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Abstract

We consider a Cournot duopoly under general demand and cost functions, where an
incumbent patentee has a cost reducing technology that it can license to its rival by
using combinations of royalties and upfront fees (two-part tariffs). We show that for
drastic technologies: (a) licensing occurs and both firms stay active if the cost func-
tion is superadditive and (b) licensing does not occur and the patentee monopolizes
the market if the cost function is additive or subadditive. For non drastic technolo-
gies, licensing takes place provided the average efficiency gain from the cost reducing
technology is higher than the marginal gain computed at the licensee’s reservation
output. Optimal licensing policies have both royalties and fees for significantly supe-
rior technologies if the cost function is superadditive. By contrast, for additive and
certain subadditive cost functions, optimal licensing policies have only royalties and
no fees.
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1 Introduction

A patent grants an innovator monopoly rights over an innovation for a given period of time. It
seeks to provide incentives to innovate as well as to diffuse innovations. Licensing is a standard
way of diffusion of innovations. Initiated by Arrow (1962), the study of different aspects of
patent licensing has constituted an important area of modern industrial economics. Comparing a
monopoly with a perfectly competitive industry, Arrow argued that perfect competition provides
a higher incentive to innovate. Licensing in oligopolies was first studied by Kamien and Tauman
(1984, 1986) and Katz and Shapiro (1985, 1986). Since then, the literature has been extended to
address issues such as informational asymmetries (Gallini and Wright 1990; Choi 2001), product
differentiation (Muto 1993; Fauĺı-Oller and Sandońıs 2002), incumbent innovators (Marjit 1990;
Wang 1998; Kamien and Tauman 2002; Sen and Tauman 2007) and intertemporal aspects (Jensen
1992, Saracho 2004, Avagyan et al. 2014).

In spite of its richness, the existing literature has been restrictive in regard to one important
aspect of production: return to scale. The vast majority of the papers in the literature assume
that firms operate under linear cost functions.1 The current paper seeks to expand the literature
by studying licensing between rival firms operating under general cost functions. Our motivation
is based on theoretical and also on empirical grounds. On the one hand, we are interested in seeing
how the general properties of cost functions (e.g., subadditivity, superadditivity) affect licensing
policies, in particular the diffusion of new technologies and the optimal combination of fees and
royalties. On the other hand, empirical data shows that licensing policies vary from industry to
industry. Given that modern industries differ also in the degree of returns to scale in production,
our second goal is to bring forward the latter as a empirical factor that potentially interacts with
actual licensing policies.2

We carry out our analysis in a Cournot duopoly with a general demand function. Initially
both competing firms produce under the same cost function. One of the firms obtains a patent
on a technological innovation that changes this cost function. The patentee firm can either use
the new technology exclusively or license it to its rival. The licensing policies available to the
patentee consist of all combinations of linear royalties and upfront fees (two-part tariffs). The
main results of the paper can be summarized as follows:

1. A drastic technology3 is licensed and both firms are active in the market if the cost function
resulting from the new technology is superadditive. If the cost function is additive or sub-
additive, then a drastic technology is not licensed and the patentee becomes a monopolist.

2. A non drastic technology is licensed if at the licensee’s reservation output (i.e. its equilib-
rium output without a license), the average efficiency gain from the technology is (weakly)
higher than the marginal gain.4

3. Whenever licensing occurs, it is always optimal to set positive royalties. Furthermore if
the technology is significantly superior, upfront fees are also positive for superadditive cost

1Sen and Stamatopoulos (2009) is an exception. This paper analyzes licensing in a Cournot duopoly
with an outside patentee, quadratic cost functions and linear demand.

2More on this important issue appears in Section 3.3.
3A cost-reducing technological innovation is drastic (Arrow, 1962) if it is significant enough to create a

monopoly if only one firm has the new technology; otherwise, it is non drastic.
4At any output the average efficiency gain from the technology is the difference between the pre and

post innovation average costs, while the marginal gain is the difference between the corresponding marginal
costs.
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functions. For additive cost functions, licensing involves only royalties and no fees and the
same conclusion holds for subadditive functions under certain additional assumptions.

To see the basic intuition behind these findings, consider first a drastic technology. Under subaddi-
tivity (increasing returns to scale), the maximum profit attainable in the industry is the monopoly
profit. As the patentee can become a monopolist by exclusively using a drastic technology, it has
no incentive to license such a technology to its rival. Under superadditivity (decreasing returns),
the monopoly profit might no longer be the maximum attainable profit. In this case higher cost
efficiency, and consequently higher industry profit, is achieved when both firms are active. As a
result, licensing occurs and the market is not monopolized.

In the case of a non drastic technology, there is a specific rate of royalty that induces a market
equilibrium which replicates the equilibrium under no licensing (i.e., market prices are the same
under the two regimes). Under this royalty, the market profit of the patentee is the same as its
profit under no licensing. Adding the royalty revenues tilts the scale in favor of licensing. The
assumption that the average efficiency gain from the new technology is higher than the marginal
gain guarantees that the licensee accepts this policy.

Optimal royalties are determined by two factors. First, the patentee intends to create a
relatively inefficient rival and second, it has to consider how the rival’s efficiency affects its own
marginal cost. Under increasing returns to scale, these two factors work in the same direction.
A less efficient rival implies larger output and lower marginal cost for the patentee. Hence, the
patentee has incentives to restrict the rival’s output under increasing returns, which is achieved
by setting higher royalties. Under decreasing returns, the two factors do not work in the same
direction, as creating a less efficient rival results in larger output and higher marginal cost for the
patentee. For this reason the patentee is inclined to set lower royalties (and higher fees) under
decreasing returns.

The paper is organized as follows. Section 2 presents the model. The results are derived in
section 3. The last section concludes.

2 The model

Consider a Cournot duopoly with firms 1 and 2. For i = 1, 2, let qi ≥ 0 be the quantity produced
by firm i and Q = q1 + q2 be the industry output. Let p(Q) : R+ → R+ be the price function or
the inverse demand function. We assume

A1 There exists Q0 > 0 such that (i) p(Q) = 0 for Q ≥ Q0 and (ii) for Q ∈ [0, Q0), p(Q) is positive
and twice continuously differentiable with p′(Q) < 0, that is, p(Q) is decreasing for Q ∈ [0, Q0).

A2 p′(Q) + qp′′(Q) < 0 for all Q ∈ [0, Q0) and q ∈ [0, Q].

The set of all feasible technologies is S = [0, ε]. The total cost of producing q units under
technology ε ∈ S is given by cε(q) : R+ → R+. A higher ε corresponds to a better technology and
has a lower cost of production. Specifically we assume

A3 For every ε ∈ S: (i) cε(0) = 0, (ii) cε(q) is twice continuously differentiable5 with c′ε(q) > 0
for q > 0, that is, cε(q) is increasing in q, and (iii) p(0) > c′ε(0).

A4 For any q > 0, both the total cost cε(q) and the marginal cost c′ε(q) are decreasing and
differentiable in ε.

5At q = 0, we consider the right derivative for both functions p and cε.

3



A5 For every ε ∈ S: p′(Q)− c′′ε(q) < 0 for all Q ∈ [0, Q0) and q ∈ [0, Q].

Initially both firms produce under the least efficient technology 0 ∈ S and have cost c0(q).
Firm 1 has a patent for a superior technology ε ∈ (0, ε] that results in cost function cε(q). Firm
1 produces with the new technology. It may also license this technology to its rival firm 2. The
set of licensing policies we consider is the set of all combinations of royalties and upfront fees
(two-part tariffs) of the form (r, α) where r ≥ 0 is a unit royalty and α ≥ 0 is an upfront fee.

A1-A5 are standard assumptions which guarantee uniqueness and stability of Cournot equi-
librium (see, e.g., Gaudet and Salant 1991; Kamien et al. 1992; Vives 2001) under any licensing
configuration.

2.1 Cost functions

In this paper we consider three classes of cost functions: superadditive, subadditive and additive.
Superadditivity represents production technologies characterized by decreasing returns to scale
in production whereas subadditivity represents increasing returns. Additivity corresponds to
constant returns.

Definition 1 For ε ∈ S, the cost function cε is superadditive if cε(q + q̃) > cε(q) + cε(q̃) for all
q, q̃ > 0 and it is subadditive if cε(q + q̃) < cε(q) + cε(q̃) for all q, q̃ > 0.

Remark 1 If c(q) : R+ → R+ is a convex (concave) function with c(0) = 0, then it is superadditive
(subadditive) but the converse is not true. Consider the function c(q) defined on q ≥ 0 as
c(q) = q exp(−1/q2) for q > 0 and c(0) = 0. This function is superadditive, but not convex.6

Definition 2 For ε ∈ S, the cost function cε is additive if it satisfies Cauchy’s basic equation
cε(q + q̃) = cε(q) + cε(q̃) for all q, q̃ ≥ 0.

Remark 2 If an additive function cε is continuous at a point, then ∃ kε such that

cε(q) = kεq for all q ≥ 0 (1)

For the proof, see Theorem 1, p.34 of Aczél (1966). By (1) and A3 it follows that if a technology ε
has additive cost function, then c′ε(q) = kε > 0. An additive cost function thus results in constant
marginal cost of production. If the initial technology 0 and the new technology ε both have
additive cost functions, then the magnitude of the cost reduction from the new technology for
every unit of production is k0 − kε > 0. This case has been extensively studied in the literature
of patent licensing (see, e.g., Wang 1998; Sen and Tauman 2007).

The following lemma provides a useful characterization of three different classes of cost func-
tions in terms of marginal costs.

Lemma 1 Let c(q) : R+ → R+ be a twice continuously differentiable cost function with c(0) = 0.
For any q > 0, c′(q) ≥ c′(0) if c is superadditive, c′(q) ≤ c′(0) if c is subadditive and c′(q) = c′(0)
if c is additive.

Proof See the Appendix.

6For more such counter-examples, see Bourin and Hiai (2015), who explore a large class of superadditive
functions. For the early literature on superadditive functions, see, e.g., Bruckner (1962, 1964), Beckenbach
(1964).
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3 The licensing game G

The strategic interaction between the two firms is modeled as an extensive-form game G that has
three stages. In the first stage, firm 1 decides whether to license the new technology ε to firm 2
or not. If firm 1 decides to license, it offers firm 2 a licensing policy (r, α). In the second stage,
firm 2 decides whether to accept or reject any licensing policy offered. Finally, in the third stage
the two firms simultaneously choose quantities q1, q2 in the Cournot duopoly.

If firm 2 has a license of technology ε under a policy (r, α), it pays firm 1 the upfront fee α
and in addition pays royalty r for every unit it produces. If firm 2 does not have a license, it
produces with technology 0. Let λ be the indicator variable with λ = 1 if firm 2 has a license and
λ = 0 if it does not. The payoff functions of firms 1, 2 (these are functions of (r, α), λ, q1, q2) in
the game G are

Π1
ε = p(Q)q1 − cε(q1) + λ(rq2 + α),Π2

ε = p(Q)q2 − λ[cε(q2) + rq2 + α]− (1− λ)c0(q2) (2)

We determine Subgame Perfect Nash Equilibrium (SPNE) outcome of G. Working backwards, we
begin with the Cournot stage of this game and then move to the initial stages.

3.1 Cournot stage

Consider the third stage of G where firms compete in quantities. For i = 1, 2, let πi be the duopoly
profit of firm i in the Counrot stage. From (2), we have

π1 = p(Q)q1 − cε(q1), π2 = p(Q)q2 − λ[cε(q2) + rq2 + α]− (1− λ)c0(q2) (3)

To find SPNE of G, for every r ≥ 0 and λ ∈ {0, 1}, we need to determine Nash equilibrium (NE)
of the corresponding Cournot duopoly where firms 1, 2 choose q1, q2 to obtain profits given by7

(3). As the cost functions of both firms satisfy A3-A5, existence and uniqueness of NE of the
Cournot duopoly is guaranteed under both cases of licensing and no licensing. The notion of
drastic techn! ology (Arrow 1962) will be useful for our analysis.

Definition 3 The new technology is drastic if it is significant enough to create a monopoly when
only one firm uses it; otherwise, it is non drastic.

Remark 3 To characterize drastic technologies, consider the monopoly problem. For any ε ∈ S,
let φε(q) := p(q)q − cε(q) denote the profit function of a monopolist who faces inverse demand
p(Q) and produces under cost cε(Q). By A1-A5, φε(q) is concave in q and the monopoly problem
maxq≥0 φε(q) has a unique solution. Denote this solution by qmε (the monopoly output). Let
pmε = p(qmε ) be the monopoly price and πmε = φε(q

m
ε ) be the monopoly profit. A1-A5 also ensure

that qmε is increasing (and hence pmε is decreasing) in ε.

Lemma 2 describes the key features of Cournot equilibrium under the two cases of licensing
and no licensing.

Lemma 2 For all ε ∈ S, r ≥ 0 and λ ∈ {0, 1}, the Cournot duopoly has a unique NE. For i = 1, 2,
let q̂iε, π̂

i
ε denote NE (Cournot) output, profit of firm i when firm 2 does not have a license and let

Q̂ε = q̂1ε + q̂2ε . Let q
i
ε(r), π

i
ε(r), Qε(r) be the corresponding expressions when firm 2 has a license

with royalty r.

7Since α is a lump-sum transfer paid upfront, it has no effect on the outcomes of the Cournot duopoly.
As firm 1’s choice of q1 does not affect its royalty revenue λrq2, this revenue can be left out from the profit
of firm 1 at the Cournot stage. However, for firm 2, its choice of q2 does affect its royalty payments λrq2,
so these payments are part of its cost function in the Cournot duopoly.
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(i) Suppose firm 2 does not have a license. If pmε > c′0(0), then q̂1ε , q̂
2
ε are both positive and if

pmε ≤ c′0(0), then q̂
1
ε = qmε , q̂

2
ε = 0. Consequently a technology ε ∈ S is drastic if pmε ≤ c′0(0)

and it is non drastic otherwise. Moreover, q̂1ε , π̂
1
ε , Q̂ε are increasing in ε and for non drastic

technologies q̂2ε , π̂
2
ε are decreasing in ε.

(ii) Suppose firm 2 has a license with royalty r ≥ 0. There exists rε ≡ pmε − c′ε(0) > 0 such

that if r < rε, then q1ε(r), q
2
ε(r) are both positive and if r ≥ rε, then q1ε(r) = qmε , q

2
ε(r) = 0.

Moreover, q1ε(r), π
1
ε(r) are increasing and q2ε(r), π

2
ε(r), Qε(r) are decreasing in r for r ≤ rε.

(iii) For any non drastic technology ε, there are royalties r̂ε, r
∗
ε ∈ (0, rε) such that π2ε(r) T π̂2ε ⇔

r S r̂ε and q2ε(r) T q̂2ε ⇔ r S r∗ε . Moreover q1ε(r
∗
ε) = q̂1ε and Qε(r

∗
ε) = Q̂ε.

Proof See the Appendix.
Lemma 2 characterizes Cournot equilibrium and delivers the standard comparative statics

results. When there is no licensing, expectedly the quantity of firm 1 increases in the quality
of the new technology ε. Our assumptions guarantee that standard effects will then follow: A2
implies that best-replies are negatively sloped, hence quantity of firm 2 falls in ε. A5 implies that
the net effect of ε on industry output is positive.

When there is licensing with royalty r, expectedly q2ε(r) (whenever positive) falls in r. Then
A2 implies that q1ε(r) increases in r and A5 implies that the net effect of r on industry output
Qε(r) is negative. The last part of the lemma identifies two specific thresholds of royalties: one
that equates firm 2’s Cournot profits with and without a license and the other one that equates
its Cournot outputs. These thresholds will be useful to determine licensing policies that are
acceptable to firm 2.

Since pm0 > c′0(0), it follows by Lemma 2 that the initial technology 0 is non drastic. Note
that pmε is continuous and decreasing in ε. Henceforth we assume that ∃ εD ∈ (0, ε) such that
pmε > c′0(0) if ε ∈ [0, εD) and p

m
ε ≤ c′0(0) if ε ∈ [εD, ε]. This ensures that sets of non drastic and

drastic technologies are both non empty. Any technology ε < εD is non drastic and ε ≥ εD is
drastic.

3.2 Technology transfer stages

Given the analysis of the previous section, we next move to the initial stages of G. If firm 2
accepts a licensing policy (r, α), the payoff Π1

ε(r, α) of firm 1 is the sum of its duopoly profit and
licensing revenue. For firm 2, note from (3) that royalty payments are already included as part
of cost in its duopoly profit. So firm 2’s payoff Π2

ε(r, α) is its duopoly profit net of upfront fee.
Using the equilibrium values of profits and quantities from Lemma 2, we have

Π1
ε(r, α) = π1ε(r) + rq2ε(r) + α, Π2

ε(r, α) = π2ε(r)− α

By Lemma 2, if firm 2 rejects the licensing policy, it obtains π̂2ε . Hence for any r, it is optimal
for firm 1 to set the fee α equal to αε(r) := π2ε(r) − π̂2ε making firm 2 just indifferent between
accepting and rejecting the licensing offer.8 Therefore, if firm 1 decides to offer a license, its
problem reduces to choose r ≥ 0 to maximize

Π1
ε(r) = π1ε(r) + rq2ε(r) + π2ε(r)− π̂2ε = p(Qε(r))Qε(r)− cε(q

1
ε(r))− cε(q

2
ε(r))− π̂2ε (4)

8If royalty r is such that π2

ε
(r) < π̂2

ε
, then even with zero fee firm 2’s payoff with a license is lower than

its payoff without a license. As upfront fees are non-negative, such a royalty will not be accepted by firm
2. By Lemma 2(iii), it follows that any licensing policy with royalty r > r̂ε is not acceptable to firm 2.
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On the other hand, if firm 1 does not offer a license, it obtains π̂1ε . We are now in a position to
determine optimal licensing policies for firm 1.

3.3 Optimal licensing policies

The following general result shows that royalties must be positive whenever licensing occurs.

Proposition 1 If firm 1 offers a license to firm 2, it is always optimal to set a positive royalty.

Proof See the Appendix.

Remark 4 Proposition 1 holds under A1-A5 without any further assumptions. However, setting
a positive royalty may not necessarily be optimal for a patentee firm when it competes in an
oligopoly of size n ≥ 3. In the duopoly model firm 2’s reservation payoff π̂2ε (i.e., its payoff when it
does not have a license) is independent of the rate of royalty r. But in an oligopoly of general size,
if a specific firm is without a license, some other firms might have a license; so the reservation
payoff of a non-licensee does depend on r. This may lead to a conclusion different from Proposition
1 (see, e.g., Sen and Tauman 2007).

Further characterization of optimal licensing policies depends on whether the new technology
is drastic or non drastic.

3.3.1 Drastic technologies

Consider a drastic technology ε. For this case, if firm 2 does not have a license it exits the market
and firm 1 becomes a monopolist, i.e., π̂2ε = 0 and π̂1ε = πmε . Proposition 2 shows that firm 1’s
decision to license or not depends crucially on the nature of new technology. It should be also
noted that these results do not require any additional assumption on the initial technology 0 apart
from A3-A5.

Proposition 2 Consider a drastic technology ε, i.e., ε ∈ [εD, ε]. The following hold.

(I) Regardless of whether there is licensing or not, firm 2 obtains zero net payoff.

(II) If cε(q) is subadditive or additive, licensing does not occur. Firm 1 becomes a monopolist

and obtains πmε .

(III) If cε(q) is superadditive and c′ε(q
m
ε ) > c′ε(0), then licensing occurs.9 Any optimal licensing

policy has positive royalty and upfront fee. Both firms are active and firm 1 obtains more

than πmε .

Proof Firm 2’s net payoff under any optimal licensing policy is its payoff without a license: π̂2ε .
Since π̂2ε = 0 for a drastic technology ε, (I) follows.

For (II)-(III), note that by not offering a license, firm 1 obtains the monopoly profit πmε . By
Lemma 2(ii), offering a license with royalty r ≥ rε for a drastic technology ε results in the same
outcome as not offering a license. So it is sufficient to consider licensing policies with r ∈ [0, rε).
In that case both firms produce positive outputs.

(II) Let cε(q) be subadditive or additive. Taking π̂2ε = 0 in (4), for r ∈ [0, rε), we have

Π1
ε(r) = p(Qε(r))Qε(r)− cε(q

1
ε(r))− cε(q

2
ε(r)) ≤ p(Qε(r))Qε(r)− cε(Q(r)) < πmε (5)

9Superaddivity and cε(0) = 0 already imply c′
ε
(q) ≥ c′

ε
(0) for all q > 0 (see Lemma 1). The inequality

in the proposition requires the marginal cost at the monopoly output qm
ε

to be different from that at 0.
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where the first inequality is strict if cε(q) subadditive and holds with equality if cε(q) is additive.
The second inequality is due to the fact that the monopolist’s profit is maximized at qmε and
Qε(r) < qmε for r ∈ [0, rε) (Lemma 2(ii)).

(III) Let cε(q) be superadditive and c′ε(q
m
ε ) > c′ε(0). Then Π1

ε(r) is decreasing at r = rε (see
Lemma A3 of Appendix). Together with Proposition 1, this implies that it is optimal for firm 1
to license and any optimal policy must have r ∈ (0, rε) and upfront fee π2ε(r) − π̂2ε = π2ε(r) > 0.
As Π1

ε(r) = πmε for r ≥ rε, under any optimal policy firm 1 obtains more than πmε .

Under additivity or subadditivity of the new technology (constant or increasing returns to
scale), the maximum achievable payoff is the monopoly profit πmε . Since firm 1 can obtain the
monopoly profit by using a drastic technology exclusively, licensing does not occur. Under su-
peradditivity (decreasing returns), the monopoly profit is no longer the upper bound of industry
profit, as production of output by a single firm creates cost inefficiencies. For this case firm 1
has an incentive to keep firm 2 active in the market. The presence of two active firms increases
efficiency and results in higher surplus than the monopoly profit, which firm 1 extracts via a fee.

We note that the result that a firm might sell a drastic technology to its rival has been obtained
in a different context by Fauĺı-Oller and Sandońıs (2002) who analyzed licensing in a differentiated
goods duopoly under constant returns to scale. In that framework, a patentee transfers a drastic
technology to its rival as it does not want to close the rival’s profitable market. Proposition 2
brings forward an alternative motive of licensing of a drastic technology, namely, cost efficiency
under decreasing returns.

3.3.2 Non drastic technologies

To characterize optimal licensing policies for a non drastic technology ε, let F (q) := c0(q)− cε(q).
Note by A4 that F (q), F ′(q) are both positive for any q > 0. F (q) represents the total gain in

efficiency for q units obtained from the superior technology ε. Accordingly, F (q)/q stands for the
average gain and F ′(q) the marginal gain. For q > 0, define

H(q) :=
F ′(q)

F (q)/q
(6)

The function H(q) is the ratio of average and marginal gains in efficiency obtained from using the
superior technology ε.

Recall the two threshold levels of royalties r∗ε , r̂ε from Lemma 2(iii). At r = r∗ε , the Cournot
outputs of firms coincide with their no-licensing levels and at r = r̂ε, the Cournot profit of firm 2
equals its profit without a license. For a licensing policy with royalty r, the maximum upfront fee
is αε(r) = π2ε(r)− π̂2ε . A policy (r, αε(r)) is acceptable to firm 2 if and only if r ∈ [0, r̂ε]. Lemma
3 utilizes the function H(q) together with r∗ε , r̂ε to determine values of royalties that make a
licensing agreement beneficial for both firms.

Lemma 3 The following hold for a non drastic technology ε.

(i) Π1
ε(r

∗
ε) > π̂1ε , i.e., for firm 1, licensing under policy (r∗ε , α(r

∗
ε)) yields a higher payoff than

the no licensing.

(ii) Suppose H(q̂2ε) ≤ 1. Then r∗ε ≤ r̂ε and consequently there exist licensing policies acceptable

to firm 2 in which firm 1 obtains a higher payoff than no licensing.

Proof See the Appendix.

8



At r = r∗ε , the Cournot profit of firm 1 is the same as its profit under no licensing, but it
obtains additional licensing revenue, yielding a surplus for firm 1. Whether firm 2 also obtains a
surplus there depends on the inequality H(q̂2ε) ≤ 1, which says that the marginal efficiency gain
obtained from the new technology is lower than the average gain when both are computed at firm
2’s Cournot output without a license. As licensing with r = r∗ε results in same Cournot outputs
and price as no licensing, firm 2’s Cournot profit is higher under licensing if and only if its total
cost is lower under licensing, i.e.,

π2ε(r
∗
ε) ≥ π̂2ε ⇔ cε(q̂

2
ε) + r∗ε q̂

2
ε ≤ c0(q̂

2
ε) ⇔ r∗ε ≤ F (q̂2ε)/q̂

2
ε

Since r∗ε = F ′(q̂2ε) (see the proof of Lemma 3 in the Appendix), it follows that π2(r
∗
ε) ≥ π̂2ε ⇔

H(q̂2ε) ≤ 1. In particular this inequality implies that the unit royalty does not exceed the average
gain in efficiency from the superior technology. This ensures that licensing under royalty r∗ε leaves
a surplus to firm 2.

3.3.3 Additive and superadditive cost functions

Using the condition H(q̂2ε) ≤ 1, we can characterize optimal licensing policies for additive and
superadditive cases.

Proposition 3 Consider a non drastic technology ε, i.e., ε ∈ (0, εD). If H(q̂2ε) ≤ 1, then licensing

occurs. The optimal licensing policies have the following properties.

(I) If cε(q) is additive, then the unique optimal licensing policy for firm 1 has royalty r = r̂ε
and zero upfront fee, i.e., it is a pure royalty policy.

(II) If cεD(q) is superadditive and c′εD(q
m
εD

) > c′εD(0), then ∃ 0 < ε̂ < εD such that for all

ε ∈ (ε̂, εD), any optimal licensing policy for firm 1 has both positive royalty as well as

positive upfront fee.

Proof See the Appendix.

Note from (1) that if cε(q) is additive, then cε(q) = kεq. If the initial technology 0 also has an
additive cost function, then c0(q) = k0q. In that case for any q > 0, we have F ′(q) = F (q)/q =
k0 − kε and H(q) = 1. Therefore the condition H(q̂2ε) ≤ 1 holds for the standard case studied
in the literature where both new and initial technologies have constant returns. The conclusion
of part (I) is the same as the result of Sen and Tauman (2007) for a Cournot duopoly with an
incumbent patentee.

Observe that εD is the threshold that separates non drastic and drastic technologies. Part
(II) of the proposition shows that if technology εD has a superadditive cost function, then for all
sufficiently significant non drastic technologies (i.e., technologies ε that are close enough to εD)
any optimal policy has both royalty and upfront fee.

3.3.4 Subadditive cost functions

When cε(q) is subadditive, the condition H(q̂2ε) ≤ 1 alone is not enough to characterize optimal
licensing policies.10 More structure on the cost function is needed.

10As shown in the proof of Proposition 3, for technologies ε that are close enough to εD, in the superad-
ditive case firm 1’s payoff is decreasing at r = r̂ε (the maximum acceptable royalty for firm 2). This implies
that any optimal policy has royalty r < r̂ε and the upfront fee is positive. Applying similar reasoning for
the subadditive case will show that firm 1’s payoff is increasing at r = r̂ε. But this does not conclusively
say whether it is optimal to set r = r̂ε (and zero fee) or r < r̂ε (and positive fee).

9



Definition Let x0 > 0. A function f : R+ → R+ is interval-wise decreasing at x0 if f(x) > f(x0)
for x < x0 and f(x) < f(x0) for x > x0.

Note that interval-wise decreasing property at x0 implies f(x) < f(y) if x < x0 < y, but it
does not specify any order between f(x), f(y) when x, y are both lower (or both higher) than x0.
We shall use this concept to impose further structure on a cost function. Note from Lemma 2 that
when there is licensing with zero royalty, both firms produce the same Cournot output. Denote
this output by qε(0) and note that q2ε(r) < qε(0) < q1ε(r) for any r > 0. Proposition 4 shows that
optimal licensing policies can be completely characterized if the marginal cost function c′ε(q) is
interval-wise decreasing at11 qε(0). Before stating th! e proposition, it will be useful to see the
implications of interval-wise decreasing property of the marginal cost function.

Lemma 4 The following hold if c′ε(q) is interval-wise decreasing at qε(0).

(i) cε(q) cannot be additive or superadditive.

(ii) For any r ∈ (0, rε), cε(q
1
ε(r) + q2ε(r)) < cε(q

1
ε(r)) + cε(q

2
ε(r)).

Proof (i) Since c′ε(q) is interval-wise decreasing at qε(0) > 0, we have c′ε(0) > c′ε(qε(0)). Then by
Lemma 1 it follows that cε(q) cannot be additive or superadditive.

(ii) We drop subscript ε for brevity. Recall from Lemma 2(ii) that for r ∈ (0, r), 0 < q2(r) <
q(0) < q1(r). Since c′(q) is interval-wise decreasing at q(0), we have

c′(x) > c′(q(0)) for x < q2(r) and c′(x) < c′(q(0)) for x > q1(r)

Hence c(q1(r) + q2(r))− [c(q1(r)) + c(q2(r))] =
∫ q1(r)+q2(r)
q1(r)

c′(x)dx−
∫ q2(r)
0 c′(x)dx, which is lower

than
∫ q1(r)+q2(r)
q1(r)

c′(q(0))dx −
∫ q2(r)
0 c′(q(0))dx = 0. This completes the proof.

Lemma 4 shows that if c′ε(q) is interval-wise decreasing at qε(0), then cε(q) is outside the set
of superadditive and additive functions and the “subaddivity inequality” cε(q+ q̃) < cε(q)+ cε(q̃)
holds for all pairs (q, q̃) that arise as Cournot equilibrium under any licensing policy.

Proposition 4 Consider a non drastic technology ε. Suppose H(q̂2ε) ≤ 1 and c′ε(q) is interval-wise
decreasing at qε(0). Then the unique optimal licensing policy for firm 1 has royalty r = r̂ε and

zero upfront fee, i.e., it is a pure royalty policy.

Proof See the Appendix.

In particular, if cε(q) is subadditive and satisfies the conditions of Proposition 4, then pure
royalty emerges as the unique optimal licensing policy. Putting together the results of Propositions
3 and 4, the general conclusion is that for non drastic technologies a patentee licenses to its rival
by setting the maximum possible royalty and zero upfront fee for constant or increasing returns
(subject to some additional structure on the cost function). By contrast, for decreasing returns,
royalties are set lower and there are positive fees.

The result that royalties tend to be higher under increasing returns seems to be consistent
with some real life observations on royalty rates in various industries. A recent survey by Held
and Parker (2011) computed the average royalty rates in some major industries in USA and
Canada for the period 2008-2011. The higher average royalty rates were found in sectors such us
aerospace (commercial and military), transportation and information technology & equipment,

11Note that if cε(q) is concave, then c
′
ε
(q) is decreasing for all q ≥ 0 and in particular it is interval-wise

decreasing at any q > 0. Thus, interval-wise decreasing property of the marginal cost at a certain point is
a weaker requirement than concavity of the cost function.
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i.e., sectors usually associated with increasing returns to scale. Of course, one needs to look at
industry-specific data for a better understanding of the observed licensing policies. Still, some
sort of association between returns to scale and optimal licensing policies seems to be in place.

4 Concluding remarks

This paper has analyzed optimal licensing policies of a cost-reducing innovation in a market
with general cost functions. In a Cournot duopoly with one of the firms as a patentee, we
have derived a fairly complete characterization of licensing policies under a general setting. We
have shown that if licensing occurs, then royalties must be positive (Proposition 1), licensing
of drastic technologies depends on whether the cost function generated by the new technology
is superadditive or subadditive (Proposition 2), licensing of non drastic technologies depends
on the relation between the marginal and average efficiency gains obtained from the superior
technology (Proposition 3), for significantly superior technologies, superadditivity ensures that
fees are positive (Proposition 3) and subadditivity or additivity results in maximum possible
royalty and zero fees (Propositions 3,4).

In conclusion, we suggest some extensions. The analysis of licensing in a market with n ≥
3 firms operating under general cost functions is the most natural direction for future work.
Another interesting direction is to consider markets where firms compete in prices under non-
constant returns. This case is interesting not only for licensing but also from a market equilibrium
viewpoint: it is known that a multiplicity of price equilibria emerges when two firms operate
in homogeneous goods markets under decreasing returns (Dastidar 1995). The introduction of
licensing changes the objective function of the incumbent patentee in the price stage of the game
from p1d1(p1, p2) − cε(d1(p1, p2)) to p1d1(p1, p2) − cε(d1(p1, p2)) + rd2(p1, p2), where di(p1, p2)
denotes the demand function of firm i and pi denotes the price set by firm i. It will be interesting
to see how this modification of the objective function affects the set of price equilibria.

Appendix

Proof of Lemma 1 We prove the result when c(q) is superadditive. The proofs for subadditive
and additive cases follow by similar reasoning. Fix any q > 0. By superadditivity, for any δ > 0,
we have c(q + δ) > c(q) + c(δ) so that [c(q + δ)− c(q)]/δ > c(δ)/δ. Hence

c′(q) = lim
δ↑0

[c(q + δ)− c(q)]/δ ≥ lim
δ↑0

[c(δ)/δ]

Since c(0) = 0, by L’Hôpital’s rule we have limδ↑0 c(δ)/δ = limδ↑0 c
′(δ) = c′(0), proving that

c′(q) ≥ c′(0).

Some comparative statics results Consider a Cournot duopoly with two firms 1, 2 where the
demand function satisfies A1-A2. Let i, j ∈ {1, 2}, i 6= j. Firm i has cost τ(q) and firm j has cost
γt(q) where t ≥ 0 is an exogenously given parameter. For any q ≥ 0, γt(q) is twice continuously
differentiable in t and both τ(q), γt(q) satisfy A3-A5 for all t ≥ 0. The profit functions of firms
i, j are πi = p(Q)qi − τ(qi) and πj = p(Q)qj − γt(qj). Also assume that the unique NE of the
Cournot duopoly is determined from the first order conditions, where both firms produce positive
output. Let q1(t), q2(t) and π1(t), π2(t) be the NE outputs and profits of firms 1, 2 and Q(t) be
the industry output.

Lemma A1 lists the comparative statics properties of outputs and profits of firms with respect
to the parameter t. We shall apply these results in specific cases of interest. For instance (a) to
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see how firm 1’s profit changes with respect to technology ε in the case when firm 2 does not have
the new technology, we take i = 2, j = 1 and t = ε and (b) to see how firm 2’s profit as licensee
changes with respect to royalty r, we take i = 1, j = 2 and t = r.

Lemma A1 Denote gq(t) := ∂γt(q)/∂t and h
q(t) := ∂γ′t(q)/∂t

(i) If hq(t) > 0 for all q > 0, then qi(t), πi(t) are increasing and qj(t), Q(t) are decreasing in t.

(ii) If hq(t) < 0 for all q > 0, then qi(t), πi(t) are decreasing and qj(t), Q(t) are increasing in t.

(iii) If gq(t) > 0, hq(t) > 0 for all q > 0, then πj(t) is decreasing in t; if gq(t) < 0, hq(t) < 0 for

all q > 0, then πj(t) is increasing in t.

Proof Without loss of generality, let i = 1, j = 2. Note that

∂π1/∂q1 = p′(Q)q1 + p(Q)− τ ′(q1) and ∂π2/∂q2 = p′(Q)q2 + p(Q)− γ′t(q2) (7)

For i, j = 1, 2 and i 6= j, denote ai(q1, q2) := ∂π2i /∂q
2
i , bi(q1, q2) := ∂π2i /∂qi∂qj . The Jacobian of

the marginal profits is

J =

(
a1 b1
b2 a2

)

From (7) and A2, A5, a1 = q1p
′′(Q) + 2p′(Q) − τ ′′(q1) < 0, a2 = q2p

′′(Q) + 2p′(Q) − γ′′t (q2) < 0
and bi = qip

′′(Q) + p′(Q) < 0. Note that |J | = a1a2 − b1b2. By the uniqueness of the NE,
(−1)2|J | = |J | > 0 (see, e.g., Dixit 1986; Dastidar 2000).

As both firms produce positive output in the unique NE (q1(t), q2(t)), using first order condi-
tions (f.o.c.) in (7), we have

p′(Q(t))q1(t) + p(Q(t))− τ ′(q1(t)) = 0 and p′(Q(t))q2(t) + p(Q(t))− γ′t(q2(t)) = 0

Totally differentiating the above with respect to t and using the definition of hqt :

a1q
′
1(t) + b1q

′
2(t) = 0 and b2q

′
1(t) + a2q

′
2(t)− h

q2(t)
t = 0

Solving this system of equations, we have

q′1(t) = −b1h
q2(t)
t /|J |, q′2(t) = a1h

q2(t)
t /|J |, Q′(t) = q′1(t) + q′2(t) = (a1 − b1)h

q2(t)
t /|J | (8)

As a1 < 0, b1 < 0, a1−b1 = p′(Q(t))−τ ′′(q1(t)) < 0 (by A5) and |J | > 0, by (8), q′1(t) > 0, q′2(t) < 0
and Q′(t) < 0 if hqt > 0 and the reverse inequalities holds if hqt < 0.

Totally differentiating firm 1’s NE profit π1(t) = p(Q(t))q1(t)− τ(q1(t)) with respect to t and
using the f.o.c. of firm 1, we have π′1(t) = [∂π1/∂q2]q

′
2(t) = p′(Q(t))q1(t)q

′
2(t). Since p

′ < 0 and
q1(t) > 0, it follows that sign[π′1(t)] = −sign[q′2(t)]. Hence π

′
1(t) > 0 if hqt > 0 and π′1(t) < 0 if

hqt < 0. This completes the proof of (i)-(ii).
Totally differentiating firm 2’s NE profit π2(t) = p(Q(t))q2(t) − γt(q2(t)) with respect to t,

using the f.o.c. of firm 2 and the definition of gqt , we have π′2(t) = [∂π2/∂q1]q
′
1(t) − g

q2(t)
t =

p′(Q(t))q2(t)q
′
1(t) − g

q2(t)
t . As p′ < 0 and q2(t) > 0, it follows that (a) if gqt > 0 and hqt > 0, then

q′1(t) > 0 and hence π′2(t) < 0 and (b) if gqt < 0 and hqt < 0, then q′1(t) < 0 and hence π′2(t) > 0.
This completes the proof of (iii).

Lemma A2 If firm 2 has a license with zero royalty, its Cournot output as well as profit are

higher than their no-licensing levels.
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Proof The result is immediate for a drastic technology. Consider a non drastic technology. Take
i = 1, j = 2 in Lemma A1. Firm 1’s cost is τ(q) = cε(q). Compare two scenarios: (a) if firm 2 has
a license with royalty r = 0, its cost is γε(q) = cε(q) and (b) if 2 does not have a license, its cost
is γ0(q) = c0(q). Hence firm 2’s cost is γt(q) = ct(q) where t = ε for (a) and t = 0 for (b). By
Assumption A4 we have gqt < 0 and hqt < 0 for all q > 0. Then by Lemma A1 ((ii),(iii)), it follows
that q2(t) and π2(t) are both increasing in t, i.e., the NE output and profit of firm 2 in (a) are
higher than the output and profit in (b).

Proof of Lemma 2 Since for any λ ∈ {0, 1} and r ≥ 0, A3-A5 hold for cost functions of both
firms in (3), the existence and uniqueness of NE follow by A1-A5 (for a proof see, e.g., Gaudet
and Salant, 1991). Note from A1-A3 that at the NE, the industry output must be positive and
lower than Q0. The following observations will be useful to prove (i)-(ii).

Observation 1 pmε > c′ε(0).

Proof By the first order condition of the monopoly problem: pmε = c′ε(q
m
ε ) − p′(qmε )qmε . By the

mean value theorem, ∃ q ∈ (0, qmε ) such that c′ε(q
m
ε ) − c′ε(0) = qmε c

′′
ε(q). Hence p

m
ε − c′ε(0) =

qmε [c′′ε(q)− p′(qmε )]. By A5, this expression is negative, which proves the result.

Observation 2 At the NE, we must have q1 > 0.

Proof By contradiction. Suppose q1 = 0 at the NE. Then (a) q2 = q̃m (the monopoly output under
cost c̃(q) = λ[cε(q)+rq]+(1−λ)c0(q)) and (b) q1 = 0 must be a best response of firm 1 to q2 = q̃m.
As π1 is concave in q1 (by A2 and A5), for (b) to hold, we must have π′1(q1 = 0, q2 = q̃m) ≤ 0,
which holds iff p(q̃m) ≤ c′ε(0). Since c̃(q) ≥ cε(q), we have p(q̃m) ≥ pmε , implying that pmε ≤ c′ε(0),
contradicting Observation 1.

(i) Suppose firm 2 does not have a license. Then its cost function is c0(q). By Observation 2,
the NE must have either (a) (q1 = qmε , q2 = 0), or (b) (q1 > 0, q2 > 0). For (a) to be NE, q2 = 0
must be a best response of firm 2 to q1 = qmε . As π2 is concave in q2 (by A2 and A5), this occurs
iff π′2(q1 = qmε , q2 = 0) ≤ 0 which holds iff pmε ≤ c′0(0).

To complete the proof of (i), take i = 2, j = 1 in Lemma A1. For non drastic technologies both
firms produce positive output and the NE is determined from the first order conditions. Firm 2’s
cost is τ(q) = c0(q) and firm 1’s cost is γt(q) = cε(q). Taking t = ε in Lemma A1, it follows that
gq(t) < 0, hq(t) < 0 for all q > 0 (by Assumption A4). The last statement of (i) then follows by
Lemma A1 (ii)-(iii).

(ii) Suppose firm 2 has a license with royalty r. Then its cost function is cε(q) + rq. By
Observation 2, the NE must have either (a) (q1 = qmε , q2 = 0), or (b) (q1 > 0, q2 > 0). For
(a) to be NE, q2 = 0 must be a best response of firm 2 to q1 = qmε . As π2 is concave in q2
(by A2 and A5), this occurs iff π′2(q1 = qmε , q2 = 0) ≤ 0 which holds iff pmε ≤ c′ε(0) + r, i.e.,
r ≥ r(ε) ≡ pmε − c′ε(0) > 0.

To complete the proof of (ii), take i = 1, j = 2 in Lemma A1. When firm 2 has a license with
royalty r < rε, both firms produce positive output and the NE is determined from the first order
conditions. Firm 1’s cost is τ(q) = cε(q) and firm 2’s cost is γr(q) = cε(q) + rq. Taking t = r in
Lemma A3, we have gq(r) = q > 0 and hq(r) = 1 > 0 for all q > 0. The last statement of Lemma
1 then follows from Lemma A1 (i),(iii).

(iii) By (i), for a non drastic technology ε, we have π2ε(rε) = 0 < π̂2ε and q2ε(rε) = 0 < q̂2ε . The
first part of (iii) follows by noting that (a) π2ε(r), q

2
ε(r) are both decreasing for r ∈ [0, rε) (part

(ii)) and (b) π2ε(0) > π̂2ε , q
2
ε(0) > q̂2ε (i.e. at zero royalty, firm 2’s Cournot profit and output are

both higher than their no-licensing levels, see Lemma A2).
To prove the second part, let r = r∗ε . As q

2
ε(r

∗
ε) = q̂2ε , the first order condition of firm 1 implies

π′1(q
1
ε(r

∗
ε), q

2
ε(r

∗
ε)) = π′1(q

1
ε(r

∗
ε), q̂

2
ε) = 0. Since π′1(q̂

1
ε , q̂

2
ε) = 0 and π1(q1, q2) is concave in q1 for any
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q2, we have q1ε(r
∗
ε) = q̂1ε and hence Qε(r

∗
ε) = Q̂ε.

Lemma A3 Let ψε(r) := ∂Π1
ε(r)/∂r. Denote by qε(0) the Cournot output of each firm when there

is licensing with zero royalty. For all ε ∈ S:

(i) ψε(0) > 0.

(ii) If cε(q) is additive, then ψε(r) > 0 for all r ∈ [0, rε).

(iii) If c′ε(q) is interval-wise decreasing at qε(0), then ψε(r) > 0 for all r ∈ [0, rε).

(iv) ψε(rε) ≤ 0 if cε(q) is superadditive with strict inequality if and only if c′ε(q
m
ε ) > c′ε(0).

Proof (i) Differentiating (4) with respect to r, we have (suppressing the subscript ε in quantities
and cost functions),

ψε(r) = [p′(Q(r))Q(r) + p(Q(r))]∂Q(r)/∂r −
2∑

i=1

c′(qi(r))∂qi(r)/∂r

As Q(r) =
∑2

i=1 q
i(r), we have ∂Q(r)/∂r =

∑2
i=1 ∂q

i(r)/∂r. Using this above

ψε(r) = [p′(Q(r))Q(r) + p(Q(r))− c′(Q(r))]∂Q(r)/∂r +
2∑

i=1

[c′(Q(r))− c′(qi(r))]∂qi(r)/∂r (9)

When there is licensing with no royalty (r = 0), firms 1, 2 have the same Cournot output q(0) =
Q(0)/2. Evaluating (9) at r = 0, we have ψε(0) = [p′(Q(0))Q(0)+p(Q(0))−c′(q(0))][∂Q(r)/∂r|r=0].
AsQ(r) is decreasing in r for r ∈ [0, rε) (Lemma 2(ii)), we have sign[ψε(0)] = −sign[p′(Q(0))Q(0)+
p(Q(0))− c′(q(0))].

The first order condition of firm 1 in the Cournot duopoly has p′(Q(r))q1(r) + p(Q(r)) −
c′(q1(r)) = 0, so that for r = 0, we have p′(Q(0))q(0)+p(Q(0))−c′(q(0)) = 0. Hence sign[ψε(0)] =
− sign [p′(Q(0))q(0)] > 0 (since p′ < 0).

(ii) Let φ(q) = p(q)q − c(q) be the profit function of a monopolist. From (9), we have

ψε(r) = φ′(Q(r))∂Q(r)/∂r +
2∑

i=1

[c′(Q(r))− c′(qi(r))]∂qi(r)/∂r (10)

As Q(r) > qmε for r ∈ [0, r(ε)), we have φ′(Q(r)) < 0. As Q(r) is decreasing in r, the first term of
(10) is positive. If c(q) is additive, then c′(q) = c′(0) for all q > 0, so the second term of (10) is
zero, proving that ψε(r) > 0.

(iii) Suppose c′ε(q) is interval-wise decreasing at q(0). Since q2(r) ≤ q(0) ≤ q1(r) for any r ∈
[0, r(ε)) and ∂q2(r)/∂r < 0 < ∂q1(r)/∂r, the second term of (10) is bounded below by [c′(Q(r))−
c′(q(0))]∂Q(r)/∂r. By Lemma 2(ii), we have Q(r) > Q(rε) = qmε and q(0) = q1(0) < q1(rε) =
qmε . Hence Q(r) > q(0). Interval-wise decreasing property then implies c′(Q(r)) < c′(q(0)). As
∂Q(r)/∂r < 0, the second term of (10) is bounded below by zero. Since the first term is positive,
we conclude that ψε(r) > 0.

(iv) Evaluating (10) at r = rε (taking the derivative ∂Π1
ε(r)/∂r from the left) and noting that

Q(rε) = q1(rε) = qmε and q2(rε) = 0, we have

ψε(rε) = φ′(qmε )[∂Q(r)/∂r|r=rε ] + [c′(qmε )− c′(0)][∂q2(r)/∂r|r=rε ].

The first term above is zero. Since q2(r) is decreasing in r, we have sign[ψε(rε)] = − sign [c′(qmε )−
c′(0)]. Then the result follows by Lemma 1.
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Proof of Proposition 1 Lemma A3(i) implies that Π1
ε(r) is increasing at r = 0, which proves

the result.

Proof of Lemma 3 (i) For brevity, we drop the subscript ε from all expressions except cε. From
(4) and by Lemma 2(iii), firm 1’s payoff under the policy (r∗, α(r∗)) is Π1(r∗) = p(Q̂)Q̂− cε(q̂

1)−
cε(q̂

2)− [p(Q̂)q̂2 − c0(q̂
2)] = π̂1 + [c0(q̂

2)− cε(q̂
2)] > π̂1.

(ii) The first order condition of firm 2 under no licensing implies p′(Q̂)q̂2 + p(Q̂)− c′0(q̂
2) = 0.

Since q2(r∗) = q̂2, Q(r∗) = Q̂, when there is licensing with r = r∗, the first order condition of firm
2 implies p′(Q̂)q̂2+p(Q̂)−c′ε(q̂

2)−r∗ = 0. From these two equations, we have r∗ = c′0(q̂
2)−c′ε(q̂

2) =
F ′(q̂2). Since π2(r∗) − π̂2 = c0(q̂

2) − cε(q̂
2) − r∗q̂2 = F (q̂2) − r∗q̂2, using (6) and the value of r∗

we have π2(r∗)− π̂2 = F (q̂2)[1−H(q̂2)]. Hence, if H(q̂2) ≤ 1, then we have π2(r∗) ≥ π̂2 = π2(r̂)
implying that r∗ ≤ r̂. The last part of (ii) follows from part (i).

Proof of Proposition 3 As H(q̂2ε) ≤ 1, we know from Lemma 3 that licensing occurs. As no
r > r̂ε is acceptable to firm 2, consider licensing policies (r, αε(r)) where r ∈ [0, r̂ε].

(I) If cε(q) is additive, then by Lemma A3 it follows that Π1
ε(r) is increasing for r ∈ [0, r̂ε],

implying that the unique optimal licensing policy is to set r = r̂ε. The corresponding upfront fee
is α(r̂ε) = π2ε(r̂ε)− π̂2ε = π̂2ε − π̂2ε = 0.

(II) To prove (II), note that π2ε(r) is decreasing for r ∈ [0, rε] and π
2
ε(r̂ε) = π̂2ε . If ε = εD, then

π̂2ε = π2ε(rεD) = 0 (since ε = εD corresponds to a drastic technology). As π2ε(r̂ε) = π̂2ε , we have
r̂εD = rεD .

Consider the function ψε(r) = ∂Π1
ε(r)/∂r. As r̂εD = rεD , by the continuity of ψε(r) with

respect to ε we have
lim
ε↑εD

ψε(r̂ε) = ψεD(r̂εD) = ψεD(rεD) (11)

As Lemma A3 holds for all ε ∈ [0, ε], in particular it holds for ε = εD. Under the conditions on
cεD(q), we have ψεD(rεD) < 0 and by (11), so is limε↑εD ψε(r̂ε). Consequently for all values of ε
that are sufficiently close to εD, we have ψε(r̂ε) < 0, i.e., ∃ 0 < ε̂ < εD such that for all ε ∈ (ε̂, εD),
we have ψε(r̂ε) < 0, implying that Π1

ε(r) is decreasing at r = r̂ε. Hence it is optimal for firm 1 to
choose r ∈ (0, r̂ε). In that case, π2ε(r) > π̂2ε and the upfront fee is π2ε(r)− π̂2ε > 0.

Proof of Proposition 4 As H(q̂2ε) ≤ 1, we know from Lemma 3 that licensing occurs. As no
r > r̂ε is acceptable to firm 2, consider licensing policies (r, αε(r)) where r ∈ [0, r̂ε]. If c

′
ε(q) is

interval-wise decreasing at q = qε(0), then by Lemma A3 it follows that Π1
ε(r) is increasing for

r ∈ [0, r̂ε], implying that the unique optimal licensing policy is to set r = r̂ε. The corresponding
upfront fee is α(r̂ε) = π2ε(r̂ε)− π̂2ε = π̂2ε − π̂2ε = 0.

Acknowledgements

For helpful comments, we are grateful to two anonymous reviewers and Tsogbadral Galaabaatar.

References

1 Aczél, J. (1966). Lectures on Functional Equations and their Applications, Academic Press,
New York.

2 Arrow, K.J. (1962). Economic welfare and the allocation of resources for invention. In: R.R.
Nelson (Ed.), The Rate and Direction of Inventive Activity: Economic and Social Factors,
Princeton Univ. Press, pp. 609-625.

15



3 Avagyan V., Esteban-Bravo M., Vidal-Sanz J.M. (2014). Licensing radical product innovations
to speed up the diffusion. European Journal of Operational Research, 239, 542-555.

4 Beckenbach E.F. (1964). Superadditive inequalities. Pacific Journal of Mathematics, 14, 421-
438.

5 Bourin J-C., Hiai F. (2015). Anti-norms on finite von Neumann algebras. Publications of the
Research Institute for Mathematical Sciences, 51, 207-235.

6 Bruckner A.M. (1962). Tests for the superadditivity of functions. Proceedings of the American
Mathematical Society, 13, 126-130.

7 Bruckner A.M. (1964). Some relations between locally superadditive functions and convex
functions. Proceedings of the American Mathematical Society, 15, 61-65.

8 Choi, J.P. (2001). Technology transfer with moral hazard. International Journal of Industrial
Organization, 19, 249-266.

9 Dastidar K.G. (1995). On the existence of pure strategy Bertrand equilibrium. Economic
Theory, 5, 19-32.

10 Dastidar K.G. (2000). Is a unique Cournot equilibrium locally stable? Games and Economic
Behavior, 32, 106-218.

11 Dixit, A. (1986). Comparative statics for oligopoly. International Economic Review, 27, 107-
122.
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