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GÉZA TÓTHa) – ÁRON KINCSESb)1 

Accessibility Models Based On the Gravity Analogy:  

In Theory and Practice 

Abstract 

The most commonly applied types of accessibility models are based on the gravity analogy. 
In these models, researchers use different types of resistance factors, but they rarely give 
any elaborate explanation for their choice of a specific type of factor in their research. 
Another problem with this kind of analysis is that in many cases, the authors do not 
describe precisely how they determine the constants for a line of calculations in a given 
model. Thus, the results cannot be fully accepted since they cannot be reproduced by the 
reader. Finally, we consider it to be yet another huge problem that the results of the models 
are rarely compared to the real (for example traffic) parameters, therefore, it is also 
impossible to detect what would happen if the researcher used a different model. In this 
study, we tried to line up the most commonly used models, and by enlightening the 
resistance factors, examine their possible usage and their boundaries through exact 
Hungarian examples. 

Keywords: accessibility models, gravity analogy, resistance factors. 

Introduction 

The models based on the gravity analogy are certainly the most commonly used type of 
models in the professional literature. (See for example: Stewart 1947, Hansen 1959, Ingram 
1971, Vickerman 1974, Harris 1954, Huff 1963, Keeble et al. 1988, Dalvi–Martin 1976, 
Linneker–Spence 1991, Spence–Linneker 1994, Geertman–Ritsema van Eck 1995, 
Bruinsma–Rietveld 1998, Brunton–Richardson 1998, Kwan 1998, Levinson 1998, Smith–
Gibb 1993, Gutiérrez 2001, Scheurer–Curtis 2007, etc.). These models attempt to take into 
consideration the impacts affecting the behaviour of the passenger. (Therefore, no matter 
which destination the passenger chooses, the possibility of any destination will be included 
in the model). One of the most common types of gravity analogy-based models is the 
potential model. The potential models – after forming disjoint, totally covered areal 
divisions – estimate the accessibility potentials of the area i., regarding the other areas, 
from which those with the smaller mass or those who fall further have less of an impact 
(Rich 1980, Geertman–van Eck 1995). 

The goal of this study is to present the background of the calculation of the models’ 
constants. With the resulting constants, other accessibility models can be calculated, and 
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then the results can be compared to the real flow data. We would like to demonstrate what 
kind of methods are used when selecting a given model, and how much it can affect the 
results derived from them. In this study, depending on their conditions, we offer 
suggestions on the applicability of the resistance factors.  

Material and methods 

In this study, the definition of accessibility is: “Accessibility must refer to the role taken 
by the usage of an area and traffic system in a society that allows individuals and groups 
of individuals to participate in activities taking place in different locations.” (Geurs–van 
Wee 2004, p128). In this case – according to the definition – accessibility should be 
measured as a data numericizing the social space, which shows the density of the spatial 
connections of traffic systems and usage of lands in some areas. For the calculations, the 
actual areas must be simplified and modelled. This paper tries to describe the real spatial 
interfering impacts using the data resulting from the models. 

The general potential formula of the potential models is the following: 
Equation #1: 

  ,cFDA ij
j

ji


     (1) 

where Ai is the accessibility of the area; Dj  is the mass of the area derived from i; cij is the 
general cost of transportation between i and j; F(cij) is the resistance factor (function). 

The earliest antecedent of this study is the gravity model by Hansen (1959). Hansen 
(1959, p78) claimed that accessibility is “the generalization of the connections of the 
population, reaching across distances”. The accessibility potentials of accessible 
destinations are strongly connected to the interaction of masses based on the gravity 
models.  

The general formula of the Hansen-model: 
Equation #2: 
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where A1 is the accessibility of the area; W1 is the mass accessible by the passengers, 
regardless of whether they actually want to access it or not; f (cij; ß) is the resistance factor 
(the general marking of the resistance factor suggests that ß can be part of an 
exponentiation as well as a multiplication, depending on the choice of the researcher); cij 

is a variable defining the cost of transportation between points i and j; and ß is a chosen 
constant. 

The Hansen-model very much relied on the equations of gravity used in physics, which 
is also reflected in the fact that the constant in the equation, according to the physical 
deduction of the model, is bound to be a square number: ß=2. (See: Calvo–Pueyo Campos–
Jover Yuste, 1992).  

Equation #3:  
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The gravity and potential models are connected in many ways. What the two models 
have in common is that the size of a possible interaction between two settlements or 
locations is inversely proportional to the distance between them. Another similarity is that 
in the given settlement, any person (or other item) generates the same amount of 
interaction. Therefore, the size of the interaction between the two settlements is directly 
proportional to the size of the settlement, which is equivalent to chosen “mass”. Thus with 
the growth of the mass of the examined items, the extent of the interaction grows as well. 

The problem with choosing the constant (ß) occurred many times in previous scientific 
studies, since in sociological analogies, it is not essential to stick with the squared powers 
used in the laws of gravity in physics. If the constant is larger than one, that means the 
researcher emphasizes the distances more. There are some types of analysis though where 
they model such infrastructural methods (for example, intercity trains), which can operate 
at their best in medium-length distances, in which case, the scale of the constant is one. 
(Martín–Gutiérrez–Roman 1999, Capineri 1996). These types of models have the 
advantage of being easy to comprehend and calculate.  The measurements that consider 
each potential destination reflect the impacts affecting the behaviour of the passengers. 
Another great advantage is that with these measurements, the accessible locations can be 
distinguished from each other, meaning that their different values can be taken into account 
for the calculations. However, these models have a disadvantage in that is they are unable 
to manage the passengers who have multiple traveling preferences. The results and the 
differences between the calculated numbers are also hard to interpret. 

Choosing the Resistance Factor 

The usage of the distance dependence in social geography is mainly induced by the fact 
that the insularity in the area impedes the cooperation of different areas; hence, it should 
be numericized. The easiest cases are naturally the ones with geographical distances. 
Regarding the data on accessibility, only the travel time, distance or cost of travelling by 
some means of transportation should be taken into account. The distance to be covered 
between two given points is called the resistance factor.  

The most notable difference between the adaptation of the potential model of 
accessibility and potential model of physics is that, unlike in physics, in sociology space is 
not continuous, but “discrete”. The social-economic forms (such as settlements or towns) 
tend to be concentrated in one distinctive point in space, and their “masses” are also 
concentrated in that spot. Since these “points of masses” do not fill  the space, the potential 
value of a point – which obviously is altered by the impact of other points –  in a limited 
part in the space (for example a country) could hardly be measured. (Tagai 2007).  The 
mass points are concentrated in space to different extents; this induces different types of 
potential areas that might result in  the distances between the points – and therefore the 
resistance factors – being represented by different functions. Very different resistance 
factors are required for dominance of small settlement structures versus large settlements, 
which affects the index exponent. Therefore, the equations of the resistance factor differ in 
the examinations of different areas, levels, or examinations of the same level, but not the 
same number of mass points.  
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Different forms of the resistance factor appear in the accessibility studies. In the case 
of models using boundaries, linear resistance factors are applied, or only destinations 
falling within a certain distance, time or cost are taken into account. Among models 
examining all accessible destinations and routes, the choice of the resistance varies 
considerably. The models distinguish the distances between the certain “masses” in their 
calculations. In the various approaches, the reciprocal or the exponentiated distance is 
applied. (See for example Hansen 1959, Davidson 1977, Fotheringham et. al. 2000, El-
Geneidy–Levinson 2006.)  The most commonly used types of models are the ones using a 
linear resistance factor (in the equation of the potential: in the denominator, the distance is 
raised to the first power). In these cases, no mathematical modifications are applied to the 
access time or the cost. However, this is not an unbreakable law, so in the models based 
on the gravity analogy, other exponents may occur. They numericize the probability of 
reaching the accessible destinations in the model. Essentially, researchers apply the 
exponential resistance factor for this purpose (Wilson 1971, Dalvi–Martin 1976, Martin–
Dalvi 1976, Song 1996, Simma–Vritic–Axhausen 2001, Schürmann–Spiekermann–
Wegener 1997, ESPON 2007, Papa–Coppola 2012). Other known models using resistance 
factors are the Gaussian ((Ingram 1971, Guy 1983) and the logistical ones (Bewley–Fiebig 
1988, Hilbers–Veroen 1993). There are examples of other amendments to certain basic 
types, but this paper does not deal with them in detail (Reggiani, Bucci, Russo 2011). 

Researchers divided the units of the access matrix (the units of the cost or duration of 
the passage between any examined parts of the area) into intervals (Simma–Axhausen 
2003). What they found, is that the relationship between the frequencies and the average 
travel time/cost could best be described with an exponential regression function. These 
models are based on the presumption that within the examined area, with growth of the 
distance/travel time/cost, the probability of the frequency decreases exponentially, which 
is likely to affect the number of the potential destinations. According to this, the most 
subservient equation is: 

Equation #4: 

,e c ij
        (4)

 
where cij is the travelling expenses (time) between the points, ß is the constant. ß is the 
constant of the examined spatial layout, which should be determined separately for each 
spatial structure. The reason why this is necessary, is that the connection between the 
different levels and in the case of examining different targets, the frequencies, and the 
average travel time/costs can be represented by various types of functions.  The role of this 
constant is to make the connection between the contribution of the potential of the specific 
parts of space and the whole space per se.  (Later, the problem of choosing the constant in 
detail will be discussed.) 

When studying certain spatial structures, in exponential regressional research, it is 
preferable to obtain an even more precise fit so we can determine the possibility of reaching 
certain destinations. To achieve this, it is vital to apply a Box-Cox (1964) transformation, 
which melds the residuals of the regression (making them homoscedastic), directing them 
to the normal distribution. Regarding the �i mistakes, there is the presumption that their 
expected value is 0 and their deviations in divided groups are equal.  This is the so-called 
homoscedastic case. If the mistakes in the measurement change in line with the variable X 
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(homoscedastic case), the occurring huge deviations (squared) give a disproportionately 
inaccurate range, thus inaccurate parameters as well; therefore, the results of regressional 
or other models are not consistent with  reality. When the homoscedastic condition is met, 
all the points of the regressional line are straight, or the hyperplane residuals with the same 
deviation are located. 

Equation #5: 
2)var(  i
  Ni -re     (5) 

The Box-Cox transformation changes the values but not the order. For the usage of the 
Box-Cox resistance factor, the study by Willigers, Floor and van Wee (2007) gives an 
excellent example.   

Ingram (1971) found that compared to the actual data, the values of some of the 
transformed resistance factors, distancing the origin, decrease too fast. He proposed the 
modified Gaussian resistance factor, which shows a slow decrease near the origin, and the 
extent of the decrease is smaller than that of the exponential and squared resistance factors. 
The smoothing nature of the Gaussian resistance function (it is convexo-concave) makes 
it apt to explore the spatial phenomena and – for instance – the migration of the population. 
(Grasland–Mathian–Vincent 2000)  Equation #6: 
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In probability theory and statistics, the log-logistic distribution (in economics, “Fisk-
distribution”) shows the probability of a continuous, not negative variable. It is used in 
areas where the probability of the variable is high initially, but then gradually decreases. 
The logistic distribution is a probability distribution of a random variable, the logarithm of 
which has a logistic distribution. The log-logistic models are based on the logistic 
distribution. The log-logistic distribution near the expected value is symmetric, although it 
can be described with a larger deviation than the log-normal one (since its expected value 
is calculated). 

Equation #7: 
dln*ba

ij e1df 
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


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    (7) 

The Self-potential  

The professional publications on potential models have been studying the notion of “self-
potential” (see among others Frost–Spence 1995, Bruinsma–Rietveld 1998). The 
significance of this is that, within examined space, the extent of the place-dependent 
potential is not only defined by the sizes and distances of the masses around it, but also 
depends on how big of a force field it can generate around itself. In the studies of potential, 
it is vital to distinguish inner from outer potential (Nemes Nagy 1998, 2005). This 
severance comes from the distinction of the specifically examined area and the force of the 
space, outside that area, affecting it. So the potential of a given point is calculated from the 
sum, the self-, inner and outer potentials.   

Self-potential should also be taken into consideration in the cases of accessibility 
studies. When calculating the self-potential of an area, it is presumed that the transportation 
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between two areas is not the only condition increasing accessibility, but also the 
transportation within areas or settlement. Thus, we conclude that a certain product or 
service does not necessarily have to be transported to another area if it can be sold within 
the given area. Neglecting the role of the self-potential might be misleading – for example – 
when examining the level of settlements. Naturally, in these cases, the accessibility of 
central settlements of the agglomeration or group of settlements would be much lower than 
the other settlements of the agglomeration. 

When defining the self-potential – like when examining other types of potential – the 
calculations are derived from the size of the given area (preferably, not the administrative 
size, but the “clear” one). According to the generally used methods, the area is regarded as 
a circle, and then the radius for a given unit that is considered proportionate to the distances 
on roads within certain settlements is calculated; thus, it is also called “self-distance”. This 
type of distance is used in models calculating  geographical distances, whereas with those 
applying distances based on the road network, the distance can be converted by an average 
velocity/cost formula, which can then be placed in the equation. The difference between 
the various methods used for calculating the self-potential is that to what extent and in what 
way the radius is weighted (Tagai 2007). In this way, by examining it from different 
aspects, the role of the centre point can be further highlighted, or it can be better fitted to 
the surface of potential. 

Tagai's study claims that there are some researchers who use distances equivalent to 
the radius since its length is close to the average distance within the area.  

The most commonly used method is calculating a third of the radius as the self-
potential. This is also connected to the probability of the mass distribution. Others, 
however, came to different conclusions after similar calculations; they believe two-thirds 
of the radius is the most suitable as the self-derived approximate value of distance.  

Modifying the radius in any way is arbitrary, and consequently, hard to back up 
objectively. Therefore, in this study, it is always the whole radius that is considered when 
calculating the self-potential. Naturally, if actual data about the settlement is available, the 
various assumptions can be compared to the facts; although, in this case, it is also true that 
some models fit some settlements better.  

The Total Potential 

In the accessibility studies, usually the examined space is chosen so that it is larger than 
the narrow examination area, and in this way, the impact of the outer potential can be 
ignored. In this case, the space-dependent accessibility potential is calculated from the sum 
of the inner and self-potential: 

Equation #8: 

BASAA iii
         (8) 

where ΣAi is the total potential of area i, SAi  is the own potential of the spatial unit, and 
BAi  is the inner potential within the area analysed. There are some theories that take into 
account the potential outside the area, the  “outer potential”, however,  within this study, 
on the level of smaller areas, the outer potential cannot be calculated due to methodological 
reasons, and hence they are not included. Although this affects the result of the examination 
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to some extent, it does not prevent us from drawing up basic connections. The effect can 
mostly be noticed on the peripheries; the work did not deal with the models that take the 
competition into account (Weibull 1976, Knox 1978, Van Wee Annema Hagoort, 2001, 
Joseph Bantock 1982, Fotheringham 1982). 

Calculation 

In the professional literature on accessibility, the method for calculating the constant is not 
often discussed. Thus, readers can only interpret the results or recreate the research with 
considerable difficulty. The next segment covers the theoretical background determining 
these constants in detail and the way they are calculated. 

By definition, accessibility numericizes the possibility of approaching a location from 
the aspects of the passengers, regarding their (household, business) options and goals; 
furthermore, the services available at the desired destination, and relationships connected 
to the space. The models based on the gravity analogy – in our opinion – conclude from 
some elements of the definition that the number of the potential journeys from point A to 
point B is determined by four factors: the desired destination's mass and distance; the 
examined area's spatial structure and the role of random probability. Three out of these 
four factors can be modelled, whereas conclusions can be drawn from the forth, but they 
are hard to predict. 

It would not be true to state that the number of journeys between two points half as far 
away from each other is twice as many; or – in line with that – a point three times  the mass 
is visited three times as many times. Yet the modelling can be done. The goal is to 
numericize the probability of the potential journey. In this case, the potential is the function 
of three factors: the desired destination's mass, distance and spatial structure. The first two 
factors are specific to each potential model; however, in the case of models using a 
constant, the latter should be described with a factor. With the functions used (exponential, 
exponential modified by the Box-Cox transformation, Gauss-function), the role of the 
spatial structure has different impacts on the value of the potential; they infiltrate in 
different ways depending on the geographical distance. The constants of the mathematical 
functions in the resistance factors are defined by the frequency of the accessibility distances 
appearing in the examined space (Simma–Axhausen 2003 p. 184). 

The paper will now focus on the exact calculations. The first unit in the potential's 
formula is the self-potential while the rest is the inner potential's impact on the self-
potential. The formula can be applied to any optional area – for example a settlement, a 
county, or a region.  The following equation determines the value of the constant ß. 

The value of the place-dependent potential in point j of the space: 
Equation #9: 
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where A1 is the accessibility of the area; Wi and Wj are the masses – in this case, population – 
belonging to the appropriate level; cij is the time needed to get to area i from area j, on the 
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road network, measured in minutes. Lastly, ß is the constant of the examined spatial 
structure, which should be determined separately in each spatial structure. 

It should be noted that the current definition of the potential implies there is a linear 
superposition between the units, thus there is no interaction between the impacts; they do 
not enhance or lessen each other, they simply add up. Looking for analogies, the 
gravitational, magnetic or electric fields are much similar. The definition does not take into 
account the interference described in string theory as in quantum physics. 

The potential journeys on the road network between all possible pairs of all the 175 
districts are investigated as follows. 

The data has been laid out in a 175*175 matrix, aligned with the travel times (in 
minutes). The values are divided into intervals, and avoid placing too few occurrences in 
one interval, yet forming a sufficient number of intervals, because that would hinder the 
examination of the distribution of the values. In the study, the access times were divided 
into 50 equal intervals.  

Take the set containing intervals that contain the durations of the journeys between the 
districts in minutes: 

 17,429;0:  . 

The 429.17 minutes result is the largest unit of the 175*175 matrix; thus, this is the 
longest distance between points of the district on the road network, measured in minutes. 
In this examination, theoretical access times were used for the calculations, meaning that 
the length of time was only affected by the speed limits and not any other conditions.  

Divide the interval into 50 equal pieces. Interval number “i” contains the times (i*8.58; 
(i+1)*8.58)); where i = 1, 2, …50, thus dividing the maximum mid-district distances of 
429 minutes into 50 equal pieces results in 8.58-minute-long intervals.  

Figure 1 

The frequency of the accessibility time 

 
Source: own compilation. 

A function-like connection should be found between the frequency of the intervals and 
the average travel times. The function is needed for modelling the frequency of journeys 
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with the increase in the distances, which technically translates to the probability of the 
journey. Theoretically, the goal is to find the function most suitable for the frequency since 
that would result in the most accurate potential model. However, human behaviour (in this 
case, travelling) can barely be modelled – as can be seen in many cases of models based 
on a physical analogy. It is not certain at all that the most suitable model will give the most 
accurate results. Moreover, it may occur that the frequency of the intervals fit the given 
model very poorly, yet the model using the constant calculated from it gives the closest to 
the actual results.  

At first glance, the polynomial approach may look like the obvious choice, but it would 
make the results difficult to interpret. Applying it would be necessary due to the fluctuation 
shown by the frequency. Naturally, this could vary in each sample. Further problems may 
occur when trying to interpret the rate of the frequency together with the increase of the 
distances. Probably the most obvious case is that of the exponential function since here the 
frequency decreases exponentially as the distances grow. As a result, the version that finds 
the exponential connection between the travel times and the mean values of the intervals 
is reviewed first.  

The Exponential Resistance Factor 

Equation #10: 
lc

l e
  l=1,2,…,50,     (10) 

We assume that the duration of the journeys among the districts and the mean values 
of the intervals in minutes are proportional to each other. The constant ß makes the exact 
connection between the average length of time and the frequency. 

Equation #11: 

lc
l e   l=1,2,…,50,    (11) 

where v is the frequencies and stands for the average duration. So the presence of the 
exponential connection mentioned above should be checked for each examination; the 
value of the constant should also be calculated each time. 

The equation (11) implies a regressional relationship, and we are looking for the 
constant ß that best fits the equivalences overall. After rearranging the equation, we get: 

Equation #12: 

ll
c ln        (12) 

Depicting the e (a natural number) based logarithm of the frequency in the function of 
the average travel times, the value of ß can be determined by linear regression. In the study, 
the normalizing criterion of the joint line crossing the origin is required. Thus, the 
normalized frequency belonging to the average time of 0 is 1. The calculated value of ß is 
0.0178, with 45.17% reliability.   
  

REGIONAL STATISTICS, 2015, VOL 5, No1: 137–158; DOI: 10.15196/RS05108



146 GÉZA TÓTH–ÁRON KINCSES 

Figure 2 

The n based logarithm of frequency with the function of average durations 

  
Source: own compilation. 

The method described above is just the first, approximate solution. This schema ignores 
the statistical errors occurring during the division-based access times, since, during this 
process, only the outer multiplications and subtractions among the groups were taken into 
account. See the following:  

Take cij, (in this case ij does not mean the duration of travel between i and j!) as the 
value number “j” from the interval number “i”. (i=1, 2, 3, …, 50; j=1, 2, …, pi). Now any 
optional element of the set  can be described as such: 

Equation #13: 
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This applies to its deviation as well:  
222
outerinnerall      (19) 

where 2
inner is the deviation within the intervals squared; 2

outer is the deviation in between 

the intervals squared. 
Therefore, the phenomenon described the way it was defined in the first part of the 

study is only accurate if eij of the equation ijiij ecc  .  has the following features: 
1. Their expected value in every interval is zero. 
2. Within the intervals, they have the same deviation. In other words, they are 

homoscedastic. 
If the conditions are not met, the results will differ depending on the classification, thus 

will not be reliable enough to base realistic predictions on them. In the case regarding the 
districts – described above – we find that the residues are usually large, and the two 
requirements are only approximately fulfilled. Using the first method would not be a huge 
mistake by any means, but there is a method in statistics to eliminate even that little flaw. 
Namely, it is the Box-Cox transformation, which secures the random occurrence of 
residues. With this method, the data that best meets the two conditions above and fits a 
given spatial layout can be calculated. 

The Box-Cox Resistance Factor 

Two forms of the Box-Cox transformation are known. 
Equation #20-21: 

1.  
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2.  
 ij

dtransforme
ij cc       (21) 

Because of the rearrangement, Cij must be larger than 0; this condition has to be met by 
every access time measured in minutes. 

REGIONAL STATISTICS, 2015, VOL 5, No1: 137–158; DOI: 10.15196/RS05108



148 GÉZA TÓTH–ÁRON KINCSES 

With the restriction of λ>0, it can be achieved in both cases that the transformation is 
relation invariant, meaning that this transformation might change the values, but not the 
order. Both definitions lead to the same conclusion. We chose the latter. Therefore, we are 
looking for the value of λ that best suits the random distribution of differences. For the 
investigations, we used the software SAS 8.2, more specifically, the proc transreg. This 
program calculates the transformed duration times with all possible values of λ and very 
little class differences, and the log-likelihood functions belonging to these intervals. The 
estimate of the maximum log-likelihood function is technically an estimate of a point in 
which we consider those parameters that have the maximum combined partition function 
of the exanimation vector. The log-likelihood function: 

Equation #22: 
),(),(),,(log  kijkij fFcFfcL        (22) 

Estimating the maximum log-likelihood function has the advantage of being 
asymptotically effective, furthermore, if it cannot be given in closed-form, it can be 
examined by numeric maximization (this applies to this case).  In other words, the 
population parameters can be estimated by the value where the log-likelihood function 
reaches its maximum; thus, the most probable outcome is a realized sample when taking a 
sample. 

In the district example, λ = 1.07085 was calculated for λ belonging to the maximum 
output of the function. This is how the transformation constant was arrived at, which, by 
transforming the access times, makes the residues of the groups the most independent. 
Overall, with this method, the information resulting from the group formations with 
transformed access times, is more accurate. 

In the case of a transformed variable, if the boundaries of the 50 intervals are 
transformed in the same way, we get an identical exponential curve. In this way, we can 
redefine the average travel times of the groups, and determine the value of ß by regression, 
based on the previous, exponential calculation. In our example, regarding already 
transformed pairs of travel times, β = 0.0119. Therefore, we can conclude that constant ß 
can be determined. This has to be done separately for each examination or spatial 
distribution. For the first estimate, we find that β=0.0178, while after further investigation, 
it was proven that the Box-Cox transformation carried out with the power of λ = 1.0785, 
allows a more accurate analysis. In this case, β = 0.0119. 

The Gaussian Resistance Factor 

According to figure 3, when analysing the distribution of frequencies, the following 
relationship between the frequencies and average access times can be presumed: 

Equation #23: 
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where v is the frequencies, c is the average access times, and w and u are the constants. 
The goal is to calculate the constants that best fit the existing data. For this purpose, we 
represented the logarithm of the frequency of the elements belonging to the 50 intervals 
formed based on the access times between the capitals of the districts in the function of the 
average durations of the squared intervals.   

Figure 3 

The logarithm of frequencies and the average durations of the intervals squared 

  
Source: own compilation. 

From which w = 0.04295936, u = 44583.1476; with 0.67 accuracy. 
The Gauss model better fits that in an exponential function. 

The Log-logistic Resistance Factor 

In this case, we predict the following relationship between the frequency and the average 
duration:  

Equation #24: 
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where v stands for the frequencies, c stands for the average durations; a and b are constants.  
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Figure 4 

The relationship between the frequency and the average duration in a log-logistic case 

 
Source: own compilation. 

From which: b = –0.2236, a = 6.8953. 
It should be noted that R2 is smallest in this example, yet this method – as can be seen 

later – may lead to accurate results. 
For comparing the different types of resistance factors, we redid these calculations. The 

recalculation of the Gaussian and log-logistic model was needed to fit the others, meaning 
that in case of c = 0, the frequency is 1 (or 100%). (According to these calculations, R2 is 
decreasing; therefore, the data resulting from them cannot be used further, and are only 
represented in figure 5.) 

By comparing the various resistance factors, the differences between them can be 
studied. The access times are measured in minutes with the distances constructed according 
to the specific models. Noticeably, the Gaussian model best works for the medium 
distances, the log-logistic approach for the very large or very small while the exponential 
method for the smaller distances. Theoretically, according to this,  for the studies  within 
settlements or districts, the log-logistic approach should used; for country-level studies the 
exponential; for a European study the Gaussian, and for a global examination once again 
the log-logistic model. Yet – as will be shown later – it is not certain that these approaches 
provide the most accurate results in the mentioned areas.  
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Figure 5 

The relationship between the resistance factors of the models based 

on the gravity analogy 

 
Source: own compilation. 

Results 

The study has so far focused on the structures of the different models, ignoring the question 
of how realistically the potential structure formed by basic elements and relationships 
describes the space (based on geometric interpretations). We have not yet dealt with how 
comparable the volume of traffic on the public roads is with the data derived from the 
models. So can the models′ conclusions be applied to the real social space?  During the 
research, we only found studies in the professional literature that compare the results of 
different models to each other (see De Montis–Caschili–Chessa 2011); we could not find 
one that contrasts them with the traffic. Thus, this essay is unique in the professional 
literature. 

The traffic data measured by the Hungarian Public Road Not-for-profit Inc. keeps track 
of the annual average daily traffic (AADT) for the cross-section of certain roads. (The 
latest nationwide traffic measuring included the cross sections of over 4500 roads.) These 
measurements are carried out by taking samples. This method allows researchers to 
calculate the average daily traffic – if they are aware of the time-specific fluctuation of 
traffic – from relatively little data (smaller sample, briefer counting) with sufficient 
accuracy and reliability. 

The nationwide cross-section measurements take place at a large number of junctions 
and deviations throughout the year, on five different occasions, from 6 am to 6 pm.  
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Most of the annual measurements last for three days. A rotating method is used so that 
annually, measurements are only carried out in about 20% of the country, and then the data 
from the previous years are modified to fit the new results.  

 From the measured data, by simple averaging, and then multiplying by factors bearing 
the time-specific characteristics of the traffic at a given time of the day (ax), a given day 
(bi) or month (ci), the annual average daily traffic can be calculated. 

Equation #25: 

c*b*a*
n

1i
g*

n

1ÁNF iixx


      (25) 

where n is the number of the days counted; gx is the traffic measured within the x hours; ax 
is the time-of-day factor (the volume of traffic at a specific time of day in proportion to the 
whole 24 hours); bi is the daily factor (a multiplier for the given day of the week that 
modifies the daily traffic to the monthly average); ci is the monthly factor (a multiplier for 
a given month of the year to give the yearly average). 

The results of the cross-section traffic count are expanded to the “validity sections” 
according to a convention of the experts. The district-level AADT data was provided by 
the Hungarian Public Road Not-for-profit Inc. 

Table 1 

The dimensions of the study 

Dimension Notes 

Source In the study, the accessibility is calculated from the aspect of each individual; also, 
we interpret but do not distinguish certain social groups or the varying destinations of 
the different passengers. 

Goal We numericize the aspired destinations by its population and income.  

Resistance In this case, the areal resistance factor is the theoretical access time between given 
district capitals on the public road network, measured in minutes. The resistance 
factor applied can be linear, squared, exponential, Box-Coy, Gaussian, or log-logistic. 

Restrictions When travelling on the roads between two districts, the maximum achievable speed 
on that specific type of road is the speed limit. 

Boundaries Hungary′s borders mean the boundaries of the examined area. Although it is an 
undeniable fact that the Hungarian potentials are affected by destinations outside the 
country since there was no sufficiently detailed map of the road network of other 
countries available, we had to neglect their impact. 

Means of transportation We did not distinguish personal or freight traffic for this study. 

Modus The calculations regarding public roads were based on unimodal accessibility.  

Areal level The study mainly focuses on the district level, LAU 1. 

Diversity The study′s main goal is to model the differences in accessibility in Hungary. 

Dynamics  In the study, the population, income, and public network as of January 1st: 2004, 2008 
and 2012, is included. 

Source: own compilation. 
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Figure 6 

Annual average daily traffic, 2012 

  
Source: own compilation. 

We compared 2004, 2008 and 2012 data with various potential models. As a mass 
factor, both the income and population was included in the calculations. (For details of 
these models see: Tóth–Kincses 2007). The dimensions of the study can be seen in Table #1. 

Models Based on the Gravity Analogy 

General gravity analogy 

The examined models are the following: 
Equation #26-31: 
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where C1-6 is the accessibility of area i, Wi is the mass of the district, Wj is the “mass” of 
the desired destination, cij and cii are the access times, while β, λ, p, u and a, b are constants. 
(Equation 26 is using the linear model, 27 is using the squared, 28 the exponential, 29 the 
Box-Cox, 30 the Gaussian and 31 the log-logistic model.) 

As Tables 2 and 3 show us, the traffic data can be better fitted together with the income 
numbers rather than with the population numbers, although the difference is not significant. 
The experiments on a district level suggest that the most suitable potential models are those 
using the log-logistic factor; it should be noted that if other types of division had been 
applied, the results would have been the same. While calculating with the log-logistic 
resistance factor, the parity of the duration frequencies was quite weak. Despite this, the 
approach provided the most accurate model. This demonstrates that it is appropriate to use 
more than one type of model for the calculations; we cannot draw conclusions only from 
parity.  

The reason the log-logistic function is favourable here is that it is the one that can 
estimate the differences of the areal traffic, with the help of the explanatory variable. In 
case of the areal differences of traffic in Hungary, the most important aspect is to find the 
function that can not only take the basic areal differences into account, but is able to 
estimate, with the smallest residue possible, the traffic value of the capital city, Budapest.  
If Budapest′s impact were not so outstanding or if there was a district with a similarly large 
volume of traffic in Hungary, the calculations carried out with log-logistic function might 
not give the most accurate results.  

Table 2 

The parity of the models based on the gravity analogy using population masses, 

compared to the district AADT statistics (R2) 

Years c1 c2 c3 c4 c5 c6 

2004 0.43 0.26 0.55 0.52 0.19 0.63 

2008 0.45 0.45 0.56 0.52 0.13 0.69 

2012 0.58 0.44 0.61 0.58 0.21 0.69 

Table 3 

The parity of the models based on the gravity analogy using income masses,  

compared to the district AADT statistics (R2) 

Years c1 c2 c3 c4 c5 c6 

2004 0.42 0.24 0.56 0.53 0.18 0.73 

2008 0.46 0.45 0.58 0.55 0.11 0.72 

2012 0.58 0.45 0.60 0.57 0.22 0.69 
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Figure 7 

The 2012 average daily traffic; the potential model with the largest parity  

(c6 – with log-logistic resistance factor); the difference of the 2012 estimated traffic  

on a district level as a percentage 

  
Source: own compilation. 

In one-half of the districts, mainly the busiest ones that are near a highway, the traffic 
estimated by the models is less than the actual (these are marked red on the map). In the 
rest of the districts, located in the middle of the country, the volume is usually 
underestimated while districts near the border are once again overestimated. 

Results and Discussion 

The methodological base for applying different types of resistance factor is to numericize 
the role of the spatial structure in the model. The possibility of the journeys – the potential – 
is determined by the mass of the desired destination, the distance and random chance. In 
this case, “spatial structure” refers to the size of the road network in the analysis, by the 
disruption of which, the distances/travel costs are modified with various functions.  

The goal of choosing one resistance factor from the several available (squared, Box-
Cox, Gaussian, exponential, log-logistic) is to differentiate the various relationships by the 
probability to be chosen. Out of the four factors of travel potential, the travel relationship 
is only one; the remaining three factors have further impacts on the probability of the 
choice. The spatial relationship can hardly be described mathematically. The choice of the 
resistance factor cannot be generalized according to the area or the extent of the analysis. 
It is essential – if it is all possible – to compare the calculations carried out with different 
resistance factors to find the most suitable model for the analysis. 
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