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Abstract

A fiscal rule controlling the government surplus as a function of the deviation of
the actual debt ratio from a target level is introduced in an otherwise benchmark
endogenous growth model in which productive government expenditures are financed by
taxes and government debt. This generates a feedback mechanism from the government
debt ratio to expenditure that can generate impasse-singular dynamics, in the sense
that rates of growth can become locally infinitely valued. We characterize locally the
different impasse-singular dynamics that can exist and discuss their consequences for
the existence and characterization of general equilibrium endogenous growth paths, for
different parameterizations of the fiscal rule. We present some consequences of impasse-
singular dynamics generated by particular fiscal rules, which are not present in regular
models: existence of multiple overdeterminate balanced growth paths (BGP), existence
of constraints in the domain of existence of determinate equilibrium paths converging
to a regular BGP, and the existence of singular BGP’s.
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1 Introduction

Within different contexts, and with several justifications, there is a widespread adoption of
fiscal rules (see Kinda et al. (2013) for a survey) introducing targets on the primary surplus,
on the government debt relative to GDP, or both. Rules can be explicit or implicit. A
clear example of the first type are the rules agreed upon within the Treaty on Stability,
Coordination and Governance in the Economic and Monetary Union, in the chapter known
as the Fiscal Compact, that bind the fiscal policy of most members of the European Union.
There is also empirical evidence that there are fiscal reaction functions relating the primary
surplus to the level of debt, even for countries as the U.S whose fiscal policy is not bound
by international treaties (see Bohn (1998, 2008) and Ghosh et al. (2013)).

Budget rules, both in the form of a budget balance or of any other form of fiscal tar-
get, endogenize one or more fiscal policy instruments and introduce a feedback mechanism
relating government expenditures or taxes to the level of government debt.

In the macroeconomic theory literature the case which has been more studied is related
to the consequences of budget balance rules over transition dynamics. Papers in this strand
of literature (see Schmitt-Grohe and Uribe (1997), or a recent contribution Nishimura et al.
(2015)), find that a budget balance rule can be destabilizing and a source of (permanent)
indeterminacy. In all those papers the governement deficit is potentially financed by taxes
only. A budget rule introduces a pro-cyclical mechanism, through the effect of endogenously
set taxes distorting the rate of return of capital, which can generate a self-fulfilling future
change in taxes.

In that strand of models the government expenditures are not productive, there is not
economic growth, and the government debt dynamics is absent. Since Arrow and Kurz
(1970) it is know that public capital is a relevant source of growth. In most actual economies
the government can be seen as a productive sector specializing in the provision of goods and
services which have an intrinsic aggregate nature. It is, therefore, a generator of externali-
ties, and consequently it is a major source of economic growth. In the endogenous growth
literature Barro (1990) offers a benchmark model in which the government expenditures are
productive ( see Irmen and Kuehnel (2009) for a survey on the voluminous literature fol-
lowing that paper). However, government financing, by taxes or debt, has also an aggregate
effect over the cost of capital that can partially or totally offset the positive effect of exter-
nalities’ production. Fiscal rules introduce another transmission mechanism for fiscal policy
which tends to work through the expectations of future changes in the rate of return of the
economy.

Contributions dealing with productive government expenditures, economic growth, debt
financing and fiscal rules can be separated into two strands, depending on the nature of the
fiscal rule: Futagami et al. (2008) consider an adjustment equation where the variation of
the debt over capital ratio is adjusted against a benchmark while Greiner (2008), Kamiguchi
and Tamai (2012) and (Greiner and Fincke, 2015, p. 169-173) consider a rule in which
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the primary surplus is adjusted to the actual ratio of government debt over GDP relative
to a target. This literature has two shortcomings: either the rules are unrealistic (they
feature simply a feedback mechanism for government debt), or the dynamic implications of
the feedback mechanism introduced by the rules were not fully addressed. Indeed, in some
of these papers (for instance, in Greiner and Fincke (2015) ) singular dynamics, taking the
form of impasse-singularities, is present.

In this paper we extend an otherwise benchmark Barro (1990) model, in which govern-
ment expenditures are productive and are financed by distortionary taxes and government
debt, by introducing a (symmetric) fiscal rule according to which the primary surplus is a
linear function of the deviation of the debt to GDP ratio relative to a target level (as in
Bohn (1998) and Greiner and Fincke (2015) ). We are not concerned with the determina-
tion or the setting of an optimal target but with the existence and characterization of the
impasse-singularities that different fiscal rules can generate.

A general analysis for two-dimensional dynamic general equilibrium (DGE) models in the
presence of impasse-singularities is provided in Brito et al. (2017a). In that paper it is shown
that the vector field in the dynamic system representing the DGE is non-Lipschitzian which
implies that the existence of solutions for all t ∈ [0,∞), for any given initial value for the
non-anticipating variables, is not guaranteed. This means that the existence of DGE paths
should be explicitly checked before any attempt to characterize them. There are several
symptoms of the presence of impasse-singularities: existence of infinitely-valued eigenvalues
of the jacobian of the dynamic system, multiplicity of steady-states with the same type of
local dynamics (e.g. two saddle-points as in Greiner and Fincke (2015)), or the existence
of changes in the determinacy properties of the DGE paths along the transition path (if
it exists). In the presence of impasse-singularities the local analysis in the neighborhood
of a steady-state can be misleading. In Brito et al. (2017a) it is proved that if there is a
unique DGE path, and there is an impasse-singularity, only four cases can happen: black-hole
singularities and no transitional dynamics, white-hole singularities and transitional dynamics
confined to a subset of the state space, or worm-hole dynamics and trajectories cross the
impasse surface but change their determinacy properties, from locally determinate to locally
indeterminate, or from locally indeterminate to locally determinate.

In this paper we use the method presented in Brito et al. (2017a)1 and go beyond by
extending it along three dimensions: first, we deal with an endogenous growth model in which
the transition dynamics can exist along a BGP and the steady states refer to the detrended
variables; second, we have multiplicity of steady states; and, third, we also have multiple
impasse-singularities. In Brito et al. (2017a) the steady state refers to a stationary DGE
path, and there is at most one isolated steady state and one isolated impasse-singularity.
The method consists in studying local dynamics not only in the neighborhood of the steady

1In both papers we deal with implicit differential equations by using the approach and terminology
presented in Zhitomirskii (1993) and Llibre et al. (2002) and extending to cases in which there are steady
states. See also Riaza (2008).
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state but also in the neighborhood of the impasse-singularity. However, as we proved in
that paper, those two types of local analysis although providing necessary conditions for
the existence and the characterization of DGE paths are not sufficient: there are existence
conditions of a global nature and a complete characterization of the dynamics, in particular
the existence of temporary indeterminacy, also depends on global type of conditions.

We present a thorough local bifurcation analysis in the space of two fiscal rule parameters:
the debt target and the speed of adjustment to that target. We then select some specific
parameter values, and present the global phase diagrams for cases that cannot occur in
regular DGE models, in which there are multiple over-determinate BGP’s, or there are
bounded transitional determinate DGE dynamics converging to a regular BGP path, or to
singular BGP path.

The rest of the paper is organized in the following way: in section 2 we present the model,
in section 3 we characterize analytically local dynamics both at the impasse surface and at
the BGP, section 4 presents the phase diagrams for a sample of possible DGE scenarios, and
section 5 closes the paper2.

2 The model

The representative private consumer-producer maximizes the intertemporal utility functional

∫

∞

0

C(t)1−σ

1− σ
e−ρtdt

where C is consumption subject to the budget constraint

K̇ + Ḃ = (1− τ(t))(r(t)B(t) + Y (t))− C(t), (1)

where K and B are the stocks of physical capital and government debt, τ is the income-tax
rate, r is the rate of interest on government bonds, and Y is the income from production3.
We assume that the rate of time preference, ρ, is positive, and the intertemporal elasticity
of substitution is below unity, σ ≥ 1. The initial levels for the two stocks are given and are
non-negative in present value terms limt→∞(K(t) + B(t))e−

∫
t

0
r(s)ds ≥ 0.

There is only one good in this economy, which is produced by a technology using public
goods provided by the government. We posit a Cobb-Douglas production function

Y (t) = K(t)αG(t)1−α,

2The proofs are assembled at the appendix.
3(Greiner and Fincke, 2015, p. 169-173) assume that only the income generated by private sources is

taxed. That is, there are no taxes over the return on the private investment on government bonds. This
assumption changes significantly the types of dynamics that can occur.
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where G is the government expenditure, and α ∈ (0, 1) is the income share of private capital.
A non-arbitrage condition holds such that the gross rate of interest on government bonds is
instantaneously equalized to the marginal productivity of capital,

r(t) = αK(t)α−1G(t)α−1.

From household optimality conditions we derive the Euler equation

Ċ

C(t)
=

(1− τ(t))r(t)− ρ

σ
(2)

and the transversality condition limt→∞C(t)−σ(K(t) + B(t))e−ρt = 0.
The government finances expenditures by taxing all types of income and issuing bonds

such that the budget constraint

Ḃ = r(t)B(t)− S(t) (3)

holds, where B is the stock of outstanding government bonds (indeed debt) and the primary
surplus is

S(t) = τ(t)(r(t)B(t) + Y (t))−G(t). (4)

We consider the fiscal rule similar to the one introduced in Greiner (2008), Kamiguchi
and Tamai (2012) and (Greiner and Fincke, 2015, p. 169-173),

S(t) = φ(B(t)− B̄(t)) (5)

where φ parameterizes the speed of the adjustment of the actual level of debt to a time-
varying target B̄(t). We assume that the debt target is set such that its ratio with the GDP
is constant

B̄(t)

Y (t)
= b̄, for all t ∈ [0,∞).

We assume both parameters defining the policy, φ and b̄, are strictly positive. A higher φ
speeds up the adjustment of the actual level of the government debt to the target. We also
assume that the tax rate is fixed parametrically and that the government implements the
rule by controlling government expenditures.

Consolidating the government and the household budget constraints we get the good’s
market clearing equation

K̇ = Y (t)− C(t)−G(t). (6)

In order to render them clear we formally define both dynamic general equilibrium (DGE)
and equilibrium balanced growth (BGP) paths:

Definition 1 (DGE). A DGE is a trajectory (K(t), C(t), B(t), G(t), r(t))t∈[0,∞) satisfying,

for all t ∈ [0,∞), equations (2), (6) and (3) together with the fiscal rule (5), the transver-

sality and initial conditions, K(0) = K0 and B(0) = B0, where K0 and B0 are given.
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Definition 2 (BGP). A BGP path is a particular DGE path such that the rates of growth

for K, C, B and G are constant and r is constant.

In the rest of the paper we denote the ratios of government debt and government expen-
ditures over the GDP by b ≡ B/Y and g ≡ G/Y , respectively.

Setting G = gY in the production function we can rewrite it as a linear function of the
capital stock Y = A(g)K, where A(g) ≡ g

1−α

α . Therefore, the average productivity of capital
is an increasing function of g and its curvature depends on α. By assuming α > 1/2 we set
it as concave.

This implies that the interest rate, r = r(g) = αA(g), is also an increasing (and concave
if α > 1/2) function of the ratio of government expenditures over the GDP. In addition, the
rate of growth of consumption is also an increasing (and concave) function of the government
expenditure over the GDP

Ċ

C
= γ(g) ≡

(1− τ)r(g)− ρ

σ
. (7)

2.1 Endogenous debt adjustment

If we eliminate the budget surplus, S, in equations (4) and (5) we get a relationship between
the government debt and the government expenditure, engineered by the fiscal rule, τ(t)(1+
r(t)b(t)) − g(t) = φ(b(t) − b̄). As the debt ratio and the government expenditures are both
endogenous, the government has one degree of freedom consisting in fixing the income tax
rate exogenously. From now on we assume that it is a constant parameter: τ(t) = τ .

In order to get explicit expressions, it is convenient to express the endogeneity of the
expenditure ratio regarding the debt ratio, introduced by the fiscal rule and the exogeneity
of the tax rate, by the inverse relationship

b(t) = b(g(t)) ≡
g(t)− ḡ

τr(g(t))− φ
. (8)

In equation (8) we introduce two critical levels for the expenditure ratio: the level associated
with zero government debt,

ḡ ≡ τ + φb̄, (9)

and the level associated with an unbounded level for b,

g̃ ≡

(

φ

ατ

)
α

1−α

, (10)

which is attained when the tax collected from the interest on government bonds is equal
to the rate of adjustment of the debt ratio, g̃ ≡ {g : τr(g) = φ}. The relationship of the
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expenditure ratio relative to those two critical values determines the creditor position of the
government: if min{ḡ, g̃} < g < max{ḡ, g̃} then, because b(g) < 0, the government is a
creditor; if g < min{ḡ, g̃} or g > max{ḡ, g̃} then it is a debtor because b(g) > 0; and if g = ḡ
it is neither a debtor nor a creditor.

Two countervailing forces are at work: a high ratio of government expenditure, above the
level consistent with the debt target ḡ, increases the level of debt, but on the other hand, as
government expenditures are productive, they tend to increase tax returns on government
bonds possibly above the speed of the adjustment set by the fiscal rule. The first factor is
measured by the wedge g − ḡ and the second factor is measured by the wedge r(g) − r(g̃),
because τr(g) − φ = τ(r(g) − r(g̃)). Consequently, if ḡ > g̃ (ḡ < g̃) then function b(g) is
increasing (decreasing) with g. It is also increasing if ḡ = g̃ and α > 1/2.

The next Lemma characterizes the debtor position of the government depending on the
value of the two parameters defining the fiscal rule φ and b̄ 4:

Lemma 1 (Government debtor position). Let equation (8) represent the government debtor

position as a function of g, b(g). Then the following cases are possible :

1. if φ ≥ max{ατ, (1− τ)/b̄} then min{ḡ, g̃} ≥ 1 then b(g) > 0 for all g ∈ (0, 1).

2. if (1 − τ)/b̄ ≤ φ < ατ then g̃ < 1 ≤ ḡ and b(g) > 0 for 0 < g < g̃ and b(g) < 0 for

g̃ < g < 1;

3. if ατ < φ ≤ (1 − τ)/b̄ then ḡ ≤ 1 < g̃ which implies that b(g) > 0 for 0 < g < ḡ and

b(g) < 0 for ḡ < g < 1;

4. if φ < min{ατ, (1 − τ)/b̄} then max{ḡ, g̃} < 1 then b(g) < 0 if min{ḡ, g̃} < g <
max{ḡ, g̃} and b(g) > 0 otherwise.

Figure 1 illustrates Lemma 1, by showing the values of the policy parameters associated
with the four cases.

In all four cases, if g is close to zero the government will be a debtor. When g is high
the debtor position depends on the parameters: if both parameters are high the govern-
ment should be a debtor (case L1(1)), but when they are both low it should be a cred-
itor (case L1(4)). In the other two cases, for a high debt target and a low speed of at-
tainment, L1(2), or for a low debt target and a high speed, L1(3), there is an interval,
g ∈ (min{ḡ, g̃},min{max{ḡ, g̃}, 1}), such that the government should be a creditor and a
debtor outside that interval.

4All the proofs are in the Appendix.
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Figure 1: Graphical illustration of Lemma 1 in the space (φ, b̄) for α = 0.65 and τ = 0.35.

We set b̄1 ≡
1− τ

φ

2.2 The DGE in detrended variables

The rate of growth of the debt ratio can be obtained from two different sources. From the
definition of b we get

ḃ

b
=
Ḃ

B
−
Ẏ

Y
= γB(g)− γK(g)−

(

1− α

α

)

ġ

g
(11)

where, from equation (3), the rate of growth of the government debt is

Ḃ

B
= γB(g) = (1− τ)r(g) +

g − τ

b(g)
. (12)

However, we can also time-differentiate the feedback mechanism introduced by the fiscal rule
in equation (8) to get

ḃ

b
=

(

τr(g)− φ− (g − ḡ)τr
′

(g)
)

g

(τr(g)− φ)(g − ḡ)

(

ġ

g

)

. (13)

Although we can eliminate either the rate of growth of the debt ratio or the expenditure
ratio we only get an explicit differential equation if we eliminate the debt ratio, obtaining

(

αg − φ(1− α)b(g)

α(g − ḡ)

)

ġ

g
=
g − τ

b(g)
+ (α(1− τ) + g − 1)A(g) + z,
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where z ≡ C/K denotes consumption detrended by the capital stock. From this equation
we get the the rate of growth of the government expenditure ratio

ġ

g
≡ γg(g, z) =

ψ(g, z)

δ(g)
.

The numerator contains three wedges,

ψ(g, z) ≡ α (τr(g)− φ) (g − ḡ) (z − ζ(g)) , (14)

the speed wedge, τr(g)−φ, the level wedge, g− ḡ, and a consumption wedge, z−ζ(g), where

ζ(g) ≡ (1− g − α(1− τ))A(g) + (τ − g)
τr(g)− φ

g − ḡ
, (15)

measures the potential for financing government expenditures out of consumption. The
denominator is also a function of the level and speed wedges:

δ(g) ≡ αg(τr(g)− φ)− φ(1− α)(g − ḡ). (16)

The rate of growth for private capital is a function of g and z

K̇

K
= γK(g, z) ≡ (1− g)A(g)− z. (17)

Using equations (7) and (17) we find the rate of growth of the consumption-capital ratio

ż

z
= γz(g, z) = γ(g)− γK(g, z) = z − z(g), (18)

is equal to the wedge between consumption and potential consumption allowed for the level
of the government expenditures,

z(g) ≡ 1− g − γ(g) =
(σ(1− g)− α(1− τ))A(g) + ρ

σ
. (19)

Function z(g) is usually interpreted as a Laffer-curve associating government expenditures to
the rate of growth of the economy. It has an inverted-U shape, starting from z(0) = ρ/σ > 0,
reaching a maximum at a point where g = (1 − α)(σ − α(1− τ))/σ > 0 and decreasing for
higher values of g (possibly becoming negative for large g). There are two effects involved:
first, productive government expenditures increase capital productivity thus having a positive
effect on output and on the rate of capital accumulation, but second, they are financed by
capital income taxation via the interest rate, which is also increasing in g. For low values of
g the first effect dominates and for high values of g the second effect dominates.
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The DGE representation in detrended variables is the the path (g(t), z(t))t∈[0,∞), such
that every (g(t), z(t)) ∈ Ω, where the domain of the detrended variables is Ω = (0, 1)×R++,
and are solutions of the system

ġ = g
ψ(g, z)

δ(g)
(20)

ż = z (z − z(g)) (21)

together with the initial conditions and the transversality condition. We will only consider
DGE paths which are equilibrium BGP paths or converge asymptotically to an equilibrium
BGP path.

An equilibrium BGP is a DGE path satisfying (C∗(t), K∗(t), B∗(t))t∈[0,∞) such that

C∗(t) = c∗eγ(g
∗)t, K∗(t) = k∗eγK(g∗,z∗)t and B∗(t) = b∗eγB(g∗,z∗)t where (g∗, z∗) are steady

states of the system (20)-(21). A sufficient condition for the verification of the transver-
sality condition is that asymptoticaly we should have ρ + σγ(g∗) − γK(g

∗, z∗) > 0 and
ρ+ σγ(g∗)− γB(g

∗, z∗) > 0.
The structure of this model is similar to the one found in Kamiguchi and Tamai (2012)

and (Greiner and Fincke, 2015, p. 169-173). In particular both papers include a function
similar to δ(g) that could take a zero value. If this is the case, function γg(g, z) is not
Lipschitzian. This implies that the existence and uniqueness of solutions for t ∈ [0,∞) of
system (20)-(21) is not guaranteed, and therefore a DGE path may not exist.

We call impasse point to (gs, zs) ∈ Ω such that δ(gs) = 0 5. A point (g, z) ∈ Ω such that
δ(g) ̸= 0 will be called a regular point.

The set of impasse points, or impasse-set, is the one-dimensional manifold over Ω,

S = {(g, z) ∈ Ω : δ(g) = 0}. (22)

If S is non-empty (that is, if impasse points exist) they can be reached in finite or in
infinite time. At any impasse point the rate of growth γg becomes locally infinitely valued
(and the jacobian of the system (20)-(21) has locally infinitely-valued eigenvalues). We call
singular steady state to a steady state lying at the impasse surface. Observe that this case
is non-generic, as it only occurs for specific parameter values. In the generic case in which
the impasse point is not a steady state, it is reached at a particular finite time, following
a sequence of regular points, but the solution may not be continued after it is reached. If
there is no continuation any trajectory passing through such an impasse point cannot be a
DGE path, and there is an existence problem which does not occur in regular DGE models.
If there is continuation the determinacy properties of a crossing DGE path change in ways
that also do not occur in regular models.

5As function δ(g) can only be equal to zero at a specific value for the state variables and not for a
particular value of the parameters we have impasse-singularities and not fast-slow singularities (see Brito
et al. (2017a)).
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It is shown in Brito et al. (2017a) that there are two local necessary conditions for the
existence of singular DGE paths: crossing trajectories and at least one steady state should
both exist. There are also global conditions that should be met. We address the local
conditions in the next section and the global conditions in section 4. In addition to singular
DGE paths, regular DGE paths that do not cross the singular surface S, can also exist.
However, they are bounded to a subset of space Ω and cannot have points in the whole space
as in DGE models without singularities.

3 Local analysis

The first subsection characterizes the impasse surface and the second the set of steady states
of system (20)-(21).

3.1 Impasse-surface

If S is non-empty it partitions the domain of (g, z), Ω, into three subsets S, Ω+, containing
points where δ(g) > 0, and Ω−, where δ(g) < 0.

In order to check for the existence and location of impasse points we need to define two
critical values for b̄

b̄s =
1

φ
(g̃ − τ) =

1

φ

(

(

φ

ατ

)
α

1−α

− τ

)

(23)

b̄s1 =
φ(1− τ + ατ)− α2τ

(1− α)φ2
, (24)

which are different except at point (φ, b̄) = (ατ, (1− τ)/(ατ)).

Lemma 2 (Singular points and partition of Ω). Consider function δ(g) in equation (16).
It is a convex function such that

1. if b̄ > b̄s or if φ ≥ ατ and b̄s1 < b̄ < b̄s then the set S is empty and Ω = Ω+;

2. if 0 < b̄ < b̄s1 then there is one unique singular point gs ∈ (0,min{g̃, 1}) and the set Ω
is partitioned into two regular subsets Ω+ = {(g, z) : 0 < g < gs} and Ω− = {(g, z) :
gs < g < 1}, and the impasse subset S = {(g, z) : g = gs};

3. if φ < ατ and b̄s1 < b̄ < b̄s then there are two singular points gs1 and gs2, such that

0 < gs1 < ḡ < g̃ < gs2 < 1 and the set Ω is partitioned into three regular subsets Ω+,1 =
{(g, z) : 0 < g < gs1}, Ω+,2 = {(g, z) : gs2 < g < 1} and Ω− = {(g, z) : gs1 < g < gs2},
and two impasse subsets S1 = {(g, z) : g = gs1} and S2 = {(g, z) : g = gs2};
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Figure 2: Graphical illustration of Lemma 2 in the space (φ, b̄) for α = 0.65 and τ = 0.35.

4. if φ < ατ and b̄ = b̄s then there is one unique singular point such that gs = ḡ = g̃ < 1
and the set Ω is partitioned into the regular set Ω+ = {(g, z) : g ̸= gs} and the impasse

set S = {(g, z) : g = gs}. This is a non-generic case.

Figure 2 illustrates Lemma 2, by showing the values of the policy parameters associated
with the four cases, labelled L2(1), L2(2), L2(3) and L2(4) (which corresponds to curve
b̄ = b̄s for φ < ατ).

A necessary condition for the existence of singular points is ḡ ≤ g̃ which is equivalent
to b̄ ≤ b̄s. In Figure 2 this corresponds to the points below curve b̄ = b̄s. This means that
in that Figure the points above curve curve b̄ = b̄s represent the combinations of fiscal rule
parameters yielding ḡ > g̃.

From Lemma 2 we conclude that, if the debt target is set at relatively low (high) levels
or the speed of convergence is high (low), there will (not) exist impasse points and the
associated singular dynamics will be absent. Impasse points exist only in the generic cases
L2(1) and L2(2) and in the non-generic case L2(4). Comparing with Lemma 1, observe that
the government can be a creditor only if there is an impasse surface and the variables (g, z)
lie within set Ω−. If the impasse set is empty (as in the L2(1) case) the government is always
a debtor.

From Lemmas 1 and 2 we can also extract some intuition for the speed of the adjustment
of the government debt position for different values of g. The elasticity of the creditor
position is

β(g) ≡ −
b
′

(g)g

b(g)
=

1− α

α
−

δ(g)

(τr(g)− φ)(g − ḡ)
,

where the second term has the same sign as function b(g). We can easily infer the following:
first, at an impasse point the elasticity β(.) is equal to the share of public expenditures
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versus private capital in output, (1−α)/α; second inside subsets Ω+, where the government
is always a debtor, the elasticity is lower than (1−α)/α; third inside subset Ω− the elasticity
is higher (lower) if the government is a debtor (creditor). This means that trajectories that
cross S, if they exist, witness a large change in the reaction of the creditor position after
a relatively small change in g. This means that the rule can introduce non-monotonous
reactions in the government budget.

We now characterize the local dynamics for points within S when it is non-empty (that
is when ḡ ≤ g̃). There are four types of impasse points. First, if δ

′

(gs)ψ(gs, zs) < 0 point
(gs, zs) ∈ S is an attractor point and we call it black-hole because this points attracts neigh-
bouring trajectories which reach S in finite time and does not allow them to be continued
afterwards. This means that trajectories hitting a black-hole cannot be DGE trajectories.
Second, if δ

′

(gs)ψ(gs, zs) > 0 point (gs, zs) ∈ S is an attractor point and we call it white-hole
because this points repels neighbouring trajectories allowing them to be continued in time.
Although they can be DGE trajectories they cannot cross S, which means that they remain
confined to subset Ω− or to subset Ω+. Those points would not belong to DGE paths if
crossing S is necessary to reach a steady state. Third, if δ

′

(gs)ψ(gs, zs) = 0, under the
conditions ψ(gs, zs) = 0 and δ

′

(gs) ̸= 0, we have an impasse-transversal point. An impasse
transversal point can be seen as a fixed point of the de-singularized dynamic system

ġ = g ψ(g, z) (25)

ż = z δ(g) (z − z(g)) (26)

where the vector field has the same integral curves as system (20)-(21), but we introduce
a time-reversal for the integral curves within set Ω−, and remove the singularity 6. From
now on we denote the impasse-transversal points by (gi, zi) and denote the set of impasse-

transversal points by
ΓI = {(g, z) ∈ S : z = ζ(g)}

where ζ(g) is defined in equation (15). Every impasse-transversal point, (gi, zi) = (gs, ζ(gs)),
can be classified further depending on their local dynamic properties, which can be deter-
mined from the eigenvalues of the Jacobian of the de-singularized system evaluated at an
impasse-transversal point

J i = J(gi, zi) =

(

gi ψg(g
i, zi) gi ψz(g

i, zi)
zi δ

′

(gi) (zi − z(gi)) 0

)

.

There are three types of impasse-transversal points: First, point (gi, zi) is a transversal

saddle if J i has two real eigenvalues, one negative and one positive. Through this point

6Using the analogy with fast-slow singularities, we can see desingularization as a device to uncover the
singularities by locally changing the time scale such that the speed of the trajectories close to the singular
surface becomes finite.
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there are two trajectories crossing S, one coming from Ω+ with a continuation in Ω−, and
another coming from Ω− with a continuation in Ω+. Second, point (gi, zi) is a transversal

node if J i has two real eigenvalues with the same sign. Transversal nodes have a basin of
attraction belonging to set Ω+, if the eigenvalues are negative, or to set Ω−, if the eigenvalues
are positive. There are infinitely many trajectories coming from that basin of attraction and
having a continuation in the opposite subset. Third, point (gi, zi) is a transversal focus if J i

has two complex-conjugate eigenvalues. In this case there are no crossing trajectories. We
say we have worm-hole dynamics, meaning that there are crossing trajectories, in the first
two cases and these are the only cases in which there could exist crossing DGE paths 7.

In Lemma 2 we proved that one or two impasse points can exist, i.e S is non-empty.
Impasse-transversal points further introduce a partition over set S into a subset of attractor
points, S−, and a subset of repeller points, S+, which determine the existence and the type
of DGE paths in their neighborhood. In Lemma 3 we determine the existence and number
of impasse-transversal points, and the partitions they introduce over S and in Lemma 4 we
characterize the types of impasse-transversal points (i.e, we partition further ΓI).

Lemma 3 (Partition of the impasse set). Let

b̄i = {b̄ : δ(g, b̄) = 0, ζ(g, b̄) = 0}.

and assume b̄ < b̄s. Five cases are possible:

1. If φ > ατ and b̄i ≤ b̄ < b̄s1 then set S has only one component, S1, and contains only

attractor points. Then S = S−

1 ;

2. If 0 < b̄ < min{b̄i, b̄s1} then set S has only one component, S1, containing one impasse-

transversal point, (gi, zi) = (gs1, ζ(g
s
1)), dividing S1, into a subset of attractor points, if

z > zi, and a subset of repeller points, if z < zi. Then S = S−

1 ∪ ΓI ∪ S+
1 ;

3. If φ < ατ and max{b̄s1, b̄
i} ≤ b̄ ≤ b̄s then set S has two components, S1, containing

only attractor points, and S2, containing only repeller points. Then S = S−

1 ∪ S+
2 ;

4. If φ < ατ and max{0, b̄s1} ≤ b̄ ≤ b̄i then set S has two components, S1 and S2. Set S1,

contains one impasse-transversal point, (gi, zi) = (gs1, ζ(g
s
1)) dividing S1 into a subset

of repeller points, if z < zi, and attractor points, if z > zi, and set S2 only contains

repeller points. Then S = S−

1 ∪ ΓI,1 ∪ S+
1 ∪ S+

2 ;

5. If φ < ατ and max{0, b̄i} < b̄ < b̄s then set S has two components, S1 and S2 and every

subset contains one impasse-transversal point. Set S1, contains one impasse-transversal

7See Brito et al. (2017a) for further details. There is another type of impasse point, impasse-tangent
points at which a tangent trajectory passes through S. In the present model there are no impasse-tangent
points.
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Figure 3: Graphical illustration of Lemma 3 in the space (φ, b̄) for α = 0.65 and τ = 0.35.

point, (gi1, z
i
1) = (gs1, ζ(g

s
1)) dividing S1 into a subset of repeller points, if z < zi1, and

a set of attractor points, if z > zi1, and set S2 also contains one impasse-transversal

point, (gi2, z
i
2) = (gs2, ζ(g

s
2)), dividing it into a subset of repeller points, if z > zi2, and

attractor points, if z < zi2. Then S = S−

1 ∪ ΓI,1 ∪ S+
1 ∪ S−

2 ∪ ΓI,2 ∪ S+
2 .

Figure 3 illustrates Lemma 3, by depicting the values of the policy parameters associated
with the five cases. There are no impasse-transversal points in cases L3(1), in which there is
a single impasse-surface, and L3(3), in which there are two impasse-surfaces. There is one
impasse transversal point in cases L3(2) and L3(4), and there are two impasse-transversal
points in case L3(5). The last case occurs for relatively low values of the two rule parameters:
low target value for the debt ratio and low speed of adjustment.

When there is a single impasse-transversal point it will belong to set S1 which is associated
to relatively low levels of g and to a debtor position. When there are two impasse-transversal
points they belong to two different branches of set S, one for low levels of g and another for
high values of g and both correspond to debtor positions.

This model produces different configurations as compared to Brito et al. (2017a), in
which there is a single impasse surface and at most one impasse-transversal point, and to
Brito et al. (2017b), in which there can be two impasse-transversal points but within a single
impasse surface.

Lemma 4 (Characterization of impasse-transversal points). Let

b̄id = {b̄ : δ(gid(b̄), b̄) = 0}

where

gid ≡
φ(1− α) ((1− τ)(σ − 1)ḡ + στ 2)

ρ+ ατ + φ (σ(1− ατ)− (1− τ))
, (27)
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and let

b̄i∆ =
{

b̄ : ∆J i(b̄) = 0
}

.

where ∆J i(b̄) = ∆J
(

gi(b̄), ζ(gi(b̄))
)

is the discriminant of the Jacobian of the desingularized

system evaluated at an impasse-transversal point. For reasonable parameter values there are

two points b̄i∆,1 < b̄i∆,2. Assume that σ ≥ 1 and b̄ < b̄s < τ(σφ − ρ)/(ρφ). Then eight cases

are possible:

1. if b̄ib < b̄ < b̄i then there is one impasse-transversal saddle-point (gi, zi) such that gi < ḡ;

2. if b̄i∆ < b̄ < b̄id then there is one impasse-transversal node (gi, zi) such that gi < ḡ;

3. if 0 < b̄ < b̄i∆,1 then there is one impasse-transversal focus (gi, zi) such that gi < ḡ;

4. if b̄ib < b̄i < b̄ < b̄i∆,2 then there are two impasse-transversal points, (gi1, z
i
1) and (gi2, z

i
2),

such that gi1 < ḡ < g̃ < gi2, where the first is a saddle and the second a node;

5. if b̄i∆,2 < b̄ < b̄s then there are two impasse-transversal points, (gi1, z
i
1) and (gi2, z

i
2), such

that gi1 < ḡ < g̃ < gi2, where the first is a saddle and the second a focus;

6. if b̄i < b̄i∆,1 < b̄ < min{b̄id, b̄
i
∆,2} then there are two impasse-transversal points, (gi1, z

i
1)

and (gi2, z
i
2), such that gi1 < ḡ < g̃ < gi2, where the two are transversal nodes;

7. if b̄i < b̄i∆,1 < b̄i∆,2 < b̄ < b̄id then there are two impasse-transversal points, (gi1, z
i
1) and

(gi2, z
i
2), such that gi1 < ḡ < g̃ < gi2, where the first is a node and the second is a focus;

8. if b̄i < b̄ < b̄i∆,1 < b̄i∆,2 < b̄id there are two impasse-transversal points, (gi1, z
i
1) and

(gi2, z
i
2), such that gi1 < ḡ < g̃ < gi2, where the two are transversal foci.

Figure 4 illustrates Lemma 4, by depicting the values of the policy parameters associated
with the five cases L4(1) to L4(5). Cases L4(6), L4(7) and L4(8) only occur if curves b̄ = b̄id
and b̄ = b̄i∆ cross curve b̄ = b̄i, which only happen for σ ≈ 1. This also means that there are
values for the parameters such that a singularity induced bifurcation point can exist, such
that b̄ = b̄s = b̄id, implying that g∗s = ḡ = g̃, where g∗s is an impasse-transversal steady state.

While the existence and the partition of the impasse surface is independent of the elas-
ticity of intertemporal substitution and the rate of time preference, these two parameters
determine the type of impasse-transversal points and their local dynamic properties. That
is, they determine the existence of crossing trajectories.

Referring to the cases in Lemma 4 and Figure 4 we can have the following types of
crossing trajectories:

Proposition 1 (Crossing trajectories). Crossing trajectories exist in the following cases:

1. in case L4(1) there are two trajectories crossing the unique impasse surface one from

Ω+ towards Ω− and another in the opposite direction;
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Figure 4: Graphical illustration of Lemma 4 in the space (φ, b̄) for α = 0.65, τ = 0.35, σ = 2
and ρ = 0.02. The RHS panel zooms a small area in the LHS panel to the left of area L4(1).

2. in case L4(2) and in case L4(7) there are, in most cases, an infinite number of trajec-

tories crossing from Ω− to Ω+;

3. in case L4(4) there are two crossing trajectories, in both directions over set S1, between

Ω− and Ω+,1, and there are an infinite number of trajectories crossing S2 from Ω− to

Ω+,2;

4. in case L4(5) there are trajectories in infinite number going from Ω− to Ω+,1 and from

Ω− to Ω+,2.

3.2 Balanced growth paths and local dynamics

An equilibrium regular BGP is a BGP such that the steady state, (g∗, z∗), of system (20)-(21)
is a point belonging to the set

ΓE = {(g, z) ∈ (0, 1)× (0,∞) : ψ(g, z) = 0, γz(g, z) = 0, δ(g) ̸= 0}

and verifying the transversality condition. An equilibrium singular BGP is a BGP such that
the steady state (g∗s , z

∗

s) is a point belonging to the set

PE =
{

(g, z, b̄) ∈ (0, 1)× (0,∞)2 : ψ(g, z) = 0, γz(g, z) = 0, δ(g) = 0
}

and verifying the transversality condition 8.

8Observe that given the constraint introduced by the singularity condition, the set of singular steady
states has a higher co-dimension in the joint space of the variables and the parameters.
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We introduce three new critical values for the debt ratio target parameter, b̄:

b̄∗1 ≡
τ(σφ− ρ)

ρφ
, (28)

b̄∗z ≡
{

b̄ : z(g, b̄) = 0, τr(g) = ϕ(g, b̄)
}

(29)

and
b̄∗s ≡

{

b̄ : δ(g∗s(b̄), b̄) = 0
}

, (30)

where g∗s = gid (see equation (27)).
The next result characterises the equilibrium BGP’s as regards their number, their lo-

cation in the partition introduced by the impasse surface(s) and the asset position of the
government.

Lemma 5 (Number and location of BGPs). Let b̄s b̄
∗

1, b̄z and b̄∗s be given by equations (23),
(28), (29) and (30), respectively, and assume that ρ < α(1 − τ). Then the following cases

are possible, concerning the number and the location of steady states (g∗, z∗):

1. if b̄ < b̄∗1 then there is one isolated regular BGP such that g∗ < gs1 is in Ω+ and the

government is a creditor;

2. if b̄ > max{b̄z, b̄
∗

s} then there is one isolated regular BGP such that gs1 < g∗ < gs1 is in

Ω+ and the government is a debtor;

3. if b̄z < b̄ < b̄∗s then there is one isolated regular BGP such that ḡ < g∗ < g̃ is in set Ω−

and the government is a debtor;

4. if b̄ = b̄∗s ≥ b̄z then there is one isolated singular BGP such that g∗ = g∗s is in S which

corresponds to a debtor position;

5. if b̄s < b̄ < max{b̄∗1, b̄
∗

z} then there are two regular BGP’s such that g∗1 < g∗2 < gs1 are

both in Ω+ and g∗1 corresponds to a debtor and g∗2 to a creditor position;

6. if b̄∗s < b̄ < max{b̄s, b̄∗z} then there are two regular BGP’s such that g∗1 < gs1 < g∗2, g
∗

1

is in Ω+ and corresponds to a debtor position , while g∗2 is in Ω− and corresponds to a

creditor position;

7. if 0 < b̄ < min{b̄∗s, b̄
∗

z} then there are two regular BGP’s such that gs1 < g∗1 < g∗2, where
both are in Ω− and g∗1 corresponds to a debtor position and g∗2 to a creditor position;

8. if b̄ = b̄∗s < b̄∗z then there is one singular BGP, such that g∗1 = g∗s is in S and a regular

BGP such that g∗s < g∗2 is in Ω− and corresponds to a debtor position.
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Figure 5: Graphical illustration of Lemma 5 in the space (φ, b̄) for α = 0.65 and τ = 0.35,
σ = 2 and ρ = 0.02

Figure 5 presents a graphical illustration of Lemma 5 for different values of b̄ and φ, and
given values of the other parameters, including σ and ρ. A unique BGP exists for cases
L5(1) to L5(4) and two BGP’s can exist in the other cases. In cases L5(4) and L5(8) there is
a singular BGP, isolated in the first case and jointly with a regular BGP in the second case.
Multiple equilibrium BGP’s tend to occur for relatively low (high) values of the speed of
the adjustment and high (low) levels for the debt target. Singular BGP’s are located in the
unique impasse surface S when they are isolated or are in surface S1 when they are not. They
exist for relatively high levels for the speed of adjustment and for a wide interval of values
for the debt target. Given benchmark parameter values for the tax rate, the intertemporal
elasticity of substitution and the rate of time preference, a singular BGP can occur for a
target debt ratio set around or below 50%, thus very close to the Fiscal Compact target.

When there are multiple steady states, the BGP associated to the higher value for g, g∗2,
displays a higher rate of growth, because the rate of growth is an increasing function of g
(see equation (7)). However, as can be seen in the next section, this case corresponds to
a very high expenditure ratio involving an almost confiscatory economy, which makes this
BGP possibly dominated in utility terms by the adjacent BGP which has a lower expenditure
ratio and a lower growth rate.

It is also possible to prove that σ < 1− τ and b̄ < 0 are necessary conditions for getting a
steady state level of debt b∗ = b(g∗) = b̄. Therefore, for the accepted values of the parameters,
although the target level influences the dynamics it does not correspond to a BGP outcome.

Next we study the local dynamics at equilibrium BGP’s.

Lemma 6 (Local dynamics at a regular BGP). If b̄ < b̄∗s then the regular steady state (g∗1, z
∗

1),
isolated or not, is a saddle-point. If b̄ > b̄∗s then the steady state (g∗1, z

∗

1), isolated or not, is

an unstable node or focus. If it exists, the steady state (g∗2, z
∗

2), is always an unstable node
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or focus.

Therefore, we have the following cases concerning asymptotic local dynamics, and there-
fore the asymptotic determinacy properties, of equilibrium BGP’s:

Proposition 2 (Determinacy of BGP’s). Consider the cases in Lemma 5. The following

types of BGP dynamics are possible:

1. in case L5(3) the steady state (g∗, z∗) is a saddle point, then the BGP is locally deter-

minate;

2. in case L5(7) there are two steady states where (g∗1, z
∗

1) is a saddle point and (g∗2, z
∗

2)
is locally unstable, then the first BGP is locally determinate and the second is over-

determinate;

3. in cases L5(1) and L5(2) the unique steady state is unstable, then the BGP is over-

determinate;

4. in cases L5(5) and L5(6) the two steady states are unstable, then the associated BGP’s

are over-determinate.

We say a steady state is over-determined if the dimension of the local stable manifold in
the neighborhood of a steady state is less than one. This implies that the a DGE path only
exists if g(0) = g∗. Then the initial values of the pre-determinate variables cannot be chosen
freely and should belong to a one-dimensional manifold. Therefore, over-determinate steady
states can only be DGE paths if the initial point and the steady state for the detrended
variables coincide. If this is the case then over-determinacy means that the DGE and the
BGP paths coincide and there is no transitional dynamics.

Two BGPs with the same local stability properties cannot exist in regular DGE models
in which there are no impasse-singularities (see case 4 in Proposition 2). This property also
occurs in (Greiner and Fincke, 2015, p. 169-173) and in Brito et al. (2017a). However, while
in those papers there are two saddle-point steady states, in our case there are two unstable
steady states.

Furthermore, cases L5(4) and L5(8) cannot exist in regular DGE models. If there is a
singular steady state, and we consider the local dynamics in terms of the dynamic system
(20)-(21), there will be a DGE path converging with infinite speed to a singular point.
However we know that in this case the BGP path grows at a finite rate of growth γ(g∗s). In
order to uncover the local dynamics we need to note that the value of the parameter leading
to this case, b̄∗s, is equal to the value of the parameter associated to a zero determinant
of the de-singularized vector field (25)-(26), b̄∗s = b̄id (see Lemma 4). This means that it
is a saddle-node of the desingularized vector field, implying there is convergence from the
Ω−-side of the impasse-surface and divergence from the the Ω+-side. That is, the DGE path
converges locally at a very high speed, and in an asymmmetric way, to a BGP path growing
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at rate γ(g∗s). This case corresponds to a bifurcation point introduced by the existence of an
impasse singularity.

4 Equilibrium dynamics

Propositions 1 and 2 suggest that several types of DGE paths exist in our model: over-
determinate DGE which are coincident with one or two BGP’s, determinate DGE paths
converging to a BGP without crossing an impasse surface, or determinate DGE paths con-
verging to a BGP after crossing an impasse surface or to a BGP lying in the impasse surface
(we call these singular DGE paths).

A determinate DGE path involving crossing trajectories can only exist if specific both
local and global specific conditions are jointly satisfied. There are two local conditions: at
least one steady state in which (g∗, z∗) is a saddle-point or a stable node or stable focus
should exist in Ω+ or Ω−, and the impasse surface, S, at the boundary of those two subsets,
contains at least one impasse-transversal saddle-point or node. There are also two global
conditions: the initial point (g(0), z(0)) and the steady state belong to different subsets,
Ω+ or Ω−, and there is at least one (heteroclinic) trajectory joining the impasse-transversal
point and the steady state, or joining the initial point and a singular steady-state.

The other type of DGE paths, over-determinate or determinate with no crossing, can be
seen as cases in which either one of the local conditions (in the case of over-determinacy) or
one of the global conditions (in the case of non-crossing DGE paths) fail.

At first look, it seems that the difference introduced by the existence of impasse-singularities,
as regards regular models, is only related to the existence of the crossing DGE paths. How-
ever, this is not the case. The existence of impasse-singularities can also be noted in the
existence of multiple over-determinate DGE paths and on the confinement of the existence
of non-crossing DGE to a particular subset of the state space Ω.

Next we gather some representative DGE dynamics that illustrate the effect of the ex-
istence of impasse-singularities introduced by the fiscal policy rule. In those examples we
constrain the analysis to cases in which an impasse surface exists, that is b̄ ≤ b̄s. From
Propositions 1 and 2 we know that, for specific subsets of the parameters values, at least one
of the local conditions holds, although we were unable to find parameter values such that de-
terminate DGE paths with crossing trajectories exist. However, the existence of singularities
still constrains the dynamics in significant ways.

4.1 Multiple over-determined BGP’s

Most of the equilibrium DGE dynamics involve over-determinacy, that is the existence of
BGP’s isolated or multiple, in which the detrended variables are unstable nodes or foci, the
equilibrium dynamics is reduced to the BGP and there is no transitional dynamics. These
cases are possible only if the initial values for the pre-determined variables, K and B, are in
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Figure 6: Phase diagram for the case L4(1) in Figure 4 and L5(6) in Figure 5, and with
α = 0.7, σ = 2, ρ = 0.02, τ = 0.35, φ = 0.2 and b̄ = 0.6.

a given proportion such that the initial values of the detrended variables belong to the set
ΓE. If there is a single steady state ΓE = {(g∗, z∗)}, the initial values should verify g(0) = g∗

and z(0) = z∗. If there is multiplicity of steady states, ΓE = {(g∗1, z
∗

1), (g
∗

2, z
∗

2)} then there
are two initial points with associated different equilibrium BGP’s.

Figure 6 presents an example associated to reasonable parameter values corresponding
to case L4(1) in Figure 4 and L5(6) in Figure 5. There are two steady states, labelled ΓE1

and ΓE2
, both unstable, where the first is in set Ω+ and corresponds to a debtor position

and the second is in set Ω− and corresponds to a creditor position. In addition, observe that
there is one impasse-transversal saddle point, ΓI , and there are two crossing trajectories
starting at each steady state and passing through the impasse-transversal point. None of
those trajectories are equilibria, because they do not converge to a steady state. There is
another crossing between the isoclines at point g̃ but it does not satisfy the transversality
condition.

Again, this type of phase diagram cannot exist in regular DGE models. If there are two
steady states, in regular models, they have different local dynamic properties, because the
curvatures of the isoclines at the two steady states should be different. The existence of an
impasse surface allows for the different curvatures of the isoclines at the two steady states
to be associated to the same type of local dynamics.
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4.2 Determinate BGP’s

There are some combinations of parameters that allow the local conditions for the existence
of a determinate DGE, involving local dynamics convergent to one BGP, for parameter values
such that b̄ ≤ b̄s = b̄id: cases L4(2), L4(6) and L4(7) from Lemma 4 and L5(3), L5(4), L5(7)
and L5(8) from Lemma 5.

However, for the cases represented in Figures 4 and 5 crossing trajectories cannot exist,
because a trajectory joining the impasse-transversal point (gi1, z

i
1) to (g∗1, z

∗

1) is not possible.
In order to prove this, observe that the first point is an impasse-transversal node point where
crossing trajectories flow from Ω− to Ω+ and the second is a saddle point belonging to Ω−.
Indeed, the stable manifold associated to (g∗1, z

∗

1) is the boundary of the basin of attraction
to (gi1, z

i
1).

Therefore, although the necessary conditions for the existence of a crossing trajectory
exist the global conditions fail. Figures 7, 8 and 9 present three related phase diagrams
illustrating this case. The three phase diagrams share several common features. First, there
is a unique steady state, ΓE,1 or ΓE, which is a saddle point, it is located in set Ω− and
corresponds to a long run debtor position (because it is to the left of the g = ḡ line). Second,
the stable manifold associated to this steady state is bounded to the left by the singular
surface S but it is also bounded to the right.

However, the phase diagrams depicted in those Figures differ in some aspects. The phase
diagram in Figure 7 in addition to the steady state ΓE,1 has another steady state ΓE,2 which
is locally unstable, is still within set Ω− and corresponds to a creditor position (because it
is to the right of line g = g̃), and it has a heteroclinic trajectory connecting the two steady
states. This means that either the initial values of the pre-determined variables are such
that (g(0), z(0)) = (g∗2, z

∗

2) and the BGP with rate of growth γ(g∗2) is over-determinate, or
(g(0), z(0)) ∈ ((gs1, z(g

s
1)), (g

∗

2, z
∗

2)) and the DGE is determinate and converges to the BGP
with rate of growth γ(g∗1). For other initial values DGE paths do not exist. We also depict a
representative crossing trajectory, which is not a DGE path, departing from steady state ΓE,2

passing through the impasse-transversal node point ΓI , entering into set Ω+ and terminating
in finite time in an attractor point belonging to set S.

The phase diagram in Figure 8 displays only one regular steady state (g∗1, z
∗

1) in set Ω−

and corresponding to a debtor position. In this case the higher limit for the initial value
of g is not given by another steady state but by a value for g such that z(0) > 0, because
the stable manifold associated to the steady state is negatively sloped. Again, we depict a
non-DGE crossing trajectory.

The phase diagram in Figure 9 is similar to the case in 7 with the exception that the
steady state (g∗1, z

∗

1) is an impasse-singular point, corresponding again to a debtor position.
This steady state corresponds to a non-generic impasse-equilibrium saddle-node point. It is
a singular saddle-node point because it is an unstable node from the perspective of Ω+ and a
saddle point from the perspective of Ω−. This is a limit case: if φ is reduced or b̄ augmented
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Figure 7: Phase diagram for the case L4(2) in Figure 4 and L5(7) in Figure 5, and with
α = 0.7, σ = 2, ρ = 0.02, τ = 0.35, φ = 0.35 and b̄ = 0.3.

then the steady state g∗1 will move to the set Ω+, and become a regular unstable point as in
phase diagram in Figure 6, or it will move to Ω−, and become a regular saddle-point as in
phase diagram in Figure 7.

In all cases we see the equilibrium expenditure ratio can only be higher than the steady
state if the government is in or close to a net creditor position.

Therefore, the following is generically verified:

Proposition 3 (Equilibrium dynamics with fiscal rules). Assume that b̄ ≤ b̄∗s = b̄id. Then a

DGE path converging to an unique BGP with rate of growth γ(g∗1) only exists if the initial

level of the ratio of the government expenditures, g(0), lies between gs1 and min{g∗2, 1, g
z},

where gz is the point in the stable manifold such that z = 0, and the government ratio

converges to a point gs1 ≤ g∗1 < ḡ, meaning that the government is asymptotically a debtor.

It is interesting to note that for benchmark values of the parameters for the rate of time
preference, intertemporal elasticity of substitution and distortionary tax rate those cases
correspond to unrealistic high debt levels (above 60%). The long run debt ratio deviates
from the target b̄ if g∗ ̸= τ , which is generically the case. Observe that, one possible
configuration of steady states is that g∗1 = τ and g∗2 = ḡ, which implies that b(g∗2) = 0.
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Figure 8: Phase diagram for the case L4(2) in Figure 4 and L5(3) in Figure 5, and with
α = 0.7, σ = 2, ρ = 0.02, τ = 0.35, φ = 0.4 and b̄ = 0.35.

Figure 9: Phase diagram for the case L4(1) in Figure 4 and L5(8) in Figure 5, and the BGP
g∗ = g∗1 is a singular steady state. We set α = 0.65, σ = 1.8, ρ = 0.02, τ = 0.35, φ = 0.3 and
b̄ = 0.4773478078.
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5 Conclusion

By introducing a realistic fiscal rule, consisting in the use of the fiscal surplus to control the
difference between the actual and a target ratio of the government debt to the GDP, in an
otherwise benchmark growth model with productive government expenditures, we found that
depending on the design of the rule, and on the initial level of the expenditure ratio, a DGE
path converging to a determinate BGP can exist or not. The existence is not guaranteed
because the rule introduces impasse-singularities into the model. The types of singularities
that are specifically introduced by the rule considered in this paper generate several types
of dynamics which are not present in regular models: multiple over-determinate BGP’s,
confined determinate DGE dynamics converging to a regular or a singular BGP path. The
type of dynamics can be very sensitive to small variations of the parameters defining the
rule, which implies that the level of the target and the speed of the adjustment can affect
the structural stability properties of the economy.
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A Proofs

Proof of Lemma 1 . Function (8) has the following obvious properties: b(g) < 0 if min{ḡ, g̃} <
g < max{ḡ, g̃}, b(g) = 0 if g = ḡ, b(g) > 0 if g < min{ḡ, g̃} or g > max{ḡ, g̃}, and b(g) = ±∞
if g = g̃. In order to determine the parameter values that map back those cases, observe
that we have ḡ < 1 if and only if b̄ < b̄1 ≡ (1− α)/φ and g̃ < 1 if and only if φ < ατ . Then
max{ḡ, g̃} < 1 if φ < τα and b̄ < b̄1 and min{ḡ, g̃} > 1 if and only if φ > τα and b̄ > b̄1 and
min{ḡ, g̃} ≤ 1 ≤ max{ḡ, g̃} for the other cases. The rest of the proof is obvious.

Proof of Lemma 2. Function δ(g), defined in equation (16), has the following first and second
derivatives δ

′

(g) = τr(g) − φ and δ
′′

(g) = τr
′

(g). As δ
′

(g) ⋛ 0 if and only if g ⋚ g̃ and

δ
′′

(g) > 0 for all g, then it is a convex function of g reaching a minimum at point g̃. At this
point we have δ(g̃) = φ(1−α)(ḡ− g̃). Therefore δ(g̃) ⋚ 0 if and only if ḡ ⋚ g̃. Consequently,
three cases exist: (a) If ḡ > g̃ then δ(g) > 0 for all g > 0 and impasse points do not exist;
(b) if ḡ = g̃ then δ(g) = 0 if gs = ḡ = g̃ and δ(g) > 0 otherwise, and there is a non-generic
impasse point in the first case and there are no impasse points in the second; and (c) if ḡ < g̃
then there two impasse points, gs1 and g

s
2, can exist satisfying 0 < gs1 < ḡ < g̃ < gs2, such that

δ(g) < 0 if gs1 < g < gs2, δ(g) = 0 if g = gs1 or g = gs2 and δ(g) > 0 otherwise.
Now, consider the cases b) and c) in which impasse points exist. A necessary condition

for this is ḡ ≤ g̃. We need to determine under which conditions the impasse points are
admissible, i.e., belong to the domain (0, 1). If ḡ = g̃ then the singular point satisfies gs < 1
if and only if δ(1) < 0 and δ

′

(1) > 0, that is if φ < τα and b̄ < b̄1 = (1 − τ)/(ατ). If
ḡ < g̃ then two cases are possible: (a) there are two admissible singular points satisfying
gs1 < gs2 < 1 only if δ(1) > 0 and δ

′

(1) > 0; (b) there is only one admissible singular point
satisfying gs1 < 1 if δ(1) < 0. However, δ(1) ⋚ 0 if and only if b̄ ⋚ b̄1 and δ

′

(1) ⋚ 0 if and

only if φ ⋛ ατ which is equivalent to g̃ ⋛ 1.

Proof of Lemma 3. Impasse-transversal points, (gi, zi), are determined by solving δ(g) = 0
and ψ(g, z) = 0 within set Ω, i.e., for g ∈ (0, 1) and z > 0. First, from Lemma 2 we already
know that a condition for existence of impasse-points gs such that δ(g) = 0 is ḡ ≤ g̃. As
impasse points verify τr(gs) ̸= φ and gs ̸= ḡ then ψ(g, z) = 0 if and only if zi = ζ(gs). Then,
taking stock of Lemma 2 which determines the conditions for the existence ( b̄ ≤ b̄s) of one
(φ > ατ and b̄ < b̄s1) or two impasse points (φ > ατ and b̄s > b̄ > b̄s1) we have only to check
if ζ(gs) > 0. Solving jointly the system δ(g, b̄) = 0 and ζ(g, b̄) = 0 we find, implicitly, two
critical values b̄i, such that b̄i = {b̄ : δ(g, b̄) = 0, Z(g, b̄) = 0}, where

Z(g) ≡ g2 −
(

(1− α)(1 + ḡ) + τ 2
)

g + (1− α)
(

ḡ(1− α(1− τ))− ατ 2
)

.

This is because ζ(g) ≥ 0 if and only if Z(g, b̄) ≥ 0. Two image singular points exist if,
additionally, b̄s > b̄ > b̄i and one impasse-transversal point exists if b̄ < b̄i. Comparing the
values of those critical levels for b̄, we find that there are five possible cases, when there
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exists at least one singular point: two impasse surfaces, S1 and S2, one transversal point in
both surfaces, one transversal point in surface S1 and none in S2, or one surface S = S1 and
one or zero transversal points, or zero transversal points

In order to determine the partition in impasse surfaces that are introduced by transversal
points, we should observe that attractor (repeller) points verify δ

′

(g)ψ(g, z) < 0 (δ
′

(g)ψ(g, z) >
0). As δ

′

(gs1) < 0 and δ
′

(gs2) > 0 and because for any singular point (τr(gs)− φ)(gs − ḡ) > 0
then sign(ψ(gs, z)) = sign(z − ζ(gs)) then the singular point gs1 is an attractor (repeller)
if z > zi1 = ζ(gs1) (z < zi1 = ζ(gs1)) and the singular point gs2 is an attractor (repeller) if
z < zi2 = ζ(gs2) (z > zi2 = ζ(gs2)).

Proof of Lemma 4. The Jacobian of system (25)-(26), evaluated at an impasse-transversal
point (gi, zi), is

J(gi, zi) =

(

giψ
′

g(g
i, zi) giψ

′

z(g
i, zi)

ziδ
′

(gi)(zi − z(gi)) 0

)

,

where

ψ
′

z(g
i, zi) = ατ(gi − ḡ)(τr(gi)− φ)

ψ
′

g(g
i, zi) = −ζ

′

(gi)ψ
′

z(g
i, zi).

As zi = ζ(gi) their algebraic properties depends only on gi. Therefore, its trace, determinant
and discriminant are

tr(J i) = −giζ
′

(gi)ψ
′

z(g
i, ζ(gi))

det (J i) = giziδ
′

(gi)(ζ(gi)− z(gi))ψ
′

z(g
i, ζ(gi))

∆(J i) = giψ
′

(gi)
(

gi(ζ
′

(gi))2 + 4ζ(gi)(ζ(gi)− z(gi))
)

.

We have ψ
′

z(g
i) = ψ

′

z(g
i, ζ(gi)) > 0 for any gi. Therefore, sign(tr(J i)) ̸= sign(ζ

′

(gi)) and
sign(det (J i)) = sign(δ

′

(gi)(ζ(gi)− z(gi))). The discriminant is positive if zi = ζ(gi) ≤ z(gi)
and may be zero or negative only if ζ(gi) < z(gi).

After some algebra we get the determinant of Jacobian J(gi) ≡ J(gi, ζ(gi))

det J(gi) = αzigi(τr(gi)− φ)2D(gi)(gi − ḡ)(gi − gid)

where

D(gi) ≡
ρατ + φ(σ(1− ατ)− (1− τ))

ατσgi

and gid is in equation (27). If σ > 1 then D(gi) > 0 and gid < ḡ. This implies, because
we have proved that gi1 < ḡ < gi2, det (J(gi2)) > 0 and det (J(gi1)) > 0 if gi1 < gid < ḡ
and det (J(gi1)) ≤ 0 if gi1 ≤ gid < ḡ. Therefore (gi1, z

i
1) can be a transversal saddle, node or

focus and (gi2, z
i
2) can only be a node or a focus. In order to discriminate between the two
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cases, we need to determine the sign of the discriminant of the Jacobian evaluated at every
impasse-transversal point.

The sign of the discriminant ∆(J i) depends on a quadratic polynomial in (1/g). This
means that there can be generically, zero or two critical values for gi, say gi∆,1 < gi∆,2. In
the first case the two image-transversal points are nodes and in the second one they are foci.
Evaluating the trace for impasse-transversal nodes is required for determining the direction
of the crossing trajectories. If the trace is negative (positive) then there is crossing from
the adjacent Ω+ set to set Ω− (from Ω− to the adjacent Ω+ set). We readily see that
sign(tr(J i)) = −sign(ζ

′

(gi)), where the sign of ζ
′

(gi1) is ambiguous but ζ
′

(gi2) > 0. That is,
when there is an impasse-transversal node at (gi2, z

i
2) there is crossing from Ω− to Ω+,2.

If g∗i = ḡ = g̃ then the two impasse-transversal points collapse to one and as tr(J∗

i ) =
det (J∗

i ) = 0 we have a singularity induced bifurcation point with co-dimension 2.

Proof of Lemma 5. Equilibrium steady states values (g∗, z∗) must verify three conditions:
first, they are fixed points of the system (20)-(21); second, they belong to set Ω; third, the
transversality condition should be satisfied. A regular (singular) steady state additionally
verifies δ(g) ̸= 0 (δ(g) = 0).

First, we determine the fixed points of system (20)-(21) in the Ω domain. From equation
(21), we find ż = 0 if and only if z = 0 or z∗ = z(g∗). The first point is not in set Ω and the
second is monotonously related to g∗ and is a BGP if z∗ > 0. On the other hand the set of
fixed points for g is g∗ = {g ∈ (0, 1) : Ψ(g) ≡ ψ(g, z(g)) = 0} where

Ψ(g) = α(τr(g)− φ) (ϕd(g)τr(g)− ϕn(g)) /σ

and ϕd(g) ≡ ((τσ + (1− τ)(σ − 1)) g − (τ 2σ + ḡ(1− τ)(σ − 1))) /τ , and ϕn(g) ≡ (σφ −
ρ)g − (σφτ − ρḡ). It is useful to define ϕ(g) = ϕn(g)/ϕd(g), that is

ϕ(g) =
τ(σφ− ρ)

τσ + (1− τ)(σ − 1)

(

g − g1
g − g0

)

where

g0 ≡
τ 2σ + ḡ(1− τ)(σ − 1)

τσ + (1− τ)(σ − 1)
, and g1 ≡

φστ − ρḡ

σφ− ρ
.

The fixed points of Ψ(g) = 0 are determined from two conditions: τr(g) = φ and
τr(g) = ϕ(g). Then one fixed point is always g∗1 = g̃ (solving equation τr(g) = φ). Other
fixed points are the solutions of equation τr(g) = ϕ(g). We find three cases: (a) if σφ < ρ
and g1 > g0 > 0 then there is a second fixed point g∗2 ∈ (g0, g1); (b) if σφ > ρ and g0 > 0 ≥ g1
then there is a second fixed point g∗2 > g0; and (c) if σφ > ρ and g0 > g1 > 0 then there are
two more fixed points, g∗2 and g∗3, such that g∗2 < g1 < g0 < g∗3. But, as g1 = 0 if and only if
b̄ = b̄∗1, in equation (28), then the first two cases can be taken together if b̄ < b̄∗1.
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Next, we have to check if the transversality condition holds for all those roots of equation
Ψ(g) = 0. First, the rates of growth for consumption, capital stock and the government debt
are derived in equation (7), (17) and (12). Using the definitions in equation (19) we find
γK(g, z)− γ(g) = z(g)− z . Then γ∗K = γK(g

∗, z∗) = γ∗ = γ(g∗) along any fixed point of the
system (20)-(21).

On the other hand

γB(g)− γ(g) =
ϕd(g)

σ(g − ḡ)
(τr(g)− ϕ(g))

Then γB(g) − γ(g) = 0 if and only if: (a) ϕd(g) ̸= 0 and τr(g) = ϕ(g); or (b) g = ḡ
and τr(g) = ϕ(g) = φ, that is if ḡ = g̃. Observe that if τr(g) = φ and ḡ ̸= g̃ then
γB(g) − γ(g) ̸= 0. Therefore: (1) a fixed point such that z∗ = z(g∗) and τr(g∗) = ϕ(g∗)
implies γ∗B = γ∗K = γ∗ = ((1 − τ)r(g∗) − ρ)/σ, and, then ρ + σγ∗ − γ∗K = ρ + σγ∗ − γ∗B =
ρ + (σ − 1)γ∗ = (ρ + (σ − 1)(1 − τ)r(g∗))/σ > 0 if σ ≥ 1, and the transversality condition
holds; (2) a fixed point such that z∗ = z(g∗) and τr(g∗) = φ leads to two possible cases: if
g∗ = ḡ then g∗ = g̃ = ḡ implying γ∗B = γ∗K = γ∗ = ((1− τ)r(g∗)−ρ)/σ and the transversality
condition is also satisfied; however, if g∗ ̸= ḡ then γ∗B = (1 − τ)φ/τ which is different from
γ∗K = γ∗ = ((1−τ)r(g∗)−ρ)/σ, and because ρ+σγ∗−γ∗B = ρ+(1−τ)φ/τ−ρ−(1−τ)φ/τ = 0
the transversality condition is not satisfied.

At last we check if the fixed points verifying the transversality condition belong to the
domain Ω: that is whether g∗ ∈ (0, 1) and z(g∗) > 0. As z(0) = ρ/σ > 0 and, if we
assume that ρ < α(1 − τ)), z(1) = (ρ − α(1 − τ))/σ < 0 and z

′

(0) > 0 and z
′

(1) < 0 then
g∗ ∈ (0, 1) if z(g∗) > 0. As z(g) > 0 if and only if (σ(1 − g)/α − (1 − τ))r(g) + σρ > 0
then there is a unique critical level gz such that z(g) > 0 if and only if g < gz. Then by
substituting in the equilibrium condition we find a critical value for a parameter b̄, b̄∗z, such
that ϕ(b̄∗z, gz) = τr(gz). This value exists and is unique and we have z(g∗) > 0 if and only if
b̄ < b̄∗z.

Now, we address the location of the fixed points, as regards the impasse surface(s). Taking
τr(g) = ϕ(g) and solving jointly with δ(g) = 0 we obtain both singular fixed points and the
constraint in the parameters for their existence. Factoring the expression τr(g) > 0 in both

conditions, we get τr(g) = φ(g−(1−α)ḡ)
αg

= ϕ(g) that is equivalent to φ(g − (1 − α)ḡ)ϕd(g) =

αgϕn(g) and g
∗

s . However only the last one can be an equilibrium BGP. Observe that, when
there are two BGP’s only the one corresponding to the smaller g can be a singular BGP.
From δ(g∗s) = 0 we get the critical value b̄∗s.

If we consider additionally the proofs of Lemmas 1, 2, and the constraint z(g) > 0 (and
the fact that if z(1) < 0 then τr(1) > ψ(1), and if z(1) < 0 then ḡ < 1), we have the following
cases: (i) if f b̄ > b̄∗1 then there is a unique BGP and δ(g∗) > 0 and g̃ < g∗ < ḡ < 1; (ii) if
b̄ ≥ b̄z then there are two roots of Ψ(g) = 0 but only one, g∗1, verifies z(g) > 0. In addition
we always have g∗1 < min{ḡ, g̃} and the sign of δ(g∗1) is positive (negative) if b̄ > (<)b̄∗s;
(iii) if b̄ = b̄∗s then δ(g∗1) = 0; (iv) if b̄ < min{b̄z, b̄

∗

1} then there are two roots of Ψ(g) = 0,
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verifying the transversality condition and z(g) > 0. In addition the following relationship
is verified min{g∗1, g

s
1} ≤ max{g∗1, g

s
1} < ḡ < g∗2 < g̃ < gs2. But g∗1 = min{g∗1, g

s
1} if b̄ > b̄∗s,

gs1 = min{g∗1, g
s
1} if b̄ < b̄∗s and g∗1 = gs1} if b̄ = b̄∗s. The creditor position associated to the

steady states is easily determined from the previous inequalities and from Lemma 1.

Proof of Lemma 6. The Jacobian of system (20)-(21) evaluated at a regular BGP (g∗, z∗) is

J∗ ≡ J(g∗, z∗) =
1

δ(g∗)

(

g∗ψ
′

g(g
∗, z∗) g∗ψ

′

z(g
∗, z∗)

−z∗z
′

(g∗)δ(g∗) −z∗δ(g∗)

)

.

It has trace and determinant

tr(J∗) =
z∗δ(g∗) + g∗ψ

′

g(g
∗, z∗)

δ(g∗)

det (J∗) =
z∗g∗

δ(g∗)

(

ψ
′

g(g
∗, z∗) + ψ

′

z(g
∗, z∗)z

′

(g∗)
)

However, because Ψ
′

(g∗) = ψ
′

g(g
∗, z∗) + ψ

′

z(g
∗, z∗)z

′

(g∗) (see proof of Lemma 5 ) then the
trace and the determinant become, equivalently

tr(J∗) = z∗ + g∗
(

Ψ
′

(g∗)

δ(g∗)
−
ψ

′

z(g
∗, z∗)z

′

(g∗)

δ(g∗)

)

det (J∗) = z∗g∗
Ψ

′

(g∗)

δ(g∗)

If ḡ > g̃ as δ(g∗) > 0 and Ψ
′

(g∗) > 0 for any root of Ψ(g) = 0, with the exception of g∗ = g̃,
then all the equilibrium BGP are locally unstable nodes or foci, i.e. the dimension of the
local stable manifold is zero. If ḡ < g̃ the two fixed points of Ψ(g) = 0, with the exception of
g∗ = g̃ always verify Ψ

′

(g∗1) > 0 and Ψ
′

(g∗2) < 0. In addition as gs1 < ḡ < g∗2 then we always
have δ(g∗2) < 0 and therefore the point g∗2 is also always an unstable node or focus. On the
other hand, if gs1 < g∗1 (gs1 > g∗1) then δ(g

∗

1) < 0 and g∗1 is a saddle point (unstable node or
focus).
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