends on
the speed type, λ, investors will differ from each other in the cross section in terms of their effective
aversion to inventory holding.
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marginal valuation. The problem becomes relatively easy because (i) correlation and

asset holding are in separate terms in the marginal utility, and (ii) the distribution

of correlations and the distribution of search intensities are independent. Thanks to

these assumptions, search intensity interacts only with asset holding. As a result, I

need to solve for the average asset holding conditional on λ. This creates a fixed point

problem which requires solving a linear system for the average asset holding condi-

tional on λ and the average marginal valuation conditional on λ. The equations of

the system come from optimality conditions, steady-state conditions, and the market

clearing. Its unique solution implies that the average asset holding conditional on λ

is the supply A, which is independent of λ; i.e., the primary effect of heterogeneity

in λ will be to affect the variance and the higher order moments of the distribution.

This allows me to obtain the following theorem from Equation (11):

Theorem 1 In any stationary equilibrium, investors’ marginal valuations satisfy

J2 (ρ, a, λ) =
mD − rγσ2Da− rγσDση

r̃(λ)ρ+αρ

r̃(λ)+α
+ (r̃ (λ)− r) u2(ρ,A)

r

r̃ (λ)
, (13)

where

r̃ (λ) = r +

1∫

0

µλ
λ′

Λ

r̃ (λ′)

r̃ (λ) + r̃ (λ′)
dΨ(λ′). (14)

And, the average marginal valuation of the market is

1∫

0

∞∫

−∞

1∫

−1

J2 (ρ, a, λ) Φ (dρ, da, dλ) =
u2(ρ,A)

r
. (15)

Equation (13) shows that an investor’s marginal valuation equals the combination

of her current expected marginal utility flow until the next trade opportunity (the first

three terms) and the expected contribution of the market to her post-trade marginal

valuation (the last term). In this characterization, r/r̃ (λ) has a natural interpreta-

tion as the effective discount rate of an investor with λ as it is the actual rate at

which the investor discounts her future expected post-trade marginal utility flow. 12

Although the effective discount rates are not available in closed form for an arbitrary

distribution of the measure of specialists, most of the important qualitative implica-

12 Equation (13) shows that the discount factor in front of the investor’s future expected marginal

utility after the next trade is r̃(λ)−r

r̃(λ)
, which implies an approximate discount rate of r

r̃(λ)
.
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tions of heterogeneity in the measure of specialists come from the properties stated

in Lemma 1. In particular, it states that the effective discount rate is a decreasing

function of λ. An important implication of this combined with (13) is that the mar-

ginal valuation of investors with high λ is closer to the average marginal valuation of

the market, controlling for asset holding and hedging need. Therefore, investors with

high λ become the natural counterparty for investors with high marginal valuations

and those with low marginal valuations. They buy the assets from investors with

low marginal valuations and sell to investors with high marginal valuations, and thus

become endogenous "middlemen."

Lemma 1 Suppose the support of the distribution Ψ is finite. Then, the function

r̃ (λ), which is consistent with the optimality of the investors’ problem, exists, is

unique, strictly increasing and strictly concave, and satisfies

1∫

0

r̃ (λ) dΨ(λ) = r +
µΛ

2
,

where

Λ ≡

1∫

0

λ′dΨ(λ′).

It is instructive to note that an alternative environment where investors have access

to a centralized market at Poisson arrival times with intensity r̃ (λ) − r would lead

to the same marginal valuation in (13). After every trade, the trading investor’s

marginal valuation would be equal to the average marginal valuation of the market.

In this sense, the function r̃ (λ) can be understood as the sum of discount rate, r, and

the (effective) transition rate to the post-trade state. The functional equation (14)

shows two key properties of r̃ (λ): being increasing and concave. On the one hand, the

measure of trading specialists has a direct linear positive impact on r̃ (λ). If an investor

is able to find counterparties very often, she expects to transition to her post-trade

state very quickly, and her marginal valuation should depend more on her expected

post-trade marginal utility flow. Hence, she should discount her expected post-trade

marginal utility at a lower rate. This makes the function r̃ (λ) an increasing function.

On the other hand, equation (12) shows that the post-trade marginal valuation is

closer to the initial marginal valuation of the party with higher r̃ (λ). Because of this,

a high search intensity dampens the effect of trade on post-trade marginal valuation.

Thus, an indirect negative impact of λ on the function r̃ (λ) arises. Consequently, the
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function r̃ (λ) turns out to be an increasing but concave function of λ.

Again, using the fact that J(ρ, a, λ) is quadratic in a, an exact second-order Taylor

expansion shows that:

J(ρ, a+ q, λ)− J(ρ, a, λ) = J2(ρ, a+ q, λ)q +
rγσ2D
2r̃ (λ)

q2.

Next, Equation (9) implies

P [(ρ, a, λ) , (ρ′, a′, λ′)] = J2(ρ, a+ q [(ρ, a, λ) , (ρ
′, a′, λ′)] , λ)

+
γσ2D
4
q [(ρ, a, λ) , (ρ′, a′, λ′)]

(
r

r̃ (λ)
−

r

r̃ (λ′)

)
. (16)

i.e., the transaction price is given by the post-trade marginal valuation plus an ad-

justment term. I call the adjustment term the "speed premium" because it always

benefits the investor who is able to find counterparties faster. Note that the trans-

action price will be equal to the post-trade marginal valuation if the trading parties

have the same speed. This formula for the price explains the main mechanism behind

the relation between λ and intermediation markups. Due to the first term, investors

with high λ tend to earn lower markups since they have stable marginal valuations

that do not fluctuate much in response to changes in asset holding and hedging need.

On the other hand, they earn a premium that is increasing in trade size. Thus, in

equilibrium, if trade sizes are large enough, the second term dominates and fast in-

vestors earn higher markups. If trade sizes are small enough, the first term dominates

and fast investors earn lower markups. Consequently, my model rationalizes both the

centrality premium and the centrality discount in intermediation markups, which are

empirically documented in distinct works. 13

In equilibrium, investors who trade in high quantities are the ones who have re-

ceived an idiosyncratic shock recently. After the arrival of an idiosyncratic shock, the

investor’s first few trades mostly reflect her effort to get close to her new ideal asset

position. During this period, she trades in higher quantities than she does when she

is close to her ideal position. Hence, if investors spend too much time following an

idiosyncratic shock until they become close to their new ideal position, fast investors

13 Li and Schürhoff (2012) and Di Maggio et al. (2016) find that central dealers earn higher markups
in the municipal bond market and the corporate bond market, respectively. Hollifield et al. (2014)
find that central dealers earn lower markups in the market for asset-backed securities.

19



have the opportunity to earn substantial speed premia. Given a distribution of search

intensities and a distribution of correlations, this is determined by the aggregate level

of frictions in the market. More specifically, if the intensity of idiosyncratic shocks, α,

is high, and the aggregate search efficiency, µ, is low, this becomes the case. There-

fore, in markets with a high level of frictions, the speed premium dominates and we

observe a centrality premium in intermediation markups. In markets with a low level

of frictions, we observe a centrality discount in intermediation markups.

The next proposition shows analytically how terms of trade depend on investors’

current state.

Proposition 1 Let

θ(ρ, a, λ) = A− a+
ση
σD

r̃ (λ)

r̃ (λ) + α
(ρ− ρ)

denote the effective type of the investor with (ρ, a, λ). In any stationary equilibrium,

investors’ marginal valuations, individual trade sizes, and transaction prices are

given by:

J2(ρ, a, λ) =
u2(ρ,A)

r
+
rγσ2D
r̃ (λ)

θ(ρ, a, λ), (17)

q [(ρ, a, λ) , (ρ′, a′, λ′)] =

r
r̃(λ)

θ(ρ, a, λ)− r
r̃(λ′)

θ(ρ′, a′, λ′)
r

r̃(λ)
+ r

r̃(λ′)

(18)

and

P [(ρ, a, λ) , (ρ′, a′, λ′)] =
u2(ρ,A)

r
+ rγσ2D

3r̃(λ)+r̃(λ′)

4r̃(λ)
θ(ρ, a, λ) + r̃(λ)+3r̃(λ′)

4r̃(λ′)
θ(ρ′, a′, λ′)

r̃ (λ) + r̃ (λ′)
.

(19)

If there were no heterogeneity in ρ or in λ, the quantity traded in a bilateral meeting

would depend only on pre-trade asset positions as in Afonso and Lagos (2015). In this

sense, my model generalizes the trading rule of Afonso and Lagos (2015) by showing

that, in my more general model, it depends also on preference parameters (r, ση,

σD and α) and search efficiency parameters (µ, λ, λ
′). This effect of the preference

parameters on trading rules is a key channel through which changes in the OTC

market frictions affect trading volume, price dispersion, and welfare, as I will show in

Section 4 when I discuss the empirical implications of the model.

The effective type of Proposition 1 is a sufficient statistic for the effect of an in-

vestor’s current state on her ideal trading behavior. Indeed, the effective type of an
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investor is her ideal trade quantity stemming from optimal hedging behavior. Given

that investors are trying to equalize their marginal valuations by correcting their

holdings, θ represents the desired trade quantity. Investors would be able to trade in

these quantities if their counterparties had a constant marginal valuation of u2(ρ,A)
r
,

i.e., θ(ρ, a, λ) satisfies

J2(ρ, a+ θ, λ) =
u2(ρ,A)

r
,

where u2(ρ,A)
r

is the average marginal valuation of the market. If the effective type

is 0, the investor’s marginal valuation is equal to the average marginal valuation

of the market. If she has a negative effective type, she has a lower than average

marginal valuation, and vice-versa. In a bilateral match between investors (ρ, a, λ)

and (ρ′, a′, λ′), ideally the first party would want to buy θ(ρ, a, λ) units, and the

second party would want to sell −θ(ρ′, a′, λ′) units of the asset. Thus, the realized

trade quantity (18) is a linear combination of the parties’ ideal trade quantities, with

weights being their effective discount rates. This is an important result because of

its implications for the supply of liquidity services. Because the effective discount

rate, r/r̃ (λ), is a decreasing function, Equation (18) reveals that the trade quantity

reflects the trading need of the slower counterparty to a greater extent. In this sense,

fast investors provide immediacy by trading according to their counterparties’ needs.

For an investor with a very high λ, the weight of her ideal trade quantity in the

bilateral trade quantity is very small, so the disturbance her hedging need creates for

her counterparty is very small. Her counterparty is able to buy from or sell to her in

almost exactly the ideal amount. A speed premium in the price arises because of this

asymmetry in how the trade quantity reflects the trading need of the counterparties.

Having high λ increases the importance of the option value of search and decreases the

importance of the current utility flow from holding the asset. Therefore, fast investors

put less weight on their asset positions and more weight on their cash earnings when

bargaining with a counterparty. Each bilateral negotiation results in a trade size

that is more in line with the slower counterparty’s hedging need and a trade price

that contains a premium benefitting the faster counterparty. An investor can achieve

the average marginal valuation by trading with the right counterparty (or the right

sequence of counterparties). The key observation here is that if she trades with a

fast counterparty, she will achieve the average marginal valuation relatively quickly.

The trade-off an investor faces is between the fast correction of the asset position

and paying a low price. That is how the speed premium arises optimally. Figure 1
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graphically presents an example of how trade quantity and price arise as the result of

a bilateral negotiation between two investors with different λs.

Figure 1. Sample trade between investors with different search intensities

In Figure 1, each line represents the marginal valuation as a function of asset

holding given a certain level of correlation. The steeper line represents the marginal

valuation of a slow investor while the flatter line represents the marginal valuation of

a fast investor. This is the direct result of Equation (13). Since the effective discount

rate is decreasing in λ, the slope of the marginal valuation line is lower for investors

with high λ. Suppose that two blue dots on the graph represent the initial positions

of two investors. If they make contact, the investor on top will be the buyer as she has

a higher marginal valuation. Trade allows investors to move horizontally. Green lines

with arrows show the quantity and the direction of the trade. The joint surplus of this

trade is the sum of the shaded triangular areas. As can be seen, the impact of trade on

the slow investor’s marginal valuation is higher than the impact of trade on the fast

investor’s marginal valuation. As a result, the triangle for the fast investor (the seller)

is smaller than the triangle for the slow investor (the buyer). If the price were equal

to the post-trade marginal valuation, the slow investor’s surplus would be bigger than

the fast investor’s surplus. That would violate the symmetric Nash bargaining. For

this reason, the fast investor charges a speed premium to equalize the individual trade
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surpluses by extracting surplus from the slow investor. The other case, in which the

fast investor is the buyer, is symmetric. In this case, the price becomes lower than

the post-trade marginal valuation as a result of the speed premium the fast investor

charges.

An advantage of this setup is that the speed premium arises solely due to the

differences in search intensity. In reality, fast investors might be more sophisticated

and have higher bargaining power, and this might give rise to additional premia

in prices. However, I show that the speed premium arises even when there is no

asymmetry in terms of bargaining power.

3.3.2 The joint distribution of types, holdings, and search intensities

For simplicity, I assume that the distribution of correlations has a continuous sup-

port. In this case, the equilibrium conditional distributions of asset holdings have

densities. This assumption is actually not necessary for the full characterization of

the equilibrium distribution, but it simplifies the presentation of Proposition 2 as an

intermediate step. Since I have an explicit expression for trade sizes, I can eliminate

indicator functions in Equation (7). Writing the system of steady-state equations in

terms of conditional pdfs φρ,λ(a), I derive the following proposition:

Proposition 2 In any stationary equilibrium, the conditional pdf φρ,λ(a) of asset

holdings satisfies the system

(α + 2µλ)φρ,λ (a) = α

1∫

−1

φρ′,λ (a) dF (ρ
′)

+

1∫

0

1∫

−1

∞∫

−∞

2µλ
λ′

Λ

(
1 +

r̃ (λ′)

r̃ (λ)

)
φρ,λ (a

′)

φρ′,λ′

(
a

(
1 +

r̃ (λ′)

r̃ (λ)

)
− a′ + C [(ρ, λ) , (ρ′, λ′)]

)
da′dF (ρ′) dΨ(λ′) , (20)

for all (ρ, a, λ) ∈ supp(Φ);
∞∫

−∞

φρ,λ(a)da = 1 (21)

for all λ ∈ supp(Ψ) and ρ ∈ supp(F ); and
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1∫

0

1∫

−1

∞∫

−∞

aφρ,λ(a)dadF (ρ)dΨ(λ) = A, (22)

where

C [(ρ, λ) , (ρ′, λ′)] ≡ r̃ (λ′)
ση
σD

(
ρ− ρ

r̃ (λ) + α
−

ρ′ − ρ

r̃ (λ′) + α

)
−

[
r̃ (λ′)

r̃ (λ)
− 1

]
A. (23)

Equation (21) implies that φρ,λ(a) is a pdf. Equation (22) is the market-clearing

condition. Equation (20) has the usual steady-state interpretation. The first term

represents the outflow due to idiosyncratic shocks and trade. The second and third

terms represent the inflow due to idiosyncratic shocks and the inflow due to trade,

respectively. The last term is an "adjusted" convolution (i.e., a convolution after

an appropriate change of variable) since any investor of type (ρ, a′, λ) can become

one of type (ρ, a, λ) if she meets the right counterparty. The right counterparty in

this context means an investor of type (ρ′, a
(
1 + r̃(λ′)

r̃(λ)

)
− a′ + C [(ρ, λ) , (ρ′, λ′)] , λ′).

Proposition 1 immediately implies that the post-trade type of the first investor will be

(ρ, a, λ), and, hence, she will create inflow. Since the convolution term complicates the

computation of the distribution function, I will make use of the Fourier transform. 14

I follow the definition of Bracewell (2000) for the Fourier transform:

ĝ(z) =

∞∫

−∞

e−i2πxzg (x) dx,

where ĝ(.) is the Fourier transform of the function g (.).

Let φ̂ρ,λ(.) be the Fourier transform of the equilibrium conditional pdf φρ,λ(.). Then

the Fourier transform of the equations (20)-(22) are, respectively:

0 = − (α + 2µλ) φ̂ρ,λ (z) + α

1∫

−1

φ̂ρ′,λ (z) dF (ρ
′) (24)

+

1∫

0

1∫

−1

2µλ
λ′

Λ
e

i2πC[(ρ,λ),(ρ′,λ′)] z

1+
r̃(λ′)

r̃(λ) φ̂ρ,λ




z

1 + r̃(λ′)

r̃(λ)


 φ̂ρ′,λ′




z

1 + r̃(λ′)

r̃(λ)


 dF (ρ′) dΨ(λ′)

14 Following Duffie and Manso (2007); Duffie, Malamud, and Manso (2009, 2014), Duffie, Giroux, and
Manso (2010), Andrei (2013), Cujean and Praz (2015), and Andrei and Cujean (2016) also made
use of convolution for distributions in the context of search and matching models.
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for all λ ∈ supp(Ψ), ρ ∈ supp(F ) and for all z ∈ R;

φ̂ρ,λ(0) = 1 (25)

for all λ ∈ supp(Ψ) and ρ ∈ supp(F ); and

1∫

0

1∫

−1

φ̂
′

ρ,λ(0)dF (ρ) dΨ(λ) = −i2πA. (26)

The system (24)-(26) cannot be solved in closed form. However, it facilitates the

calculation of the moments which are derivatives of the transform, with respect to z,

at z = 0. Thus, the system allows me to derive a recursive characterization of the

moments of the equilibrium conditional distribution.

Proposition 3 The following system characterizes all moments of the equilibrium

conditional distributions of asset holdings:

(α + 2µλ)Eφ [a
n | ρ, λ] = αEφ [a

n|λ]

+
∑

j1+j2+j3=n




n

j1, j2, j3


Eφ

[
aj2 | ρ, λ

]




∑

k1+k2+k3=j1




j1

k1, k2, k3




(
ση
σD

)k1+k2

(
−

ρ

r̃ (λ) + α

)k1 

1∫

0

2µλ
λ′

Λ
(

r̃ (λ)

r̃ (λ) + r̃ (λ′)
)n (r̃ (λ′))

k1+k2

(
1

r̃ (λ′) + α

)k2
(D (λ, λ′))

k3
Eφ

[
aj3ρk2 | λ′

]
dΨ(λ′)





 (27)

for all λ ∈ supp(Ψ), ρ ∈ supp(F ) and for all z ∈ R; and

Eφ [a | λ] = A (28)

for all λ ∈ supp(Ψ); where

D (λ, λ′) ≡

(
r̃ (λ′)

r̃ (λ)
− 1

)[
A+

ση
σD

r̃ (λ′) r̃ (λ)

(r̃ (λ) + α) (r̃ (λ′) + α)
ρ

]
. (29)
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I use this characterization to analyze various dimensions of aggregate market liq-

uidity, such as expected prices, average trade sizes, price dispersion, and welfare.

4 The model’s implications

4.1 Average holdings, trade sizes and prices

Using the result of Proposition 3, I derive the average asset holdings, trade sizes,

and prices of investors of type (ρ, λ). The results are summarized in the following

corollary:

Corollary 1 The average asset holdings, trade sizes, and prices of investors of type

(ρ, λ) are given by:

Eφ [a | ρ, λ] =
α

α + 2 (r̃ (λ)− r)
A+

2 (r̃ (λ)− r)

α + 2 (r̃ (λ)− r)

[
A−

ση
σD

r̃ (λ)

r̃ (λ) + α
(ρ− ρ)

]
,

(30)

Eφ [q | ρ, λ] =
α

α + 2 (r̃ (λ)− r)

[
−
r̃ (λ)− r

µλ

ση
σD

r̃ (λ)

r̃ (λ) + α
(ρ− ρ)

]
, (31)

Eφ [P | ρ, λ] = PW −
α

α + 2 (r̃ (λ)− r)

[
(ρ− ρ)

rγσDση
r̃ (λ) + α

(
3

4
−
r̃ (λ)− r

2µλ

)]
. (32)

The implication of Equation (30) is intuitive: The average holding is a decreasing

function of correlation ρ. As ρ increases, the hedging benefit of the asset decreases and

investors hold less of it. The investor with average correlation holds the per capita

supply on average. There are two reasons behind the deviation of average OTC hold-

ings fromWalrasian holdings which are derived in Section 3.2: Intensive and extensive

margin effects. To understand the intensive margin effect, I first define the "desired

OTC holding" as the holding which equates the investor’s marginal valuation to the

average marginal valuation of the market. The desired OTC holding of an investor of

type (ρ, λ) is A − ση
σD

r̃(λ)

r̃(λ)+α
(ρ− ρ). This shows the distortion of investors’ decisions

on the intensive margin; i.e., the desired OTC holding is different from the optimal

Walrasian holding. More specifically, the coefficient of current correlation in the de-

sired holding is ση
σD

r̃(λ)

r̃(λ)+α
instead of ση

σD
. Investors put less weight on their current

correlation by scaling down the Walrasian weight as previously shown by the par-

tially centralized models of Gârleanu (2009) and Lagos and Rocheteau (2009). This

is because investors want to hedge against the risk of being stuck with undesirable
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positions for long periods upon the arrival of an idiosyncratic shock. They achieve this

specific hedging by distorting their decisions on the intensive margin. To understand

the extensive margin effect, note that in equilibrium we observe investors who have

recently become of type (ρ, λ) but have not had the chance to interact with other

investors. On average, these investors hold A, due to the i.i.d. and non-persistence

of correlation shocks. Equation (30) shows that the average OTC holding is a linear

combination of the desired OTC holding and A. Using this interpretation, the frac-

tion α

α+2(r̃(λ)−r)
can be broadly considered to be a measure of the distortion on the

extensive margin. When µ is finite, this fraction is bigger than 0, and this creates

the second source of the deviation from Walrasian holding. Hence, investors’ average

asset positions are less extreme than the Walrasian position because of the intensive

and extensive margin effects. This analysis also implies that fast investors hold more

extreme positions (exhibiting larger deviation from A) than slow investors on average

for two reasons. First, since they are able to trade often, their desired asset posi-

tions are more extreme. Second, they are exposed to lower distortion on the extensive

margin so that their positions are relatively closer to the desired position.

From Equation (31), we see that the average trade size is a decreasing function

of correlation ρ. The investor with average correlation has 0 net volume on average.

Investors with higher correlations are net sellers, and investors with lower correla-

tions are net buyers on average. Average individual trade sizes are also less extreme

compared to Walrasian individual trade sizes, since investors trade less aggressively

by putting a lower weight on their current correlation.

Equation (32) reveals that the average price is a decreasing function of correlation ρ.

The investor with average correlation faces the Walrasian price on average. Investors

with higher correlations face lower prices than the Walrasian price, and investors

with lower correlations face higher prices than the Walrasian price. Expected sellers

trade at lower prices, and expected buyers trade at higher prices because their need

to buy or sell is reflected in the transaction price through the bargaining process. In

other words, investors with a stronger need to trade, i.e., with high |ρ|, trade at less

favorable terms. This implication is consistent with empirical evidence in Ashcraft

and Duffie (2007) in the federal funds market.

To sum up, the overall pricing implications of my model come from the decisions

on the intensive margin: Investors’ average asset positions are less extreme as they

put less weight on their current valuation and more weight on their future expected
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valuation for the asset, compared to the frictionless case. In other words, net suppliers

of the asset supply less than the Walrasian market, and net demanders of the asset de-

mand less. However, the overall effect on the aggregate demand is zero, and the mean

of the equilibrium price distribution is equal to the Walrasian price. 15 Therefore, my

model complements the results of the existing purely decentralized markets model by

showing that, once portfolio restrictions are eliminated, the pricing impact of search

frictions is low. This result is consistent with the findings of illiquid market models

such as Gârleanu (2009) and transaction cost models such as Constantinides (1986).

These papers show that infrequent trading and high transaction costs have a first-

order effect on investors’ asset positions, but only a second-order effect on prices, due

to the investors’ ability to adjust their asset positions. My model demonstrates that a

similar intuition carries over to decentralized markets when there are no restrictions

on holdings.

4.2 Dispersion of marginal valuations and asset positions

Using the result of Proposition 3 evaluated at n = 2, I obtain a linear system

which pins down the conditional variance of asset positions, varφ [a|λ], for all λ ∈

{λ1, ..., λN}. I also derive an equation which relates varφ [a|λ] to the conditional vari-

ance of marginal valuations, varφ [J2 (ρ, a, λ) |λ], using Proposition 1. This analysis

leads to the following corollary:

Corollary 2 The conditional variance of marginal valuations, varφ [J2 (ρ, a, λ) |λ], is

decreasing in λ. The conditional variance of asset holdings, varφ [a|λ], is increasing

in λ.

This corollary establishes the lower variability of marginal valuations for fast in-

vestors. The dispersion of marginal valuations among the investors with the same λ

stems from the difference in the current hedging need or current asset position. In

other words, it stems from the effect of the current marginal utility flow on marginal

valuations. As fast investors put less weight on their current marginal utility flow

than slow investors do, we observe lower dispersion in fast investors’ marginal val-

uation. This is true even though dispersion of asset positions across fast traders is

15 This result is expected to depend on the quadratic specification of u(ρ, a). Indeed, the average
price is unaffected by frictions since the marginal utility flow is linear in type and asset position.
On the other hand, a more general intuition is underlined here: The asset demands of different
type of investors are affected differently. Hence, the aggregate demand does not have to be affected
significantly.

28



larger. Therefore, for investors who are trying to correct their holdings, fast investors

become the natural counterparty since their marginal valuations are always close to

the average marginal valuation of the market.

Proposition 1 implies that fast investors trade aggressively according to their coun-

terparties’ needs. When they meet a buyer, they sell a lot. When they meet a seller,

they buy a lot. This is optimal for fast investors: Deviating from the desired position

is less of a concern for them as they do not expect to spend much time with their

current position. As a result of this, fast investors’ positions exhibit large volatility.

Figure 2 shows it graphically. At time 0, a fast and a slow investor start trading with

the same correlation ρ = −0.19809 < ρ = −0.16, i.e., both of them have higher taste

for the asset than the market average. Thus, on average, both of them maintain a po-

sition bigger than the per capita supply A = 8, 740. We see that the average position

of the fast investor is more extreme, which is consistent with our discussion in the

last section. As time passes, the two investors bump into other investors randomly

chosen from the equilibrium distribution. As anticipated, the fast investor’s holding

exhibits higher volatility.

Figure 2. Sample path of asset holdings for two investors with different

search intensities
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Figure 3 demonstrates the effect of fast investors’ volatile inventories on the cross-

sectional distribution of asset holdings. The conditional distributions of asset positions

for two classes of investors are considered. Both classes have the same correlation

type of −1. Thus, these investors are the ones with highest exogenous valuation

for the asset. The graph reveals the bimodal structure of both distributions. This

stems from the fact that investors with holdings distorted on the extensive margin

and investors with average correct holdings create different groups. In the example,

investors with holdings distorted on the extensive margin create a group around

A = 8, 740. Slow investors’ density is higher around A because the expected length of

the period until a trade opportunity after an idiosyncratic shock is higher for them.

The second group reflects the fact that the desired holding is different for fast and

slow investors. Although both investors like the asset, fast investors hold a higher

average position because of the intensive margin effect of the frictions. In addition,

we see that fast investors’ positions exhibit larger dispersion. This is due to the higher

volatility in their positions.

Figure 3. Sample equilibrium conditional distribution of asset holdings

for two classes of investors with the same correlation but different

search intensities
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These results about main intermediation providers holding large and volatile asset

positions in equilibrium have important implications for the effects of a section of the

Dodd-Frank Act, often referred to as "the Volcker Rule," which disallows proprietary

trading by banks and their affiliates. Some forms of proprietary trading are exempted

from the Volcker rule, such as those related to market making or hedging. As the equi-

librium of my model reveals, even in a stationary world without speculative trading,

fast investors hold extreme positions as a result of their optimal hedging behavior, and

very volatile positions as a result of market making. Detecting proprietary trading,

which is unrelated to hedging or market making, based on the fluctuations in asset

positions would be a very difficult and possibly infeasible task for regulators. Conse-

quently, banks would perceive that they might face a regulatory sanction due to the

imperfections of the criteria and metrics that were proposed to detect non-market-

making proprietary trading. This would possibly reduce their incentive to provide

liquidity. Hence, the elimination of excessive risk-taking by fast investors might come

with a reduction in liquidity provision and in the overall quality of asset allocation

as well. In Section 4.4, I will analyze possible scenarios regarding this issue.

4.3 Trading volume

Figure 4 shows the decomposition of individual instantaneous expected trading vol-

ume assuming that all investors have the same λ. As the net and gross trading vol-

ume, I report 2µλ |Eθ′ [q (θ, θ
′) | θ]| and 2µλEθ′ [ |q (θ, θ

′)| | θ], respectively. 16 Note

that, when everyone has the same λ, the sole determinants of trade quantity are

the effective types of the trading parties. I label the difference between gross and

net trading volume as intermediation volume as it is caused by simultaneous buying

and selling instead of fundamental trading. Consistent with the findings of Afonso

and Lagos (2015), Atkeson et al. (2015), and Hugonnier et al. (2014), investors with

average marginal valuations tend to specialize in intermediation. Their incentive for

rebalancing holdings is low. Thus, they engage mostly in simultaneous buying and

selling since it leads to profit due to equilibrium price dispersion. However, investors

with very high or very low marginal valuations engage very little in intermediation

as they are mostly concerned with correcting their holding.

16 The characterization of the equilibrium distribution in Proposition 3 allows for the calculation
of the usual moments, but not the absolute moments. Due to this technical difficulty, I calculate
Eθ′ [

∣∣q
(
θ, θ′

)∣∣ | θ] numerically only.
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Figure 4. Individual expected instantaneous gross trading volume,

net trading volume, and intermediation volume

Figure 5. Individual expected instantaneous intermediation volume

as a function of asset holding
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Since my model features investor heterogeneity together with unrestricted holdings,

it offers a richer explanation of the relation between the investor heterogeneity and

intermediation behavior. Endogenous intermediation models with {0, 1} holding, such

as Hugonnier et al. (2014) and Shen et al. (2015), show that investors with average

exogenous valuations specialize as intermediaries. My model offers an alternative ex-

planation with an additional dimension, as endogenous asset holding appears to be

an important determinant of the marginal valuations. When asset holding is endoge-

nous, having the average marginal valuation means holding the "correct" amount of

assets, rather than having the average exogenous valuation. Indeed, as can be seen

in Figure 5, any investor with any exogenous valuation can be an intermediary if

her holding is "correct." In other words, in my setup with endogenous holdings, in-

termediaries might be "low valuation-low holding" (red), "average valuation-average

holding" (blue), or "high valuation-high holding" (orange) investors.

Figure 6. Individual expected instantaneous intermediation volume and intermediation

volume per matching rate for investors with different search intensities

When I introduce heterogeneity in search intensities, heterogeneity is created in

intermediation activity, even controlling for the level of marginal valuation. Fast in-

vestors intermediate more due to the effective discount rate channel (see Figure 6).

Each bilateral negotiation results in a trade size that is more in line with the slower

counterparty’s hedging need, and a trade price that contains a speed premium ben-

efitting the faster counterparty. It is true that fast investors engage in higher si-
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multaneous buying and selling activity due to the higher intensity of matching with

counterparties. However, the effective discount rate channel leads to an increase in the

intermediation level above that direct effect. Since fast investors trade according to

their counterparties’ hedging needs, they provide more intermediation per matching.

4.4 A special case

In order to derive analytical comparative statics, I focus on a special case of the model

with a two-type distribution of search intensities. The following lemma provides the

closed-form formula for the effective discount rates of the two types of investors.

Lemma 2 Suppose the support of the distribution Ψ is {λs, λf}, where λf > λs and

ψf denotes the fraction of investors with λf . Then

r̃ (λf ) =





−(r+µΛ
2 )+(1−ψf )

(
r+

µE[λ2]
4Λ

+

√(
r+

µE[λ2]
4Λ

)2
+
µλfλs

Λ (r+µΛ
2 )

)

1−2ψf
if ψf 6=

1
2

∂
∂ψf

{
r+µΛ

2
−(1−ψf )

(
r+

µE[λ2]
4Λ

+

√(
r+

µE[λ2]
4Λ

)2
+
µλfλs

Λ (r+µΛ
2 )

)}

ψf =1
2

2
if ψf =

1
2

and

r̃ (λs) =





r+µΛ
2
−ψf

(
r+

µE[λ2]
4Λ

+

√(
r+

µE[λ2]
4Λ

)2
+
µλfλs

Λ (r+µΛ
2 )

)

1−2ψf
if ψf 6=

1
2

∂
∂ψf

{
−(r+µΛ

2 )+ψf

(
r+

µE[λ2]
4Λ

+

√(
r+

µE[λ2]
4Λ

)2
+
µλfλs

Λ (r+µΛ
2 )

)}

ψf =1
2

2
if ψf =

1
2
.

Plugging the effective discount rates given by Lemma 2 into the formulas in Corol-

lary 1, I obtain average equilibrium objects in closed form. Then, I plot some com-

parative statics graphs.

When we analyze the average net trade quantity (31), we see that there are compet-

ing forces. On the one hand, the fast investors with holdings distorted on the extensive

margin have high net trade quantities because they trade more aggressively. The more

aggressive trading is due to the fact that the high search intensities make the investor
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less afraid of being stuck with an undesirable position in the future. On the other

hand, high search intensity reduces the average net trade quantity by reducing the

distortion on the extensive margin and by creating a net trade smoothing effect. The

net trade smoothing effect stems from the difference in search intensities. 17 When

two buyers with the same correlation type but different search intensities meet, the

fast investor will provide liquidity to the slow investor, and hence, will delay satisfying

her own net trading need. In the end, the latter effects dominate and the average net

trade quantity of fast investors is lower. Figure 7 shows the comparative statics with

respect to the fraction of fast investors.

Figure 7. Average net trade quantities as a function of the fraction of fast investors

When we look at the average price (32), we see that it is a decreasing function of

correlation ρ. The group of investors with the correct holding on average faces the

Walrasian price on average. Investors with misallocated holdings face lower prices

than the Walrasian price if they have high correlation types, and face higher prices

if they have low correlation types. In other words, investors with a stronger need to

trade, i.e., with high |ρ|, trade at less favorable terms. We see that the investor’s λ

affects the deviation term from the Walrasian price through three channels. First,

since the measure of distortion on the extensive margin is lower for high λ investors,

a high fraction of them trade at the Walrasian price on average. Second, since their

17Note that the functional equation (14) implies that r̃(λ)−r
µλ

decreases with λ.
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marginal valuation does not depend much on their current marginal utility flow, their

need to trade is reflected by the price to a lesser extent. Finally, there is the effect

of the speed premium. Because of these three factors, high λ investors’ average trade

price is closer to the Walrasian price, while the average trade price of low λ investors

deviates a lot. Figure 8 shows the comparative statics with respect to the fraction of

fast investors in the two-type case. In the example, the Walrasian price is 100. As the

fraction of fast investors increases, both buyers’ and sellers’ average price becomes

closer to the Walrasian price, reflecting the increase in liquidity. As overall liquidity

increases, the average speed premium, reflected by the difference between the slow

and fast investors’ average price, decreases. This is intuitive because when there are

more fast traders in the market, slow traders’ outside option is closer to the average

marginal valuation of the market, lowering the trade surplus, and, in turn the speed

premium. In other words, fast investors are able to charge higher speed premia when

they only constitute a concentrated, small part of the market.

Figure 8. Average prices as a function of the fraction of fast investors

Next, I calculate a proxy for intermediation markups conditional on search intensity.

Following the empirical studies, I define the intermediation markup as the return on

intermediation, i.e., the intermediation profit per unit as a fraction of a benchmark

price. Details of the calculation of markups can be found in Appendix C. Figure 9

shows the comparative statics for the intermediation markups with respect to the
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level of frictions in the market.

Figure 9. The proxy for intermediation markups for slow and fast

investors for various levels of frictions in the market

Given a cross-sectional distribution of search intensities, Figure 9 demonstrates

that the level of frictions in the market is an important determinant of whether there

will be observed a centrality premium or centrality discount in markups. This result

follows from two competing effects: stable marginal valuations for fast investors and

the speed premium they charge. A fast investor’s stable marginal valuation tends to

reduce the markups she charges by making inventory holding less risky. In a market

with low frictions, i.e., if investors receive trade opportunities frequently relative to

the intensity of their idiosyncratic shocks, this becomes the dominant effect, and we

observe a centrality discount in markups. In a market with high level of frictions,

slow investors’ extreme aversion toward the inventory risk caused by high search

frictions leads to high trade surpluses when they trade with fast investors. As a result,

fast investors extract substantial surpluses from this type of transactions above and

beyond their actual contribution to surplus creation. Hence, the speed premium effect

becomes dominant and we observe a centrality premium in markups. This result of the

model provides a significant diagnostic insight to interpret the level of frictions in real-

life OTC markets. The level of frictions in a market is typically hard to measure since
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it is caused by the unobserved features of the market such as the nature of trading

technology and the characteristics of its investor pool. However, my model relates this

unobserved characteristic of markets to the sign of the relationship between centrality

and markup, which is observable as long as the transaction-level data is available.

I conclude this section with comparative static analysis of social welfare with respect

to the heterogeneity in investors’ search intensity. The welfare notion I use is ex ante

welfare, which is defined as the discounted sum of the utility flows of all investors,

W =

∞∫

0

e−rt





1∫

0

∞∫

−∞

1∫

−1

u (ρ, a) Φt (dρ, da, dλ)



 dt. (33)

Any transfer of the numéraire good from one investor to another does not enter W

because of quasi-linear preferences. Using the definition of u (ρ, a), one can show that

W =
mD

r
A−

γσ2D
2
A2 − γσDσηρA−

γσ2D
2
varφ [a]− γσDσηcovφ [ρ, a] . (34)

The fundamental sources of welfare in this environment are the hedging benefit (the

last term) and the sharing of dividend risk (the fourth term). Intermediation activity

resulting from the heterogenous trading speed of investors enhances the quality of

asset allocation and leads to a higher overall hedging benefit. At the same time,

it increases the dispersion in the allocation of dividend risk and creates a negative

impact on the welfare. A mean-preserving contraction of search intensities reduces

the intermediation activity resulting from the heterogenous trading speed. Hence,

the overall hedging benefit decreases while the sharing of dividend risk improves.

The welfare impact of the contraction of search intensities is a result of these two

competing effects. In markets with low level of frictions, this contraction is beneficial

because in these markets the hedging benefit is not very sensitive to intermediation.

When heterogeneity in search intensities decreases, the decline in the hedging benefit

is small but the gain from improved dividend risk sharing is relatively large. Therefore,

welfare increases as shown in the right panel of Figure 10. In markets with high level of

frictions, however, the hedging benefit is very sensitive to intermediation. Therefore,

welfare becomes lower when the intermediation activity resulting from the trading

speed differentials is lower, as can be seen in the left panel of Figure 10.
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Figure 10. Change in the aggregate welfare as a result of a mean-preserving spread

of search intensities

These results have implications for the Volcker Rule. Duffie (2012b) says that "the

market making is inherently a form of proprietary trading. A market maker acquires

a position from its client at one price and then lays off the position over time at an

uncertain average price" (p. 3). He continues by arguing that banning proprietary

trading would effectively make offering market making unattractively risky for banks,

and sooner or later, the lost market making capacity would be compensated, at least

partially, by non-bank providers of liquidity. Following his arguments, in my model, I

capture this in a stylized way by a mean-preserving contraction of search intensities.

Figure 10 shows that my model predicts different welfare impacts for different mar-

kets. While it would be beneficial for markets with low search frictions, it would be

harmful for markets with high search frictions. Consequently, an important feature of

my model is that it relates this welfare impact of the Volcker rule to an observed char-

acteristic of the markets: the sign of the relationship between centrality and markup.

In markets with the observed centrality premium in markups (e.g. the corporate bond

market), frictions are severe and the Volcker rule is harmful. In markets with the ob-

served centrality discount (e.g. the market for asset-backed securities), frictions are

lower and the Volcker rule is beneficial.
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5 Conclusion

OTC markets played a significant role in the 2007-2008 financial crisis, as derivative

securities, collateralized debt obligations, repurchase agreements, and many other as-

sets are traded OTC. Accordingly, understanding the functioning of these markets,

detecting potential inefficiencies, and proposing regulatory action have become a fo-

cus of attention for economists and policy makers. This paper contributes to a fast-

growing body of literature on OTC markets by presenting a search-and-bargaining

model à la Duffie et al. (2005). I complement this literature by considering investors

who can differ in their search intensities, time-varying hedging needs, and asset hold-

ings. By means of its rich heterogeneity, my model accounts for many observed trading

patterns in OTC markets. Investors with higher search intensities (i.e., fast investors)

arise endogenously as the main intermediation providers. Then, as observed in the

data, they hold large and volatile inventories. Depending on the level of frictions, they

can earn higher or lower markups than slow investors. Both are observed in real-life

OTC markets. The model’s insight into the relation between frictions and the sign

of the relation between centrality and markups has further implications in terms of

welfare. Using parametric examples of my model, I show that the regulations that

aim to limit the role of central intermediaries, such as the Volcker rule, would have

adverse welfare impact on markets with high levels of frictions, while they would be

beneficial in markets with low levels of frictions.

This paper leads to several avenues for future research. First, the stationary equi-

librium in this paper is silent about the role of intermediation at times of financial

distress. Thus, I plan to study the transitional dynamics of intermediation following

an aggregate liquidity shock. The dynamics of the price and supply of liquidity along

the recovery path could inform the debate on optimal policy during crises. Second,

this paper presents a single-asset model. I plan to analyze how intermediation pat-

terns change in a setup with multiple assets. This analysis could lead to interesting

dynamics of liquidity across markets, as maintaining high inventory in one market

would limit an intermediary’s ability to provide liquidity in other markets. Finally,

this paper is totally agnostic about why we observe an ex ante heterogeneity in search

intensity. Given that this search heterogeneity is an important source of intermedia-

tion, studying a model with endogenous search intensities would be a worthwhile way

to explore whether the size of the intermediary sector is socially efficient.

40



References

[1] Afonso, G. (2011). Liquidity and congestion. Journal of Financial Intermediation,

20 (3), 324—360.

[2] Afonso, G., Kovner, A., & Schoar, A. (2013). Trading partners in the interbank lending

market. Federal Reserve Bank of New York Staff Report.

[3] Afonso, G., & Lagos, R. (2012). An empirical study of trade dynamics in the fed funds

market. Federal Reserve Bank of New York Staff Report.

[4] Afonso, G., & Lagos, R. (2015). Trade dynamics in the market for federal funds.

Econometrica, 83, 263-313.

[5] Andrei, D. (2013). Information percolation driving volatility. Working Paper.

[6] Andrei, D., & Cujean, J. (2016). Information percolation, momentum, and reversal.

Journal of Financial Economics, Forthcoming.

[7] Ashcraft, A., & Duffie, D. (2007). Systemic illiquidity in the federal funds market.

American Economic Review, Papers and Proceedings, 97, 221—225.

[8] Atkeson, A. G., Eisfeldt, A. L. & Weill, P.-O. (2015). Entry and exit in OTC derivatives

markets. Econometrica, 83 (6), 2231—2292.

[9] Babus, A., & Kondor, P. (2012). Trading and information diffusion in OTC markets.

Working Paper.

[10] Bech, M., & Atalay, E. (2010). The topology of the federal funds market. Physica A,

389, 5223—5246.

[11] Biais, B. (1993). Price formation and equilibrium liquidity in fragmented and centralized

markets. Journal of Finance, 48, 157—185.

[12] Bracewell, R. N. (2000). The Fourier transform and its applications. New York, NY:

McGraw Hill.

[13] Chang, B., & Zhang, S. (2015). Endogenous market making and network formation.

Working Paper.

[14] Colliard, J.-E., & Demange, G. (2014). Cash providers: Asset dissemination over

intermediation chains. Working Paper.

41



[15] Constantinides, G. M. (1986). Capital market equilibrium with transaction costs.

Journal of Political Economy, 94, 842—862.

[16] Cujean, J. & Praz, R. (2015). Asymmetric information and inventory concerns in over-

the-counter markets. Working Paper.

[17] Di Maggio, M., Kermani, A., & Song, Z. (2016). Value of trading relationships in

turbulent times. Journal of Financial Economics, Forthcoming.

[18] Duffie, D. (2012a). Dark markets: Asset pricing and information transmission in over-

the-counter markets. Princeton, NJ: Princeton University Press.

[19] Duffie, D. (2012b). Market making under the proposed Volcker rule. Working Paper.

[20] Duffie, D., Gârleanu, N., & Pedersen, L. H. (2005). Over-the-counter markets.

Econometrica, 73, 1815—1847.

[21] Duffie, D., Gârleanu, N., & Pedersen, L. H. (2007). Valuation in over-the-counter

markets. Review of Financial Studies, 20, 1865—1900.

[22] Duffie, D., Giroux, G., & Manso, G. (2010). Information percolation. American

Economic Journal: Microeconomics, 2, 100-111.

[23] Duffie, D., Malamud, S., & Manso, M. (2009). Information percolation with equilibrium

search dynamics. Econometrica, 77 (5), 1513—1574.

[24] Duffie, D., Malamud, S., & Manso, M. (2014). Information percolation in segmented

markets. Journal of Economic Theory, 153, 1—32.

[25] Duffie, D., & Manso, M. (2007). Information percolation in large markets. American

Economic Review, Papers and Proceedings, 97, 203-209.

[26] Farboodi, M. (2014). Intermediation and voluntary exposure to counterparty risk.

Working Paper.

[27] Farboodi, M., Jarosch, G., & Menzio, G. (2016). Tough middlemen. Mimeo.

[28] Farboodi, M., Jarosch, G., & Shimer, R. (2016). Meeting technologies in decentralized

asset markets. Working Paper.

[29] Gârleanu, N. (2009). Portfolio choice and pricing in illiquid markets. Journal of

Economic Theory, 144 (2), 532—564.

[30] Gavazza, A. (2011). Leasing and secondary markets: Theory and evidence from

commercial aircraft. Journal of Political Economy, 119 (2), 325—377.

42



[31] Geromichalos, A., & Herrenbrueck, L. (2016). The strategic determination of the supply

of liquid assets. Working Paper.

[32] Gofman, M. (2011). A network-based analysis of over-the-counter markets. Working

Paper.

[33] He, Z., & Mibradt, K. (2014). Endogenous liquidity and defaultable bonds.

Econometrica, 82 (4), 1443—1508.

[34] Hendershott, T., Li, D., Livdan, D., & Schürhoff, N. (2015). Relationship trading in

OTC markets. Working Paper.

[35] Hollifield, B., Neklyudov, A., & Spatt, C. S. (2014). Bid-ask spreads and the pricing of

securitizations:144a vs. registered securitizations. Working Paper.

[36] Hugonnier, J., Lester, B., & Weill, P.-O. (2014). Heterogeneity in decentralized asset

markets. Working Paper.
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Appendix A. Microfoundations for the quadratic utility flow

Assume that there are two assets. One asset is riskless and pays interest at an ex-

ogenously given rate r. This asset is traded in a continuous frictionless market. The

other asset is risky, traded over the counter, and is in supply denoted by A. This asset

pays a cumulative dividend:

dDt = mDdt+ σDdBt, (A.1)

where Bt is a standard Brownian motion.

I borrow the specification of preferences and trading motives from Duffie et al.

(2007) and Gârleanu (2009). Investors are subjective expected utility maximizers

with CARA felicity functions. Investors’ coefficient of absolute risk aversion and time

preference rate are denoted by γ and r respectively.

Investor i has cumulative income process ηi:

dηit = mηdt+ σηdB
i
t, (A.2)

where

dBi
t = ρitdBt +

√
1− (ρit)

2
dZi

t . (A.3)

The standard Brownian motion Zi
t is independent of Bt, and ρit captures the instan-

taneous correlation between the payoff of the risky asset and the income of investor

i. This correlation is time-varying and heterogeneous across investors. Thus, this het-

erogeneity creates the gains from trade. In the context of different markets, this het-

erogeneity can be interpreted in different ways such as hedging demands or liquidity

needs.

I assume that the correlation between an investor’s income and the payoff of risky

asset is itself stochastic. Stochastic processes that govern idiosyncratic shocks and

trade are as described in Section 2.

Let V (W, ρ, a, λ) be the maximum attainable continuation utility of investor of type

(ρ, a, λ) with current wealth W . It satisfies

V (W, ρ, a, λ) = sup
c
Et


−

∞∫

t

e−r(s−t)e−γcsds | Wt = W , ρt = ρ, at = a


 , (A.4)
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s.t. dWt = (rWt − ct)dt+ atdDt + dηt − P [(ρt, at, λ) , (ρ
′
t, a

′
t, λ

′
t)] dat

dat =





q [(ρt, at, λ) , (ρ
′
t, a

′
t, λ

′
t)] if there is contact with investor (ρ′t, a

′
t, λ

′
t)

0 if no contact,

(A.5)

where {q [(ρ, a, λ) , (ρ′, a′, λ′)] , P [(ρ, a, λ) , (ρ′, a′, λ′)]} =

argmax
q,P

[V (W−qP, ρ, a+q, λ)−V (W, ρ, a, λ)]
1
2 [V (W ′+qP, ρ′, a′−q, λ′)−V (W ′, ρ′, a′, λ′)]

1
2 ,

(A.7)

s.t. V (W − qP, ρ, a+ q, λ) ≥ V (W, ρ, a, λ),

V (W ′ + qP, ρ′, a′ − q, λ′) ≥ V (W ′, ρ′, a′, λ′).

Since investors have CARA preferences, terms of trade are independent of wealth

levels as I will show later. To eliminate Ponzi-like schemes, I impose the transversality

condition

lim
T→∞

e−r(T−t)Et
[
e−rγWT

]
= 0. (A.8)

To derive the optimal rules, the technique of stochastic dynamic programming is

used following Merton (1971). Assuming sufficient differentiability and applying Ito’s

lemma for jump-diffusion processes, the investor’s value function V (W, ρ, a, λ) satisfies

the Hamilton-Jacobi-Bellman (HJB) equation

0 = sup
c
{−e−γc + VW (W, ρ, a, λ)[rW − c+ amD +mη]

+
1

2
VWW (W, ρ, a, λ)[σ

2
η + 2ρaσDση + a

2σ2D]

− rV (W, ρ, a, λ) + α

1∫

−1

[V (W, ρ′, a, λ)− V (W, ρ, a, λ)]dF (ρ′)

+

∞∫

−∞

1∫

−1

{V (W − q [(ρ, a, λ) , (ρ′, a′, λ′)]P [(ρ, a, λ) , (ρ′, a′, λ′)] , ρ, a+ q [(ρ, a, λ) , (ρ′, a′, λ′)] , λ)

−V (W, ρ, a, λ)} 2µλ
λ′

Λ
Φ(dρ′, da′, dλ′)}. (A.9)
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Following Duffie et al. (2007), I guess that V (W, ρ, a, λ) takes the form

V (W, ρ, a) = −e−rγ(W+J(ρ,a,λ)+J) (A.10)

for some function J(ρ, a), where

J =
1

r

(
mη +

log r

γ
−
1

2
rγσ2η

)
(A.11)

is a constant. Replacing into (A.9), I find that the optimal consumption is

c = −
log r

γ
+ r(W + J(ρ, a, λ) + J).

After plugging c back into (A.9) and dividing by rγV (W, ρ, a, λ), I find that (A.9)

is satisfied iff

rJ(ρ, a, λ) = u(ρ, a) + α

1∫

−1

1− e−rγ[J(ρ
′,a,λ)−J(ρ,a,λ)]

rγ
dF (ρ′)

+

∞∫

−∞

1∫

−1

1− e−rγ{J(ρ,a+q[(ρ,a,λ),(ρ
′,a′,λ′)],λ)−J(ρ,a,λ)−q[(ρ,a,λ),(ρ′,a′,λ′)]P [(ρ,a,λ),(ρ′,a′,λ′)]}

rγ

2µλ
λ′

Λ
Φ(dρ′, da′, dλ′). (A.12)

Terms of individual trades, q [(ρ, a, λ) , (ρ′, a′, λ′)] and P [(ρ, a, λ) , (ρ′, a′, λ′)], are

determined by a Nash bargaining game with the solution given by the optimization

problem (A.7). Dividing by V (W, ρ, a, λ)
1
2V (W ′, ρ′, a′, λ′)

1
2 , (A.7) can be written as

{q [(ρ, a, λ) , (ρ′, a′, λ′)] , P [(ρ, a, λ) , (ρ′, a′, λ′)]}

= argmax
q,P

[1− e−rγ[J(ρ,a+q,λ)−J(ρ,a,λ)−qP ]]
1
2 [1− e−rγ[J(ρ

′,a′−q,λ′)−J(ρ′,a′,λ′)+qP ]]
1
2 ,

s.t.

1− e−rγ[J(ρ,a+q,λ)−J(ρ,a,λ)−qP ] ≥ 0

1− e−rγ[J(ρ
′,a′−q,λ′)−J(ρ′,a′,λ′)+qP ] ≥ 0.

As can be seen, terms of trade are independent of wealth levels. Solving this problem
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is relatively straightforward: I set up the Lagrangian of this problem. Then using the

first-order and Kuhn-Tucker conditions, the trade size q [(ρ, a, λ) , (ρ′, a′, λ′)] solves the

equation (8). And, the transaction price P [(ρ, a, λ) , (ρ′, a′, λ′)] is given by the equa-

tion (9) if J2(ρ, a, λ) 6= J2(ρ
′, a′, λ′); and P = J2(ρ, a, λ) if J2(ρ, a, λ) = J2(ρ

′, a′, λ′).

Substituting the transaction price into (A.12), I get

rJ(ρ, a, λ) = u(ρ, a) + α

1∫

−1

1− e−rγ[J(ρ
′,a,λ)−J(ρ,a,λ′)]

rγ
dF (ρ′)

+

∞∫

−∞

1∫

−1

1− e−
rγ
2
{J(ρ,a+q[(ρ,a,λ),(ρ′,a′,λ′)],λ)−J(ρ,a,λ)+J(ρ′,a′−q[(ρ,a,λ),(ρ′,a′,λ′)],λ′)−J(ρ′,a′,λ′)}

rγ

2µλ
λ′

Λ
Φ(dρ′, da′, dλ′), (A.13)

subject to (8).

Equation (A.13) cannot be solved in closed form. Consequently, following Gârleanu

(2009), I use the linearization 1−e−rγx

rγ
≈ x that ignores terms of order higher than

1 in [J(ρ′, a, λ) − J(ρ, a, λ)]. The same approximation is also used by Biais (1993),

Duffie et al. (2007), Vayanos and Weill (2008), Praz (2014), and Cujean and Praz

(2015). Economic meaning of this approximation is that I assume investors are risk

averse towards diffusion risks while they are risk neutral towards jump risks. The

assumption does not suppress the impact of risk aversion as investors’ preferences

feature the fundamental risk-return trade-off associated with asset holdings. It only

linearizes the preferences of investors over jumps in the continuation values created

by trade or idiosyncratic shocks. The approximation yields the following lemma.

Lemma 3 Fix parameters γ, σD and ση, and let σD = σD
√
γ/γ and ση = ση

√
γ/γ.

In any stationary equilibrium, investors’ value functions solve the following HJB

equation in the limit as γ goes to zero:

rJ(ρ, a, λ) = amD −
1

2
rγ
(
a2σ2D + 2ρaσDση

)
+ α

1∫

−1

[J(ρ′, a, λ)− J(ρ, a, λ)]dF (ρ′)

+

1∫

0

∞∫

−∞

1∫

−1

µλ
λ′

Λ
{J(ρ, a+ q [(ρ, a, λ) , (ρ′, a′, λ′)] , λ)− J(ρ, a, λ)

+J(ρ′, a′ − q [(ρ, a, λ) , (ρ′, a′, λ′)] , λ′)− J(ρ′, a′, λ′)}Φ(dρ′, da′, dλ′), (A.14)

subject to (8).
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Ignoring the bars on γ, σD and ση, the problem is equivalent to the one with the

reduced-form quadratic utility flow.

Appendix B. Proofs

B.1 Proof of Theorem 1 and Proposition 2

After substituting the solution of Nash bargaining, the investors’ problem is

rJ(ρ, a, λ) = amD −
1

2
rγ
(
a2σ2D + 2ρaσDση

)
+ α

1∫

−1

[J(ρ′, a, λ)− J(ρ, a, λ)]dF (ρ′)

+

1∫

0

∞∫

−∞

1∫

−1

2µλ
λ′

Λ

[
max
q

{
J(ρ, a+ q, λ)− J(ρ, a, λ)

2

+
J(ρ′, a′ − q, λ′)− J(ρ′, a′, λ′)

2

}]
Φ(dρ′, da′, dλ′).

Conjecture that

J(ρ, a, λ) = D (λ) + E (λ) ρ+ F (λ) a+G (λ) a2 +H (λ) ρa+M (λ) ρ2, (B.1)

implying

J2(ρ, a, λ) = F (λ) + 2G (λ) a+H (λ) ρ (B.2)

and

J22(ρ, a, λ) = 2G (λ) . (B.3)

Therefore, the value function can be written as

J(ρ, a, λ) = −G (λ) a2 + J2(ρ, a, λ)a+D (λ) + E (λ) ρ+M (λ) ρ2. (B.4)

q [(ρ, a, λ) , (ρ′, a′, λ′)] is given by (8). Using the conjecture,

F (λ) + 2G (λ) a+ 2G (λ) q +H (λ) ρ = F (λ′) + 2G (λ′) a′ − 2G (λ′) q +H (λ′) ρ′.

Therefore,

q =
J2(ρ

′, a′, λ′)− J2(ρ, a, λ)

2 (G (λ) +G (λ′))
.

Substituting back inside the conjectured marginal valuation, the post-trade marginal
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valuation is

J2(ρ, a+q, λ) = J2(ρ
′, a′−q, λ′) = G (λ)

J2(ρ
′, a′, λ′)

G (λ) +G (λ′)
+G (λ′)

J2(ρ, a, λ)

G (λ) +G (λ′)
. (B.5)

P [(ρ, a, λ) , (ρ′, a′, λ′)] is given by (9). Using the fact that J(ρ, a, λ) is quadratic in

a, a second-order Taylor expansion shows that:

J(ρ, a+ q, λ)− J(ρ, a, λ) = J2(ρ, a+ q, λ)q −G (λ) q2.

Then, Equation (9) implies

P =
q

2
(G (λ′)−G (λ)) + J2(ρ, a+ q, λ).

Hence, the terms of trade satisfy the system

q =
J2(ρ

′, a′, λ′)− J2(ρ, a, λ)

2 (G (λ) +G (λ′))
, (B.6a)

P =
q

2
(G (λ′)−G (λ)) +G (λ)

J2(ρ
′, a′, λ′)

G (λ) +G (λ′)
+G (λ′)

J2(ρ, a, λ)

G (λ) +G (λ′)
. (B.6b)

Using (B.5) and (B.6a), the implied trade surplus is

J(ρ, a+ q, λ)− J(ρ, a, λ) + J(ρ′, a′ − q, λ′)− J(ρ′, a′, λ′)

= −G (λ)
(
2aq + q2

)
+ J2(ρ, a+ q, λ) (a+ q)− J2(ρ, a, λ)a

−G (λ′)
(
−2a′q + q2

)
+ J2(ρ

′, a′ − q, λ′) (a′ − q)− J2(ρ
′, a′, λ′)a′

= −
(J2(ρ

′, a′, λ′)− J2(ρ, a, λ))
2

4 (G (λ) +G (λ′))
.

Rewrite the investors’ problem by substituting the trade surplus implied by the

Nash bargaining solution:

rJ(ρ, a, λ) = amD −
1

2
rγ
(
a2σ2D + 2ρaσDση

)
+ α

1∫

−1

[J(ρ′, a, λ)− J(ρ, a, λ)]dF (ρ′)

+

1∫

0

∞∫

−∞

1∫

−1

2µλ
λ′

Λ



−

(J2(ρ
′, a′, λ′)− J2(ρ, a, λ))

2

8 (G (λ) +G (λ′))



Φ(dρ

′, da′, dλ′). (B.7)

Therefore, my conjectured value function is verified after substituting the Nash bar-
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gaining solution. The marginal valuation satisfies the flow Bellman equation:

rJ2(ρ, a, λ) = mD − rγ
(
aσ2D + ρσDση

)
+ α

1∫

−1

[J2(ρ
′, a, λ)− J2(ρ, a, λ)]dF (ρ

′)

+

1∫

0

∞∫

−∞

1∫

−1

2µλ
λ′

Λ

{
J2(ρ

′, a′, λ′)− J2(ρ, a, λ)

4 (G (λ) +G (λ′))
2G (λ)

}
Φ(dρ′, da′, dλ′). (B.8)

Taking all terms which contain J2(ρ, a, λ) to the LHS,


r + α +

1∫

0

µλ
λ′

Λ

G (λ)

G (λ) +G (λ′)
dΨ(λ′)


 J2(ρ, a, λ) = mD − rγ

(
aσ2D + ρσDση

)

+α

1∫

−1

J2(ρ
′, a, λ)dF (ρ′) +

1∫

0

∞∫

−∞

1∫

−1

µλ
λ′

Λ

G (λ)

G (λ) +G (λ′)
J2(ρ

′, a′, λ′)Φ(dρ′, da′, dλ′).

Substitute the conjectured marginal valuation and match coefficients:

(α + r̃ (λ)) (F (λ) + 2G (λ) a+H (λ) ρ)

= mD−rγ
(
aσ2D + ρσDση

)
+α

1∫

−1

[F (λ) + 2G (λ) a+H (λ) ρ′] dF (ρ′)+(r̃ (λ)− r) J2 (λ) ,

where

r̃ (λ) ≡ r +

1∫

0

µλ
λ′

Λ

G (λ)

G (λ) +G (λ′)
dΨ(λ′),

J2 (λ) ≡

1∫
0

∞∫
−∞

1∫
−1
µλλ

′

Λ
G(λ)

G(λ)+G(λ′)
J2(ρ

′, a′, λ′)Φ(dρ′, da′, dλ′)

r̃ (λ)− r
.

Equivalently,

(α + r̃ (λ)) (F (λ) + 2G (λ) a+H (λ) ρ)

= mD − rγ
(
aσ2D + ρσDση

)
+ α (F (λ) + 2G (λ) a+H (λ) ρ) + (r̃ (λ)− r) J2 (λ) .

Then, undetermined coefficients solve the system:
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r̃ (λ)F (λ) = mD + αH (λ) ρ+ (r̃ (λ)− r) J2 (λ) , (B.9)

r̃ (λ) 2G (λ) = −rγσ2D, (B.10)

(α + r̃ (λ))H (λ) = −rγσDση. (B.11)

Using the resulting G from the matched coefficients, the definition of r̃ (λ) implies

r̃ (λ) = r +

1∫

0

µλ
λ′

Λ

−rγσ2
D

2r̃(λ)

−rγσ2
D

2r̃(λ)
+

−rγσ2
D

2r̃(λ′)

dΨ(λ′).

Then, r̃ (λ) satisfies the recursive functional equation:

r̃ (λ) = r +

1∫

0

µλ
λ′

Λ

r̃ (λ′)

r̃ (λ) + r̃ (λ′)
dΨ(λ′). (B.13)

Using the matched coefficients,

J2 (ρ, a, λ) =
mD − rγσ2Da− rγσDση

r̃(λ)ρ+αρ

r̃(λ)+α
+ (r̃ (λ)− r) J2 (λ)

r̃ (λ)
, (B.14)

where

J2 (λ) =

1∫
0

∞∫
−∞

1∫
−1
µλλ

′

Λ
r̃(λ′)

r̃(λ)+r̃(λ′)
J2(ρ

′, a′, λ′)Φ(dρ′, da′, dλ′)

r̃ (λ)− r
. (B.15)

To complete the proof of Theorem 1, I need to show that J2 (λ) =
u2(ρ,A)

r
. Using

(B.14):

J2 (λ) =

1∫
0

∞∫
−∞

1∫
−1
µλλ

′

Λ
r̃(λ′)

r̃(λ)+r̃(λ′)



mD−rγσ

2
D
a′−rγσDση

r̃(λ′)ρ′+αρ

r̃(λ′)+α
+(r̃(λ′)−r)J2(λ′)

r̃(λ′)


Φ(dρ′, da′, dλ′)

r̃ (λ)− r
.

After cancellations, and using the fact that measure of specialists is independent of

idiosyncratic correlation shocks,
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(r̃ (λ)− r) J2 (λ) =
1∫

0

µλ
λ′

Λ

1

r̃ (λ) + r̃ (λ′)

(
mD − rγσDσηρ− rγσ2DEφ [a

′ | λ′] + (r̃ (λ′)− r) J2 (λ
′)
)
dΨ(λ′).

(B.16)

This equation reveals that the expected contribution of the market to an investor’s

post-trade marginal valuation depends on the mean of equilibrium holdings Eφ [a′ | λ
′]

conditional on measure of trading specialists. It will be determined when I derive

the first moment of equilibrium distribution. Thus, the proof of Theorem 1 will be

complete after the proof of Proposition 2. The following lemma constitutes the starting

point of the proof of Proposition 2.

Lemma 4 Given J2 (λ), the conditional pdf φρ,λ (a) of asset holdings satisfies the sys-

tem

(α + 2µλ)φρ,λ (a) = α

1∫

−1

φρ′,λ (a) dF (ρ
′)

+

1∫

0

1∫

−1

∞∫

−∞

2µλ
λ′

Λ

(
1 +

r̃ (λ′)

r̃ (λ)

)
φρ,λ (a

′)

φρ′,λ′

(
a

(
1 +

r̃ (λ′)

r̃ (λ)

)
− a′ − m̃D (λ, λ

′) + C̃ [(ρ, λ) , (ρ′, λ′)]− J̃ (λ, λ′)

)
da′dF (ρ′) dΨ(λ′) ,

where

m̃D (λ, λ
′) ≡

r̃ (λ′)− r̃ (λ)

rγσ2Dr̃ (λ)
mD,

C̃ [(ρ, λ) , (ρ′, λ′)] ≡
ση
σD

(
r̃ (λ′)

r̃ (λ)

r̃ (λ) ρ+ αρ

r̃ (λ) + α
−
r̃ (λ′) ρ′ + αρ

r̃ (λ′) + α

)
,

J̃ (λ, λ′) ≡
r̃ (λ′)

rγσ2Dr̃ (λ)
(r̃ (λ)− r) J2 (λ)−

1

rγσ2D
(r̃ (λ′)− r) J2 (λ

′) .

With further simplification,
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(α + 2µλ)φρ,λ (a) = α

1∫

−1

φρ′,λ (a) dF (ρ
′)

+

1∫

0

1∫

−1

∞∫

−∞

2µλ
λ′

Λ

(
1 +

r̃ (λ′)

r̃ (λ)

)
φρ,λ (a

′)

φρ′,λ′

(
a

(
1 +

r̃ (λ′)

r̃ (λ)

)
− a′ + C [(ρ, λ) , (ρ′, λ′)]

)
da′dF (ρ′) dΨ(λ′) ,

where

C [(ρ, λ) , (ρ′, λ′)] ≡ −m̃D (λ, λ
′) + C̃ [(ρ, λ) , (ρ′, λ′)]− J̃ (λ, λ′) .

Taking the Fourier transform of the steady-state condition above, the first equation

of Proposition 2 is proven. The second equation comes from the fact that φρ,λ (a)

is a pdf. And, the third equation is implied by market clearing. When I derive

C̃ [(ρ, λ) , (ρ′, λ′)], the proof will be complete.

The first derivative of the Fourier transform evaluated at z = 0 is

(α + 2µλ) φ̂
′

ρ,λ (0)=α

1∫

−1

φ̂
′

ρ′,λ (0) dF (ρ
′)

+

1∫

0

1∫

−1

2µλ
λ′

Λ

1

1 + r̃(λ′)

r̃(λ)

φ̂
′

ρ,λ (0) dF (ρ
′) dΨ(λ′)

+

1∫

0

1∫

−1

2µλ
λ′

Λ
i2πC [(ρ, λ) , (ρ′, λ′)]

1

1 + r̃(λ′)

r̃(λ)

dF (ρ′) dΨ(λ′)

+

1∫

0

1∫

−1

2µλ
λ′

Λ

1

1 + r̃(λ′)

r̃(λ)

φ̂
′

ρ′,λ′ (0) dF (ρ
′) dΨ(λ′) .

Therefore, the first moments satisfy
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(α + 2µλ)Eφ [a | ρ, λ] =α

1∫

−1

Eφ [a | ρ
′, λ] dF (ρ′)

+

1∫

0

1∫

−1

2µλ
λ′

Λ

1

1 + r̃(λ′)

r̃(λ)

Eφ [a | ρ, λ] dF (ρ
′) dΨ(λ′)

−

1∫

0

1∫

−1

2µλ
λ′

Λ
C [(ρ, λ) , (ρ′, λ′)]

1

1 + r̃(λ′)

r̃(λ)

dF (ρ′) dΨ(λ′)

+

1∫

0

1∫

−1

2µλ
λ′

Λ

1

1 + r̃(λ′)

r̃(λ)

Eφ [a | ρ
′, λ′] dF (ρ′) dΨ(λ′) ,

(α + 2µλ)Eφ [a | ρ, λ] =αEφ [a | λ] + Eφ [a | ρ, λ] 2 (r + µλ− r̃ (λ))

−

1∫

0

2µλ
λ′

Λ
C [(ρ, λ) , (ρ′, λ′)]

1

1 + r̃(λ′)

r̃(λ)

dΨ(λ′)

+

1∫

0

2µλ
λ′

Λ

1

1 + r̃(λ′)

r̃(λ)

Eφ [a | λ
′] dΨ(λ′) ,

(α + 2 (r̃ (λ)− r))Eφ [a | ρ, λ] =αEφ [a | λ]

−

1∫

0

2µλ
λ′

Λ
C [(ρ, λ) , (ρ′, λ′)]

1

1 + r̃(λ′)

r̃(λ)

dΨ(λ′)

+

1∫

0

2µλ
λ′

Λ

1

1 + r̃(λ′)

r̃(λ)

Eφ [a | λ
′] dΨ(λ′) ,

where the second term is

1∫

0

2µλ
λ′

Λ
C [(ρ, λ) , (ρ′, λ′)]

1

1 + r̃(λ′)

r̃(λ)

dΨ(λ′)

=

1∫

0

2µλ
λ′

Λ

1

rγσ2D

[
−

(
r̃ (λ′)

r̃ (λ)
− 1

)
mD + rγσDση

(
r̃ (λ′)

r̃ (λ)

r̃ (λ) ρ+ αρ

r̃ (λ) + α
− ρ

)

−
r̃ (λ′)

r̃ (λ)
(r̃ (λ)− r) J2 (λ) + (r̃ (λ

′)− r) J2 (λ
′)

]
1

1 + r̃(λ′)

r̃(λ)

dΨ(λ′) .
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Take expectation over ρ, and substitute out C [(ρ, λ) , (ρ′, λ′)]:

(r̃ (λ)− r)Eφ [a | λ] = −

1∫

0

µλ
λ′

Λ

1

rγσ2D

[
−

(
r̃ (λ′)

r̃ (λ)
− 1

)
(mD − rγσDσηρ)

−
r̃ (λ′)

r̃ (λ)
(r̃ (λ)− r) J2 (λ) + (r̃ (λ

′)− r) J2 (λ
′)

]
r̃ (λ)

r̃ (λ) + r̃ (λ′)
dΨ(λ′)

+

1∫

0

µλ
λ′

Λ

r̃ (λ)

r̃ (λ) + r̃ (λ′)
Eφ [a | λ

′] dΨ(λ′) .

And note that the equation (B.16) also connects J2 (λ
′) and Eφ [a | λ

′] as a result of

optimality:

(r̃ (λ)− r) J2 (λ) = (mD − rγσDσηρ)

(
r + µλ

r̃ (λ)
− 1

)

+

1∫

0

µλ
λ′

Λ

1

r̃ (λ) + r̃ (λ′)

(
−rγσ2DEφ [a

′ | λ′] + (r̃ (λ′)− r) J2 (λ
′)
)
dΨ(λ′).

Thus, the last two equations combined with the market-clearing condition

1∫

0

Eφ [a
′ | λ′] dΨ(λ′) = A

pin down Eφ [a | λ] and J2 (λ) for all λ ∈supp(Ψ). Since λ takes values on a finite set,

it is easy to verify that the conditions imply a non-singular linear system with the

unique solution:

Eφ [a | λ] =A,

J2 (λ)=
mD

r
− γσDσηρ− γσ2DA.

This completes the proof of Theorem 1. Using this solution,

J̃ (λ, λ′) = −
r̃ (λ′)− r̃ (λ)

γσ2Dr̃ (λ)

(
mD

r
− γσDσηρ− γσ2DA

)
,

which implies

C [(ρ, λ) , (ρ′, λ′)] = r̃ (λ′)
ση
σD

(
ρ− ρ

r̃ (λ) + α
−

ρ′ − ρ

r̃ (λ′) + α

)
−

(
r̃ (λ′)

r̃ (λ)
− 1

)
A,
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and the proof Proposition 2 is also complete.

Proposition 1 can be derived as a by-product of the steps in this proof. More

precisely, (17) is derived by substituting J2 (λ) into (B.14). Using the resulting formula

for marginal valuation and (B.10), equations (B.6a) and (B.6b) imply (18) and (19),

respectively.

Using the marginal valuation in Proposition 1, application of the method of unde-

termined coefficients to (B.7) pins down all the coefficients in (B.1):

(r + α)M (λ) =
rγσ2η

2 (r̃ (λ) + α)2
r̃ (λ) (r̃ (λ)− r) ,

(r + α)E (λ) = H (λ)

1∫

0

2µλ
λ′

Λ

F (λ′) + 2G (λ′)A+H (λ′) ρ− F (λ)

4 (G (λ) +G (λ′))
dΨ(λ′) ,

rD (λ) = α
(
E (λ) ρ+M (λ) ρ2

)

+

1∫

0

∞∫

−∞

1∫

−1

2µλ
λ′

Λ



−

[F (λ′) + 2G (λ′) a′ +H (λ′) ρ′ − F (λ)]
2

8 (G (λ) +G (λ′))



Φ(dρ

′, da′, dλ′).

Therefore, the value function is available in closed form up to the function r̃ (λ).

B.2 Proof of Lemma 4

Assuming Φλ(ρ, a) is the joint cdf of correlations and asset holdings conditional on

search intensity, rearrangement of the equation (7) yields

0 = −αΦλ∗(ρ
∗, a∗) + α

a∗∫

−∞

1∫

−1

Φλ∗(dρ, da)F (ρ
∗)

−
2µλ∗

Λ

a∗∫

−∞

ρ∗∫

−1



1∫

0

∞∫

−∞

1∫

−1

λ′I{q[(ρ,a,λ∗),(ρ′,a′,λ′)]≥a∗−a}Φλ′(dρ
′, da′)dΨ

(
λ′
)

Φλ∗(dρ, da)

+
2µλ∗

Λ

∞∫

a∗

ρ∗∫

−1



1∫

0

∞∫

−∞

1∫

−1

λ′I{q[(ρ,a,λ∗),(ρ′,a′,λ′)]<a∗−a}Φλ′(dρ
′, da′)dΨ

(
λ′
)

Φλ∗(dρ, da)

for all λ∗ ∈supp(Ψ). For simplicity, I assume that the distribution of correlations

and the equilibrium conditional distribution of asset holdings have densities. This
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assumption is actually never used but simplifies the presentation of the results. I

write the above condition in terms of conditional pdfs, by letting φρ,λ(a) denote the

conditional pdf of asset holdings by investors with correlation ρ and search intensity

λ:

0 = −α

ρ∗∫

−1

a∗∫

−∞

φρ,λ∗(a)dadF (ρ) + α

1∫

−1

a∗∫

−∞

φρ,λ∗(a)dadF (ρ)F (ρ
∗)

−
2µλ∗

Λ

ρ∗∫

−1

a∗∫

−∞



1∫

0

1∫

−1

∞∫

−∞

λ′I{q[(ρ,a,λ∗),(ρ′,a′,λ′)]≥a∗−a}φρ′,λ′(a
′)da′dF (ρ′)dΨ

(
λ′
)

φρ,λ∗(a)dadF (ρ)

+
2µλ∗

Λ

ρ∗∫

−1

∞∫

a∗



1∫

0

1∫

−1

∞∫

−∞

λ′I{q[(ρ,a,λ∗),(ρ′,a′,λ′)]<a∗−a}φρ′,λ′(a
′)da′dF (ρ′)dΨ

(
λ′
)

φρ,λ∗(a)dadF (ρ).

Using the expression for trade sizes implied by (B.6a), I can get rid of indicator

functions inside the integrals, using appropriate bounds:

0 = −α

ρ∗∫

−1

a∗∫

−∞

φρ,λ∗(a)dadF (ρ) + αF (ρ∗)

1∫

−1

a∗∫

−∞

φρ,λ∗(a)dadF (ρ)

−
2µλ∗

Λ

ρ∗∫

−1

a∗∫

−∞



1∫

0

1∫

−1

∞∫

ξ[(ρ,a,λ∗),(ρ′,a′,λ′)]

λ′φρ′,λ′(a
′)da′dF (ρ′)dΨ(λ′)


φρ,λ∗(a)dadF (ρ)

+
2µλ∗

Λ

ρ∗∫

−1

∞∫

a∗



1∫

0

1∫

−1

ξ[(ρ,a,λ∗),(ρ′,a′,λ′)]∫

−∞

λ′φρ′,λ′(a
′)da′dF (ρ′)dΨ(λ′)


φρ,λ∗(a)dadF (ρ),

where

ξ [(ρ, a, λ) , (ρ′, a′, λ′)] = a

(
1 +

r̃ (λ′)

r̃ (λ)

)
− a′ − m̃D (λ, λ

′) + C̃ [(ρ, λ) , (ρ′, λ′)]− J̃ (λ, λ′) ,

m̃D (λ, λ
′) ≡

r̃ (λ′)− r̃ (λ)

rγσ2Dr̃ (λ)
mD,

C̃ [(ρ, λ) , (ρ′, λ′)] ≡
ση
σD

(
r̃ (λ′)

r̃ (λ)

r̃ (λ) ρ+ αρ

r̃ (λ) + α
−
r̃ (λ′) ρ′ + αρ

r̃ (λ′) + α

)
,

J̃ (λ, λ′) ≡
r̃ (λ′)

rγσ2Dr̃ (λ)
(r̃ (λ)− r) J2 (λ)−

1

rγσ2D
(r̃ (λ′)− r) J2 (λ

′) .

59



Since this equality holds for any (ρ∗, a∗, λ∗), one can take derivative of the both sides

with respect to ρ∗ using Leibniz rule whenever necessary:

0 = −αf(ρ∗)

a∗∫

−∞

φρ∗,λ∗(a)da+ αf(ρ∗)

1∫

−1

a∗∫

−∞

φρ,λ∗(a)dadF (ρ)

−
2µλ∗

Λ
f(ρ∗)

a∗∫

−∞



1∫

0

1∫

−1

∞∫

ξ[(ρ∗,a,λ∗),(ρ′,a′,λ′)]

λ′φρ′,λ′(a
′)da′dF (ρ′)dΨ(λ′)


φρ∗,λ∗(a)da

+
2µλ∗

Λ
f(ρ∗)

∞∫

a∗



1∫

0

1∫

−1

ξ[(ρ∗,a,λ∗),(ρ′,a′,λ′)]∫

−∞

λ′φρ′,λ′(a
′)da′dF (ρ′)dΨ(λ′)


φρ∗,λ∗(a)da.

After cancellations,

0 = −α

a∗∫

−∞

φρ∗,λ∗(a)da+ α

1∫

−1

a∗∫

−∞

φρ,λ∗(a)dadF (ρ)

−
2µλ∗

Λ

a∗∫

−∞



1∫

0

1∫

−1

∞∫

ξ[(ρ∗,a,λ∗),(ρ′,a′,λ′)]

λ′φρ′,λ′(a
′)da′dF (ρ′)dΨ(λ′)


φρ∗,λ∗(a)da

+
2µλ∗

Λ

∞∫

a∗



1∫

0

1∫

−1

ξ[(ρ∗,a,λ∗),(ρ′,a′,λ′)]∫

−∞

λ′φρ′,λ′(a
′)da′dF (ρ′)dΨ(λ′)


φρ∗,λ∗(a)da.

Similarly, take derivative with respect to a∗ using Leibniz rule whenever necessary:

0 = −αφρ∗,λ∗(a
∗) + α

1∫

−1

φρ,λ∗(a
∗)dF (ρ)

−
2µλ∗

Λ

a∗∫

−∞


−

(
1 +

r̃ (λ′)

r̃ (λ)

) 1∫

0

1∫

−1

λ′φρ′,λ′(ξ [(ρ
∗, a∗, λ∗) , (ρ′, a′, λ′)])dF (ρ′)dΨ(λ′)


φρ∗,λ∗(a)da

−
2µλ∗

Λ

a∗∫

−∞



1∫

0

1∫

−1

∞∫

ξ[(ρ∗,a∗,λ∗),(ρ′,a′,λ′)]

λ′φρ′,λ′(a
′)da′dF (ρ′)dΨ(λ′)


φρ∗,λ∗(a

∗)

+
2µλ∗

Λ

∞∫

a∗



(
1 +

r̃ (λ′)

r̃ (λ)

) 1∫

0

1∫

−1

λ′φρ′,λ′(ξ [(ρ
∗, a∗, λ∗) , (ρ′, a′, λ′)])dF (ρ′)dΨ(λ′)


φρ∗,λ∗(a)da

−
2µλ∗

Λ



1∫

0

1∫

−1

ξ[(ρ∗,a∗,λ∗),(ρ′,a′,λ′)]∫

−∞

λ′φρ′,λ′(a
′)da′dF (ρ′)dΨ(λ′)


φρ∗,λ∗(a

∗).
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After simplification, the Lemma is derived.

B.3 Proof of Lemma 1

Restate the equation (14):

r̃ (λ) = r +

1∫

0

µλ
λ′

Λ

r̃ (λ′)

r̃ (λ) + r̃ (λ′)
dΨ(λ′),

where r̃ (λ) > 0 for all λ ∈supp(Ψ) from the strict concavity of the value function.

The functional equation, in turn, implies that r̃ (λ) > r for all λ ∈supp(Ψ). First,

let’s establish the existence and uniqueness of the solution of this functional equation.

Rewrite:

r̃ (λ) = r +

1∫

0

µλ
λ′

Λ
dΨ(λ′)− r̃ (λ)

1∫

0

µλ
λ′

Λ

1

r̃ (λ) + r̃ (λ′)
dΨ(λ′).

Rearrangement yields an alternative representation of the functional equation:

r̃ (λ) =
r + µλ

1 +
1∫
0
µλλ

′

Λ
1

r̃(λ)+r̃(λ′)
dΨ(λ′)

.

Since I assume a finite support, let supp(Ψ) = {λ1, λ2, ..., λN} with ψn denoting

the fraction of investors with λn for all n ∈ {1, 2, ..., N}. And let r̃n = r̃ (λn) for all

n ∈ {1, 2, ..., N}. Define the mapping T : [0,∞)N → [0,∞)N such that

(T r̃)n = max




r,

r + µλn

1 +
N∑
k=1

µλn
λk
Λ

1
r̃n+r̃k

ψk




.

[0,∞)N with the usual sup norm constitutes a real Banach space. And, the set [0,∞)N

is a strongly minihedral cone itself (see Krasnosel’skǐı, 1964). Thus, the solution

of the functional equation is a non-zero fixed point of T on a strongly minihedral

cone. Theorem 4.1 of Krasnosel’skǐı (1964) shows that every monotone mapping on

a strongly minihedral cone has at least one non-zero fixed point. It is easy to verify

the monotonicity of T , i.e. r̃A, r̃B ∈ [0,∞)N and r̃A ≤ r̃B imply T r̃A ≤ T r̃B. Hence,
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the existence of the solution of the functional equation is established.

To show the uniqueness, I follow Theorem 6.3 of Krasnosel’skǐı (1964), which states

that every u0-concave and monotone mapping on a cone has at most one non-zero

fixed point. Therefore, it suffices to show that T is u0-concave. By the definition of

u0-concavity, T is u0-concave if there exists a non-zero element u0 ∈ [0,∞)
N such

that for an arbitrary non-zero r̃ ∈ [0,∞)N there exist bl, bu ∈ R++ such that

blu0 ≤ T r̃ ≤ buu0,

and if for every t0 ∈ (0, 1) there exists η (t0) ∈ R++ such that

T (t0r̃) ≥ (1 + η (t0)) t0T r̃.

It can be easily verified from the definition of T that these conditions are satisfied

for u0 = (r + µ, ..., r + µ), bl = r (r + µ)−1, bu = 1, and η (t0) = (1− t0)
(
t0 +

µ
2rΛ

)−1
.

Hence, the uniqueness of the solution of the functional equation is established as well.

The function r̃ (λ) is strictly increasing if r̃ (λ′) > r̃ (λ) for all λ ∈supp(Ψ) and

for all λ′ ∈supp(Ψ) with λ′ > λ. To obtain a contradiction, suppose there exists

λ, λ′ ∈supp(Ψ) with λ′ > λ, and r̃ (λ′) ≤ r̃ (λ). The equation (14) implies that r̃ (λ′)

and r̃ (λ) satisfy the following equations respectively:

r̃ (λ′) = r +
µλ′

Λ

1∫

0

λ′′r̃ (λ′′)

r̃ (λ′) + r̃ (λ′′)
dΨ(λ′′)

r̃ (λ) = r +
µλ

Λ

1∫

0

λ′′r̃ (λ′′)

r̃ (λ) + r̃ (λ′′)
dΨ(λ′′).

As λ′ > λ and r̃ (λ′) ≤ r̃ (λ), the RHS of the second equation is lower than the RHS

of the first equation, which implies that r̃ (λ′) > r̃ (λ); and we obtain the desired

contradiction. Hence, the function r̃ (λ) is strictly increasing.

To show the strict concavity of the function r̃ (λ), I use the following definition of

strict concavity for functions defined on a finite domain, adapted from Yüceer (2002).

Definition 2 Let S ⊂ R be a discrete one-dimentional space. A function f : S → R

is strictly concave if for all x, y, z ∈ S with x < z < y,

f (z) >
y − z

y − x
f (x) +

z − x

y − x
f (y) .
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Therefore, the effective discount rate function is strictly concave if for all λ0, λ1, λ2 ∈supp(Ψ)

with λ0 < λ2 < λ1,

r̃ (λ2) >
λ1 − λ2
λ1 − λ0

r̃ (λ0) +
λ2 − λ0
λ1 − λ0

r̃ (λ1) .

Equivalenty,
λ1 − λ2
λ2 − λ0

>
r̃ (λ1)− r̃ (λ2)

r̃ (λ2)− r̃ (λ0)
.

Using (14), and using the fact that the function r̃ (λ) is strictly increasing,

r̃ (λ1)− r̃ (λ2)

r̃ (λ2)− r̃ (λ0)
=

1∫
0
µλ1

λ′

Λ
r̃(λ′)

r̃(λ1)+r̃(λ
′)
dΨ(λ′)−

1∫
0
µλ2

λ′

Λ
r̃(λ′)

r̃(λ2)+r̃(λ
′)
dΨ(λ′)

1∫
0
µλ2

λ′

Λ
r̃(λ′)

r̃(λ2)+r̃(λ
′)
dΨ(λ′)−

1∫
0
µλ0

λ′

Λ
r̃(λ′)

r̃(λ0)+r̃(λ
′)
dΨ(λ′)

<

1∫
0
µ (λ1 − λ2)

λ′

Λ
r̃(λ′)

r̃(λ2)+r̃(λ
′)
dΨ(λ′)

1∫
0
µ (λ2 − λ0)

λ′

Λ
r̃(λ′)

r̃(λ2)+r̃(λ
′)
dΨ(λ′)

=
λ1 − λ2
λ2 − λ0

.

Hence, the function r̃ (λ) is strictly concave.

To derive the last property of the function r̃ (λ), take the expectation of the equation

(14):

1∫

0

r̃ (λ) dΨ(λ)= r +

1∫

0

1∫

0

µλ
λ′

Λ

r̃ (λ′)

r̃ (λ) + r̃ (λ′)
dΨ(λ′)dΨ(λ)

= r +
1

2

1∫

0

1∫

0

µλ
λ′

Λ

r̃ (λ′)

r̃ (λ) + r̃ (λ′)
dΨ(λ′)dΨ(λ)

+
1

2

1∫

0

1∫

0

µλ
λ′

Λ

r̃ (λ)

r̃ (λ) + r̃ (λ′)
dΨ(λ′)dΨ(λ)

= r +
1

2

1∫

0

1∫

0

µλ
λ′

Λ

r̃ (λ) + r̃ (λ′)

r̃ (λ) + r̃ (λ′)
dΨ(λ′)dΨ(λ)

= r +
1

2

1∫

0

1∫

0

µλ
λ′

Λ
dΨ(λ′)dΨ(λ)

= r +
µΛ

2
.
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B.4 Proof of Proposition 3

I first take the Fourier transform of the second line of equation (20):

∞∫

−∞



1∫

0

1∫

−1

∞∫

−∞

2µλ
λ′

Λ

(
1 +

r̃ (λ′)

r̃ (λ)

)
φρ,λ (a

′)φρ′,λ′

(
a

(
1 +

r̃ (λ′)

r̃ (λ)

)
− a′ + C [(ρ, λ) , (ρ′, λ′)]

)

da′dF (ρ′) dΨ(λ′)] e−i2πazda

=

1∫

0

1∫

−1

∞∫

−∞

2µλ
λ′

Λ

(
1 +

r̃ (λ′)

r̃ (λ)

)
φρ,λ (a

′)



∞∫

−∞

φρ′,λ′

(
a

(
1 +

r̃ (λ′)

r̃ (λ)

)
− a′ + C [(ρ, λ) , (ρ′, λ′)]

)
e−i2πazda


 da′dF (ρ′) dΨ(λ′)

=

1∫

0

1∫

−1

∞∫

−∞

2µλλ′

Λ
φρ,λ (a

′) e

i2πz

1+
r̃(λ′)

r̃(λ)

{−a′+C[(ρ,λ),(ρ′,λ′)]}




∞∫

−∞

φρ′,λ′

(
a

(
1 +

r̃ (λ′)

r̃ (λ)

)
− a′ + C [(ρ, λ) , (ρ′, λ′)]

)
e

−i2πz

1+
r̃(λ′)

r̃(λ)

{
a

(
1+

r̃(λ′)

r̃(λ)

)
−a′+C[(ρ,λ),(ρ′,λ′)]

}

d

(
a

(
1 +

r̃ (λ′)

r̃ (λ)

)
− a′ + C [(ρ, λ) , (ρ′, λ′)]

)]
da′dF (ρ′) dΨ(λ′)

=

1∫

0

1∫

−1

∞∫

−∞

2µλ
λ′

Λ
φρ,λ (a

′) e

i2π{−a′+C[(ρ,λ),(ρ′,λ′)]} z

1+
r̃(λ′)

r̃(λ) φ̂ρ′,λ′




z

1 + r̃(λ′)

r̃(λ)


 da′dF (ρ′) dΨ(λ′)

=

1∫

0

1∫

−1

2µλ
λ′

Λ
φ̂ρ′,λ′




z

1 + r̃(λ′)

r̃(λ)


 e

i2πC[(ρ,λ),(ρ′,λ′)] z

1+
r̃(λ′)

r̃(λ)



∞∫

−∞

φρ,λ (a
′) e

−i2πa′ z

1+
r̃(λ′)

r̃(λ) da′


 dF (ρ′) dΨ(λ′)
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=

1∫

0

1∫

−1

2µλ
λ′

Λ
φ̂ρ′,λ′




z

1 + r̃(λ′)

r̃(λ)


 e

i2πC[(ρ,λ),(ρ′,λ′)] z

1+
r̃(λ′)

r̃(λ) φ̂ρ,λ




z

1 + r̃(λ′)

r̃(λ)


 dF (ρ′) dΨ(λ′) .

And using the linearity and integrability of the Fourier transform, Equation (24) is

obtained.

To obtain equations (25) and (26), I use the identities satisfied by the Fourier

transform (see Bracewell, 2000, p. 152-154) for any function g(x)

ĝ(0) =

∞∫

−∞

g(x)dx

and

ĝ′(0) = −i2π

∞∫

−∞

xg(x)dx

respectively.

n-th conditional moment of asset holdings can be written as follows using the

Fourier transform

Eφ [a
n | ρ, λ] = (−i2π)−n

[
dn

dzn
φ̂ρ,λ(z)

]

z=0

.

Let’s first use equation (24) to find an expression for dn

dzn
φ̂ρ,λ(z):

(α + 2µλ)
dn

dzn
φ̂ρ,λ (z) = α

1∫

−1

dn

dzn
φ̂ρ′,λ (z) dF (ρ

′)

+

1∫

0

1∫

−1

2µλ
λ′

Λ

dn

dzn




e

i2πC[(ρ,λ),(ρ′,λ′)] z

1+
r̃(λ′)

r̃(λ) φ̂ρ,λ




z

1 + r̃(λ′)

r̃(λ)


 φ̂ρ′,λ′




z

1 + r̃(λ′)

r̃(λ)







dF (ρ′) dΨ(λ′)

For the second line, I use the following generalization of the product rule:

dn

dxn

3∏

i=1

gi(x) =
∑

j1+j2+j3=n




n

j1, j2, j3




3∏

i=1

dji

dxji
gi(x),
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(α + 2µλ)
dn

dzn
φ̂ρ,λ (z) = α

1∫

−1

dn

dzn
φ̂ρ′,λ (z) dF (ρ

′) +

1∫

0

1∫

−1

2µλ
λ′

Λ

∑

j1+j2+j3=n




n

j1, j2, j3




dj1

dzj1
e

C[(ρ,λ),(ρ′,λ′)] i2πz

1+
r̃(λ′)

r̃(λ)
dj2

dzj2
φ̂ρ,λ




z

1 + r̃(λ′)

r̃(λ)



dj3

dzj3
φ̂ρ′,λ′




z

1 + r̃(λ′)

r̃(λ)


 dF (ρ′) dΨ(λ′) ,

(α + 2µλ) φ̂
(n)

ρ,λ(z) = α

1∫

−1

φ̂
(n)

ρ′,λ(z)dF (ρ
′) +

1∫

0

1∫

−1

2µλ
λ′

Λ

∑

j1+j2+j3=n




n

j1, j2, j3




(i2πC [(ρ, λ) , (ρ′, λ′)])j1(
r̃ (λ)

r̃ (λ) + r̃ (λ′)
)ne

C[(ρ,λ),(ρ′,λ′)] i2πz

1+
r̃(λ′)

r̃(λ)

φ̂
(j2)

ρ,λ




z

1 + r̃(λ′)

r̃(λ)


 φ̂

(j3)

ρ′,λ′




z

1 + r̃(λ′)

r̃(λ)


 dF (ρ′) dΨ(λ′) ,

(α + 2µλ) φ̂
(n)

ρ,λ(0) = α

1∫

−1

φ̂
(n)

ρ′,λ(0)dF (ρ
′) +

1∫

0

1∫

−1

2µλ
λ′

Λ
(

r̃ (λ)

r̃ (λ) + r̃ (λ′)
)n

∑

j1+j2+j3=n




n

j1, j2, j3




{
(i2πC [(ρ, λ) , (ρ′, λ′)])j1φ̂

(j2)

ρ,λ (0) φ̂
(j3)

ρ′,λ′ (0)
}
dF (ρ′) dΨ(λ′) .

Dividing both sides by (−i2π)n:

(α + 2µλ)Eφ [a
n | ρ, λ] = αEφ [a

n|λ] +

1∫

0

1∫

−1

2µλ
λ′

Λ
(

r̃ (λ)

r̃ (λ) + r̃ (λ′)
)n

∑

j1+j2+j3=n




n

j1, j2, j3



{
(−C [(ρ, λ) , (ρ′, λ′)])j1Eφ

[
aj2 | ρ, λ

]
Eφ

[
aj3 | ρ′, λ′

]}
dF (ρ′) dΨ(λ′) .
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Using the multinomial expansion of (−C [(ρ, λ) , (ρ′, λ′)])j1 :

(α + 2µλ)Eφ [a
n | ρ, λ] = αEφ [a

n|λ]

+

1∫

0

1∫

−1

2µλ
λ′

Λ
(

r̃ (λ)

r̃ (λ) + r̃ (λ′)
)n

∑

j1+j2+j3=n




n

j1, j2, j3


Eφ

[
aj3 | ρ′, λ′

]

Eφ

[
aj2 | ρ, λ

] ∑

k1+k2+k3=j1




j1

k1, k2, k3




(
ση
σD

)k1+k2 ( −ρr̃ (λ′)
r̃ (λ) + α

)k1 ( ρ′r̃ (λ′)

r̃ (λ′) + α

)k2
D (λ, λ′)

k3 dF (ρ′) dΨ(λ′) .

(α + 2µλ)Eφ [a
n | ρ, λ] = αEφ [a

n|λ]

+

1∫

0

2µλ
λ′

Λ
(

r̃ (λ)

r̃ (λ) + r̃ (λ′)
)n

∑

j1+j2+j3=n




n

j1, j2, j3


Eφ

[
aj2 | ρ, λ

]

∑

k1+k2+k3=j1




j1

k1, k2, k3




(
ση
σD

)k1+k2

(
−ρr̃ (λ′)

r̃ (λ) + α

)k1 ( r̃ (λ′)

r̃ (λ′) + α

)k2
D (λ, λ′)

k3
Eφ

[
aj3ρk2 | λ′

]
dΨ(λ′) .

(α + 2µλ)Eφ [a
n | ρ, λ] = αEφ [a

n|λ]

+ 2µλ
∑

j1+j2+j3=n




n

j1, j2, j3


Eφ

[
aj2 | ρ, λ

] ∑

k1+k2+k3=j1




j1

k1, k2, k3




(
−ρ

r̃ (λ) + α

)k1 ( ση
σD

)k1+k2 1∫

0

λ′

Λ
(

r̃ (λ)

r̃ (λ) + r̃ (λ′)
)n

r̃ (λ′)
k1

(
r̃ (λ′)

r̃ (λ′) + α

)k2
D (λ, λ′)

k3
Eφ

[
aj3ρk2 | λ′

]
dΨ(λ′) .

Applying the law of iterated expectations, the proof is complete.
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B.5 Proof of Lemma 2

Equation (14) implies the system:

r̃ (λf )= r + µ
λfλs
Λ

r̃ (λs)

r̃ (λf ) + r̃ (λs)

(
1− ψf

)
+ µ

λ2f
2Λ
ψf ,

r̃ (λs)= r + µ
λ2s
2Λ

(
1− ψf

)
+ µ

λfλs
Λ

r̃ (λf )

r̃ (λs) + r̃ (λf )
ψf .

Summing up side by side,

r̃ (λf ) + r̃ (λs) = 2r+ µ
λ2f
2Λ
ψf + µ

λ2s
2Λ

(
1− ψf

)
+ µ

λfλs
Λ

r̃ (λf )ψf + r̃ (λs)
(
1− ψf

)

r̃ (λs) + r̃ (λf )
.

Using Lemma 1,

r̃ (λf ) + r̃ (λs) = 2r + µ
λ2f
2Λ
ψf + µ

λ2s
2Λ

(
1− ψf

)
+ µ

λfλs
Λ

r + µΛ
2

r̃ (λs) + r̃ (λf )
.

Then I get the quadratic equation

(r̃ (λf ) + r̃ (λs))
2 −


2r + µ

E

[
λ2
]

2Λ


 (r̃ (λf ) + r̃ (λs))− µ

λfλs
Λ

(
r +

µΛ

2

)
= 0.

Since r̃ (λf ) , r̃ (λs) > 0, the relevant solution is

r̃ (λf ) + r̃ (λs) = r + µ
E

[
λ2
]

4Λ
+

√√√√√

r + µ

E

[
λ2
]

4Λ



2

+ µ
λfλs
Λ

(
r +

µΛ

2

)
.

Combining this with the equation implied by Lemma 1:

ψf r̃ (λf ) +
(
1− ψf

)
r̃ (λs) = r +

µΛ

2
,

I have a system of two equations in two unknowns. Equivalently, the system can be

written as
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r̃ (λf )
(
1− 2ψf

)
= −

(
r +

µΛ

2

)
+
(
1− ψf

)

r + µ

E

[
λ2
]

4Λ




+
(
1− ψf

)
√√√√√

r + µ

E

[
λ2
]

4Λ



2

+ µ
λfλs
Λ

(
r +

µΛ

2

)
,

r̃ (λs)
(
1− 2ψf

)
= r +

µΛ

2
− ψf


r + µ

E

[
λ2
]

4Λ




− ψf

√√√√√

r + µ

E

[
λ2
]

4Λ



2

+ µ
λfλs
Λ

(
r +

µΛ

2

)
.

When ψf 6= 1
2
, the system gives the effective discount rates immediately. When

ψf = 1
2
, I calculate the limit as ψf → 1

2
using L’Hospital. The resulting effective

discount rates are

r̃ (λf ) =

−
(
r + µΛ

2

)
+
(
1− ψf

)

r + µ

E[λ2]
4Λ

+

√(
r + µ

E[λ2]
4Λ

)2
+ µ

λfλs
Λ

(
r + µΛ

2

)



1− 2ψf

and

r̃ (λs) =

r + µΛ
2
− ψf


r + µ

E[λ2]
4Λ

+

√(
r + µ

E[λ2]
4Λ

)2
+ µ

λfλs
Λ

(
r + µΛ

2

)



1− 2ψf

if ψf 6=
1
2
.

r̃ (λf ) =
1

2


r +

µλ2f
4Λ

+

√√√√√

r +

µE
[
λ2
]

4Λ



2

+
µλfλs
Λ

(
r +

µΛ

2

)



−
1

8
µ (λf − λs)



−
E

[
λ2
]

2Λ2
+
−
rλfλs
Λ2

+
(
1−

E[λ2]
2Λ2

)(
r +

µE[λ2]
4Λ

)

√(
r +

µE[λ2]
4Λ

)2
+

µλfλs
Λ

(
r + µΛ

2

)
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and

r̃ (λs) =
1

2


r +

µλ2s
4Λ

+

√√√√√

r +

µE
[
λ2
]

4Λ



2

+
µλfλs
Λ

(
r +

µΛ

2

)



+
1

8
µ (λf − λs)



−
E

[
λ2
]

2Λ2
+
−
rλfλs
Λ2

+
(
1−

E[λ2]
2Λ2

)(
r +

µE[λ2]
4Λ

)

√(
r +

µE[λ2]
4Λ

)2
+

µλfλs
Λ

(
r + µΛ

2

)




if ψf =
1
2
.

Appendix C. Calculation of markups

The theoretical proxy I use for markup conditional on search intensity is

markup(λ) =
intermediation profit cond. on λ

intermediation volume cond. on λ
/Eφ [P | λ] .

To calculate the numerator, I start by calculating the intermediation profit (or ex-

pense) in a given match, which is

−Pq + P̃ θ,

where Pq is the total actual transfer the investors makes to her counterparty, θ is the

trade quantity that would occur if the investor did not provide any intermediation

to her counterparty, and P̃ is the price of that counterfactual transaction without

intermediation. Thus, the instantaneous expected intermediation profit conditional

on λ is

∞∫

−∞

1∫

−1

1∫

0

∞∫

−∞

1∫

−1

2µλ
λ′

Λ
(−P [(ρ, a, λ) , (ρ′, a′, λ′)] q [(ρ, a, λ) , (ρ′, a′, λ′)]

+P̃ (ρ, a, λ) θ (ρ, a, λ)
)
Φ(dρ′, da′, dλ′)Φλ(dρ, da).

Using Proposition 1 and 3, one can show that this is equal to
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1∫

0

2µλ
λ′

Λ

rγσ2D
4

r̃ (λ)− r̃ (λ′)

(r̃ (λ) + r̃ (λ′))
2Eφ

[
θ2 | λ

]
dΨ(λ′)

+

1∫

0

2µλ
λ′

Λ

rγσ2D
4

3r̃ (λ) r̃ (λ′) + (r̃ (λ))2

(r̃ (λ) + r̃ (λ′))
2
r̃ (λ′)

Eφ

[
θ2 | λ′

]
dΨ(λ′).

Using Proposition 3 and Lemma 2, it is possible to derive a closed-form expression

for this for the 2-type case. Although the expression looks complicated, it allows for

conducting comparative statics analyses on the entire parameter space easily.

To calculate the denominator of the conditional intermediation markup, we have to

calculate the instantaneous expected intermediation volume conditional on λ, which

can be written as 18

2µλ

2





∞∫

−∞

1∫

−1

1∫

0

∞∫

−∞

1∫

−1

λ′

Λ
(θ (ρ, a, λ)− q [(ρ, a, λ) , (ρ′, a′, λ′)])

2
Φ(dρ′, da′, dλ′)Φλ(dρ, da)





1/2

,

where 1/2 is used to eliminate the double counting of simultaneous buying and selling

volume associated with the intermediation activity. Using Proposition 1 and 3 and

Lemma 2, it is possible to derive a closed-form expression for this for the 2-type case.

18A more natural way of writing an expression for the intermediation volume would be to use the
absolute moment, instead of using the square root of the second moment. However, the characteriza-
tion of the equilibrium distribution in Proposition 3 allows for the calculation of the usual moments,
but not the absolute moments.
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