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Abstract

This paper analyzes a multi-task agency framework where the agent exhibits task-specific

abilities. Besides investigating the appendant consequences of applying incongruent per-

formance measures in incentive contracts, this paper demonstrates how the provision of

incentives—including the optimal aggregation of information—takes the agent’s task-spe-

cific abilities into consideration. It further emphasizes the relation between job character-

istics and the principal’s preference for selecting specific agents. This paper essentially

demonstrates that differences in task-specific abilities across agents can provide a supple-

mentary explanation of why they are allocated to various jobs; or why they receive different

incentive contracts, even if their jobs are identical.
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1 Introduction

Empirical investigations have offered an abundance of evidence suggesting that individuals are

highly responsive to monetary incentives (see e.g. Asch [1990], Paarsch and Shearer [1999] and

Lazear [2000a]). Nevertheless, the specific effects of reward schemes are somewhat ambiguous

when individuals are required to perform a collection of different tasks. In such situations, Kerr

[1975] cautioned against the consequences of a reward system that inefficiently overemphasizes

some tasks while underemphasizing others. An illustrative example cited by Kerr [1975] is the

difficult trade-off between research and teaching responsibilities encountered by faculties at uni-

versities. Since teaching quality is harder to assess relative to research output, and prospective

promotion decisions mainly hinge on research performance, it is a common phenomenon for

faculty members to focus on research at the expense of teaching.1 Inefficient effort allocations

generally occur when the principal is unable to inexpensively access a performance evaluation

which perfectly coincides with her objective. If monitoring is too costly, the principal is, to

some extent, compelled to accept that an agent is motivated to allocate her effort inefficiently

across multiple tasks.

This phenomenon has prompted Holmström and Milgrom [1991] to delve into multi-task

agency relationships by investigating incentive contracts which aim at ensuring appropriate

effort allocations in addition to countervailing incentive risk and the agent’s desire for insur-

ance. Feltham and Xie [1994] also investigate inefficient effort allocations motivated by the

application of incongruent performance measures in incentive contracts. According to Feltham

and Xie [1994], incongruity arises whenever performance measures do not perfectly reflect the

agent’s contribution to firm value. They alluded that the agent is only motivated to improve her

performance evaluation, thereby leading her to focus on less or even non-valuable tasks, and

disregarding more beneficial ones [Feltham and Xie, 1994].2

Previous multi-task literature such as Feltham and Xie [1994], Banker and Thevaranjan

[2000], and Datar, Kulp, and Lambert [2001] focus on performance measure congruity and its

effects on the efficiency of incentive contracts, but absent from these studies is the possibility

that agents may perform some tasks more efficiently than others.3 Recent literature, however,

1See Brickley and Zimmerman [2001] for an empirical study of this example.
2See as well the discussion in Gibbons [1998].
3Schnedler [2003] is an exception. However, his focus is different in the sense that he investigates the conse-
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emphasizes the role of acquiring human capital for specific tasks (see e.g. Lindbeck and Snower

[2000], Gibbons and Waldman [2003] and Gibbons and Waldman [2004]).4 Since individuals

differ substantially in their learning aptitudes, which inevitably lead to discrepancies in skills

and abilities [Gibbons and Waldman, 2003], it is reasonable to infer that different individuals

might perform different tasks with varying degrees of ease.5 For example, Sapienza and Gupta

[1994] indicate in their study of principal-agent relations within venture capital-backed firms

that the frequency of venture capitalist (principal) - CEO (agent) interaction is partially depen-

dent on the CEOs’ venture experience. They provide evidence that CEOs with prior experiences

(i.e. greater proficiency) in start-up ventures would have a lesser tendency of consulting with

their venture capitalist.

In order to understand the nature of contracts in multi-task agency relations, it is essential

to investigate whether and how task-specific abilities influence the agent’s preferences for her

effort allocation and the optimal provision of incentives in response to these abilities. This paper

thus focuses on multi-task agencies in order to gain new insights into the provision of incentives

if performance measures are incongruent with the principal’s objective and the agent exhibits

different abilities for performing relevant tasks.

This paper investigates how incentive contracts respond to individual task-specific abilities

combined with incongruent performance measures. It further demonstrates how the value of

performances measures can be compared in multi-task agencies. The analysis indicates that the

signal/noise ratio—sufficient to rank performance measures in single-task agencies—can only

be applied if all available measures provide the same information about the agent’s relative ef-

fort allocation. The proposed ranking criteria is in general contingent on the agent’s specific

abilities such that different agents may imply various orderings of performance measures. This

paper further considers the optimal aggregation of multiple performance measures based on the

agent’s respective task-specific abilities. If the principal has access to a sufficient quantity of

appropriate measures, it demonstrates that she can combine them in order to motivate the agent

quences of different marginal costs on the relative value of incongruent performance measures for the provision of

incentives.
4For empirical evidence see Baker, Gibbs, and Holmström [1994].
5Maher, Ramanathan, and Peterson [1979] conceive the term ‘congruence of perception with preferences’ to

indicate the phenomenon that even if an individual possesses the correct perception of different tasks, there might

still be a preference on specific tasks.
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to implement the first-best effort allocation. This, however, is only efficient, if the motivation of

the first-best effort allocation by the appropriate aggregation of performance measures contem-

poraneously maximizes the precision of the information system, which in turn is determined

by the agent’s task-specific abilities. Finally, this paper illustrates the relevance of adverse se-

lection and highlights the relation between job characteristics and the principal’s preference for

selecting specific agents.

This paper combines two strands of literature. First, the analyzed framework builds on the

multi-task agency model developed by Holmström and Milgrom [1991], and incorporates in-

congruent performance measures as analyzed by Feltham and Xie [1994], Baker [2002] and

Banker and Thevaranjan [2000]. Second, it incorporates task-specific human capital in the

sense of Gibbons and Waldman [1999], Lindbeck and Snower [2000], and Gibbons and Wald-

man [2003, 2004]. The main contribution of this paper to previous multi-task literature is the

incorporation of task-specific abilities and the investigation of their effects on incentive con-

tracts, when the principal receives only incongruent performance measures. It broadens our

understanding of incentive contracts in multi-task agency relations by providing three impor-

tant implications: First, incentive contracts are tailored to the specific abilities of agents, thereby

implying that the principal does not generally provide identical incentive contracts when agents

differ with respect to their task-specific abilities. Second, the principal’s preference for agents

with specific abilities depends on the characteristics of relevant tasks and the available informa-

tion system. Third, the principal can be indifferent between various agents, but may neverthe-

less provide them with different incentive contracts. In general, different task-specific abilities

across agents provide a supplementary explanation of why they are allocated to various jobs; or

why they receive different incentive contracts, even though their jobs are identical.

This paper proceeds as follows. In section 2, I give an overview of the model and derive the

first-best contract in section 3. I provide in section 4 the second-best contract and focus on the

relation between performance measure congruity and effort distortion in section 5. In section

6, I investigate how performance measures can be ranked in multi-task agencies, in particular

when agents are characterized by task-specific abilities. The optimal aggregation of multiple

performance measures as a device to mitigate effort distortion is analyzed in section 7. I further

investigate the role of adverse selection in section 8, and expose the principal’s preference for

specific agents. Section 9 concludes.
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2 The Model

Consider a single-period agency relationship between a risk-neutral principal and a risk-averse

agent. The principal owns an asset and requires the agent’s productive effort. Once employed,

the agent is in charge of performing n ≥ 2 tasks (multi-tasking). These tasks are tied together,

i.e. the principal cannot split and allocate them to different agents.6 The agent implements an

effort vector e = (e1, ..., en)t, e ∈ E ⊆ R
n+, where ei is the agent’s effort allocated to task i.7

Effort is non-verifiable and all activities ei ∈ E are measured in the same unit.

To incorporate task-specific abilities for the agent, I adapt Lazear’s [2000b] approach for a

single-task agency model to this multi-task framework. In this sense, the abilities differ across

tasks and determine the absolute and marginal effort costs borne by the agent. Let Ψ be an n×n

matrix representing the agent’s task-specific abilities. The agent’s effort costs are contingent on

Ψ and take the form C(e) = et
Ψe/2. For the ease of illustrating the basic relationship between

performance measure congruity and effort distortion by using geometric interpretations, I first

restrict the analysis to the case where the abilities across different tasks are mutually exclusive

of one another. Accordingly, Ψ is a diagonal n × n matrix defined by Ψ = diag (ψ1, ..., ψn),

ψi > 0, i = 1, .., n. I will relax this assumption in section 7 and allow the agent to feature cost

substitutes or complements. A higher ability for performing task i is characterized by a lower

ψi, i = 1, ..., n, and vice versa.8 I first treat these task-specific abilities as exogenous in order to

illustrate the corresponding incentives contracts and induced effort distortions for a given type

of agent. However, I will emphasize the principal’s preference for employing particular agents

by elaborating on adverse selection in section 8.

The agent’s preferences are represented by the negative exponential utility function

U(w, e) = − exp [−ρ (w − C(e))] , (1)

where ρ denotes the Arrow-Pratt measure of absolute risk-aversion and w as the agent’s wage.

For parsimony, let w̄ = 0 be her reservation wage implying a reservation utility Ū = −1.

6For considerations on how multiple tasks are efficiently split among several agents, refer e.g. to Holmström

and Milgrom [1991], Corts [2005], and Schöttner [2005].
7All used vectors are column vectors where ‘t’ denotes the transpose.
8A similar approach is used by MacLeod [1996], where ψi, i = 1, ..., n, are random variables. However, his

work is different in the sense that he focuses on the relationship between explicit and implicit incentive contracts

rather than on the effort distortion induced by incongruent performance measurement.
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By conducting effort e, the agent contributes to the principal’s non-verifiable gross payoff

V (e) = µte + εV , where εV is a normally distributed random component with zero mean

and variance σ2
V , representing firm-specific and economy wide risk. The n-dimensional vector

µ = (µ1, ..., µn)t, µi ≥ 0, i = 1, ..., n, characterizes the marginal effect of e on gross payoff

V (e). Since V (e) is non-verifiable, it cannot be part of an explicit single-period incentive

contract. The only verifiable information about e, however, is provided by the performance

measure

P (e) = ωte + ε, (2)

where ω = (ω1, ..., ωn)t ∈ R
n+ is the vector of performance measure sensitivities. The random

component ε is normally distributed with zero mean and variance σ2, and represents potential

effects on the performance measure beyond the agent’s control.

As pointed out by Feltham and Xie [1994], the performance measure does not necessarily

capture the agent’s contribution to the gross payoff perfectly. Formally, if there exists a constant

λ 6= 0 satisfying µ = λω, performance measure P (e) is congruent with the gross payoff V (e).9

Otherwise, the performance measure is incongruent and its application in an incentive contract

motivates the agent to implement an inefficient effort allocation across tasks [Feltham and Xie,

1994, Baker, 2002].

Baker [2002] provided a geometric measure for performance measure congruity. Since his

result is fundamental to the subsequent analysis, it is summarized in the following definition.

Definition 1. The congruence of performance measure P (e) to gross payoff V (e) with respect

to the marginal effect of e is measured by ΥC(ϕ) = cosϕ, where ϕ is the angle between the

vector of gross payoff sensitivities µ and the vector of performance measure sensitivities ω.

Accordingly, as long as vector µ and vector ω are linearly independent, the performance

measure does not reflect the agent’s contribution to gross payoff, and therefore, is incongruent.

Formally, there exists no constant λ 6= 0 satisfying µ = λω, thereby implying ϕ 6= 0. A

more congruent performance measure thereby implies a smaller angle ϕ and leads to a higher

9This phenomenon is described by several terms in the multi-task agency literature: performance measure

congruity [Feltham and Xie, 1994, Bushman, Indjejikian, and Penno, 2000, Hughes, Zhang, and Xie, 2005], non-

distorted performance measure [Baker, 2000, 2002], and goal congruence [Anthony and Govindarajan, 1995,

Banker and Thevaranjan, 2000]. For the sake of consistence, I use the term performance measure congruity

throughout this paper.
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measure of congruity ΥC(ϕ) due to the definition of the cosine. Finally note that ϕ ∈ [0, π/2]

since µi, ωi ≥ 0, i = 1, ..., n, where ϕ is represented in radian measure.

In line with previous multi-task literature, I restrict my analysis to a compensation scheme

w which is linear in performance measure P (e). The payment w takes therefore the form

w(e) = α+ βP (e), (3)

where α denotes the fixed payment and β denotes the incentive parameter. The transfer α is

utilized to split the surplus between the principal and the agent, whereas β is used to provide

the agent with incentives for implementing effort.

Since the compensation scheme is linear, the agent’s utility is exponential, and the error term

is normally distributed, maximizing the agent’s expected utility is analogous to maximizing her

certainty equivalent

CE(e) = α+ βωte −
1

2
et

Ψe −
ρ

2
β2σ2, (4)

where ρβ2σ2/2 is the required risk premium in order to compensate the agent for the uncertainty

in her incentive payment βP (e).

The timing of this problem is as follows. First, the principal offers the agent a contract

(α∗, β∗). If this contract guarantees the agent at least the same expected utility as her best

alternative, she accepts. After the agent implemented e and the random variables ε and εV are

realized, the payments take place.

For clarification, I subsequently illustrate the distinction between effort intensity and effort

allocation. Formally, let two arbitrary activities ek and ej vary to êk and êj , respectively. If

the ratio between both activities remains identical such that ek/ej = êk/êj , k, j = 1, ..., n,

k 6= j, the relative effort allocation remains the same. In contrast, if ek/ej 6= êk/êj for at

least one pair (k, j) ∈ {1, ..., n}, k 6= j, the relative effort allocation varies. The overall effort

intensity, however, changes without affecting the effort allocation, if there exists a constant

λ > 0 satisfying e = λê, where ê is the modified effort vector.

For the ease of comparing different effort allocations, it is useful to commit to the subsequent

definition throughout this paper.

Definition 2. The agent implements a distorted effort allocation if there exists no constant λ 6= 0

satisfying µ = λe.
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The implemented effort allocation is referred to be distorted if it does not reflect the agent’s

marginal contribution to gross payoff V (e). Note, however, that non-distortion is not necessar-

ily optimal since this concept does not incorporate the corresponding costs for implementing an

arbitrary effort vector.

3 The First-Best Contract

Before I move on to the second-best contract, it is useful to derive the first-best solution of

this problem as a benchmark for the subsequent analyzes. Then, the first-best effort allocation

and intensity can be compared to the second-best environment, where the agent’s effort is non-

contractible so that moral hazard occurs.

Suppose the principal can specify a desired effort intensity and allocation in an enforceable

contract. In this case, she appoints the effort vector e which maximizes the difference between

the expected gross payoff V (e) and costs w = C(e):

max
e

Π(e) = µte −
1

2
et

Ψe. (5)

Let φ ≡ Ψ
−1µ = (µ1/ψ1, ..., µn/ψn)t be the vector of the payoff-cost sensitivity ratios. Then,

the first-best effort vector is

efb = φ. (6)

The principal maximizes her expected profit by assigning each activity ei in accordance to its

payoff-cost sensitivity ratio µi/ψi, i = 1, ..., n. Activities with high ratios are consequently

more intensively conducted relative to activities with low ratios.

Recall that efb is distorted if there exists no constant λ 6= 0 satisfying µ = λefb, see defini-

tion 2. In contrast, if the agent has different abilities across tasks, it is optimal to implement a

distorted effort allocation in order to balance the benefits and costs of all relevant tasks.

By substituting efb in (5) and using the relation µtφ = ‖µ‖‖φ‖ cosκ for vector products,

the expected first-best profit becomes

Πfb =
1

2
‖µ‖‖φ‖ cosκ, (7)

where κ is the angle between vector µ and vector φ, and ‖·‖ denotes the length of the respective

vector.
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The agent’s task-specific abilities affect the expected first-best profit in two ways. The first

effect is a result of the overall cost intensity for implementing an arbitrary effort vector. To

illustrate this effect, consider two agents A and B characterized by Ψ
A and Ψ

B, respectively.

If Ψ
A = λΨB, λ > 1, agent A exhibits a less overall cost intensity than agent B for the

implementation of an arbitrary effort vector. Observe, however, that both agents share the same

relative task-specific abilities across tasks. Therefore, λ‖φA‖ = ‖φB‖, whereas κA = κB.

The second effect follows from the relation between the payoff sensitivities µ and the agent’s

relative task-specific abilities Ψ. Consider for instance the agent’s ability ψi to perform task

i. If this ability is increasing (i.e. ψi decreases) relative to the other abilities, the agent could

implement the same effort vector, but suffers less disutility of effort for performing task i. In

this case, ‖φ‖ increases. However, the effect on κ is ambiguous. Particularly, decreasing ψi

leads to a higher angle κ if ψi < 1, and to a lower κ, otherwise. For the principal, however, it

is optimal to enhance efb
i until the marginal benefit of task i is equal to its marginal costs, i.e.

µi = ψiei. Consequently, Πfb increases. This eventually implies that a potential decline in cosκ

is preponderated by an increase of ‖φ‖.

4 The Second-Best Contract

If the principal cannot directly contract over e, she faces an incentive problem for motivating the

agent to implement appropriate effort. Since the gross payoff V (e) is non-verifiable, the only

contractible information is the performance measure P (e). However, the application of P (e)

in an incentive contract may cause two inefficiencies. First, the performance measure—and

therefore the agent’s compensation—is uncertain such that the risk-averse agent requires a risk

premium for accepting a contract dependent on P (e). Second, the performance measure can be

incongruent and, therefore, motivate the agent to inefficiently allocate her effort across tasks.

The subsequent analysis focuses on the second inefficiency since the trade-off between incentive

risk and the agent’s desire for insurance is intensively analyzed by previous literature.10

In a second-best environment, the principal’s problem is to design a contract (α∗, β∗) that

maximizes her expected profit Π = E[V (e) − w(e)] while ensuring the agent’s participation.

10For a detailed analysis in a LEN-setting, see e.g. Spremann [1987], Baker [1992], and Prendergast [1999];

and for a general approach Shavell [1979], Holmström [1979], Grossman and Hart [1983], and Rees [1985].
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The optimal linear contract therefore solves

max
α,β,e

Π ≡ µte − α− βωte (8)

s.t.

e = arg max
ẽ
α+ βωtẽ −

1

2
ẽt

Ψẽ −
ρ

2
β2σ2 (9)

α+ βωte −
1

2
et

Ψe −
ρ

2
β2σ2 ≥ 0, (10)

where (9) is the agent’s incentive condition and (10) her participation constraint.

First, observe that (9) can be replaced by e = Ψ
−1ωβ. For the subsequent analysis, let

Γ ≡ Ψ
−1ω = (ω1/ψ1, ..., ωn/ψn)t be the vector of measure-cost sensitivity ratios. Thus, the

agent implements

e∗ = Γβ. (11)

In contrast to the first-best scenario, the agent’s effort ei for performing task i depends on the

measure-cost sensitivity ratio ωi/ψi and the incentive parameter β.

In order to maximize her expected profit, the principal sets α such that the agent’s partic-

ipation constraint is binding. By solving (10) for α and substituting the resulting expression

together with e∗ in the principal’s objective function (8), the maximization problem simplifies

to

max
β

Π ≡ µt
Γβ −

β2

2

[

ωt
Γ + ρσ2

]

. (12)

The first-derivative of Π with respect to β gives the optimal incentive parameter

β∗ =
µt

Γ

ωtΓ + ρσ2
. (13)

Besides the precision of the performance measure, 1/σ2, with the agent’s risk tolerance, 1/ρ,

the optimal incentive parameter is a function of the gross payoff sensitivities µ, the performance

measure sensitivities ω, and the measure-cost sensitivity ratios Γ. Recall that Γ = Ψ
−1ω, i.e.

Γ comprises the agent’s task-specific abilities Ψ. Hence, β∗ incorporates Ψ in two ways: (i)

by its relation to the gross payoff sensitivities µ in the numerator; and (ii), by its relation to

the performance measure sensitivities ω in the numerator and denominator. It can therefore be

inferred that agents with different task-specific abilities may obtain diverse incentive contracts,

even if they are in charge of performing an identical set of tasks and evaluated by the same

information system.
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Substituting β∗ in (12) and using geometric representations give the principal’s expected

second-best profit

Π∗ =
‖µ‖2‖Γ‖2 cos2 θ

2(‖ω‖‖Γ‖ cos ξ + ρσ2)
, (14)

where θ denotes the angle between the vector of payoff sensitivities µ and the vector of measure-

cost sensitivity ratios Γ. The angle between the vector of performance measure sensitivities ω

and vector Γ is denoted by ξ.

5 Performance Measure Congruity and Effort Distortion

In this section, I focus more intensively on performance measure congruity and its effect on

effort distortion if the agent performs different tasks with varying degrees of ease.

Performance measure congruity refers to the degree of alignment between the agent’s marginal

effect on her performance measure and on the expected gross payoff [Feltham and Xie, 1994].

Performance measure congruity can thus be characterized by the angle ϕ between the vector

of payoff sensitivities µ and the vector of performance measure sensitivities ω, as emphasized

by Baker [2002]. In contrast, effort distortion refers to the relation between an implemented

effort vector e and the vector of the payoff sensitivities µ. If the agent’s effort allocation re-

flects its relative contribution to V (e), her effort is non-distorted, see definition 2. However, as

shown in section 3, effort distortion is not necessarily inefficient. Even the first-best effort is

distorted if the agent has comparative advantages in performing some tasks relative to others.

Nevertheless, a distorted effort allocation is inefficient if it deviates from the one implemented

under first-best. The agent implements an efficient (first-best) effort allocation if there exists a

constant λ > 0 satisfying efb = λe∗. Recall that efb = Ψ
−1µ and e∗ = βΨ−1ω. This leads to

the first observation.

Corollary 1. Only a congruent performance measure with µ = λω, λ ∈ R
∗, leads to a first-

best effort allocation. If in addition ψi = ψ̂ > 0, i = 1, ..., n, the second-best effort vector e∗ is

non-distorted.

Observe that the first part of this corollary is independent of the agent’s task-specific abili-

ties. Consequently, I achieve the same observation as Feltham and Xie [1994] even for a more

general setting with task-specific abilities. If the applied performance measure is incongruent,
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we can infer that the agent is motivated to implement an inefficient effort allocation, regardless

of her characteristics. However, the extent of this inefficiency is determined by Ψ. Finally, iden-

tical task-specific abilities additionally lead to non-distorted effort if the applied performance

measure is congruent. The rationale for this observation is that identical abilities for performing

all relevant tasks imply that the agent’s preference for her effort allocation is only determined

by the relative contribution of her tasks to the performance measure. If this measure reflects the

agent’s relative contribution to firm value, i.e. it is congruent, she is motivated to implement

non-distorted effort.

As we know from previous literature, the principal can motivate the agent to implement any

desired effort intensity by providing an appropriate incentive parameter β. In contrast, the effort

allocation cannot be controlled by the principal, as long as the underlying information system

generates only one performance measure. It can be deduced from previous observations that Γ

plays an important role for the induced effort allocation.

Proposition 1. If ψk 6= ψj for at least one pair (k, j) ∈ {1, ..., n}, k 6= j, then ΥD(θ) = cos θ

measures effort distortion under second-best.

Proof See appendix.

Note that the measure ΥD(θ) is negatively related to effort distortion. The less distorted the

agent’s effort allocation with respect to µ is, the smaller is θ, and consequently, the higher is

ΥD(θ). If θ = 0, the application of performance measure P (e) motivates non-distorted effort.

Observe, however, that an incongruent performance measure induces non-distorted effort if

µ = λβΓ, λ ∈ R
∗, or equivalently,

ω = Ψµ (λβ)−1 . (15)

In this case, the performance measure sensitivities ω are a transformation of the agent’s marginal

contribution to gross payoff µ and her task-specific abilities Ψ. However, as pointed out by

corollary 1, a non-distorted effort allocation can only be optimal if P (e) is perfectly congruent

and the agent experiences identical abilities for performing all relevant tasks.

Suppose the available performance measure P (e) changes such that the agent is motivated

to implement a less distorted effort allocation. Formally, θ decreases. This implies, ceteris

paribus, a higher expected profit Π∗. Note, however, that there is a second effect on Π∗ captured

11



Figure 1: Performance Measure Congruity and Effort Distortion for n = 3

by ξ as the angle between ω and Γ. To illustrate this effect, we can re-formulate the agent’s

effort costs by substituting e∗:

C(·) =
1

2
β2‖ω‖‖Γ‖ cos ξ. (16)

The properties of the agent’s task-specific abilities affect her effort costs in two ways. The first

effect is a result of the effort cost intensity over all tasks. For illustrative purposes, assume that

the effort costs take the form C(e) = etλΨe/2 with λ > 0. Increasing λ implies that all tasks

become more costly to perform, thereby leading to a higher ‖Γ‖ without affecting cos ξ. The

second effect is caused by the relation between the performance measure sensitivities ω and the

agent’s task-specific abilities Ψ. The relative abilities across tasks thereby affect ‖Γ‖ and cos ξ.

Recall that ‖Γ‖ determines the effort intensity without affecting the allocation. In contrast, cos ξ

measures the agent’s effort costs (in utility terms) for a particular effort allocation motivated by

P (e).

Corollary 2. If ψk 6= ψj for at least one pair (k, j) ∈ {1, ..., n}, k 6= j, then ΥM/C(ξ) = cos ξ

characterizes the measure-cost efficiency.

The previous results are illustrated in figure 1 for the three-dimensional case (n = 3). Be-

sides the second-best effort vector e∗, it depicts the vectors of the gross payoff sensitivities µ,

performance measure sensitivities ω, and measure-cost sensitivity ratios Γ. The effort vector

e∗ has the same direction as Γ, only their lengths differ, depending on β. Observe that e∗ is

12



not necessarily on the plane spanned by µ and ω. The location of e∗ relative to µ character-

izes the induced effort distortion (angle θ), whereas the relation between µ and ω measures

the congruity of performance measure P (e) (angle ϕ). Finally, the measure-cost efficiency is

characterized by the relation of Γ to ω (angle ξ).

If vector µ and vector ω point in the same direction, then efb = λe∗, λ > 0, i.e. the

incentive contract motivates the agent to implement the first-best effort allocation, see corollary

1. Nevertheless, inducing a first-best effort intensity by adjusting β can only be optimal if the

agent is either risk-neutral or the performance measure is perfectly precise. Otherwise, the

principal imposes to much incentive risk on the agent which requires the payment of a higher

risk premium to ensure her participation.

Now consider the case where the agent has identical abilities for all tasks, i.e. ψi = ψ̂ > 0,

i = 1, ..., n. As a consequence, Γ = ω/ψ̂ so that vector Γ and vector ω point in the same

direction. This additionally implies that e∗ = ωβ/ψ̂ and ξ = 0. Thus, e∗ and ω are identical

with respect to their direction, only their lengths differ, depending on β and ψ̂. Accordingly,

the measure of congruity is now identical to the measure of distortion. This observation is

summarized and proofed by the subsequent proposition.

Proposition 2. If ψi = ψ̂ > 0, i = 1, ..., n, then ΥD(ϕ) = ΥC(ϕ) = cosϕ.

Proof See appendix.

If agents do not exhibit different task-specific abilities, performance measure congruity and

effort distortion are captured by the same measure. However, if we allow the agent to possess

different abilities across tasks, it becomes pivotal to distinguish between both concepts. The ap-

plication of incongruent performance measures in incentive contracts leads to inefficient effort

allocations, but the extent of these inefficiencies are further determined by the agent’s relative

abilities for performing the relevant tasks.

Consider again the expected second-best profit Π∗ from section 4. According to the pre-

vious observations, it depends on three elements: (i) the measure of distortion ΥD(θ) in the

numerator; (ii) the measure-cost efficiency ΥM/C(ξ) in the denominator; and (iii), the agent’s

risk aversion ρ in conjunction with the variance σ2 of the applied performance measure in the

denominator. It is common knowledge that the trade-off between incentive risk and the agent’s

desire for insurance affects optimal incentive contracts. Moreover, as demonstrated by Feltham
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and Xie [1994] and Baker [2002], incentive contracts in multi-task agency relations are adjusted

to the congruity of applied performance measures. However, the previous analysis indicates that

the measure-costs efficiency is a third crucial factor whenever the agent performs some tasks

more efficiently than others due to task-specific abilities.

6 Ranking Performance Measures

As Feltham and Xie [1994] emphasized, performance measures may differ with respect to their

congruity and precision. The previous analysis additionally indicates that task-specific abilities

play a crucial role for the contract efficiency. This section therefore focuses on how the attributes

of performance measures and agents eventually determine the relative value of measures in

multi-task agencies.

Consider a set P of m ≥ 2 performance measures Pi(e) = ωt
ie+ εi, with Pi(e) ∈ P ⊆ R

m

and εi ∼ N(0, σ2
i ).

11 To illustrate the relative value of individual performance measures, we

can compare the expected profits each of them would induce if applied in the agent’s incentive

contract. Then, performance measure Pk(e) is referred to be strictly superior, if it provides the

principal a strictly higher expected profit than all other available measures Pi(e) ∈ P, i 6= k.

Thus, I first ignore the value of combining several measures and defer the consideration of this

possibility to the next section.

For single-task agency relations, Kim and Suh [1991] have shown that the value of per-

formance measures can be compared by their respective signal/noise ratio. By adjusting their

definition to a multi-task agency setting, the signal/noise ratio of performance measures Pi(e)

is

Λi =
(∇Pi(e

∗))t (∇Pi(e
∗))

σ2
i

, (17)

where ∇Pi(e
∗) is the gradient of performance measure Pi(e) with respect to e. In single-task

agencies, performance measures with higher signal/noise ratios provide more precise informa-

tion about the implemented effort and are therefore preferred to measures with lower ratios. In

this multi-task setting, the signal/noise ratio of performance measures Pi(e) is

Λi =
‖ωi‖

2

σ2
i

. (18)

11Subscript i refers henceforth to performance measure Pi(e) ∈ P.
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One can infer from the previous analysis that signal/noise ratios are not necessarily sufficient

to rank performance measures in multi-task agencies, especially, when agents differ in their

task-specific abilities. This deduction is supported by the next proposition.

Proposition 3. Performance measure Pk(e) is strictly superior to any other performance mea-

sure Pj(e) ∈ P, j 6= k, if and only if,

‖ωk‖

‖Γk‖

ΥM/C(ξk)

(ΥD(θk))2
+

ρσ2
k

‖Γk‖2(ΥD(θk))2
<

‖ωj‖

‖Γj‖

ΥM/C(ξj)

(ΥD(θj))2
+

ρσ2
j

‖Γj‖2(ΥD(θj))2
, (19)

where ΥD(θi) is the measure of distortion induced by Pi(e), and ΥM/C(ξi) is the related quan-

tification for the measure-cost efficiency, i = {j, k}.

Proof Follows directly by rearranging Π∗(Pk(e)) > Π∗(Pj(e)) and substituting ΥM/C(ξi) =

cos ξi and ΥD(θi) = cos θi, i = k, j.

The value of a performance measure in comparison to any other measure is contingent

on two ratios: (i) the normalized ratio between the measure-cost efficiency ΥM/C(·) and the

induced effort distortion ΥD(·); and, (ii) the normalized inverse of the distortion measure ΥD(·)

with the precision 1/σ2
k of the performance measure and the agent’s risk tolerance 1/ρ. Observe

finally that performance measure congruity does not directly enter into this ranking criteria.

It, however, affects indirectly the measure of effort distortion ΥD(θi) and the measure-cost

efficiency characterized by ΥM/C(ξi).

In fact, the value of performance measures in multi-task agencies cannot necessarily be

compared by their respective signal/noise ratios. It is rather pivotal to take the induced effort

distortion and measure-cost efficiency into consideration—both determined by the performance

measure sensitivities ωi relative to the agent’s task specific abilities Ψ. Therefore, comparing

the value of performance measures requires specific knowledge about the agent’s character-

istics, which is not necessary for ranking performance measures in single-task agencies. In

multi-task agencies, however, the agent’s characteristics eventually determine the principal’s

preference for a specific information system.

Corollary 3. Suppose ψi = ψ̂ > 0, i = 1, ..., n. Then, performance measure Pk(e) is strictly

superior to any other performance measure Pj(e) ∈ P, j 6= k, if and only if,

1

ΥC(ϕk)

[

1 + ψ̂ρΛ−1

k

]
1

2

<
1

ΥC(ϕj)

[

1 + ψ̂ρΛ−1

j

]
1

2

, (20)
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where Λi, i = {j, k}, is the signal/noise ratio of performance measure Pi(e), and ΥC(ϕi) its

congruity measure.

Proof See appendix.

If the agent’s preference for an effort allocation depends only on the characteristics of her

performance evaluation since her abilities are identical for all tasks, we can use adjusted sig-

nal/noise ratios to rank performance measures in multi-task agencies. Nevertheless, it is still

required to know ψ̂ and ρ in order to assess the relative value of performance measures.

The subsequent proposition offers a sufficient condition ensuring that performance measures

can be ranked exclusively by their respective signal/noise ratios, and therefore, independent of

the agent’s characteristics.

Proposition 4. Suppose there exist constants λj 6= 0 satisfying ωi = λjωj for all i, j = 1, ...,m,

i 6= j. Then, performance measure Pk(e) is strictly superior to any other performance measure

Pj(e) ∈ P, j 6= k, if and only if, Λk > Λj .

Proof See appendix.

Accordingly, the signal/noise ratio is sufficient to rank performance measures in multi-task

agencies, if all measures provide the same information about the agent’s relative effort alloca-

tion. In this case, observe that ΥC(ϕi) = ΥC(ϕj), i, j = 1, ...,m, i.e. all performance mea-

sures share the same measure of congruity.12 As a consequence, every available performance

measure—if applied in the agent’s incentive contract—would imply the same effort distortion

and measure-cost efficiency. Then, their relative value is defined by their precision and scale,

which in turn is represented by their respective signal/noise ratio.

To investigate the effects of task-specific abilities on the ordering of performance measures,

it is insightful to eliminate effects related to their precision. By setting ρ = 0, condition (19)

simplifies to

ν
cos2 θk

cos2 θj

>
cos ξk
cos ξj

, ν =
‖ωj‖

‖ωk‖

‖Γk‖

‖Γj‖
. (21)

The value of performance measure Pk(e) relative to Pj(e) depends—besides on their precision

and scaling as previously emphasized—on their relative effort distortion (cos θi) and relative

12Note that the reversed inference cannot be made, i.e. if ΥC(ϕi) = ΥC(ϕj), it is not necessarily true that

ωi = λjωj , λj 6= 0, i, j = 1, ...,m, i 6= j. In this case, the signal/noise ratio is not sufficient to rank performance

measures in multi-task agencies.
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measure-cost efficiency (cos ξi) weighted by the multiplier ν, i = k, j. In order to make both

measures comparable, it is essential to normalize their scale ‖ωi‖, and exclude their effect on

‖Γi‖, i = k, j. Accordingly, if either the agent is risk-neutral or the realization of performance

measures is not influenced by random effects, the relative value of performance measures de-

pends on two factors: (i) the motivated effort allocation and its contribution to gross payoff

V (e); and, (ii) the imposed costs to motivate this effort allocation.

7 Multiple Performance Measures

Even though the consideration of single performance measures provides important insights into

incentive mechanisms when agents are placed in charge of several tasks, it is more reason-

able to assume that the principal has access to multiple performance measures, e.g. different

accounting numbers. If these additional measures are informative, they should be used to im-

prove incentive contracts [Holmström, 1979]. This section focuses on the optimal aggregation

of multiple performance measures, when the agent exhibits different task-specific abilities.

For the subsequent analysis, suppose an information system generates an m-dimensional

vector of performance measures P = (P1(e), ..., Pm(e))t, P ∈ R
m. Let Ξ = (ωt

1, ...,ω
t
m)t be

the m× n matrix of the respective performance measure sensitivities, where the n-dimensional

vector ωi summarizes the performance measure sensitivities of Pi(e). Accordingly, P can be

written as

P = Ξe + ε, (22)

where ε = (ε1, ..., εm)t is a normally distributedm-dimensional vector of random variables with

zero mean and covariance matrix Σ. Due to the more general characteristic of the subsequent

analysis, we can now relax our initial assumption with respect to Ψ and may assume that some

elements in Ψ beyond the diagonal are strictly positive or strictly negative, i.e. some activities

are complements or substitutes. In order to ensure that its inverse exists, Ψ is assumed to be a

positive definite matrix.

If the principal applies multiple performance measures in the agent’s incentive contract, her

certainty equivalent modifies to

CE(e) = α+ βt
Ξe −

1

2
et

Ψe −
ρ

2
βt

Σβ, (23)
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where β = (β1, ..., βm)t is an m-dimensional vector of incentive parameters and represents

the weight for each performance measure in the linear aggregation. Since the noise terms are

normally distributed, the linear aggregation of performance measures is optimal [Banker and

Datar, 1989].

The solution concept for deducing the optimal linear contract dependent on P is similar to

the one applied in section 4. First, the agent maximizes her certainty equivalent by choosing

e∗ = Ψ
−1

Ξ
tβ. (24)

The agent’s preference for an effort allocation depends on her task-specific abilities Ψ and the

marginal effect of each task on her aggregated performance evaluation Ξ
tβ. In contrast to the

single performance measure case, the principal can now influence the agent’s effort allocation

by adjusting the weight βi, thereby altering the agent’s marginal effect on her performance

evaluation.

The principal’s problem is to define a contract (α∗,β∗), dependent on P , which maximizes

her expected profit Π = E[V (e) − w(e)]. In order to minimize costs, it is optimal to set

α such that the agent’s participation constraint is binding. Solving CE(e) = 0 for α and

substituting this expression together with e∗ = Ψ
−1

Ξ
tβ in the principal’s objective function

yield an unconstrained maximization problem:

max
β

Π ≡ µt
Ψ

−1
Ξ

tβ −
1

2
βt

ΞΨ
−1

Ξ
tβ −

ρ

2
βt

Σβ. (25)

The first-order condition with respect to β leads to

β∗ =
[

ΞΨ
−1

Ξ
t + ρΣ

]

−1
ΞΨ

−1µ, (26)

where
[

ΞΨ
−1

Ξ
t + ρΣ

]

−1
is the inverse of an m × m matrix. We can infer from β∗ that

the objective of aggregating performance measures is to balance three effects: (i) the effort

distortion characterized by ΞΨ
−1µ, (ii) the measure-cost efficiency described by ΞΨ

−1
Ξ

t;

and (iii), the precision of the aggregated performance evaluation with the agent’s risk tolerance,

characterized by ρΣ.13 The more risk averse the agent is, the more important becomes the latter

13For a detailed analysis and discussion how performance measures are balanced in an aggregate, refer to Datar

et al. [2001]. However, since they do not consider different task-specific abilities, their observations are slightly

different in the sense that in their optimal aggregation the measure-cost efficiency does not play a role and therefore,

effort distortion is only affected by the performance measure congruity.
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effect for β. Since these three effects are also determined by the agent’s characteristics Ψ and

ρ, we can conclude that the optimal aggregation of information is tied to individual agents.

Roughly speaking, the principal tailors the aggregation of available performance measures to

the specific characteristics of agents.

As mentioned earlier, the principal can influence the agent’s effort allocation if she receives

more than one performance measure. Note, however, that this is only feasible if at least two

available measures do not contain the same information about the agent’s relative effort alloca-

tion. Formally, for at least two performance measures Pj(e), Pk(e) ∈ P there exists no constant

ϑ 6= 0 satisfying ωj = ϑωk, j 6= k. By combining these measures appropriately, the principal

can—besides mitigating the uncertainty in the aggregated measure—improve the agent’s effort

allocation.

Proposition 5. If there exist no constants ϑl 6= 0 satisfying ωk = ϑlωl, k 6= l, k, l ∈ {1, ...,m},

for at least h performance measures with n ≤ h ≤ m, the principal can aggregate these

measures such that the agent implements e∗ = λefb, 0 < λ ≤ 1. However, this is only optimal,

if and only if,

ρΣ = λ̂ ΞΨ
−1

Ξ
t, λ̂ =

1 − λ

λ
. (27)

Proof See appendix.

The first condition in proposition 5 emphasizes that the principal needs access to an infor-

mation system generating at least the same quantity of performance measures as number of

tasks the agent has to perform.14 Moreover, their sensitivity vectors are required to be linearly

independent, i.e. performance measures differ in their information content with respect to the

implemented effort allocation. If these two requirements are satisfied, the principal can com-

bine these measures appropriately in order to motivate the agent to implement the first-best

effort allocation. As the second condition in proposition 5 highlights, the aggregation of perfor-

mance measures with the purpose of motivating the first-best effort allocation is only optimal

if the covariance matrix Σ is a transformation of the measure-cost efficiency ΞΨ
−1

Ξ
t. In this

case, aggregating performance measures to exclusively motivate the first-best effort allocation

contemporaneously maximizes the precision of the aggregate, and consequently, minimizes the

14Note that this condition is sufficient, i.e. the principal can also induce a first-best effort allocation with less

performance measures if e.g. one measure is perfectly congruent.
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agent’s risk premium. However, the most important observation is that (27) is also tied to the

agent’s characteristics Ψ and ρ. If the principal can employ a ‘suitable’ agent for a given in-

formation system, the optimal incentive contract may eventually motivate the first-best effort

allocation.

Even though it might be optimal from the principal’s perspective to provide the agent with

incentives motivating the first-best effort allocation, it is not necessarily optimal that they con-

temporaneously induce a first-best effort intensity, as the next corollary to proposition 5 empha-

sizes.

Corollary 4. Suppose there exist no constants ϑl 6= 0 satisfying ωk = ϑlωl, k 6= l, k, l ∈

{1, ...,m}, for h performance measures with n ≤ h ≤ m. Then, it is optimal to induce efb, if

and only if, either ρ = 0 or Σ = [0]ij , i, j = 1, ...,m.

Proof See appendix.

Consequently, the optimal linear incentive contract motivates the agent to implement a first-

best effort allocation and intensity if two fundamental criteria are satisfied. First, the principal

has access to at least the same quantity of appropriate performance measures as quantity of

relevant tasks. These measures are required to provide different information about the imple-

mented effort allocation. Second, either all performance measures are perfectly precise (i.e.

noiseless) or the agent is risk-neutral. For single-task agencies, it is well known that the second

criteria is sufficient to achieve first-best if the agent is not financially constrained. Multi-task

agencies, however, impose additional requirements on the information system with respect to

the characteristics and quantity of generated performance measures. In particular, the principal

needs access to an information system which can be adjusted such that it reflects the agent’s

multidimensional contribution to gross payoff. Then, the principal can motivate the agent to

conduct an efficient effort allocation by providing her congruent incentives.

8 Adverse Selection

The preceding analyzes indicates that the properties of the agent’s task-specific abilities play a

crucial role for the design of incentive contracts and the value of employing particular agents.

This offers the principal sufficient latitude to enhance her expected profit by applying adverse
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selection mechanisms aimed at choosing the ‘most appropriate’ agent for a given information

system and set of tasks. The objective of this section is a brief illustration of adverse selection in

multi-task agencies, when agents differ with respect to their task-specific abilities. The focus is

thereby on the characteristics of the most beneficial type from the principal’s perspective, rather

than on the mechanism design itself.15

Suppose there exists a non-empty set of agents A. Each agent i ∈ A is characterized by her

individual task-specific abilities Ψi and risk tolerance 1/ρi. For simplicity, each agent knows

her own type prior to signing the contract. The respective types are exogenous and do not change

over time. The principal, however, can neither observe the agents’ types nor does she receive

any signals indicating the respective types, but she knows the distribution of available types in

the economy. Accordingly, she can adjust the incentive contract such that only a desired type

accepts, whereas less preferred types refuse. Precisely speaking, the principal sets the contract

parameters α and β such that the participation constraint for a superior type ti(Ψi, ρi), i ∈ A,

is binding, and violated for all less valuable types j ∈ A, j 6= i. Suppose the principal wants to

employ a type i and the corresponding incentive contract would also ensure the participation of

another type k, with i, k ∈ A. Then, two cases are possible. First, k’s participation constraint is

also binding, thereby implying k’s employment as equally valuable as i’s from the principal’s

perspective. Second, k’s participation constraint is not binding so that she could extract an

economic rent. If this is the case, we can infer that the employment of k is strictly superior and

the principal is better off by tailoring the incentive contract to her characteristics.

Recall that the optimal linear incentive contract derived in section 7 implies that the partici-

pation constraint for a given type is binding. Thus, from an analytical perspective, it is sufficient

to compare the expected profits induced by each available type in order to identify the ‘most

appropriate’ one. A type t̂(Ψ̂, ρ̂) is therefore superior from the principal’s perspective if her

employment guarantees the highest of all feasible expected profits. Formally,

t̂(Ψ̂, ρ̂) → Π(Ψ̂, ρ̂) = max {Π(Ψi, ρi)}i∈A
. (28)

Consequently, the principal tailors the incentive contract to her characteristics and provides the

agent with (α(Ψ̂, ρ̂),β(Ψ̂, ρ̂)). Using the results from section 7, the problem can be formulated

15For adverse selection models refer e.g. to Salanié [1997] and Bolton and Dewatripont [2005], and the ref-

erences therein. For adverse selection in a multi-task agency setting where agents’ talents also affect their effort

costs, see Moen and Rosen [2001].
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as

t̂(Ψ̂, ρ̂) → Π(Ψ̂, ρ̂) = max

{

1

2
µt

Ψ
−1

i Ξ
t
[

ΞΨ
−1

i Ξ
t + ρiΣ

]

−1
ΞΨ

−1

i µ

}

i∈A

. (29)

Identifying the superior type is not trivial since this condition depends on specific matrix prod-

ucts and the inverse of an m×m matrix. Nevertheless, the next proposition summarizes some

inferences about the superior type satisfying (29).

Proposition 6. Suppose there exists a non-empty set of agents A, each of them characterized

by ti(Ψi, ρi), i ∈ A. Then, the superior type t̂(Ψ̂, ρ̂) balances the following effects in the most

efficient way:

(i): The measure-cost efficiency effect characterized by ΞΨ
−1

i Ξ
t,

(ii): The distortion effect characterized by µt
Ψ

−1

i Ξ
t and its transpose,

(iii): The risk effect characterized by ρiΣ.

In principle, the value of particular agents depends—besides on their task-specific abilities

and risk-aversion—on the subsequent job characteristics: (i) the number and properties of per-

formance measures generated by an information system; and (ii), the relative contribution of all

tasks to gross payoff. To exemplify the latter job characteristic, recall that µt
Ψ

−1

i Ξ
t emphasizes

the effort distortion as a result of the information congruity relative to the agent’s task-specific

abilities Ψi. Consider for instance two organizations k and l with identical information sys-

tems. They have different preferences for agents if there exists no constant λ 6= 0 satisfying

µk = λµl. Otherwise, k’s gross payoff function is (possibly) differently scaled than l’s without

affecting the induced effort distortion. In this case, the distortion effect is identical for both

organizations, which leads to identical preferences for specific types.16

The relation between these emphasized effects provides two main implications for the se-

lection of agents. First, organizations, or subunits, with different information systems may

prefer different types, even if their gross payoff functions are identical. This observation fol-

lows directly from the distortion effect, measure-cost efficiency effect and risk effect. Second,

organizations, or subunits, with different gross payoff functions may choose different types,

even if they have access to identical information systems. This is implied by the distortion

16Note that the same inference about two information systems characterized by Ξk = λΞl, λ 6= 0, cannot be

made. This is due to their respective scale and its effect on the precision of the information system relative to the

information content.
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effect. Generally speaking, the individual value of available agents can only be assessed with

respect to the corresponding job characteristics: (i) the relevant tasks and their contribution

to firm’s outcome; and (ii), the precision and congruity of the available information system.

For illustrative purposes, consider for instance a manager and a worker sharing for simplicity

the same risk tolerance. Due to prior learning experiences, the manager is assumed to exhibit

relative higher abilities in performing administrative tasks than in conducting manufacturing

related tasks. For the worker, however, the reversed relation is assumed. Now, who is superior

from a firm’s perspective? As previously emphasized, this cannot be assessed without consid-

ering the particular job characteristics. The manager is superior for jobs consisting primarily of

administrative tasks, whereas it is efficient to employ the worker for manufacturing goods. As

a result, both individuals are allocated to different jobs and obtain various incentive contracts

tailored to their respective abilities and performance measurement. Now suppose it is desirable

from the principal’s perspective to employ two managers A and B characterized by the same

risk tolerance. Assume that manager A exhibits a higher relative ability in performing adminis-

trative tasks than manager B, but the latter one can supervise her subordinates more effectively.

The previous results indicate that the principal tailors the incentive contracts to their respective

abilities. As a consequence, both managers receive different incentive contracts, even though

they are in charge of performing identical tasks.

Proposition 7. Let T ⊆ A be the set of superior types. Then, T ⊆ A can contain various

types with tk(Ψk, ρk) 6= tl(Ψl, ρl), k, l ∈ T ⊆ A, k 6= l. Nevertheless, it is possible that

(α∗(Ψk, ρk),β
∗(Ψk, ρk)) = (α∗(Ψl, ρl),β

∗(Ψl, ρl)), k, l ∈ T ⊆ A.

Proof See appendix.

This result highlights that the principal does not necessarily strictly prefer identical types

of agents. That is, a type k can be equally valuable for the principal as type l, even though

tk(Ψk, ρk) 6= tl(Ψl, ρl), k, l ∈ T ⊆ A, k 6= l. Indifference between different types of agents

requires that some of them have a comparative disadvantage in one or two of the three dimen-

sions emphasized by proposition 6, which is perfectly countervailed by a comparative advantage

in the remaining dimension(s). To exemplify the second result emphasized by proposition 7,

suppose the principal wants to employ several agents for jobs with identical characteristics.

Then, the eventually employed agents are not necessarily identical, even though their jobs are
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similar. In any case, however, it is optimal to tailor their respective incentive contract to their

individual characteristics. In general, one can expect to observe different contracts for various

types of agents. Nonetheless, it is also possible that different agents receive identical incentive

contracts.

9 Conclusion

Applying incongruent performance measures in incentive contracts motivates agents to imple-

ment an inefficient effort allocation across relevant tasks. This paper incorporates task-specific

abilities in a multi-task agency framework and investigates their effects on the provision of in-

centives. As demonstrated, task-specific abilities determine the efficiency of the agent’s effort

allocation and play an important role for the contractual design.

When the principal applies incongruent and noisy performance measures in incentive con-

tracts, the agent’s effort choice deviates from first-best with respect to two dimensions. First,

as well known, the optimal incentive contract induces a suboptimal effort intensity due to the

agent’s desire for insurance. Second, the agent chooses an inefficient effort allocation if the

performance measure does not reflect her contribution to gross payoff. The extent of the latter

inefficiency, however, depends on the agent’s task-specific abilities relative to the performance

measure congruity. As a result, incentive contracts are tailored to the agent’s abilities and, par-

ticularly, depend on three factors: (i) the inefficiency of effort distortion as a result of applying

incongruent performance measures in incentive contracts, relative to the agent’s task-specific

abilities (distortion effect), (ii) the agent’s effort costs associated with the motivated effort al-

location (measure-cost efficiency); and (iii), the precision of the information system with the

agent’s risk-aversion (risk effect).

This paper further proposes a ranking criteria for performance measures in multi-task agen-

cies. One important observation is that the signal/noise ratio, commonly used to assess perfor-

mance measures in single-task agencies, is not a sufficient ranking criteria in multi-task agen-

cies. The relative value of performance measures depends—besides on their precision—on

their congruity relative to the agent’s task-specific abilities, thereby implying that their ranking

is tied to the agent’s characteristics. The same is true for the optimal aggregation of multiple

performance measures. As further illustrated, the principal can motivate the agent to implement
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a first-best effort allocation if she has access to a sufficient quantity of appropriate performance

measures. However, this is only optimal if the efficient aggregation maximizes the precision of

the information system while motivating the (agent-specific) first-best effort allocation.

The characteristics of agents, particularly their task-specific human capital, do not only af-

fect their performance evaluation and incentive contracts, they also determine the benefit of their

employment from the principal’s perspective. It is consequently in the principal’s interest to ap-

ply adverse selection mechanisms to guarantee the employment of the most valuable agent. As

shown, the best available type of agent balances three effects most efficiently: (i) the distortion

effect, (ii) the measure-cost efficiency effect; and (iii), the risk effect. Due to the characteristics

of these effects, the value of individual agents is linked to the respective set of tasks the agent

is in charge of, and attributes of the information system. Different agents, however, may be

equally valuable, but may, nonetheless, receive different incentive contracts. Generally speak-

ing, task-specific abilities and the properties of information systems can explain why different

agents are allocated to various jobs; or why they receive different incentive contracts, even if

their jobs are identical.

This paper is part of a larger research agenda. Previous multi-task literature focused pri-

marily on performance measure congruity and its effect on incentive contracts. As this paper

illustrates, we can shed more light on the nature of incentive contracts in multi-task agency

relations, when we keep in mind that agents may differ in their skills and abilities to perform

particular tasks. I believe it is substantial to further explore the effects of task-specific human

capital on incentive contracts and the optimal selection of agents. In particular, if task-specific

abilities change over time due to work experience, and the principal cannot precisely observe

this mutation, she will update her beliefs about the individual abilities in accordance to the

agent’s prior performances. Such framework could contribute to our understanding of the dy-

namics of incentive contracts. However, I leave these fascinating issues for future research.
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10 Appendix

Proof of Proposition 1.

Effort distortion refers to the relation of e∗ to µ and can be therefore measured by the vector

product µte∗. Since e∗ = Γβ,

µte = β
n

∑

i=1

µiΓi = β‖µ‖‖Γ‖ cos θ. (30)

First note that ‖µ‖ does not affect the relative importance of tasks for V (e). Furthermore, β‖Γ‖

determines the lengths of vector e∗, but not its direction in the n-dimensional space. The length

is arbitrary in the sense that it can be adjusted by β. Consequently, ΥD(θ) = cos θ ∈ [0, 1]

measures the induced effort distortion under second-best.

Q.E.D.

Proof of Proposition 2.

To measure effort distortion, we can use the vector product µte∗. If ψi = ψ̂ > 0, i = 1, ..., n,

then e∗ = βω/ψ̂. This leads to

µte =
β

ψ̂

n
∑

i=1

µiωi =
β

ψ̂
‖µ‖‖ω‖ cosϕ. (31)

Again, ‖µ‖ does not affect the relative importance of tasks for V (e), and β‖ω‖ determines

the lengths of vector e∗ but not its direction in the n-dimensional space. Thus, ῩD(ϕ) =

cosϕ ∈ [0, 1] measures distortion under second-best if ψi = ψ̂ > 0, i = 1, ..., n. Consequently,

ῩD(ϕ) = ΥC(ϕ).

Q.E.D.

Proof of Corollary 3.

If ψi = ψ̂ > 0, i = 1, ..., n, then Γi = ωi/ψ̂ and ‖Γi‖ = ‖ωi‖/ψ̂, i = {j, k}. Consequently,

ΥM/C(ξ = 0) = 1 and ῩD(ϕi) = ΥC(ϕi), see proposition 2. By substituting Λi = ‖ωi‖
2/σ2

i ,

i = {j, k}, the ranking criteria of proposition 3 can be reformulated to the one stated in the

corollary.

Q.E.D.
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Proof of Proposition 4.

Observe first that the expected profit on the basis of Pi(e) can be written as

Π∗ =
(µt

Γi)
2

2(ωt
iΓi + ρσ2

i )
. (32)

Recall that Γi = Ψ
−1ωi. Consequently, performance measure Pk(e) is strictly superior to any

other performance measure Pj(e) ∈ P, ∀j 6= k, if and only if,

(

µt
Ψ

−1ωk

)2

2(ωt
kΨ

−1ωk + ρσ2
k)
>

(

µt
Ψ

−1ωj

)2

2(ωt
jΨ

−1ωj + ρσ2
j )
. (33)

If ωk = λωj , we can re-scale Pj(e) such that it is characterized by the same sensitivity in e as

Pk(e). Accordingly,

P̄j(e) = ωt
je +

εj

λ
, (34)

where Var
[

P̄j(e)
]

= σ2
jλ

−2. Let ω ≡ ωi, i = j, k. This leads to

(

µt
Ψ

−1ω
)2

2(ωtΨ
−1ω + ρσ2

k)
>

(

µt
Ψ

−1ω
)2

2(ωtΨ
−1ω + ρσ2

jλ
−2)

, (35)

which can be re-arranged to

1

σ2
k

>
λ2

σ2
j

. (36)

Recall that after re-scaling, ωk = ωj . Thus, (36) can be written as

‖ωk‖
2

σ2
k

>
λ2‖ωj‖

2

σ2
j

, (37)

which is identical to Λk > Λj .

Q.E.D.

Proof of Proposition 5.

The agent implements the first-best effort allocation, if e∗ = λefb. Note, however, that 0 < λ ≤

1 since it cannot be optimal to induce a higher effort intensity under second-best than under first-

best. Therefore, β needs to solve Ψ
−1

Ξ
tβ = λΨ−1µ, which is equivalent to Ξ

tβ = λµ. If

rankΞ
t ≥ n, there exists at least one solution of this equation system. In particular, h columns

in Ξ
t, n ≤ h ≤ m, must be linearly independent. Consequently, rankΞ

t ≥ n, if there exist no

constants ϑl 6= 0 satisfying ωk = ϑlωl, k, l ∈ {1, ...,m}, k 6= l, for h performance measures

with n ≤ h ≤ m.
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Inducing a first-best effort allocation is only optimal if e(β∗) = λefb. This particulary requires

that Ξtβ∗ = λµ, or equivalently, β∗ = λ
[

Ξ
t
]

−1
µ. Substituting β∗ gives

[

ΞΨ
−1

Ξ
t + ρΣ

]

−1
ΞΨ

−1µ = λ
[

Ξ
t
]

−1
µ (38)

ΞΨ
−1 = λ

[

ΞΨ
−1

Ξ
t + ρΣ

] [

Ξ
t
]

−1
(39)

ΞΨ
−1 = λΞΨ

−1
Ξ

t
[

Ξ
t
]

−1
+ λρΣ

[

Ξ
t
]

−1
(40)

(1 − λ) ΞΨ
−1 = λρΣ

[

Ξ
t
]

−1
, (41)

which is equivalent to

ρΣ =
1 − λ

λ
ΞΨ

−1
Ξ

t. (42)

Q.E.D.

Proof of Proposition 7.

Suppose a type t̂(Ψ̂, ρ̂) satisfies (29). Assume further that there exists another type ti(Ψi, ρi)

satisfying Π(Ψ̂, ρ̂) = Π(Ψi, ρi). This implies

µt
Ψ̂

−1

Ξ
t
[

ΞΨ̂
−1

Ξ
t + ρ̂Σ

]

−1

ΞΨ̂
−1

µ = µt
Ψ

−1

i Ξ
t
[

ΞΨ
−1

i Ξ
t + ρiΣ

]

−1
ΞΨ

−1

i µ. (43)

We know that t̂(Ψ̂, ρ̂) is exogenous but we can treat agent i’s characteristics ti(Ψi, ρi) as en-

dogenous in order to show that there can be several types satisfying (43). Accordingly, we have

an equation with n + 1 independent variables. Thus, depending on the parameter values, there

can be several types satisfying (43).

Finally observe that different types generally lead to different incentive contracts. However, to

proof that (α∗(Ψk, ρk),β
∗(Ψk, ρk)) 6= (α∗(Ψl, ρl),β

∗(Ψl, ρl)) is not always true, even though

tk(Ψk, ρk) 6= tl(Ψl, ρl), k, l ∈ T ⊆ A, k 6= l, I subsequently provide a counter exam-

ple. Suppose the principal receives one performance measure P (e). Assume that two types

tk(Ψk, ρk) 6= tl(Ψl, ρl), k, l ∈ T ⊆ A, k 6= l, satisfy (29), and they do not exhibit cost sub-

stitutes or complements, thereby implying that Ψl and Ψk are diagonal matrices. The optimal

incentive parameters β∗

k and β∗

l for agent k and agent l, respectively, are

β∗

k =

n
∑

i=1

µiωi

ψki

n
∑

i=1

ωiωi

ψki

+ ρkσ
2

β∗

l =

n
∑

i=1

µiωi

ψli

n
∑

i=1

ωiωi

ψli

+ ρlσ
2

,
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where ψji denotes agent j’s task-specific ability with respect to task i, j = k, l. Observe that

β∗

k = β∗

l , if e.g. n = 2, µ1 = µ2, ω1 = ω2 and both agents are further characterized by

ρk = ρl and ψk1 = ψl2 and ψk2 = ψl1, k 6= l. Since β∗

k = β∗

l and ρk = ρl, the risk premium

is identical for both agents. Although each agent implements a different effort allocation with

e∗

k = (ω1β
∗

k/ψk1, ω2β
∗

k/ψk2)
t and e∗

l = (ω1β
∗

l /ψl1, ω2β
∗

l /ψl2)
t, observe that C(e∗

k) = C(e∗

l )

since e∗k1
= e∗l2 and e∗k2

= e∗l1. As a result, α∗(Ψk, ρk) = α∗(Ψl, ρl). If this is possible for

a single performance measure and two-dimensional effort, it can be also the case for multiple

measures and n > 2. Hence, even though two types tk(Ψk, ρk) 6= tl(Ψl, ρl) satisfy condition

(29), it can be true that (α∗(Ψk, ρk),β
∗(Ψk, ρk)) = (α∗(Ψl, ρl),β

∗(Ψl, ρl)), k, l ∈ T ⊆ A.

Q.E.D.

29



References

Anthony, R. N. and V. Govindarajan (1995). Management Control Systems (eight ed.). Richard

D. Irwin, Inc.

Asch, B. J. (1990). Do incentives matter? the case of navy recruiters. Industrial & Labor

Relations Review 43(3), 89–106.

Baker, G. (1992). Incentive contracts and performance measurement. Journal of Political

Economy 100(3), 598–614.

Baker, G. (2000). The use of performance measures in incentive contracting. American Eco-

nomic Review 90(2), 415–420.

Baker, G. (2002). Distortion and risk in optimal incentive contracts. Journal of Human Re-

sources 37(4), 728–751.

Baker, G., M. Gibbs, and B. Holmström (1994). The internal economics of the firm: Evidence

from personnel data. Quarterly Journal of Economics 109(4), 881–919.

Banker, R. D. and S. M. Datar (1989). Sensitivity, precision, and linear aggregation of signals

for performance evaluation. Journal of Accounting Research 27(1), 21–39.

Banker, R. D. and A. Thevaranjan (2000). Goal congruence and evaluation of performance

measures. Working Paper, University of Texas at Dallas.

Bolton, P. and M. Dewatripont (2005). Contract Theory. Cambridge/Massachusetts, Lon-

don/England: The MIT Press.

Brickley, J. A. and J. L. Zimmerman (2001). Changing incentives in a multitask environment:

Evidence from a top-tier business school. Journal of Corporate Finance 7, 367–396.

Bushman, R. M., R. J. Indjejikian, and M. C. Penno (2000). Private predecision information,

performance measure congruity, and the value of delegation. Contemporary Accounting Re-

search 17(4), 561–587.

Corts, K. S. (2005). Teams vs. individual accountability: Solving multi-task problems through

job design. Working Paper, Univerity of Toronto.

Datar, S., S. C. Kulp, and R. A. Lambert (2001). Balancing performance measures. Journal of

Accounting Research 39(1), 75–92.

Feltham, G. A. and J. Xie (1994). Performance measure congruity and diversity in multi-task

principal/agent relations. Accounting Review 69(3), 429–453.

Gibbons, R. (1998). Incentives in organizations. Journal of Economic Perspectives 12(4), 115–

132.

Gibbons, R. and M. Waldman (1999). A theory of wage and promotion dynamics inside firms.

Quarterly Journal of Economics 114(4), 1321–1358.

30



Gibbons, R. and M. Waldman (2003). Enriching a theory of wage and promotion dynamics

inside firms. MIT Sloan School of Management Working Paper 4324-03.

Gibbons, R. and M. Waldman (2004). Task-specific human capital. American Economic Re-

view 94(2), 203–207.

Grossman, S. J. and O. D. Hart (1983). An analysis of the principal-agent problem. Economet-

rica 51(1), 7–46.

Holmström, B. (1979). Moral hazard and observability. Bell Journal of Economics 10(1),

74–91.

Holmström, B. and P. Milgrom (1991). Multitask principal-agent analyses: Incentives contracts,

asset ownership, and job design. Journal of Law, Economics and Organization 7, 24–52.

Hughes, J. S., L. Zhang, and J. Xie (2005). Production externalities, congruity of aggregate

signals, and optimal task assignments. Contemporary Accounting Research 22(2), 393–408.

Kerr, S. (1975). On the folly of rewarding a, while hoping for b. Academy of Management

Journal 18(4), 769–783.

Kim, S. K. and Y. S. Suh (1991). Ranking of accounting information systems for management

control. Journal of Accounting Research 29(2), 386–396.

Lazear, E. P. (2000a). Performance pay and productivity. American Economic Review 90(5),

1346–1361.

Lazear, E. P. (2000b). The power of incentives. American Economic Review 90(2), 410–414.

Lindbeck, A. and D. J. Snower (2000). Multitask learning and the reorganization of work: From

tayloristic to holistic organization. Journal of Labor Economics 18(3), 353–376.

MacLeod, W. B. (1996). Complexity, contract and the employment relationship. Boston College

Working Papers in Economics, No 342.

Maher, M. W., K. V. Ramanathan, and R. B. Peterson (1979). Preference congruence, in-

formation accuracy, and employee performance: A field study. Journal of Accouting Re-

search 17(2), 476–503.

Moen, E. R. and . Rosen (2001). Performance pay and adverse selection. Working Paper.

Paarsch, H. J. and B. S. Shearer (1999). The response of worker effort to piece rates: Evidence

from the british columbia tree-planting industry. Journal of Human Resources 34(4), 643–

667.

Prendergast, C. (1999). The provision of incentives in firms. Journal of Economic Litera-

ture 37(1), 7–63.

Rees, R. (1985). The theory of principal and agent part i. Bulletin of Economic Research 37(1),

3–26.

31



Salanié, B. (1997). The Economics of Contracts. Cambridge/Massachusetts, London/England:

The MIT Press.

Sapienza, H. J. and A. K. Gupta (1994). Impact of agency risks and task uncertainty on venture

capitalist-ceo interaction. Academy of Management Journal 37(6), 1618–1632.

Schnedler, W. (2003). On the prudence of rewarding a, while hoping for b. IZA Discussion

Papers 765, Institute for the Study of Labor (IZA).

Schöttner, A. (2005). Relational contracts and job design. Working Paper Humboldt-University

Berlin.

Shavell, S. (1979). Risk sharing and incentives in the principal and agent relationship. Bell

Journal of Economics 10(1), 55–73.

Spremann, K. (1987). Agent and principal. In G. Bamberg and K. Spremann (Eds.), Agency

Theory, Information, and Incentives, Berlin et al., pp. 3 – 37.

32


