Ikeda, Kiyohiro and Murota, Kazuo and Takayama, Yuki and Kamei, Motohiro (2016): Group-theoretic spectrum analysis of hexagonal city distributions in Southern Germany and Eastern USA.

Preview |
PDF
MPRA_paper_74567.pdf Download (7MB) | Preview |
Abstract
Hexagonal distributions of cities of various sizes in Southern Germany are envisaged in central place theory. Yet scientific verification of this theory has been lacking. To scientifically support this theory, we propose a group-theoretic double Fourier spectrum analysis procedure that can detect geometrical patterns in population distributions of cities. In addition to hexagonal patterns in the theory, we propose megalopolis patterns. Using this procedure, strong power spectra for megalopolis patterns were detected for population data in Southern Germany. Moreover, a gigantic hexagonal distribution of cities in Eastern USA was found to be an assemblage of megalopolis and hexagonal patterns. The amazing geometrical regularity of this distribution manifests the existence of these patterns in the real world, thereby underpinning central place theory.
Item Type: | MPRA Paper |
---|---|
Original Title: | Group-theoretic spectrum analysis of hexagonal city distributions in Southern Germany and Eastern USA |
Language: | English |
Keywords: | central place theory,group-theoretic bifurction theory, hexagonal patterns |
Subjects: | R - Urban, Rural, Regional, Real Estate, and Transportation Economics > R0 - General > R00 - General |
Item ID: | 74567 |
Depositing User: | Kiyohiro Ikeda |
Date Deposited: | 17 Oct 2016 13:26 |
Last Modified: | 03 Oct 2019 13:55 |
References: | N. S. Wigginton, J. Fahrenkamp-Uppenbrink, B. Wible, and D. Malakoff, Cities are the future. Science 352, 904 (2016). J. E. Cohen, How many people can the Earth support? (Norton, New York, 1995); Human population: The next half century. Science 302, 1172-1175 (2003). G. K. Zipf, Human Behavior and the Principle of Least Effort (Addison Wesley, Cambridge, MA, 1949). M. Marsili and Yi--C. Zhang, Interacting Individuals Leading to Zipf's Law Phys. Rev. Lett. 80, 2741 (1998). X. Gabaix, Zipf's law for cities: An explanation, The Quarterly Journal of Economics 114(3) (1999) 739-767. T. Mori and T. E. Smith, An industrial agglomeration approach to central place and city size regularities. Journal of Regional Science 51(4) 694--731 (2011). A. Ghosh, A. Chatterjee, A. S. Chakrabarti, and B. K. Chakrabarti, Zipf's law in city size from a resource utilization model Phys. Rev. E 90, 042815 (2014). W. Christaller, Die zentralen Orte in Suddeutschland} (Gustav Fischer, Jena,1933). English translation: Central Places in Southern Germany (Prentice Hall, Englewood Cliffs, 1966). L. M. A. Bettencourt, The origins of scaling in cities. Science 340(6139) 1438-1441 (2013). M. Batty, The size, scale, and shape of cities. Science 319, 769-771 (2008); A theory of city size. Science 340(6139) 1418-1419 (2013); The New Science of Cities (MIT Press, Cambridge, 2013). M. Batty and P. Longley, Fractal Cities (Academic Press, San Diego, 1994). S. Goh, M. Y. Choi, K. Lee, and K.--m. Kim, How complexity emerges in urban systems: Theory of urban morphology Phys. Rev. E 93, 052309 (2016). H. A. Makse, S. Havlin, and H. E. Stanley, Modelling urban growth patterns. Nature 377, 608-612 (1995). H. A. Makse, J. S. Andrade, Jr., M. Batty, S. Havlin, and H. E. Stanley, Modeling urban growth patterns with correlated percolation, Phys. Rev. E 58, 7054-7062 (1998). L. Benguigui, A new aggregation model. Application to town growth, Phys. A 219, 13-26 (1995). D. H. Zanette and S. C. Manrubia, Role of intermittency in urban development: A model of large-scale city formation, {Phys. Rev. Lett.} 79, 523-526 (1997). C. Andersson, K. Lindgren, S. Rasmussen, and R. White, Urban growth simulation from "first principles," Phys. Rev. E 66 026204 (2002). M. Munz and W. Weidlich, Settlement formation, Part II: Numerical simulation, Annals Reg. Sci. 24, 177-196 (1990). W. Weidlich, Sociodynamics (Dover, Mineola, New York, 2000). J. V. Henderson, Urban Development: Theory, Fact, and Illusion (Oxford University Press, Oxford, 1988). M. Fujita, P. Krugman, and A. J. Venables, The Spatial Economy: Cities, Regions, and International Trade (MIT Press, Cambridge, 1999) M. Fujita, P. Krugman, and T. Mori, On the evolution of hierarchical urban systems. Euro. Econ. Rev. 43, 209-251 (1999). R. Louf and M. Barthelemy, Phys. Rev. Lett. 111, 198702 (2013). A. Losch, Die raumliche Ordnung der Wirtschaft (Gustav Fischer, Jena, 1940). T. Tabuchi and J.-F. Thisse, A new economic geography model of central places. J. Urban Econ. 69, 240 (2011). K. Ikeda, K. Murota, and T. Akamatsu, Self-organization of Losch's hexagons in economic agglomeration for core--periphery models, Int. J. Bifurcation Chaos 22, 1230026-1 (2012). K. Ikeda, K. Murota, T. Akamatsu, T. Kono, and Y. Takayama, Self-organization of hexagonal agglomeration patterns in new economic geography models. J. Econ. Behavior Organization 99, 32-52 (2014). K. Ikeda and K. Murota, Bifurcation Theory for Hexagonal Agglomeration in Economic Geography (Springer-Verlag, Tokyo, 2014). K. Kirchgassner, Exotische Losungen Benardschen Problems, Math. Meth. Appl. Sci. 1, 453-467 (1979). E. Buzano and M. Golubitsky, Bifurcation on the hexagonal lattice and the planar Benard problem. Phil. Trans. R. Soc. A 308, 617 (1983). M. Golubitsky, I. Stewart, and D. G. Schaeffer, Singularities and Groups in Bifurcation Theory, Vol. 2 (Springer-Verlag, New York, 1988). M. Golubitsky and I. Stewart, The Symmetry Perspective (Birkhauser, Basel, 2002). NASA Earth Observatory: http://earthobservatory. nasa.gov/NaturalHazards/view.php?id=79800 E. L. Koschmieder, Benard Cells and Taylor Vortices (Cambridge University Press, Cambridge, 1993). I. Stewart and M. Golubitsky, Fearful Symmetry: Is God a Geometer? (Blackwell, Oxford, 1992). |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/74567 |
Available Versions of this Item
- Group-theoretic spectrum analysis of hexagonal city distributions in Southern Germany and Eastern USA. (deposited 17 Oct 2016 13:26) [Currently Displayed]