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Abstract

The synthetic control (SC) method has been recently proposed as an alternative to estimate treatment
effects in comparative case studies. The SC relies on the assumption that there is a weighted average of the
control units that reconstructs the potential outcome of the treated unit in the absence of treatment. If these
weights were known, then constructing the counterfactual for the treated unit using a weighted average of the
control units would provide an unbiased estimator for the treatment effect, even if selection into treatment
is correlated with the unobserved heterogeneity. In this paper, we revisit the SC method in a linear factor
model where the SC weights are considered nuisance parameters that are estimated to construct the SC
estimator. We show that, when the number of control units is fixed, the estimated SC weights will generally
not converge to the weights that reconstruct the factor loadings of the treated unit, even when the number of
pre-intervention periods goes to infinity. As a consequence, the SC estimator will be asymptotically biased
if treatment assignment is correlated with the unobserved heterogeneity. The asymptotic bias only vanishes
when the variance of the idiosyncratic error goes to zero. We suggest a slight modification in the SC method
that guarantees that the SC estimator is asymptotically unbiased and has a lower asymptotic variance than
the difference-in-differences (DID) estimator when the DID identification assumption is satisfied. We also
propose an alternative way to estimate the SC weights that provides an asymptotically unbiased estimator
under additional assumptions on the error structure. Finally, we consider the implications of our findings to
the permutation test suggested in Abadie et al. (2010).
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1 Introduction

In a series of influential papers, Abadie and Gardeazabal (2003), Abadie et al. (2010), and Abadie et al. (2015)

proposed the Synthetic Control (SC) method as an alternative to estimate treatment effects in comparative

case studies when there is only one treated unit. The main idea of the SC method is to use the pre-treatment

periods to estimate weights such that a weighted average of the control units reconstructs the treated unit

in the absence of treatment. Then they use these weights to compute the counterfactual of the treated unit

in case it were not treated. Since then, this method has been used in a wide range of applications, including

the evaluation of the impact of terrorism, civil wars and political risk, natural resources and disasters,

international finance, education and research policy, health policy, economic and trade liberalization, political

reforms, labor, taxation, crime, social connections, and local development.1 According to Athey and Imbens

(2016), “the simplicity of the idea, and the obvious improvement over the standard methods, have made this

a widely used method in the short period of time since its inception”.

In this paper, we revisit the SC method in a linear factor model where the SC weights are considered

as nuisance parameters that are estimated to construct the SC estimator. We consider the asymptotic

distribution of the SC estimator when the number of pre-intervention periods goes to infinity. With the

number of control units fixed, we show that the SC weights will generally not converge in probability to

weights that reconstruct the factor loadings of the treated unit even if such weights exist. This implies that

the SC estimator will be asymptotically biased if treatment assignment is correlated with the unobserved

heterogeneity.2 The relevance of such bias depends on the variance of the idiosyncratic error and only

vanishes when this variance goes to zero.3 We also show that the specification that uses only the average of

pre-intervention outcomes as economic predictor can be particularly problematic. These results corroborate

1SC has been used in the evaluation of the impact of terrorism, civil wars and political risk (Abadie and Gardeazabal
(2003), Bove et al. (2014), Li (2012), Montalvo (2011), Yu and Wang (2013)), natural resources and disasters (Barone and
Mocetti (2014), Cavallo et al. (2013), Coffman and Noy (2011), DuPont and Noy (2012), Mideksa (2013), Sills et al. (2015),
Smith (2015)), international finance (Jinjarak et al. (2013), Sanso-Navarro (2011)), education and research policy (Belot and
Vandenberghe (2014), Chan et al. (2014), Hinrichs (2012)), health policy (Bauhoff (2014), Kreif et al. (2015)), economic and
trade liberalization (Billmeier and Nannicini (2013), Gathani et al. (n.d.), Hosny (2012)), political reforms (Billmeier and
Nannicini (2009), Carrasco et al. (2014), Dhungana (2011) Ribeiro et al. (2013)), labor (Bohn et al. (2014), Calderon (2014)),
taxation (Kleven et al. (2013), de Souza (2014)), crime (Pinotti (2012b), Pinotti (2012a), Saunders et al. (2014)), social
connections (Acemoglu et al. (2013)), and local development (Ando (2015), Gobillon and Magnac (2016), Kirkpatrick and
Bennear (2014), Liu (2015), Severnini (2014)).

2We define the asymptotic bias as the difference between the expected value of the asymptotic distribution and the parameter
of interest. We also show that, in the context of the SC estimator, the limit of the expected value converges to the expected
value of the asymptotic distribution. Wong (2015) and Powell (2016) also consider the SC weights as nuisance parameters that
must be estimated to construct the SC estimator. They argue that the SC weights would converge in probability to weights that
satisfy the SC assumption. However, it is possible to show that, in their setting, the SC estimator will also be asymptotically
biased under the same conditions we find in our paper. Details in Appendix A.4.

3In their proof that the SC estimator is asymptotically unbiased, Abadie et al. (2010) make an assumption that can only be
satisfied if variance of the transitory shock is zero. Therefore, their result is consistent with our findings.
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the findings in Ferman et al. (2016) that the SC estimator can misallocate a significant proportion of weights

in Monte Carlo simulations, even when the number of pre-treatment periods is large.

Gobillon and Magnac (2013) show that the condition required in Abadie et al. (2010) for asymptotic

unbiasedness can be satisfied if the number of control units goes to infinity and the matching variables (factor

loadings and exogenous covariates) of the treated units belong to the support of the matching variables of

control units. In this case, the SC estimator would be equivalent to the interactive effect methods they

recommend. Xu (2016) proposes an alternative to the SC method in which in a first step he estimates the

factor loadings, and then in a second step he constructs the SC unit to match the estimated factor loadings

of the treated unit. This method would also require a large number of both control units and pre-treatment

units, so that the factor loadings estimators are consistent. Differently from Gobillon and Magnac (2013) and

Xu (2016), we consider the case with a finite number of control units and let the number of pre-intervention

periods go to infinity, which is the same asymptotics considered in Abadie et al. (2010). We show that, in

this case, the conditions under which the SC estimator is asymptotically unbiased are unlikely to be satisfied.

We propose two alternatives to the original SC method. First, we recommend a slight modification in the

SC method where we demean the data using the pre-intervention period, and then construct the SC estimator

using the demeaned data. We show that, if selection into treatment is only correlated with individual

fixed effects (which is essentially the identification assumption of the DID model), then this demeaned

SC estimator will be asymptotically unbiased. Also, in this case we can guarantee that the asymptotic

variance of this demeaned SC estimator will be lower than the asymptotic variance of the DID estimator. If

selection into treatment is correlated with time-varying common factors, then both the demeaned SC and

the DID estimators would be asymptotically biased. We show that the asymptotic bias of the demeaned SC

estimator will be lower than the bias of DID for a particular class of linear factor models. However, we show

a specific example in which the asymptotic bias of the SC can be larger. This might happen when selection

into treatment depends on common factors with low variance. We also provide an instrumental variables

estimator for the SC weights that would be consistent under strong assumptions on the error structure,

which would be valid if, for example, the idiosyncratic error is serially uncorrelated and all the common

factors are serially correlated.

Finally, we also consider the implication of our findings to the permutation test proposed in Abadie et

al. (2010). We evaluate whether the test statistic proposed in Abadie et al. (2010) has, asymptotically, the

same distribution for all permutations. If this is the case, then, based on the results from Canay et al.

(2014) on randomization tests under an approximate symmetry assumption, this permutation test would
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be asymptotically valid.4 We show that this will be the case if the SC weights converge in probability to

weights that reconstruct the factor loadings of the treated unit in all permutations. If the SC weights do not

converge in probability to such weights, then the distribution of the test statistic might not be asymptotically

symmetric for at least two reasons. First, if the SC estimator is asymptotically biased, then the test statistic

might have a higher expected value for the treated unit. Also, even if the SC estimator is unbiased, then

the variance of the test statistic might depend on characteristics of treated unit if the common factors are

serially correlated.5 We show that, in this case, this distortion would only be (asymptotically) relevant in

very particular cases, as it depends at the same time on both the SC weights being different from the weights

that reconstruct the factor loadings of the treated unit and on the serial correlation of the common factors

being high relative to the variance of the transitory shocks. However, when the variance of the transitory

shocks is small, then the SC weights would be close to the weights that reconstruct the factor loadings of

the treated unit. Finally, we show in Monte Carlo simulations that distortions in the permutation test can

be important if the number of pre-treatment periods is small. This happens because, in this case, the model

might overfit the pre-treatment mean squared prediction error (MSPE), so it might not provide a valid

correction for the post-treatment mean squared prediction error.

The remainder of this paper proceeds as follows. We start Section 2 with a brief review of the SC

estimator. Then we show that the SC estimator that uses all pre-treatment outcome lags as economic

predictors is, in general, asymptotically biased. We also consider in Section 2 the asymptotic properties of

alternative specifications of the SC estimator. In Section 3 we propose two alternatives to the original SC

estimator. In Section 4 we consider the implications of our results for to the permutation test proposed in

Abadie et al. (2010). In Section 5, we consider the asymptotic properties and show results from Monte Carlo

simulations for a particular class of linear factor models. We conclude in Section 6.

4There are two recent papers that analyze in detail the permutation test proposed in Abadie et al. (2010). Firpo and
Possebom (2016) formalize the permutation test for the case where treatment is randomly assigned. In this case, the inference
method suggested in Abadie et al. (2010) would provide valid inference for unconditional tests, provided that one is careful to
exclude permutations in which the SC would be discarded due to poor pre-intervention fit if this were the treated unit. Our
paper considers the asymptotic properties of the permutation test when we relax the hypothesis of random assignment. Also,
even under random assignment, we consider hypothesis testing conditional on the data on hand. See Ferman and Pinto (2016)
for details on why conditional tests should be preferable when there are few treated groups. In another recent paper, Ando and
Sävje (2013) argue that the permutation test proposed by Abadie et al. (2010) is generally not valid and derive an alternative
inference method. Differently from Ando and Sävje (2013), we consider whether Abadie et al. (2010) permutation test can be
valid asymptotically when the number of pre-intervention is large.

5The SC estimator is asymptotically unbiased if treatment assignment is uncorrelated with the unobserved heterogeneity,
even if the SC weights do not converge to weights that reconstruct the factor loadings of the treated unit.
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2 Revisiting the Synthetic Control Model

2.1 The Synthetic Control Model

Suppose we have a balanced panel of J + 1 units indexed by i observed on t = 1, ..., T periods. We want to

estimate the treatment effect of a policy change that affected only unit j = 1 from period T0 + 1 ≤ T to T .

The potential outcomes are given by:





yCit = δt + λtµi + ǫit

yTit = αit + yCit

(1)

where δt is an unknown common factor with constant factor loadings across units, λt is a (1× F ) vector of

common factors, µi is a (F × 1) vector of unknown factor loadings, and the error terms ǫit are unobserved

transitory shocks. We only observe yit = dity
T
it + (1 − dit)y

C
it , where dit = 1 if unit i is treated at time

t. We assume ǫit independent across units and in time. Note that the unobserved error uit = λtµi + ǫit

might be correlated across unit and in time due to the presence of λtµi. As in Abadie et al. (2010), Gobillon

and Magnac (2013) and Powell (2016), we allow for correlation between λtµi and the treatment assignment.

Since we hold the number of units (J + 1) fixed and look at asymptotics when the number of pre-treatment

periods goes to infinity, we treat the vector of unknown factor loads (µi) as fixed and the common factors

(λt) as random variables. In order to simplify the exposition of our main results, we consider the model

without observed covariates Zi until Section 2.3.2.

The main assumption of the Synthetic Control method (SC) is that there is a stable linear combination

of the control units that absorbs all time correlated shocks λtµi.

Assumption 1 (existence of weights):

∃ w∗ = {w∗
1
j}j 6=1 | µ1 =

∑

j 6=1

w∗
1
jµj ,

∑

j 6=1

w∗
1
j = 1, and w∗

1
j ≥ 0

Note that we consider the existence of weights that reconstruct the unobserved factors loadings µ1, following

the structure of Ando and Sävje (2013) and Powell (2016).6 This assumption is slightly different from the

assumption in Abadie et al. (2010). They define the SC weights so that y1t =
∑

j 6=1 w
∗
1
jyjt for all t ≤ T0.

Note, however, that this condition cannot be satisfied in general since ǫit are independent variables across i.

6Powell (2016) treats µi as random variables, so he considers that assumption 1 is valid in expectation. Wong (2015) considers
weights that reconstruct the expected value of the potential outcome if the observation is not treated, without imposing a linear
factor model structure. As we show in Appendix A.4, our main results remain valid in the setting considered in Wong (2015).
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We treat the SC weights w∗ as nuisance parameters that we need to estimate in order to construct our SC

estimator. Note that there is no guarantee that there is a unique set of weights that satisfies assumption 1,

so we define Φ1 = (w = {wj
1}j 6=1 | µ1 =

∑
j 6=1 w

j
1µj ,

∑
j 6=1 w

j
1 = 1, and wj

1 ≥ 0) as the set of weights that

satisfy this condition.

The SC method consists of estimating the SC weights ŵ1 = {ŵj
1}j 6=1 using information on the pre-

treatment period and then constructing the SC estimator α̂1t = y1t −
∑

j 6=1 ŵ
j
1yjt for t > T0. Abadie et

al. (2010) suggest a minimization problem to estimate these weights using the pre-intervention data. They

define a set of K economic predictors where X1 is a (K×1) vector containing the economic predictors for the

treated unit and X0 is a (K × J) matrix of economic predictors for the control units.7 The SC weights are

estimated by minimizing ||X1−X0w||V subject to
∑J+1

i=2 wj
1 = 1 and wj

1 ≥ 0, where V is a (K×K) positive

semidefinite matrix. They discuss different possibilities for choosing the matrix V , including an iterative

process where V is chosen such that the solution to the ||X1 −X0w||V optimization problem minimizes the

pre-intervention prediction error. In other words, let YP
1 be a (T0 × 1) vector of pre-intervention outcomes

for the treated unit, while YP
0 be a (T0×J) matrix of pre-intervention outcomes for the control units. Then

the SC weights would be chosen as ŵ(V ∗) such that V ∗ minimizes ||YP
1 −YP

0 ŵ(V )||.

As argued in Ferman et al. (2016), one limitation of the SC estimator is that the theory behind the SC

method does not provide a clear guidance on how one should choose the economic predictors in matrices X1

and X0. This reflects in a wide range of different specification choices in SC applications. We consider here

3 common specifications: (1) the use of all pre-intervention outcome values, (2) the use of the average of the

pre-intervention outcomes, and (3) the use of other time invariant covariates in addition to the average of

the pre-intervention outcomes.8

2.2 The asymptotic bias of the SC estimator

We focus first on the case where one includes all pre-intervention outcome values as economic predictors.

In this case, the matrix V that minimizes the second step of the nested optimization problem would be the

identity matrix (see Kaul et al. (2015)), so the optimization problem suggested by Abadie et al. (2010) to

7Economic predictors can be, for example, linear combinations of the pre-intervention values of the outcome variable or
other covariates not affected by the treatment.

8Kaul et al. (2015) show that the weights allocated to time-invariant covariates would be zero if one uses all pre-treatment
intervention outcome values as economic predictors. Therefore, we do not consider this case.
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estimate the weights simplifies to an M-estimator given by:

{ŵj
1}j 6=1 = argmin

w∈W

1

T0

T0∑

t=1


y1t −

∑

j 6=1

wj
1yjt



2

= argmin
w∈W

1

T0

T0∑

t=1


ǫ1t −

∑

j 6=1

wj
1ǫjt + λt


µ1 −

∑

j 6=1

wj
1µj





2

(2)

where W = {{wj
1}j 6=1 ∈ R

J |wj
1 ≥ 0 and

∑
j 6=1 w

j
1 = 1}.

We impose conditions such that this objective function converges uniformly in probability to its popula-

tion average.

Assumption 2 (stationary process): (ǫjt, λt)
′ is weakly stationary and second moment ergodic.

Under assumption 2, we have that:

1

T0

T0∑

t=1


ǫ1t −

∑

j 6=1

wj
1ǫjt + λt


µ1 −

∑

j 6=1

wj
1µj





2

p→ E


ǫ1t −

∑

j 6=1

wj
1ǫjt + λt


µ1 −

∑

j 6=1

wj
1µj





2

(3)

Let w̄ = {w̄j
1}j 6=1 be the weights that minimize this expectation and treat ŵ = {ŵj

1}j 6=1 as an M-

estimator. We show now that w̄ /∈ Φ1, which implies that the SC weights will converge in probability to

weights that do not satisfy the condition stated in assumption 1, even under the assumption of existence of

such weights. We consider a simple case where var(ǫit) = σ2
ǫ for all i and ǫit is uncorrelated with λt. Let

E[λ′
tλt] = Ω be the matrix of second moments of λt. Therefore, the objective function simplifies to:

Γ({wj
1}j 6=1) = σ2

ǫ


1 +

∑

j 6=1

(wj
1)

2


+


µ1 −

∑

j 6=1

wj
1µj




′

Ω


µ1 −

∑

j 6=1

wj
1µj


 (4)

Note that the objective function has two parts. The first one reflects that different choices of weights will

generate different weighted averages of the idiosyncratic shocks ǫit. In this simpler case, this part would be

minimized when we set all weights equal to 1
J
. The second part reflects the presence of common factors λt

that would remain after we choose the weights to construct the SC unit. If assumption 1 is satisfied, then

we can set this part equal to zero by choosing w∗ ∈ Φ1.

Consider that we start at {w∗
1
j}j 6=1 ∈ Φ1 and move in the direction of wj

1 = 1
J
for all j = 2, .., J +1, with

wj
1 = w∗

1
j +∆( 1

J
−w∗

1
j). Note that, for all ∆ ∈ [0, 1], these weights will continue to satisfy the constraints of

the minimization problem. If we consider the derivative of function 4 with respect to ∆ at ∆ = 0, we have
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that:

Γ′({w∗
1
j}j 6=1) = 2σ2

ǫ


 1

J
−

J+1∑

j=2

(w∗
1
j)2


 < 0 unless w∗

1
j =

1

J
(5)

Therefore, w∗ ∈ Φ1 cannot be, in general, a solution of the objective function of the M-estimator. This

implies that, when T0 → ∞, the SC weights will converge in probability to weights w̄ that does not satisfy

assumption 1, unless it turns out that w∗ also minimizes the variance of the idiosyncratic errors. The SC

estimator will be given by:

α̂1t = y1t −
∑

j 6=1

ŵj
1yit

d→ α1t +


ǫ1t −

∑

j 6=1

w̄j
1ǫjt


+ λt


µ1 −

∑

j 6=1

w̄j
1µj


 (6)

The SC estimator will only be asymptotically unbiased if we have that E
[
ǫ1t −

∑
j 6=1 w̄

j
1ǫjt|d1t

]
= 0

and E
[
λt

(
µ1 −

∑
j 6=1 w̄

j
1µj

)
|d1t

]
= 0.9 Since

(
µ1 −

∑
j 6=1 w̄

j
1µj

)
6= 0, this implies that we cannot have

selection on unobservables, even if selection is based on the common factors. Abadie et al. (2010) argue

that, in contrast to the usual DID model, the SC model would allow the effects of confounding unobserved

characteristics to vary with time. However, the SC estimator would not be asymptotically unbiased under

selection on unobservable heterogeneity because the SC weights will not satisfy the condition required by the

method (even when T0 → ∞ and under all assumption of the SC model). The asymptotic bias would only

converge to zero when we also have that σ2
ǫ → 0. In their proof, Abadie et al. (2010) assume the existence of

weights {w∗
2 , ..., w

∗
J+1} that satisfy the condition y1t =

∑J+1
i=2 w∗

i yit for all t ≤ T0. However, if T0 → ∞, then

the probability that such weights exist converges in probability to zero, unless the variance of ǫit is equal to

zero, in which case we would also find unbiasedness in our setting.10

In order to provide a better intuition for this result, it is worth considering a simple example. Suppose

there are only 2 factors, so λt = (λ1
t , λ

2
t ) and µi = (µ1

i , µ
2
i ) ∈ {(1, 0), (0, 1)}. Intuitively, this means that we

have two groups, one that follows parallel trend given by λ1
t and another one that follows parallel trend given

by λ2
t .

11 Assume that µ1 = (1, 0), so the treated unit belongs to the first group, and that half of the units

in the donor pool belongs to group 1 while the other half belongs to group 2. If we knew µi, then we could

9We consider the definition of asymptotic unbiasedness as the expected value of the asymptotic distribution of α̂1t − α1t

equal to zero. An alternative definition is that E[α̂1t − α1t] → 0. We show in the Appendix that these two definitions are
equivalent in our setting under standard assumptions.

10Gobillon and Magnac (2013) show that this condition can be satisfied if J → ∞ and the matching variables of the treated
units belong to the support of the matching variables of control units. In this case, the SC estimator would be asymptotically
unbiased.

11This is the data generating process considered in Ferman et al. (2016).
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construct our SC estimator by setting equal weights to all units in the donor pool that belong to group 1

and weight equal to zero for all other units. In this case, we would have α̂∗
1t−α1t

d→ ǫ1t−
∑

j 6=1|µj=(1,0)
2
J
ǫjt

and the SC estimator would be asymptotically unbiased even if the treatment is correlated with the common

shock that affects unit 1, λ1
t . Intuitively, the SC estimator would only compare the treated unit to units

in the donor pool that experienced the same common shock but were not treated. Since we assume that

treatment is randomly assigned conditional on (λ1
t , λ

2
t ), the estimator would be unbiased. The problem,

however, is that we need to estimate the SC weights. Moreover, the SC will not assign the correct weights

even when T0 → ∞, because there will always be a first-order gain in the optimization problem of moving

away from weights that set wj
1 = 0 for j such that µj = (0, 1). Let p be the proportion of weights allocated to

the correct units. In this case, we have that α̂1t−α1t
d→ ǫ1t−

∑
j 6=1 w̄

j
1ǫjt+(1− p)λ1

t − (1− p)λ2
t . Therefore,

the SC estimator would be asymptotically biased if treatment assignment is correlated with the common

factors (λ1
t , λ

2
t ).

2.3 Alternative SC specifications

2.3.1 Average of pre-intervention outcome as predictor

We consider now another very common specification in SC applications, which is to use the average pre-

treatment outcome as the economic predictor. Note that if one uses only the average pre-treatment outcome

as the economic predictor then the choice of matrix V would be irrelevant. In this case, the minimization

problem would be given by:

{ŵj
1}j 6=1 = argminw∈W


 1

T0

T0∑

t=1


y1t −

∑

j 6=1

wj
1yjt





2

= argminw∈W


 1

T0

T0∑

t=1


ǫ1t −

∑

j 6=1

wj
1ǫjt + λt


µ1 −

∑

j 6=1

wj
1µj







2

(7)

where W = {{wj
1}j 6=1 ∈ R

J |wj
1 ≥ 0 and

∑
j 6=1 w

j
1 = 1}.

Therefore, assuming weakly dependence of λt, the objective function converges in probability to:

Γ({wj
1}j 6=1) =


E [λt]


µ1 −

∑

j 6=1

wj
1µj





2

(8)

Assuming that there is a time-invariant common factor (that is, λ1
t = 1 for all t) and that λt is weakly
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stationary, we have that, without loss of generality, E[λk
t ] = 0 for k > 1. In this case, the objective function

collapses to:

Γ({wj
1}j 6=1) =




µ1

1 −
∑

j 6=1

wj
1µ

1
j





2

(9)

Therefore, while we assume that there exists at least one set of weights that reproduces all factor loadings

(assumption 1), the objective function will only look for weights that approximate the first factor loading.

This is problematic because it might be that assumption 1 is satisfied, but there are weights {w̃j
1}j 6=1 /∈ Φ1

that satisfy µ1
1 =

∑
j 6=1 w̃

j
1µ

1
j . In this case, there is no guarantee that the SC control method will choose

weights that are close to the correct ones. This result is consistent with the Monte Carlo simulations in

Ferman et al. (2016) who show that this specification performs particularly bad in allocating the weights

correctly.

2.3.2 Adding other covariates as predictors

Most applications that use the average pre-intervention outcome value as economic predictor also consider

other time invariant covariates as economic predictors. Let Zi be a (R × 1) vector of observed covariates

(not affected by the intervention). Model 1 changes to:





yCit = δt + θtZi + λtµi + ǫit

yTit = αit + yCit

(10)

We also modify assumption 1 so that the weights reproduce both µ1 and Z1.

Assumption 1′ (existence of weights):

∃ {w∗
1
j}j 6=1 | µ1 =

∑

j 6=1

w∗
1
jµj , Z1 =

∑

j 6=1

w∗
1
jZj ,

∑

j 6=1

w∗
1
j = 1, and w∗

1
j ≥ 0

Let X1 be an (R + 1 × 1) vector that contains the average pre-intervention outcome and all covariates

for unit 1, while X0 is a (R+ 1× J) matrix that contains the same information for the control units. For a

given V , the first step of the nested optimization problem suggested in Abadie et al. (2010) would be given

10



by:

ŵ(V ) ∈ argmin
w∈W ||X1 −X0w||V (11)

whereW = {{wj
1}j 6=1 ∈ R

J |wj
1 ≥ 0 and

∑
j 6=1 w

j
1 = 1}. Note that the objective function of this minimization

problem converges to ||X̄1 − X̄0w||V , where:

X̄1 − X̄0w =




E[θt]
(
Z1 −

∑
j 6=1 w

j
1Zj

)
+
(
µ1
1 −

∑
j 6=1 w

j
1µ

1
j

)

(
Z1
1 −∑

j 6=1 w
j
1Z

1
j

)

...
(
ZR
1 −

∑
j 6=1 w

j
1Z

R
j

)




(12)

Similarly to the case with only the average pre-intervention outcome value as economic predictor, it

might be that assumption 1′ is satisfied, but there are weights {w̃j
1}j 6=1 that satisfy µ1

1 =
∑

j 6=1 w̃
j
1µ

1
j and

Z1 =
∑

j 6=1 w̃
j
1Zj , although µk

1 6=
∑

j 6=1 w̃
j
1µ

k
j for some k > 1. Therefore, there is no guarantee that an

estimator based on this minimization problem would converge to weights that satisfy assumption 1′ for any

given matrix V .

The second step in the nested optimization problem is to choose V such that ŵ(V ) minimizes the pre-

intervention prediction error. Note that this problem is essentially given by:

ŵ = argmin
w∈W̃


 1

T0

T0∑

t=1


y1t −

∑

j 6=1

wj
1yjt





2

(13)

where W̃ ⊆ W is the set of w such that w is the solution to problem 11 for some positive semidefinite matrix

V . Similarly to the SC estimator that includes all pre-treatment outcomes, there is no guarantee that this

minimization problem will choose weights that satisfy assumption 1′ even when T0 → ∞. More specifically,

if the variance of ǫit is large, then the SC estimator would tend to choose weights that are uniform across

the control units in detriment of weights that satisfy assumption 1′. Moreover, since we might have multiple

solutions to problem 11, there might be no V such that ŵ(V ) converges in probability to weights in Φ1.

Therefore, it is not possible to guarantee that this SC estimator would be asymptotically unbiased.

11



3 Alternatives

3.1 Demeaned SC Estimator

In contrast to the SC estimator, the DID estimator for the treatment effect in a given post-intervention

period t > T0 would be given by:

α̂DID
1t = y1t −

1

J

∑

j 6=1

yjt −
1

T0

T0∑

τ=1


y1τ − 1

J

∑

j 6=1

yjτ




= ǫ1t −
1

J

∑

j 6=1

ǫjt + λt


µ1 −

1

J

∑

j 6=1

µj


− 1

T0

T0∑

τ=1


ǫ1τ − 1

J

∑

j 6=1

ǫjτ + λτ


µ1 −

1

J

∑

j 6=1

µj






d→ ǫ1t −
1

J

∑

j 6=1

ǫjt + (λt − E [λτ ])


µ1 −

1

J

∑

j 6=1

µj


 (14)

where we assumed that the pre-intervention average for the common factors converges in probability to

their unconditional means. Implicitly we assume that λt is weakly dependent, so even if some pre-treatment

common factors are correlated with the treatment assignment to unit 1 after T0, when T0 → ∞ the pre-

treatment average would converge to its unconditional expectation.

Therefore, the DID estimator would only be asymptotically unbiased if common factors that are not

constant over time are uncorrelated with treatment assignment. In this case, these common factors would

enter the error term and would not cause bias because their expectation conditional on treatment status

would be equal to zero. The DID model allows for selection on common factors that are constant over

time. In this case, the characteristics that are correlated with treatment assignment would be captured by

the unit fixed effects. Therefore, if the DID assumptions are satisfied, then the DID estimator would be

asymptotically unbiased while the SC estimator would be, in general, asymptotically biased.

As an alternative to the standard SC estimator, we suggest a modification in which we calculate the

pre-treatment average for all units and demean the data. If common factors are stationary, this implies a

model with no time-invariant common factor. We show in the Appendix that the only difference relative to

the original model is that the common factors λ̃t and factor loadings µ̃i would not include the time-invariant

common factor. Also, we can assume without loss of generality that E[λ̃t] = 0. In this case, we guarantee

that the SC estimator will be asymptotically unbiased when the DID assumptions are satisfied. Note that

we also make assumption 1 weaker, since there might be weights that reconstruct all common factors λ̃t that
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are not constant over time, but does not match the level of the treated unit.12 We can show that, if the DID

assumption is valid, then both this demeaned SC estimator and the DID estimator will be asymptotically

unbiased, but the variance of the asymptotic distribution of the demeaned SC estimator will always be weakly

lower relative to the DID estimator. Let α̂ SC′

1t be the demeaned SC estimator. Under the DID assumption,

λ̃t and ǫij will be independent of the fact that unit 1 was treated after T0. Therefore, for a given for t > T0,

the variance of the asymptotic distribution of the SC estimator would be given by:

a.var(α̂ SC′

1t − α1t) = E




ǫ̃1t −

∑

j 6=1

w̄j
1ǫ̃jt


+ λ̃t


µ̃1 −

∑

j 6=1

w̄j
1µ̃j





2

(15)

while:

a.var(α̂ DID

1t − α1t) = E




ǫ̃1t −

∑

j 6=1

1

J
ǫ̃jt


+ λ̃t


µ̃1 −

∑

j 6=1

1

J
µ̃j





2

(16)

Since the DID weights belong to W and the demeaned SC weights converge in probability to weights that

minimize the function E
[(

ǫ1t −
∑

j 6=1 w
j
1ǫjt

)
+ λ̃t

(
µ1 −

∑
j 6=1 w

j
1µ̃j

)]2
, it must be that a.var(α̂ SC′

1t −α1t) ≤

a.var(α̂ DID

1t − α1t). Note that this result is valid even if assumption 1 does not hold.

If the correlation comes from common factors that are not constant over time and assumption 1 is

satisfied, then the bias of the SC estimator would usually be lower than the bias of the DID estimator. We

show in Section 5 a particular class of linear factor models in which the asymptotic bias of the demeaned

SC estimator will always be lower. However, we show a very specific example in Appendix A.1 in which the

DID bias can be smaller than the bias of the SC. This might happen when selection into treatment depends

on common factors with low variance.

3.2 IV-Like SC Estimator

We also propose an alternative way of estimating the SC weights that provide consistent estimators if we

impose additional assumptions on the common factors and transitory shocks. Note that the asymptotic

bias of the SC estimator derived in Section 2.2 comes from the first step of the SC method in which one

estimates the SC weights using the pre-treatment information. As noted by Wong (2015), the minimization

problem when one includes all pre-intervention lags is equivalente to a restricted OLS estimator of y1t on

12Note that if assumption 1 is valid for the original model, then it will also be valid for the demeaned model.
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y2,t, ..., yJ+1,t. For weights {w∗
1
j}j 6=1 ∈ Φ1, we can write:

y1t =
J+1∑

j=1

w∗
1
jyjt + ηt, for t ≤ T0

where:

ηt = ǫ1t −
J+1∑

j=1

w∗
1
jǫjt

The key problem is that ηt is correlated with yjt, which implies that this restricted OLS regression

would be biased. Imposing strong assumptions on the structure of the idiosyncratic error and the common

factors, we show that it is possible to consider moment equations that will be equal to zero if, and only if,

{w1
j}j 6=1 ∈ Φ1.

Let yt = (y2,t, ..., yJ+1,t)
′, µ0 be a (F × J) matrix with columns µj , ǫt = (ǫ2,t, ..., ǫJ+1,t), and w =

(w2
1, ..., w

J+1
1 )′. In this case, we can look at:

yt−1(y1t − y′
tw) = (µ′

0λ
′
t−1 + ǫt−1)λt (µ1 − µ0w) + (µ′

0λ
′
t−1 + ǫt−1)(ǫ1t − ǫ′tw)

= µ′
0λ

′
t−1λt (µ1 − µ0w) + ǫt−1λt (µ1 − µ0w) + µ′

0λ
′
t−1(ǫ1t − ǫ′tw) + ǫt−1(ǫ1t − ǫ′tw)

If we assume that ǫit is independent across t and independent of λt, then:

E
[
yt−1(y1t − y′

tw)
]

= µ′
0E

[
λ′
t−1λt

]
(µ1 − µ0w)

Therefore, if the (J ×F ) matrix µ′
0E

[
λ′
t−1λt

]
has full rank, then the moment conditions equal to zero if,

and only if, w ∈ Φ1. One particular case in which this assumption is valid is if λf
t and λf ′

t are uncorrelated

and λf
t is serially correlated for all f = 1, ..., F . Intuitively, under these assumptions, we can use the lagged

outcome values of the control units as instrumental variables for the control units’ outcomes.13 One challenge

to analyze this method is that there might be multiple solutions to the moment condition. Based on the

results in Chernozhukov et al. (2007), it is possible to consistently estimate this set. Therefore, it is possible

to generate an IV-like SC estimator that is asymptotically unbiased. A possible limitation of this method is

13The idea of SC-IV is very similar to the IV estimator used in dynamic panel data. In the dynamic panel models, lags of the
outcome are used to deal with the endogeneity that comes from the fact the idiosyncratic errors are correlated with the lagged
depend variable included in the model as covariates. The number of lags that can be used as instruments depends on the serial
correlation of the error terms.
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that it might rely on a very large number of pre-treatment periods so that weights are close to weights that

satisfy assumption 1. Results from MC simulations available upon request.

4 Permutation Tests

Abadie et al. (2010) argue that large sample inferential techniques are not well suited to comparative case

studies when the number of units in the comparison group is small.14 They propose a permutation test

where they apply the SC method to every potential control in the sample. First, they consider a graphical

analysis where they compare the prediction error of their SC estimator across time with the prediction error

for each of the placebo estimates. Then they consider whether the prediction error when one considers the

actual treated unit is “unusually” large relative to the distribution of prediction errors for the units in the

donor pool.

Note that this procedure does not provide a clear decision rule on whether the null hypothesis should

be rejects. Still, this analysis would implicitly reject the null when the post-intervention mean squared

prediction error (MSPE) for the SC estimate is greater than the post-intervention MSPE for the placebo

estimates. We check whether this approach provides valid inference asymptotically when T0 → ∞ applying

Canay et al. (2014) results for randomization tests under approximate symmetry. The main idea of Canay

et al. (2014) framework is that we can look at test statistics that have asymptotically the same distributions

under the null for all permutations. Therefore, the graphical analysis suggested in Abadie et al. (2010) would

be valid if the distribution of the following test statistic has the same distribution for all permutations:

tpost

i =
1

T − T0

T∑

t=T0+1


yit −

∑

j 6=i

ŵj
i yjt



2

(17)

We start assuming that assumption 1 is valid for all i. In particular, we assume that:

∃ {w∗j
i}j 6=i | µi =

∑

j 6=i

w∗j
iµj ,

∑

j 6=1

w∗
i
j
i = 1, and w∗j

i ≥ 0 ∀i = 1, ..., J + 1 (18)

Ando and Sävje (2013) argue that in most applications it would not be reasonable to assume that this

14Carvalho et al. (2015) and Powell (2016) rely on large sample inferential techniques. Instead of testing the null hypothesis
of no effect for all post-treatment periods, they test whether the average effect across time is equal to zero. If both the number
of pre- and post-intervention periods is large, then they are able to derive the asymptotic distribution of the estimator. This
method would not work if one want to test the null of no effect for all post-treatment periods or if the number of finite
post-intervention periods is finite.

15



assumption is valid for all i. We believe that this condition might be reasonable in some applications. For

example, this condition is satisfied if we have different groups of units where time trends are different across

groups but parallel within groups, as considered in Ferman et al. (2016). We analyze this case in detail in

Section 5. In this case, the main idea of the SC estimator would be to select the control units that follow

the same time trend as the treated unit. We consider below the implications in case assumption 1 is not

valid for all i.

Therefore, if we assume that the estimator of the SC weights ŵi
p→ w∗

i ∈ Φi, then for all i we will have

that:

tpost

i

d→ 1

T − T0

T∑

t=T0+1


ǫit −

∑

j 6=i

w∗j
i ǫjt



2

(19)

where Φi = ({wj
i }j 6=i | µi =

∑
j 6=i w

j
1µj ,

∑
j 6=i w

∗j
i = 1, and w∗j

i ≥ 0).

There are at least three reasons why this test statistic might not be asymptotically symmetric. First,

the idiosyncratic shock might be heteroskedastic. Ferman and Pinto (2016) show that this would usually

be true if we have unit x time aggregate values when there is variation in the number of observations per

unit.15 This would be the case, for example, if one uses the Current Population Survey (CPS). Note that,

in this case, tpost

i would tend to attain higher values when the treated unit is small relative to the units in

the donor pool. Second, even if the idiosyncratic error is homoskedastic, the variance of ǫit −
∑

j 6=i w
∗j
i ǫjt

will depend on the weights {w∗j
i}j 6=i. If the weights for unit i are more concentrated around a few units in

the donor pool, then the variance of tpost

i should be higher than if the weights were more evenly distributed.

Finally, tpost

i would not have the same distribution as tpost

1 if assumption 1 is not valid for unit i or if the

SC weights converge in probability to weights that do not satisfy assumption 1. In this case, we would have

that yit −
∑

j 6=i w
∗j
iyjt

d→ ǫit −
∑

j 6=i w̃
j
i ǫjt + λt

(
µi −

∑
j 6=i w̃

j
iµj

)
.

Abadie et al. (2010) correctly noticed that the outcome variable may not be well reproduced for some units

by a convex combination of the other units for the pre-intervention periods, and that the post-intervention

MSPE for these units should be high as well. For this reason, they exclude permutations in which the the

pre-intervention MSPE was 20 times (or 5 times) larger than the pre-intervention MSPE for the treated unit.

Note that, if assumption 1 is satisfied and ŵi
p→ w∗

i ∈ Φi for all i, then the prediction error would converge

to ǫit −
∑

j 6=i w
∗j
i ǫjt as T0 → ∞ whether time t is pre- or post-intervention. Therefore, assuming that ǫit is

stationary, then it would be likely that tpost

i has the same distribution as tpost

1 if the pre-intervention MSPE

15Note that Xu (2016) assumes that the transitory shock is homoscedastic in his generalized SC method.
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for unit i and unit 1 are similar. In this case, if we could consider only permutations with the same pre-

intervention MSPE, then this permutation test would be asymptotically symmetric. The problem is that this

procedure would usually lead to few permutations to construct the test.16 Note, however, that Abadie et al.

(2010) procedure only excludes permutations with pre-intervention MSPE higher than the pre-intervention

MSPE for the treated unit. Therefore, if there are many permutations with lower pre-intervention MSPE,

then the test would over-reject the null since tpost

1 would tend to attain larger values. In this case, Abadie et

al. (2010) graphical analysis could be misleading, even if the SC weights converge in probability to weights

that satisfy assumption 1 for all units.

A second inference procedure suggested by Abadie et al. (2010) is a permutation test using the ratio of

post/pre-intervention MSPE. According to them, “the main advantage of looking at ratios is that it obviates

choosing a cut-off for the exclusion of ill-fitting placebo runs”. Ando and Sävje (2013) argue that the

distribution of this test statistic would not have the same distribution for all permutations. However, they

do not consider the asymptotic distribution when T0 → ∞. We again consider whether this test statistic

is asymptotically symmetric, so that this procedure would provide a valid hypothesis testing in Canay et

al. (2014) setting. Assuming that, for all i, the SC weights converge in probability to weights that satisfy

assumption 1, then with T0 → ∞ and T − T0 fixed:

tratioi =

1
T−T0

∑T
t=T0+1

[
yit −

∑
j 6=i ŵ

j
i yjt

]2

1
T0

∑T0

t=1

[
yit −

∑
j 6=i ŵ

j
i yjt

]2
d→ 1

T − T0

T∑

t=T0+1


 ǫit −

∑
j 6=i w

∗j
i ǫjt√

var(ǫit −
∑

j 6=i w
∗j
i ǫjt)



2

(20)

Therefore, assuming that the transitory shocks are independent of the treatment assignment, that they

are serially uncorrelated, and that linear combinations of the transitory shocks are i.i.d. up to a scale

parameter, then the test statistic tratioi would be asymptotically symmetric.

An important limitation of this result is that we need to assume that, for all i, the SC weights converge

in probability to weights that satisfy assumption 1. However, as we show in Section 2.2, the SC weighs

will not converge, in general, to weights that satisfy assumption 1 even if there exist weights such that this

assumption is satisfied for all i. In this case, we have that:

tratioi

d→ 1

T − T0

T∑

t=T0+1


 ǫit −

∑
j 6=i w̄

j
i ǫjt + λt(µi −

∑
j 6=i w̄

j
iµj)√

var(ǫit −
∑

j 6=i w̄
j
i ǫjt + λt(µi −

∑
j 6=i w̄

j
iµj))



2

(21)

16Note that the test would remain valid. However, the test would likely have poor power since we would have to rely on
randomization in case of ties.
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where ŵj
i →p w̄j

i .

There are at least two reasons why this test statistic might not be asymptotically symmetric. First, if

treatment assignment is correlated with the unobserved heterogeneity, then the distribution of unit 1 would

be differ from the distribution of the control units. Also, even if treatment assignment is uncorrelated with

the unobserved heterogeneity, the test statistic tratioi might still depend on i. While, in this case, E[tratioi ] = 1

for all i, if the common factors are serially correlated, the variance of the test statistic might depend on

characteristics of the unit i. The reason is that the variance of tratioi would depend on the serial correlation

of λt, so dividing all terms in the numerator by the variance of the prediction error would not necessarily

adjust so that all test statistics have the same asymptotic variance. More specifically, if the variance of the

transitory shock of unit i is higher, then the variance of the t-statistic should be lower. Therefore, one would

(over-) under-reject the null if the variance of the transitory shock of the treated unit is (lower) higher.

Note, however, that for the distribution of tratioi to be significantly different depending on i when the SC

estimator is asymptotically unbiased, it must be that, at the same time, the SC weights are different from

weights that reconstruct the factor loadings of the treated unit and the variance of the transitory shocks

are not much higher than the serial correlation of the common factors. However, the SC weights will be

(asymptotically) close to weights that reconstruct the factor loadings of the treated unit if the variance of

the transitory shocks are small.

5 A Particular Class of a Linear Factor Models

5.1 Asymptotic Results

We consider in detail the implications of our results for a particular class of linear factor models in which

all units are divided into groups that follow different times trends.17 More specifically, we consider that the

J + 1 units are divided into K groups, where for each j we have that:

yCjt = δt + λk
t + ǫjt (22)

for some k = 1, ...,K.

Consider first an extreme case in which K = 2, so the first half of the J + 1 units follow the parallel

trend given by λ1
t , while the other half follow the parallel trend given by λ2

t . Assume that var(λk
t ) = 1

17Monte Carlo simulations using this model was studied in detail in Ferman et al. (2016).
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and var(ǫjt) = σ2
ǫ . We calculate, for this particular class of linear factor models, the asymptotic proportion

of misallocated weights of the SC estimator using all pre-treatment lags as economic predictors. From the

minimization problem 4, we have that, when T0 → ∞, the proportion of misallocated weights converges to:

γ2(σ
2
ǫ , J) =

J+1∑

j= J+1
2

+1

w̄j
1 =

J + 1

J2 + 2× J × σ2
ǫ − 1

× σ2
ǫ (23)

where γK(σ2
ǫ , J) is the proportion of misallocated weights when the J + 1 groups are divided in K groups.

We present in Figure 1.A the relationship between misallocation of weights, variance of the transitory

shocks, and number of control units. Note that, for a fixed J , the proportion of misallocated weights

converges to zero when σ2
ǫ = 0, while this proportion converges to J+1

2J (the proportion of misallocated

weights of DID) when σ2
ǫ → ∞. This is consistent with the results we have in Section 2.2. Moreover, note

that, for a given σ2
ǫ , the proportion of misallocated weights converges to zero when the number of control

units goes to infinity. This is consistent with Gobillon and Magnac (2013), who derive support conditions

so that the assumptions in Abadie et al. (2010) for unbiasedness are satisfied.

Note that, in this example, the SC estimator converges to:

α̂1t
d→ α1t +


ǫ1t −

∑

j 6=1

w̄j
1ǫjt


+ λ1

t × γ2(σ
2
ǫ , J)− λ2

t × γ2(σ
2
ǫ , J) (24)

Therefore, if E[λ1
t |d1t = 1] = 1 (that is, the expected value of the common factor associated to the treated

unit is one standard deviation higher), then the bias of the SC estimators in terms of the standard deviation

of y1t would be given by
γ2(σ

2
ǫ ,J)√

1+σ2
ǫ

. Therefore, while a higher σ2
ǫ increases the misallocation of weights, the

importance of this misallocation in terms of bias of the SC estimator is limited by the fact that the common

factor (which we allow to be correlated with treatment assignment) becomes less relevant. We present the

asymptotic bias of the SC estimator as a function of σ2
ǫ and J in Figure 1.B. Note that, if J + 1 ≥ 20,

then the bias of the SC estimator will always be lower than 0.1 standard deviations of y1t when treatment

assignment is associated with a one standard deviation increase in λ1
t . This happens because, in this model,

the misallocation of weights diminishes when the number of control groups increases.

We consider now the another extreme case in which the J + 1 units are divided into K = J+1
2 groups

that follow the same parallel trend. In other words, in this case each unit has a pair that follows its same

parallel trend, while all other units follow different parallel trends. The proportion of misallocated weights
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converges to:

γ J+1
2
(σ2

ǫ , J) =

J+1∑

j=2

w̄j
1 =

J − 1

2 + σ2
ǫ + (1 + σ2

ǫ )(J − 1)
× σ2

ǫ (25)

We present the relationship between misallocation of weights, variance of the transitory shocks, and

number of control units in Figure 1.C. Note that, again, the proportion of misallocated weights converges

to zero when σ2
ǫ = 0 and to the proportion of misallocated weights of DID when σ2

ǫ → ∞ (in this case,

J−1
J

). Differently from the previous case, however, for a given σ2
ǫ , the proportion of misallocated weights

converges to
σ2
ǫ

1+σ2
ǫ
when J → ∞. Therefore, the SC estimator would remain asymptotically biased even when

the number of control units is large. This happens because, in this model, the number of common factors

increases with J , so the conditions derived in Gobillon and Magnac (2013) are not satisfied. As presented

in Figure 1.D, in this case, the asymptotic bias can be substantially higher, and it does not vanishes when

the number of control units increases. Therefore, the asymptotic bias of the SC estimator can be relevant

even when the number of control units increases.

Finally, note that, in both cases, the proportion of misallocated weights is always lower than the propor-

tion of misallocated weights of DID. Therefore, in this particular class of linear factor models, the asymptotic

bias of the SC estimator will always be lower than the asymptotic bias of DID. However, this is not a general

result, as we show in Appendix A.1.

5.2 Monte Carlo Simulations

We present Monte Carlo (MC) simulation results using a data generating process (DGP) based on 22. We

consider in our MC simulations J + 1 = 20, λk
t is normally distributed following an AR(1) process with 0.5

serial correlation parameter, ǫjt ∼ N(0, σ2
ǫ ), and T − T0 = 10. We also impose that there is no treatment

effect, i.e., yjt = yCjt = yTjt for each time period t ∈ {1, ..., T}. We consider variations DGP in the following

dimensions:

• The number of pre-intervention periods: T0 ∈ {20, 100, 1000}.

• The variance of the transitory shocks: σ2
ǫ ∈ {0.5, 1, 2}.

• The number of groups with different common factors: K = 2 (2 groups of 10) or K = 10 (10 groups of

2)
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We present in Table 1 the proportion of misallocated weights of the SC estimator for different values

of T0, σ
2
ǫ , and K. The MC results corroborate our theoretical results presented in Section 5.1 that the

proportion of misallocated weights will be higher when σ2
ǫ is higher and when K is higher. With a smaller

T0 the proportion of misallocated weights of the SC estimator is slightly higher.18

We consider in Table 2 the permutation test proposed in Abadie et al. (2010) when the SC estimator

is asymptotically biased. We modify the DGP so that λ̃1
t = λ1

t + 1 if t > T0. The SC estimator will be

asymptotically biased because the SC unit will assign positive weight to units that follow different parallel

trends. Therefore, in this case, the asymptotic bias would be given by γK(σ2
ǫ , 19), which is the proportion

of misallocated weights. When K = 10, the permutation test over-rejects with 8-9% probability. This was

expected, because the test statistic would have a higher expected value for the treated unit (and also for the

control unit that follows parallel trend λ1
t ). Rejection rates are close to 5% when K = 2. However, this is a

very particular case in which the asymptotic bias when we consider a unit that follows parallel trend λ1
t is

γK(σ2
ǫ , 19) while the asymptotic bias when we consider a unit that follows parallel trend λ2

t is −γK(σ2
ǫ , 19).

Therefore, the expected value of the test statistic for all units will be the same.

As seen in Section 4, the permutation test proposed in Abadie et al. (2010) might not be asymptotically

symmetric even if the SC estimator is asymptotically unbiased. This would be the case if the SC weights do

not converge in probability to weights that satisfy assumption 1 and common factors are serially correlated.

We now explore in Monte Carlo simulations the extent to which heteroskedasticity might generate invalid

conditional hypothesis testing. We modify our DGP so that we have heteroskedasticity. Now all units will

be randomly allocated to have either σ2
ǫ = 0.5 or σ2

ǫ = 2.19 Note that, unconditionally, rejection rates will

be exactly equal to 5% for a 5% test. However, given our discussion in Section 4, the test might not have

the correct size conditional on the variance of the treated unit.

We present in Table 3 the difference in rejection rates when the treated unit has σ2
ǫ = 2 versus when it

has σ2
ǫ = 0.5. In column 1 we present simulation results when λk

t is serially uncorrelated, while in column

2 we present results when λk
t follows an AR(1) process with serial correlation equals to 0.9. With large T0,

K = 10, and λk
t serially correlated, the test slightly (over-) under-rejects the null when the variance of the

treated unit is (lower) higher. Still, the rejection rates are close to 5% (4.5% when σ2
ǫ = 2 and 5.5% when

18Ferman et al. (2016) show that the misallocation of weights is even higher with the specification that uses the average of
the pre-treatment outcome as economic predictor.

19One example would be if we have a common shock that affects all individuals equally (λ1
t or λ2

t ) and transitory shocks
that are averages of many (in this case, σ2

ǫ = 0.5) or few (σ2
ǫ = 2) individual observations, depending on the size of unit i,

as analyzed in Ferman and Pinto (2016) in the context of differences-in-differences. Note that the proportion of misallocated
weights should not depend (asymptotically) on whether the variance of the transitory shocks of the treated unit is higher or
lower.
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σ2
ǫ = 0.5). This is consistent with the discussion in Section 4 that, asymptotically, the distortions of the

permutation test would be limited by the fact that it depends on both a high proportion of misallocated

weights and the serial correlation of λk
t being relevant relative to the variance of ǫjt.

With small T0, however, our simulation results suggest that the size distortion can actually be relevant

even if the common factors are serially uncorrelated. With a finite T0, the distribution of tratioi is given by:

tratioi =

1
T−T0

∑T
t=T0+1

[
ǫit −

∑
j 6=i ŵ

j
i ǫjt + λt(µi −

∑
j 6=i ŵ

j
iµj)

]2

1
T0

∑T0

t=1

[
ǫit −

∑
j 6=i ŵ

j
i ǫjt + λt(µi −

∑
j 6=i ŵ

j
iµj)

]2 (26)

While both numerator and denominator of the test statistic depend on a linear combination of common

and transitory shocks, the weights ŵj
i are chosen as to minimize the denominator. If T0 is not large enough

relative to J , we might “over-fit” the model. As a consequence, the denominator (in-sample prediction error)

would not provide an adequate correction for the variance of the numerator (out-of-sample prediction error),

so the conditional distribution of the test statistic would depend on the variance of the treated unit.

One possible solution to this problem is to use pre-treatment periods not used in the estimation of the

SC weights in the denominator. We show rejection rates using this modified test statistic on Table 4. We

leave out the last 10 periods prior to T0 from the minimization problem that estimates the SC weights, and

calculate the test statistic using only these periods not used in the minimization problem to calculate the pre-

intervention MSPE.20 With T0 = 100, the rejection rates become much less sensitive to the heteroskedasticity.

However, since the variance of the denominator will be higher, it is likely that this modified test statistic

might provide a test with low power. Another possible solution might be to avoid over-fitting using a different

method to estimate the SC weights that takes into account the fact that the number of parameters might

be large relative to the number of pre-treatment periods. Doudchenko and Imbens (2016) consider the use

of regularization methods such as best subset regression or LASSO to estimate the SC weights. Note that,

while these solutions might circumvent the over-fitting problem, they might not solve the problem that the

SC weights generally converge to weights that do not reconstruct the factor loadings of the treated unit.

20We do not include the case with T0 = 20 because it was not possible to estimate the 19 SC weights using only 10 pre-
treatment periods as economic predictors.
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6 Conclusion

In this paper, we revisit the theory behind the SC model. We show that, in general, the SC estimator

will be asymptotically biased if selection into treatment depends on unobserved heterogeneity. This happens

because the SC weights used to construct the SC unit will generically not converge to weights that satisfy the

identification assumptions of the method. The magnitude of the bias only vanishes when the variance of the

idiosyncratic errors goes to zero. We also show that this can be particularly problematic when one considers

the specification that uses the average of the pre-treatment outcome values as economic predictor instead

of all pre-intervention outcome lags to estimate the weights. Overall, we show that there are significant

subtleties in the application of the SC method that are usually overlooked in SC applications. Therefore,

researchers should be more careful about the relevant assumptions when using this method. In particular,

researchers should consider that different SC specifications rely on widely different assumptions that might

not be adequate depending on the setting.

We recommend a slight modification in the SC method which is to demean the data using the pre-

intervention period. In this case, if selection into treatment is only correlated with a time-invariant common

factor (which is essentially the identification assumption of the DID model), then this demeaned SC estimator

will be asymptotically unbiased. Also, in this case we can guarantee that the demeaned SC estimator will

have an (asymptotically) lower variance than the DID estimator. If treatment selection is correlated with

time-varying common factors, then both the demeaned SC and the DID estimators would be asymptotically

biased. In this case, it is likely that the demeaned SC estimator would be less biased than the DID estimator.

However, it is possible to provide examples in which the demeaned SC estimator will be more biased. We

also propose an alternative way to estimate the SC weights in which we use lags of the control units as

instrumental variables. However, this approach requires additional assumptions on the common factors and

transitory shocks.

Finally, we consider the implications of our findings to the permutation test proposed in Abadie et al.

(2010). We show that, if the SC weights do not converge to weights that satisfy the SC assumptions, then

it is not possible to guarantee that the test statistic will have asymptotically the same distribution in all

permutations. However, the permutation test should (asymptotically) provide reasonable inference if the SC

estimator is asymptotically unbiased.
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Figure 1: Asymptotic Misallocation of Weights and Bias

1.A: Misallocation of weights - 2 groups 1.B: Bias - 2 groups
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1.C: Misallocation of weights - J+1
2 groups 1.D: Bias - J+1

2 groups
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Notes: these figures present the asymptotic misallocation of weights and bias of the SC estimator as a function of the

variance of the transitory shocks for different numbers of control units. Figures 1.A and 1.B report results when there are 2

groups of J+1

2
units each, while figures 1.C and 1.D report results when there are J+1

2
groups of 2 units each. The misallocation

of weights is defined as the proportion of weight allocated to units that do not belong to the group of treated unit. The bias of

the SC estimator is reported in terms of standard deviations of yjt (which is equal to
√

1 + σ2
ǫ ) when the expected value of the

common factor associated to the treated unit, conditional on this unit being treated, is equal to one standard deviation of the

common factor.
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Table 1: Misallocation of weights

σ2
ǫ = 0.5 σ2

ǫ = 1 σ2
ǫ = 2

(1) (2) (3)
Panel A: K = 2

T0 = 20 0.102 0.157 0.233
[0.000] [0.001] [0.001]

T0 = 100 0.059 0.098 0.156
[0.000] [0.001] [0.001]

T0 = 1000 0.034 0.061 0.105
[0.000] [0.001] [0.001]

Panel B: K = 10
T0 = 20 0.469 0.633 0.770

[0.001] [0.001] [0.001]

T0 = 100 0.350 0.508 0.664
[0.001] [0.001] [0.001]

T0 = 1000 0.310 0.466 0.623
[0.001] [0.001] [0.001]

Notes: this table presents the proportion of misal-
located weights in MC simulations of the SC esti-
mator that uses all pre-treatment outcome lags as
economic predictors for a given (T0, σ

2
ǫ ,K). In all

simulations, we set J + 1 = 20. When K = 2, the
proportion of misallocated weights is given by the
sum of weights allocated to units 11 to 20. When
K = 10, it is given by the sum of weights allocated
to units 3 to 20.
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Table 2: Permutation test rejection rates - effects of asymptotic bias

σ2
ǫ = 0.5 σ2

ǫ = 1 σ2
ǫ = 2

(1) (2) (3)
Panel A: K = 2

T0 = 20 0.050 0.050 0.050
[0.000] [0.000] [0.000]

T0 = 100 0.050 0.050 0.050
[0.000] [0.000] [0.000]

T0 = 1000 0.050 0.050 0.050
[0.000] [0.000] [0.000]

Panel B: K = 10
T0 = 20 0.088 0.087 0.079

[0.001] [0.001] [0.001]

T0 = 100 0.089 0.092 0.087
[0.001] [0.001] [0.001]

T0 = 1000 0.084 0.091 0.091
[0.001] [0.001] [0.001]

Notes: this table presents the rejection rates in
MC simulations of a permutation test with the SC
estimator that uses all pre-treatment outcome lags
as economic predictors for a given (T0, σ

2
ǫ ,K). In

all simulations, we set J + 1 = 20. We set λ̃1
t =

λ1
t + 1, so that the SC estimator is asymptotically

biased if the SC weights do not reconstruct the
factor loadings of the treated unit.
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Table 3: Permutation test rejection rates - effects of heteroskedasticity

no serial correlation serial correlation=0.9
(1) (2)
Panel A: K = 2

T0 = 20 -0.045 -0.047
[0.000] [0.000]

T0 = 100 -0.009 -0.010
[0.000] [0.000]

T0 = 1000 0.001 0.001
[0.000] [0.000]

Panel B: K = 10
T0 = 20 -0.052 -0.055

[0.000] [0.000]

T0 = 100 -0.013 -0.029
[0.000] [0.000]

T0 = 1000 0.003 -0.010
[0.000] [0.000]

Notes: this table presents the difference in rejection rates when the
variance of the treated unit is higher compared to when the variance
of the treated unit is lower. In all simulations, we set J+1 = 20. Each
unit is randomly selected to have σ2

ǫ = 0.5 or σ2
ǫ = 2. In column 1, the

common factor is serially uncorrelated, while in column 2 it follows an
AR(1) process with serial correlation equal to 0.9.
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Table 4: Permutation test rejection rates - modified test statistic

no serial correlation serial correlation=0.9
(1) (2)
Panel A: K = 2

T0 = 100 -0.004 0.001
[0.000] [0.000]

T0 = 1000 0.000 0.001
[0.000] [0.000]

Panel B: K = 10
T0 = 100 0.001 -0.010

[0.000] [0.000]

T0 = 1000 0.002 -0.005
[0.000] [0.000]

Notes: this table replicates the results presented in Table 3 using a
modified test statistic. We leave out the last 10 periods prior to T0

from the minimization problem that estimates the SC weights, and
calculate the test statistic using only these periods not used in the
minimization problem to calculate the pre-intervention MSPE.
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A Supplemental Appendix: Revisiting the Synthetic Control Es-

timator

A.1 Example: SC Estimator vs DID Estimator

We provide an example in which the asymptotic bias of the SC estimator can higher than the asymptotic bias of the DID

estimator. Assume we have 1 treated and 4 control units in a model with 2 common factors. For simplicity, assume that there

is no additive fixed effects and that E[λt] = 0. We have that the factor loadings are given by:

µ1 =


 1

1


 , µ2 =


 0.5

1


 , µ3 =


 1.5

1


 , µ4 =


 0.5

0


 , µ5 =


 1.5

1


 (27)

Note that the linear combination 0.5µ2 + w3
1
µ3 + w5

1
µ5 = µ1 with w3

1
+ w5

1
= 0.5 satisfy assumption 1. Note also that

DID equal weights would set the first factor loading to 1, which is equal to µ1
1
, but the second factor loading would be equal

to 0.75 6= µ2
1
. We want to show that the SC weights would improve the construction of the second factor loading but it will

distort the combination for the first factor loading. If we set σ2
ǫ = E[(λ1

t )
2] = E[(λ2

t )
2] = 1, then the factor loadings of the SC

unit would be given by (1.038, 0.8458). Therefore, there is small loss in the construction of the first factor loading and a gain

in the construction of the second factor loading. Therefore, if selection into treatment is correlated with the common shock λ1
t ,

then the SC estimator would be more asymptotically biased than the DID estimator.

A.2 Definition: Asymptotically Unbiased

We now show that the expected value of the asymptotic distribution will be the same as the limit of the expected value of the

SC estimator. Let γ be the expected value of the asymptotic distribution of α̂1t − α1t. Therefore, we have that:

E[α̂1t − α1t] = γ + E



∑

j 6=1

(w̄j
1
− ŵ

j
1
)ǫjt


+ E


λt

∑

j 6=1

(w̄j
1
− ŵ

j
1
)µj




= γ +
∑

j 6=1

E
[
(w̄j

1
− ŵ

j
1
)ǫjt

]
+
∑

j 6=1

E
[
λt(w̄

j
1
− ŵ

j
1
)
]
µj

Given that ŵ
j
1
is a consistent estimator for w̄

j
1
, if we have that ǫit has finite variance, then:

∣∣∣E
[
(w̄j

1
− ŵ

j
1
)ǫjt

]∣∣∣ ≤ E
[∣∣∣(w̄j

1
− ŵ

j
1
)ǫjt

∣∣∣
]
≤

√
E
[
(w̄j

1
− ŵ

j
1
)2
]
E [(ǫjt)2] → 0

Similarly, if λf
t has finite variance for all f = 1, ..., F , then E

[
λt(w̄

j
1
− ŵ

j
1
)
]
µj → 0.

A.3 Minimum Distance Problem

Using the notation of Abadie et al. (2010), the SC weights will solve the following optimization problem:

‖X1 −X0W‖V
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where
J∑

j=2

w
j
1
= 1 and w

j
1
> 0 for all j = 2, ..., J , and

X1 −X0W =




Z1 −
∑
j 6=1

w
j
1
Zj

T0∑
s=1

k1sY1s −
∑
j 6=1

w
j
1

T0∑
s=1

k1sY1s

.

.

.
T0∑
s=1

kKs Y1s −
∑
j 6=1

w
j
1

T0∑
s=1

kKs Y1s




We prove the properties of the M-estimator for the weights for the special case in which we use all the pre-treatment periods

as predictors. In this case, V becomes the identity matrix, and the optimization problem for this particular case is:

arg min
w∈W

∑T
t0=1



(
y1t −

∑
j 6=1

w
j
1
yjt

)′ (
y1t −

∑
j 6=1

w
j
1
yjt

)


T0

subject to
J∑

j=2

w
j
1
= 1 and w

j
1
> 0 for all j = 2, ..., J.. Define the vector Jx1 ŵ ≡ {ŵj

1
}j 6=1 as the solution of this minimization

problem.21 Using the population model for yit, we can write this optimization problem as:

arg min
w∈W

∑T
t0=1

[(
ǫ1t −

∑
j 6=1

w
j
1
ǫjt

)
+ λt

(
µ1t −

∑
j 6=1

w
j
1
µjt

)]2

T0

In order to show the uniform convergence of the objective function, we need to impose assumptions about the stochastic

processes of {ǫjt}
T0
t=1

and {λt}
T0
t=1

.

Assumption 1: (ǫjt, λt)′ is weakly stationary and second moment ergodic.

Lemma 1 Define g (y1t, yjt, w) ≡

[(
ǫ1t −

∑
j 6=1

w
j
1
ǫjt

)
+ λt

(
µ1t −

∑
j 6=1

w
j
1
µjt

)]2
. Under assumption 1,

sup
w∈W

∥∥∥∥∥∥
1

T0

T∑

t0=1

g (y1t, yjt, w)− E [g (y1t, yjt, w)]

∥∥∥∥∥∥
→p 0 (28)

Proof. Note that g (y1t, yjt, w) is continuous a each set of
{
ŵ

j
1

}J

j=2
. In addition,

‖g (y1t, yjt, w)‖ ≤

∥∥∥∥∥∥
y1t −

∑

j=2

J
w

j
1
yjt

∥∥∥∥∥∥

′ ∥∥∥∥∥∥
y1t −

∑

j=2

J
w

j
1
yjt

∥∥∥∥∥∥

≤ C

By lemma 2.4 of Newey and McFadden (1994), we have uniform convergence:

sup
w∈W

∥∥∥∥∥∥
1

T0

T∑

t0=1

g (y1t, yjt, w)− E [g (y1t, yjt, w)]

∥∥∥∥∥∥
→p 0

21As ???? show, if the number of control units is greater than the number of pre-treatment periods, then the solution to this
minimization problem might not be unique. However, since we consider the asymptotics with T0 → ∞, then we guarantee that,
for large enough T0, the solution will be unique.
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Now, we need to show that there is one only set of w0 ≡
{
w

j
1

}J

j=2
that maximizes E [g (y1t, yjt, w)] .

arg min
w∈W

E






ǫ1t −

∑

j 6=1

w
j
1
ǫjt


+ λt


µ1t −

∑

j 6=1

w
j
1
µjt





2


In order to simplify the problem, we impose assumptions about the second moments of {ǫjt}
T0
t=1

and {λt}
T0
t=1

.

Assumption 2: ǫjt is uncorrelated with λt for t = 1, ..., T0. In addition, V ar [ǫjt] = σ2 and E

[
λ
′

tλt

]
= Ω.

Under assumption 2, the population objective function simplifies to:

E [g (y1t, yjt, w)] = σ2


1 +

∑

j 6=1

(
w

j
1

)2

+


µ1t −

∑

j 6=1

w
j
1
µjt




′

Ω


µ1t −

∑

j 6=1

w
j
1
µjt




Note that the first element of this expression is a constant, and it does not matter for the optimization problem. Except for

the constant, we can represent this objective function using matrices. Define w as a vector (J × 1) of the weights, {wj
1
}j 6=1, µ1

is a vector (K × 1) with the factor loadings for the treated units and µ0 is a matrix (K × J) that contains the factor loadings

for the all the control units, we can write population optimization problem as:

arg min
w∈W

w′w+ (µ1 − µ0w)′ Ω (µ1 − µ0w)

subject to W = {w : w′ι = 1,w ≥ 0}, with ι being a vector (J × 1) of 1’s. This is a minimization of a quadratic function in a

convex space, and has a unique solution w0.

Using the results above, we could use the theory about M-estimator to show consistent of ŵ ≡
{
ŵ

j
1

}J

j=2
.

Theorem 2 Under assumptions 1 and 2, ŵ →p w0

Proof. Using the results of previous lemma and the fact that w0 is the unique maximum of Q0 (w) ≡ E [g (y1t, yjt,w0)] and

W is compact, we can use Theorem 2.1 of Newey and McFadden (1994) to show that ŵ →p w0.

A.4 Relation with Powell (2016) and Wong (2015)

In this section of the Appendix, we show how the proofs in Wong (2015) and Powell (2016) differ from our approach.

In the third chapter of his thesis, Wong (2015) shows in Section 3.9 that the SC estimator of the weights is given by:

ŵ−w =
(
(Y ′Y )−1 − (Y ′Y )−1j(j′(Y ′Y )−1j)−1j′(Y ′Y )−1

)
Y ′(ζ − Y ′w) (29)

where ζ is a (T0 × 1) vector with the pre-intervention outcomes for the treated group (with elements y1t), while Y is a (T0 × J)

matrix with the pre-intervention outcomes for the control units (with rows y′
t). Also, let j be a (J × 1) vector of ones.

Let E[y1t] = y∗
1t and E[yt] = y∗

t , so that y1t = y∗
1t + ǫ1t and yt = y∗

t + ǫt. The SC assumption in his model states that

there exists weights w such that y∗
1t = y∗

t
′w. Assuming (y1t,y′

t) stationary and ergodic, they show that 1

T0
Y ′Y → E[yty

′
t]

and 1

T0
Y ′(ζ − Yw) → E[yt(y1t − y′

tw)]. Wong (2015) argues that E[yt(y1t − y′
tw)] = 0. However, we have that:

E[yt(y1t − y′
tw)] = E[yty1t]− E[yty

′
tw] = E[(y∗

t + ǫt)(y
∗
1t + ǫ1t)]− E[(y∗

t + ǫt)(y
∗
t + ǫt)

′w]

= y∗
t y

∗
1t − y∗

ty
∗
t
′
w− E[ǫtǫ

′
t]w = −E[ǫtǫ

′
t]w (30)
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Therefore, this term will only be equal to zero if var(ǫt) = 0, which is exactly the condition we find so that the SC weights

would be consistent.

In another article, Powell (2016) proposes a generalization of the SC method where the treatment can be multivalued and

more than one unit may be treated. He jointly estimates the treatment effect and the SC weights, and argues that the estimator

for the treatment effect is consistent. In Theorem 3.1 of his paper, he argues that the following objective function has a unique

minimum at b = α0 (although there might be multiple choices of weights):

Γ(b, {wj
i }) = E


||Yit −D′

itb−
∑

j 6=i

(
w

j
i (Yjt −D′

jtb)
)
||


 (31)

where Dit is a (K × 1) vector of treatment variables and α0 is the (K × 1) vector of treatment effects.

We show that this generally will not be the case. For simplicity, we assume that µi is fixed and that µi −
∑

j 6=i w
j
i

∗
µj = 0

for some {wj
i

∗
}j 6=i. Therefore:

Γ(b, {wj
i }) = E




ǫi −

∑

j 6=i

w
j
i ǫj




2


+


µi −

∑

j 6=i

w
j
iµj




′

E[λ′
tλt]


µi −

∑

j 6=i

w
j
iµj




+(α0 − b)′


Dit −

∑

j 6=i

w
j
iDjt




Dit −

∑

j 6=i

w
j
iDjt




′

(α0 − b)

+


µi −

∑

j 6=i

w
j
iµj




′

cov


λ′

t,


Dit −

∑

j 6=i

w
j
iDjt




′
 (α0 − b) (32)

Note that we can set the second, third, and the forth terms of this objective function equal to zero by setting w
j
i = w

j
i

∗

and b = α0. However, there is a first order gain in moving in the direction of weights that minimize the first term. Therefore,

there is a set of parameters w̃
j
i 6= w

j
i

∗
and b = α0 that attains a lower value than w

j
i

∗
and b = α0 (unless w

j
i

∗
minimizes the

first term). Since b = α0 minimizes the objective function conditional on setting w
j
i = w

j
i

∗
, then it cannot be that the optimal

weights will be given by w
j
i

∗
. Let ˜̃wj

i be the weights that minimize the objective function. Therefore, µi −
∑

j 6=i
˜̃wj
iµj 6= 0.

Now we consider whether ˜̃wj
i and b = α0 can be the solution to the problem. Note that the third term can be set to zero by

choosing b = α0. However, if treatment assignment is correlated with λt, then we could make the forth term lower than zero.

Since the first order effect of moving away from b = α0 on the third term is equal to zero, while we can have a first order gain

in the forth term, then α0 would not be the solution to this minimization problem. Note that b = α0 minimizes this problem if

treatment assignment is uncorrelated with the common factors. Again, this is consistent with the results we find that the SC

is asymptotically unbiased in this case.

A.5 Demeaned Estimator

In this section, we formalize the alternative SC estimator that we propose in section ?? of the paper. In this new method,

before finding the weights, we calculate the pre-treatment average of all units and demean the data. The “within-model” for
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treatment and control units are, respectively:

yCit − yi =
(
λt − λ

)′

µi + (ǫit − ǫi)

yTit − yi = αit +
(
yCit − yi

)

where yi =
1

T0

T0∑
t=1

yit, λ = 1

T0

T0∑
t=1

λt and ǫi =
1

T0

T0∑
t=1

ǫit.

Note that we can write this model as,

ỹCit = λ̃
′

tµ̃i + ε̃it

ỹTit = αit + ỹCit

where λ̃t does not include any time-invariant common factor, and µ̃i does not involve factor loadings associated with a constant

common factor. This model is the same as before, but using the demeaned variables. In this case,

α̂1t → α1t +


ǫ̃1t

∑

j 6=1

w1
j ǫ̃jt


+ λ̃

′

t


µ̃1

∑

j 6=1

w1
j µ̃j




Under the assumptions of the Difference-in-Difference Model,

E

[
λ̃t

]
= 0

and

E


ǫ̃1t −

∑

j 6=1

w1
j ǫ̃jt


 = 0

In this case, the SC estimator is asymptotically unbiased.
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Notation

Variable Dimension Description

yit (1× 1) Outcome for unit i at time t

yCit (1× 1) Potential outcome for unit i at time t if not treated

yTit (1× 1) Potential outcome for unit i at time t if treated

YP
1 (T0 × 1) Vector of pre-treatment outcome for the treated

YP
0 (T0 × J) Matrix of pre-treatment outcome for the controls

yt (J × 1) Vector of outcomes for the controls at time t

Zi (R× 1) Vector of covariates

X1 (K × 1) Vector of economic predictors for the treated

X0 (K × J) Matrix of economic predictors for the controls

λt (1× F ) Vector of common factors

Ω (F × F ) E[λ′
tλt]

µi (F × 1) Vector of factor loadings

µ0 (F × J) Matrix of factor loadings for the controls

αit (1× 1) Treatment effect for unit i at time t

w or {wj
1}j 6=1 (J × 1) Vector of weights

ŵ or {ŵj
1}j 6=1 (J × 1) M-estimator of weights

w̄ or {w̄j
1}j 6=1 (J × 1) Probability limit of the M-estimator of weights

ǫit (1× 1) Idiosyncratic error for unit i at time t

ǫt (J × 1) Idiosyncratic error for the control units at time t
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