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Abstract

Demand response is capable of providing multiple services, including energy and reserve. As

a consequence of providing energy, demand response is also inherently contributing to genera-

tion adequacy, and thus may be in entitled to avail of revenue from a capacity remuneration

mechanism. Participation in multiple markets may result in a trade-off, thus necessitating si-

multaneous optimization of the demand response provision of such services. This paper uses

Mixed Complementarity Problems to investigate these trade-offs and resulting market outcomes

in the presence of load-shifting demand response. An approach to approximate the capacity

value of the demand response resource, thereby permitting its participation in the capacity mar-

ket, is also presented. It is found that, for the case study examined here, that demand response

has its most significant impact on the energy market, with marginal and negligible impacts on

the capacity and reserve market, respectively. The results also suggest that considerable cost

savings are attainable by the DR aggregator through participation in the energy market, but

that significant further cost savings are not forthcoming through participation in the reserve or

capacity market.

Keywords: Demand Response, Load-Shifting, Mixed Complementarity Problem, Markets,

Reserve, Capacity

1. Introduction

Demand Response (DR) can participate in multiple markets, including energy and ancillary

services markets, as well as in capacity markets, thereby potentially availing of multiple revenue

streams. It has been shown in the literature that DR is technically capable of operating in all

electricity markets. DR is capable of participating in the energy market, by offering services

such as load-shifting. Load-shifting programs can assist in reducing the need for expensive



Nomenclature

Abbreviations

CRM Capacity remuneration mechanism

CV Capacity Value

DR Demand Response

ELCC Effective Load Carrying Capability

KKT Karush-Kuhn-Tucker

MCP Mixed Complementarity Problem

UCED Unit Commitment and Economic Dispatch

Indices

capacity Relates to capacity market

energy Relates to energy market

i Firm

j Technology

reserve Relates to reserve market

t Time in hours

Parameters

CAP Initial installed generating capacity

DEM Non-interruptible system demand

DMAX Maximum capacity of demand response re-
source

DREF Reference demand

E Elasticity of demand

ICOST Investment cost

MC Marginal operating cost

MCOST Maintenance cost

RESERV EREQ Reserve requirement

TARGET Capacity market target

WIND Wind generation

Variables

κ Capacity price

λ System marginal price

µ Reserve price

Π Profit

capbid Capacity market bid

capdr Capacity market bid of the demand response
resource

drdown Load-shifting downwards

drup Load-shifting upwards

exit Market exit decision variable

gen Generator power output

invest Generation capacity investment decision vari-
able

reservedr Reserve provision from the demand re-
sponse resource

reservegen Reserve provision from a generating unit

Sets

H Set containing the first hour of each day

peaking units and in flattening the load profile, by reducing demand at times of high prices and,

in the case of load-shifting, by increasing load at times of lower electricity market prices. As a

consequence of load-shifting, DR is also also inherently contributing to generation adequacy, thus

DR can provide capacity and thus receive capacity payments or operate in capacity markets and

ultimately contribute to generation adequacy [1]. Finally, it has been illustrated in the literature

that DR is well-placed to provide some reserve services [2, 3, 4, 5], which we define as services

which the system operator employs over various time-frames to maintain the supply-demand

balance on a continuous basis [6].
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The importance of valuing DR was highlighted in [7], where it was noted that undervaluing

DR could leave a beneficial resource underexploited, while overvaluing could lead to a situation

where there is considerable investment in a resource than cannot be effectively realized. The

aim of this paper is to inform the discussion on the value of DR by exploring the impact of DR

participation in various electricity markets, simultaneously.

Given that DR can contribute to generation adequacy, and thus has a capacity value (CV),

as shown in [8, 9], albeit low in comparison to thermal generation, it is necessary to consider how

DR would impact upon electricity markets and upon capacity remuneration mechanisms (CRM).

While there has been considerable work reported in the literature in the area of DR participation

in electricity markets, there has been little work exploring the impact of DR participating in

all three electricity markets (energy, reserve and capacity) simultaneously. Participation of DR

in multiple markets may necessitate in a trade-off between the services offered. Thus there is

a need for consideration of simultaneous optimization of the DR provision of multiple services.

This paper aims to inform the discussion on these topics.

It is acknowledged that there are many types of DR resources, many different programs to

exploit these resources and multiple approaches to modeling them. In this paper, one type of

DR resource is considered: electrical space and water heating. Such a resource is chosen because

of the inherent thermal inertia associated with it, making it suitable for load-shifting, whilst still

maintaining the ability to meet customers’ heating demands.

This paper considers an electricity system with energy and reserve markets, as well as a ca-

pacity market in the form of a capacity auction. Multiple firms with different initial endowments

of generating capacity compete with each other and participate in the three electricity markets

in an effort to maximize their profits. Each firm decides the level of generation, reserve provision,

capacity bid, investment and exit, subject to physical constraints, operating, maintenance and

investment costs and the market clearing prices. A DR aggregator is also considered, responsi-

ble for scheduling the operation of a load-shifting DR resource capable of providing reserve, but

also implicitly contributing to generation adequacy, whilst ensuring consumers’ requirements are

satisfied at all times. Similar to the generating firms, the DR aggregator seeks to maximize their

profit subject to resource constraints and the market clearing prices. The type of DR resource

considered is a load-shifting DR resource. Wind generation is also incorporated, however wind
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only contributes to the energy market and its sole function is to reduce net demand.

Five different models are developed in this paper, considering different combinations of DR

market participation. These models are discussed in detail in section 2.4. A novel method for

approximating the contribution of a DR resource to generation adequacy, and thus its ability to

participate in a capacity auction, is also presented in this paper, permitting inclusion of the DR

resource in the capacity market model. In order to model these different markets Mixed Com-

plementarity Problems (MCPs) are employed. MCPs involve the definition of complementarity

pairs for variables and equations [10]. This means that bounded variables must be mapped to

complementarity inequality. An MCP with function F seeks to find vectors x and y such that:

0 ≤ Fx(x, y) ⊥ x ≥ 0, (1a)

and

0 = Fy(x, y), y free. (1b)

Here x represents the nonnegatively constrained variables with associated nonnegative F

components denoted Fx while y represents the free variables associated with components Fy

that must equal zero exactly [11]. Note: the perb notation, 0 ≤ a ⊥ b ≥ 0, is equivalent to

a ≥ 0, b ≥ 0 and ab = 0.

MCPs are typically made up of the combination of Karush-Kuhn-Tucker (KKT) conditions

for optimality from multiple interconnected optimization problems in addition to the market

clearing conditions that connect the problems. Assuming the individual optimization problems

are convex, the KKT conditions are both necessary and sufficient for optimality. Consequently,

solving the MCP solves the different players’ optimization problems simultaneously and in equi-

librium. The benefits of the MCP approach include the ability to optimize the problems of

multiple players simultaneously. Furthermore, MCPs allow primal and dual variables to be con-

strained together. For example, in the formulation presented in this paper, the output of all

generators, with the output of the DR resource, and prices are constrained together via mar-

ket clearing conditions. An MCP is a particularly useful method when computing a market

equilibrium which cannot be represented by an optimization model [10].

Many economic problems can be expressed as MCPs and, consequently, MCPs have been
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widely deployed in the literature for electricity market analysis. Höschle et al. [12] employ an

MCP to analyze the impact of a CRM on total system costs. Ventosa et al. [13] employ an

MCP to represent the participation of hydro and thermal generation in a competitive market.

A case study of the Spanish electric power system is used in Liang et al. [14] combining an

energy and regulation reserve market model. Bushnell [15] presents a framework for studying

the competition between multiple firms with hydrothermal generation portfolios. Haikel [16]

compares three investment incentive mechanisms (1. capacity payment, 2. forward capacity

market, 3. reliability options) and finds that market-based mechanisms would be the most

cost-efficient way of ensuring long-term system adequacy and encouraging earlier and adequate

new investments. Lynch and Devine [17] utilize a stochastic MCP to examine the effects of

refurbishment on electricity prices and investment in generating technology.

In recent years there has been a move towards incorporating price responsive demand in MCP.

Daoxin et al. [18] include both renewable energy generation and price responsive demand in their

MCP. The inclusion of price responsive demand is achieved through the use of a control parameter

which reflects the response of consumers to changes in price. However, constraints on the price

responsive demand are not taken into account and reserve provision is not considered. While

there has been research examining the interaction of DR with high levels of wind penetration,

reserve markets with DR participation have only been incorporated through the use of a Unit

Commitment and Economic Dispatch (UCED) algorithm [19, 20]. Both [19] and [20] examine

the provision of both energy and reserve from DR using a UCED algorithm and assess the impact

on operation and cost savings.

In the first case study in [20], demand is modeled as a constant value modified by a sinusoid.

Additionally, the authors in [20] chose to only include two generation units in the portfolio; a

base load unit and a peaking unit. Furthermore, they have assumed that DR is a fixed fraction of

the total system demand at each point in time. In the second case study in [20], hourly demand

and wind data is utilized and DR is assumed to be 5% of the system load in each hour. Rather

than assume a percentage of the system load which is shiftable, this paper instead utilizes actual

data for the demand-side resource requirements and the power system demand.

Conejo et al. [21] propose an hourly real-time DR model. The demand model seeks to

minimize the cost of meeting the load minus the utility of the customers [21]. Unlike the model
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in [18], the model developed in [21] crucially includes physical constraints pertaining to the

demand resource, including a minimum energy consumption constraint, and ramping limits on

hourly load levels. However, again no consideration is given to reserve provision by the DR

resource.

Nekouei et al.[22] provide a game-theoretic approach for DR. Interplay between aggregators

and generators is formulated as a Stakelberg leader game, in which the aggregator influences

the spot price of electricity. The consumer seeks to minimize its load curtailment costs, while

the aggregator seeks to minimize the aggregate inconvenience of customers. They applied the

Stackelberg game to analyze the profitability of DR in South Australia. Crucially, reserve

provision by the demand-side is not considered in the model in [22].

The authors in [23] employ an MCP model to minimize costs and incorporate prices re-

sponsive demand. In their work on determining an optimal generation mix with DR and wind

penetration, De Jonghe et al. [23] reviewed some of the literature and found that there have

been no generation technology mix models that integrate energy efficiency programs, DR to

hourly varying prices and dynamic operating constraints simultaneously. In their paper, they

propose three methodologies for integrating short-term demand responsiveness into a technol-

ogy mix optimization model, one of which is a complementarity programming method [23] and

utilize the same DR models in each method. As regards the complementarity programming

method employed in [23],the authors formulate a mixed linear complementarity problem, not

dissimilar to what is presented in this paper. The key difference is the manner in which the

DR is represented. A reference price and quantity demanded for each hour is considered in [23]

and elasticity assumptions are utilized[23]. The reference price is the quantity weighted aver-

age of the hourly energy prices over the time horizon and the short-term demand function that

expresses quantity demanded as a function of relative deviations from the reference price [23].

In this paper, a load-shifting DR resource is modeled, separate from elastic or price-responsive

demand, with the ability to provide reserve and contribute to generation adequacy, complete

with an energy limit constraint.

This paper is organized as follows: Section 2 introduces the MCP methodology employed

and details the DR aggregator problem. Input data, case study information and a description of

the different market models employed is discussed in Section 2.5. Section 3 presents the results
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of the various case studies and sensitivities, while Section 4 discusses the key findings.

2. Methodology

This section details the firms’ and DR aggregator problems as well as the market clearing

conditions, under competitive market conditions. The corresponding KKT conditions are also

derived and presented in the Appendix. Throughout this section, parameters are denoted with

capitals, primal variables are denoted with lower case lettering. Variables in parentheses, along-

side constraints, are the Lagrange multipliers associated with the constraints and are denoted

with lower-case Greek letters.

2.1. Generating Firm’s Problem

Each generating firm may have multiple types of generating technologies. Its problem in-

volves choosing the amount of generation (gent,i,j), reserve provision (reservet,i,jgen ) and capacity

bid (capi,jbid), as well as investment in new capacity (investi,j) and decommissioning of existing

capacity (exiti,j), for all of its generating units in order to maximize their profits, Πi
gen. These

profits consist of profit from the energy, reserve and capacity markets, Πi
Energy, Π

i
Reserve and

Πi
Capacity, respectively, where i is an index representing each different firm, j represents the

generating technology and t is the time index, in this case 1-hour. Firm i’s problem is:

max
gen
exit

invest
cap

Πi =
∑

j

Πi,j
energy +

∑

j

Πi,j
reserve +

∑

j

Πi,j
capacity, (2a)

where

Πi,j
energy =

∑

t

(gent,i,j)× (λt −MC i,j), (2b)

Πi,j
reserve =

∑

t

(reservet,i,jGen)× µt, (2c)

Πi,j
capacity = (capi,jbid)× (κ)− (investi,j)× ICOST j − (CAP i,j − exiti,j)×MCOST j, (2d)
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subject to:

gent,i,j + reserve
t,i,j
Gen ≤ CAP i,j − exiti,j + investi,j, (θt,j1 ), ∀t, j, (2e)

cap
i,j
bid ≤ CAP i,j − exiti,j + investi,j, (θi,j2 ), ∀t, j, (2f)

The variables λt, µt and κ represent the prices associated with the energy, reserve and

capacity markets receptively. Each are exogenous to the firms’ problems but are variables of the

overall model determined via the market clearing conditions. All of the generating firm’s primal

variables are constrained to be non-negative.

The parameter MC i,j denotes the marginal cost of generating firm i technology j, ICOST j

represents the investment cost of generating technology j, while MCOST j is the maintenance

cost associated with technology j. The parameter CAP i,j represents the initial endowment of

generating capacity for each firm i and for each technology j.

Equation (2a) is the objective function of the generating firm. Each generating firms choses

how to participate in each market in order to maximize their profit. Equation (2b) represents the

energy component profit of the generator and consists of the revenue obtained from the energy

market less the marginal cost MC i,j of producing energy. Equation (2c) denotes the reserve

component of the generator’s profit. As can be seen, there is no cost component associated

with providing reserve as it is assumed that the cost of providing reserve is the opportunity

cost of not providing energy. Equation (2d) represents the revenue from the capacity market

less investment costs and maintenance costs associated with providing capacity. Equation (2e)

constrains the power and reserve provided by a generating unit to be strictly less than or equal

to the installed capacity of the unit, taking any exit and investment decisions into account.

Equation (2f) ensures the capacity bid of each generator does not exceed the installed capacity.

2.2. Demand Response Aggregator Problem - Energy, Reserve and Capacity Markets

The DR aggregator’s problem is to choose DR in both the downward and upward direction,

drtdown and drtup, respectively, reserve provision, reservetdr, and capacity market bids capdr so

as to maximize profits from the energy, reserve and capacity markets. The total load-shifting

performed by the DR resource is the net result of a combination of drtdown and drtup, the upwards
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and downwards change in demand at each time, t. In this paper, DR can only provide reserve

in the downward direction (from the DR point of view). This DR reserve is assumed to be

analogous to a generator providing upward reserve, permitting the formulation of Equation (4c)

to represent a reserve market.

As shown in [9, 24, 25], DR is capable of reducing peak demand thereby displacing a certain

amount of peaking generating capacity. This capability is often referred to as the contribution to

generation adequacy of the resource. Generation adequacy is defined as the existence of sufficient

generating capacity on the power system to meet peak load and is usually expressed by capacity

value metrics [26]. In [25] a new metric called the Equivalent Generation Capacity Substituted

is proposed. The authors in [25] suggest that the Equivalent Generation Capacity Substituted

metric indicates the amount of conventional generation capacity that can be displaced by DR

without impacting upon the original level of generation adequacy. In [8], the Effective Load

Carrying Capability (ELCC) is the metric used, which is the amount by which a system’s load

can increase when the generator is added to the system, while maintaining the system’s adequacy

[27]. It should be noted, as highlighted in [28], that there are a variety of possible definitions

and calculation methods for capacity value metrics. Thus, there is not one single definite value

for the capacity value of a resource.

Throughout an entire year, the period during which a lack of generation adequacy would

be most apparent is the peak demand period. In the MCP models presented here, firms make

investment and exit decisions based on the peak system demand and their profitability. Firms

decide to invest in generation if there is a deficit during peak periods and there is scope for

them to recoup their investment costs. On the other hand, firms will opt to exit the market if

there is excess generating capacity, displacing their operation at the peak, thus impacting upon

their profits. Thus it is plausible that a change in investment seen with the addition of a DR

resource in an MCP model is representative of the contribution of the DR resource to generation

adequacy. Consequently, it is proposed here that the change in generator investment due to the

addition of the DR resource is an indication of the capacity value of the DR resource, and the

DR resource is then in a position to participate in the capacity market.

It is assumed that, in future electricity markets, reference demands relating to DR re-

sources will be knowable and obtainable by DR aggregators, and that reserve markets are
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non-discriminatory, permitting the participation of DR. It is also assumed that DR aggrega-

tors are capable of responding to wholesale electricity market prices. Assuming the DR resource

is capable of providing a response (drtdown and drtup) and providing reserve in the same period as

well as the ability to participate in the capacity market, the DR aggregators problem is:

max
drdown

drup
reservedr
capdr

Πdr = Πenergy +Πreserve +Πcapacity, (3a)

where

Πenergy =
∑

t

(drtdown − drtup −DREF t)× λt, (3b)

Πreserve =
∑

t

(reservetdr)× µt, (3c)

Πcap = capdr × κ−MCslack × slack, (3d)

subject to:

drtdown + reservetDR ≤ DREF t, (γt
1), ∀t, (3e)

drtup +DREF t ≤ DMAX, (γt
2), ∀t, (3f)

t′+23∑

t=t
′

(drtdown) =
t′+23∑

t=t
′

(drtup), (γt′

3 ), ∀t′ ∈ H = {1, 25, 49, ......}, (3g)

capdr ≤
∑

i,j

INV EST
i,j
NoDR −

∑

i,j

invest
i,j
DR + slack, (γ4). (3h)

The parameter DREF t represents the amount of load end-users would wish to consume at

a specific point in time, t, and thus represents the electrical demand in the absence of DR. The

parameter DMAX represents the total installed capacity of the DR resource. Equation (3a) is

the objective function of the DR aggregator. The DR aggregator choses how to participate in
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each market in order to maximize their profit. Equation (3b) represents the energy component

of the DR aggregator’s profit and consists of the revenue obtained from the energy market

due to load-shifting as well as the cost of meeting the consumers reference demand, DREF t.

Equation (3c) denotes the reserve component of the DR aggregator’s profit, while Equation (3d)

represents the capacity component. As can be seen, there is no cost component associated with

providing reserve as it is assumed that the cost of providing reserve is the opportunity cost

of not participating in the energy market. Constraint (3e) ensures that, in each time-step, t,

the DR aggregator can only shift downwards and can only provide upward reserve (from the

point of view of the power system) by an amount less than or equal to the reference demand.

That is, there can only be downwards shifting load and reserve if the end-user appliances are

on and available. Equation (3f) constraints the upward shifting of the resource to be less than

the installed capacity of the end-user appliance, DMAX. Constraint 3g represents the energy

limited nature of the DR resource and ensures that any shifting downwards is balanced by

shifting upwards over a 24 hour period, where H is the set containing the first hour of each day.

As is the case for the firms’ problems, the prices λt, µt and κ are exogenous to the DR agregators

problem and are determined via market clearing conditions. All of the DR aggregator’s primal

variables are constrained to be non-negative.

Load-shifting DR is chosen here and is modeled in a generic way in this study. It is intended

that the model of the DR can be made resource-specific in future work by varying the values

of the parameters relating the maximum installed capacity, DMAX, the reference demand,

DREF t, and whether or not the resource can provide reserve.

The authors in [20] model DR in a broadly similar way to the representation employed

here, but DR reserve is modeled differently. DR reserve is taken to be the difference between

the installed capacity of the DR resource and the DR output, in the same way reserve from a

generator is modeled. However, in [20], the DR resource output can be positive or negative and

so this would suggest that the reserve provided by the DR resource can be upward or downward

reserve. However, it also suggests that the reserve provided by the resource can actually exceed

the maximum capacity of the DR resource at that instant, which is not plausible in reality. In

contrast, here reserve is modeled one direction only to avoid this problem.

Equations (3d) and (3h) represent the manner in which the DR resource is able to participate
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in the capacity market. The capacity bid, capdr, is equal to the change in investment from the

‘no DR’ case (the parameter
∑

i,j INV EST
i,j
noDR, see section 2.4) to the case ‘with DR’ case

(the variable
∑

i,j invest
i,j
DR). The change in investment is an approximation for the generation

adequacy contribution of the DR resource. The slack variable is included in order to ensure

that there is no opportunity for the DR aggregator to over-estimate the generation adequacy

contribution of the resource. This variable represents generation from an expensive generating

unit, MCslack, which would be required to make up any difference between the capacity bid of

the DR and the actual, realized generation adequacy contribution of the resource. If the change

in investment between the ‘no DR’ case and the ‘with DR’ case is zero, the high cost associated

with the slack variable forces the variable capdr to be zero also. Thus, while the slack variable

represents generation, its sole function is to ensure that the DR aggregator problem is feasible;

there is no participation of this generator in any of the electricity markets.

2.3. Market Clearing Conditions

The different MCPs consider different types of market clearing conditions. These connect

each of the firms problems and the DR aggregator problem. The first type of market clearing

condition is associated with the energy market and when DR is not considered:

∑

i

Gent,i = DEM t + E × λt, ∀t, (λt), (4a)

where the parameter DEM t denotes the system demand in hour t and the parameter E

represents the elasticity of load, which henceforth refers to elasticity associated with demand or

price-responsive load. This price-responsive load is distinct from the DR resource’s load shifting.

When DR is included Equation (4a) becomes:

∑

i

gent,i = DEM t −DREF t + drtup − drtdown + E × λt, ∀t, (λt). (4b)

This type of DR is a load-shifting DR resource. The parameter DREF t, as mentioned

earlier, denotes the end-users requirements at each point in time. To avoid double counting this

parameter is removed from the supply-demand equation as it is the demand which is satisfied by

the load-shifting operation of the DR resource. Wind generation is also incorporated, however

it is assumed that wind is a price-taker and does not provide any reserve or a contribution to
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the capacity market. Therefore wind only contributes to the energy market and its sole function

is to reduce net demand. In the analysis which follows, when wind generation is considered it

is included as net load. The reserve and capacity markets, with and without DR participation

are shown below:

∑

i

reserve
t,i
Gen = RESERV EREQ, ∀t, (µt), (4c)

∑

i

reserve
t,i
Gen + reservetDR = RESERV EREQ, ∀t, (µt), (4d)

∑

i

capibid = TARGET, (κ), (4e)

∑

i

capibid + capdr = TARGET, (κ). (4f)

Equations (4c) and (4d) represent the reserve market with and without DR participation, while

including a reserve requirement, the parameter RESERV EREQ. Similarly, the capacity market

with and without DR is represented by Equations (4e) and (4f), respectively, where the parameter

TARGET represents the amount of generating capacity required.

2.4. MCP Models and Sensitivities

The authors in [23] suggest that since their MCP model minimizes costs and incorporates

price-responsive demand, it can be viewed as a optimal generation technology mix model. Sim-

ilarly, the models employed in this paper (see Figure 1) minimize costs, incorporate both elastic

demand and DR, allow for investment and withdrawal of generation and include DR. Thus, these

models may also be considered optimal generation technology mix models.

The MCP models are developed in the General Algebraic Modeling System (GAMS) and

solved using the PATH solver [29]. Due to the considerable computation time, the MCP analy-

sis is performed for the first 100 days of the year. The market clearing conditions presented in

the previous section are utilized in conjunction with the firms problems and the DR aggregator

problems in different combinations in order to produce a number of different MCP models, an

explanation of these models is now provided:
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Figure 1: Overview of the methodology

1 Without a DR resource - in this model there is no load-shifting DR but there is price-

responsive demand. The MCP consists of the generators’ problems, KKT conditions (6a)

through (6g), and market clearing conditions (4a), (4c), (4e). In order to solve models ii.

and iv. below, it is necessary to first solve this model in order to determine the variable

∑
i,j invest

i,j, which becomes the parameter
∑

i,j INV EST
i,j
noDR in Constraint 3h in models

ii. and iv.

2 With a DR resource - for all of the following models, the MCP consists of the firms’

problems, KKT conditions (6a) through (6g). However, the market clearing condition

representations differ depending on what markets the DR resource is participating in.

i DR in Energy Market Only - the market clearing conditions in this model com-

prise Equations (4b), (4c) and (4e). The KKT conditions for the DR resource in

this model are KKT conditions (7a),(7b), (7d), (7e), (7f) and (7g) with the variable

reservetDR fixed to zero.

ii DR in Energy & Capacity Market Only - in this model DR only participates in

the energy market and capacity market. The market clearing conditions in this model

comprise Equations (4b), (4c) and (4f). The KKT conditions for the DR resource in

this model are KKT conditions (7a),(7b), (7d), (7e), (7f), (7g) and (7h), with the

variable reservetDR fixed to zero.

iii DR in Energy & Reserve Market Only - in this model DR only participates in

the energy market and reserve market. The market clearing conditions in this model
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comprise Equations (4b), (4d) and (4e). The KKT conditions for the DR resource in

this model are KKT conditions (7a),(7b), (7c), (7e), (7f) and (7g).

iv DR in All Markets - in this model DR participates in all available markets. The

market clearing conditions in this model comprise Equations (4b), (4d) and (4f). The

KKT conditions for the DR resource in this model are KKT conditions (7a) through

(7h).

All of the models presented above are examined by varying the input parameters for the

different peak load and wind penetration levels.

2.5. System Data

The initial endowment of generating capacity for each firm, CAP i,j, is shown in Table 1

and the corresponding cost characteristics are presented in Tables 2 and 3. Three generating

technologies are considered, baseload, mid-merit and peaking capacity. Firm 1 has baseload

capacity only, firm 2 has baseload and mid-merit capacity only, firm 3 and 5 are integrated

firms, with capacity in all three generation technologies. Firm 4 has baseload and peaking

capacity, while firm 6 has peaking capacity only. The marginal costs, maintenance costs and

investment costs are all based on the values employed in [17].

Table 1: Initial endowment of capacity CAP i,j for each firm (MW)

Technology f1 f2 f3 f4 f5 f6

Baseload 1000 800 500 500 400 —
Mid-Merit — 500 400 — 400 —

Peaking — — 200 300 200 200

Firm Total 1000 1300 1100 800 1000 200

From Table 1 it can be seen that the initial installed endowment of generating capacity is 5400

MW. Thus examining a peak load of 7500 MW represents the case where there is considerable

under capacity, while examining a peak load of 2500 MW represents over capacity.
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Table 2: Marginal Cost MCi,j for each firm (e/MW)

Technology f1 f2 f3 f4 f5 f6

Baseload 30 45 55 55 65 —
Mid Merit — 50 35 — 35 —

Peaking — — 93 83 93 93

Table 3: Generation Cost Characteristics (e/MW)

Technology Maintenance Investment

MCOST j ICOST j

Baseload 25 100000
Mid Merit 12 65000

Peaking 7 45000

The reserve requirement, RESERV EREQ, is 500 MW for all cases, unless otherwise stated.

The capacity target, TARGET , is 1.2 times the system peak load for all cases. In all cases

examined, all firms are assumed to be price-takers.

2.6. Demand Data

The reference DR data, denoted as DREF t, utilized in this paper is the space and water

heating demand profile for 100,000 apartments on the Irish system as determined by [30]. This

data was obtained through the development of ‘archetype models’ by [30], which are representa-

tive of a group of dwellings and dwelling loads. A set of reference dwellings is modeled in detail

by [30], using EnergyPlus, a deterministic building energy analysis and thermal load simulation

program [31]. These models are converted into building performance simulation ‘archetypes’ by

integrating high space and time resolution operational data. The set of dwelling archetypes is

used to generate annual profiles for space and domestic hot water heat demands on a fifteen-

minute basis. These consumer end-use heating time series are converted to hourly-resolution

and scaled for use in this paper. The installed capacity of the resource, DMAX, is 556 MW,

while the marginal cost associated with the slack variable, MCslack is e10,000 /MWh.

An annual system demand profile from Ireland for the year 2009 [32] is examined, and scaled

linearly as appropriate to produce the parameter DEM t, with different peak load levels. For

example, when peak load in the following sections is stated to be 7500 MW then, for each hourly
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timestep, DEM t is 1.5 times that when peak load is stated to be 5000 MW. Actual wind data

from Ireland, also for the year 2009, is employed. Elasticity of demand (E) is chosen to be −0.11

as this corresponds to the elasticity of demand on the Irish system as determined by Di Cosmo

& Hyland [33].

3. Results

3.1. Impact Demand Response on Energy Markets

The effect of including load-shifting DR can be seen in Figure 2. It is found that the impact

on the system marginal price (SMP) profile of adding in the DR resource diminishes with in-

creasing peak load, with the largest impact on SMP occurring in the case with a peak load of

2500 MW. Correspondingly, the system demand profile is altered with the addition of the DR

resource, though this effect reduces with increasing peak load. An understanding of the impact

of DR on the system demand profile is obtained from examining Figure 3: the DR resource

succeeds in reducing system peaks and increasing in system demand at the troughs. As a result

of the ability to load-shift, addition of the DR resource results in slight SMP reductions during

peak hours, but increased prices during off-peak hours. Figure 2 clearly illustrates this leveling

of the SMP during off peak hours.

Figure 2: SMP with and without demand response for a peak load of 2500 MW and no wind generation
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Figure 3: Change in system demand with the addition of demand response for a peak load of 2500 MW with

no wind generation

The reduction in impact on the demand profiles, and by extension, on the SMP profile, is

expected given that the size of the DR resource relative to the system demand is decreasing

with increasing peak load. The DR resource represents 22%, 11% and 7.4% for peak load levels

of 2500 MW, 5000 MW and 7500 MW, respectively. Thus, with increasing load, the impact the

DR resource has on the system load profile decreases.

The addition of DR in markets other than the energy market has very little impact on the

SMP. This is because the price variations in the energy market is the key driver of the operational

decisions of the DR resource. Furthermore, as will be discussed in the following section, for the

majority of cases examined the reserve price is zero at all times and thus there is little incentive

for the DR to drastically change its operational decisions in order to provide reserve as there

is little revenue to be gained. Additionally, the energy limitation constraint placed on the DR

resource, in order to ensure consumers’ needs are satisfied, restricts how the DR resource can

operate. Thus, permitting DR to participate in more than one electricity market simultaneously

does not severely impact upon the aggregator’s operational decision on how to operate the

resource.

When the reserve requirement is low, in this case 500 MW, it is found that the participation

of DR in both the energy and reserve markets has a negligible impact on the SMP profile.

The following section includes an examination of the impact an increase in the system reserve

requirement can have on the capacity and reserve markets.
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3.2. Impact of Demand Response on the Reserve Market and on the Capacity Auction

We now consider the impact of the load-shifting DR resource on the reserve market and the

capacity auction. When there is low reserve requirements (RESERV EREQ = 500MW ), the

reserve price (µt) is e0 in every timestep, with and without DR inclusion in the reserve market.

This is because, at such a low reserve requirement level, the generating firms are investing to

meet the capacity target, which far exceeds the reserve requirement, and thus the firms are

investing to receive capacity payments rather than to receive revenue from the reserve markets.

The capacity price is linked to the Lagrange multiplier of Equation (2f). When cap
i,j
bid is

positive, that is when the firm chooses to participate in the capacity market, θ
i,j
2 for firm i

and each technology j is equal to the price at which the capacity market clears, κ. Examining

the KKT conditions for the generator problem shows that θ
i,j
2 is related to both the cost of

investment, ICOST j, and the cost of maintenance, MCOST j for each firm, as well as to θ
t,i,j
1

through both Equation (6d) and (6e). In turn, θt,i,j1 is dependent on the marginal cost and the

SMP λ, through Equation (6a), as well as the reserve price µ through Equation (6b). Essentially

the decision for each firm i and each technology j, i.e each unit, to participate in the capacity

market is dependent upon the investment, maintenance and marginal costs and the revenue

earned from the electricity markets. Any firm and technology whose revenue does not cover

costs does not participate in the capacity market. Thus, the price at which the capacity market

clears, κ, is the value of the Lagrange multiplier θi,j2 for the firm and technology whose revenue

exactly equals the costs. These marginal units often do not participate in the energy or reserve

markets and so the only costs they incur are maintenance costs. Thus it will be seen that the

capacity prices are regularly equivalent to the marginal costs of the different technologies (see

Table 3).

Table 4 illustrates that the capacity price (κ), associated with different peak loads and with

0 MW of wind, does not change following the addition of DR. It is found that at a peak load

of 2500 MW, there is a slight increase in the installed capacity of peaking plants in the system

generating portfolio from the initial endowment of capacity. Thus, it is not surprising that the

capacity price is e7 per MW, as this equates to the maintenance cost of the peaking units.

At a peak load level of 5000 MW, the capacity price increases to e25 per MW for all scenarios

and all wind levels examined, with and without DR. Such a capacity price is to be expected
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given that e25 is the maintenance cost of baseload units and baseload generation dominates

the generating portfolio and there is no change in mid-merit or peaking capacity following the

addition of DR.

At a peak load level of 7500 MW, the capacity price remains at e25 per MW for all scenarios,

except at a wind penetration of 1500 MW, when the capacity prices increase dramatically, as

can be seen in Table 5. For the case of 1500 MW of wind, the capacity price is e110.

As will be seen in the next section 3.2.2, the capacity bids of the DR resource for all cases

are low relative to the capacity target, TARGET . DR participation in the capacity market

results in only very marginal changes to the generating firms’ investment and exit decisions, and

accordingly only minor changes to the capacity bids of the different firms. As the marginal unit

in the capacity market does not change following the addition of DR, the capacity price also

does not change, which is what is seen for the vast majority of cases examined (Tables 4 and

5). However, at a peak load of 7500 MW and with an installed wind capacity of 1500 MW there

are considerable changes in capacity price. The addition of DR in the energy market only and

in both the energy and reserve markets results in dramatic increases in the capacity price. As

might be expected, DR participation in the capacity market reduces these capacity prices by a

factor of 5 or more. The capacity price in this case, for all different DR market participation

scenarios is equivalent to the value of the Lagrange multiple of Constraint (2f) for Firm 1’s

baseload unit, θ2,bl2 .

Table 4: Capacity Prices for different peak load levels, a reserve requirement of 500 MW and wind 0 MW of
wind generation

Load No Energy Energy Energy All
Level DR Only & Res & Cap Markets

2500 MW e7 e7 e7 e7 e7
5000 MW e25 e25 e25 e25 e25
7500 MW e25 e25 e25 e25 e25
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Table 5: Capacity Prices for different peak load levels, a reserve requirement of 500 MW and wind 1500 MW
of wind generation

Load No Energy Energy Energy All
Level DR Only & Res & Cap Markets

2500 MW e7 e7 e7 e7 e7
5000 MW e25 e25 e25 e25 e25
7500 MW e110 e1402 e1402 e272 e272

Figure 4: SMP suppression at a peak load of 7500 MW with high wind generation

This large increase in capacity price at both high peak load levels and high wind penetration

levels is an interesting result. It is driven by the suppression in SMPs, which can be seen in

Figure 4, as a result of high wind generation and DR participation. This suppression in SMPs

would result in a reduction in generator revenue. However, the firms’ problem seeks to maximize

profits. Consequently, higher prices are needed to clear the capacity auction in order to cover

the costs associated with the high investment at high peak load levels and to maximize their

profits. Crucially, system operating costs do not increase drastically for this particular scenario,

as shown in Table 13.

3.2.1. Increasing the Reserve Requirement

We now consider the impact of increasing the reserve requirement. At the highest load level,

7500 MW, there is, initially, considerable under-capacity, as mentioned earlier. Thus, increasing

the reserve requirement to 1500 MW has no impact on the reserve price, which remains at e0,

as the generating firms are continuing to invest in order to meet the capacity target.

At lower peak load levels 2500 MW and 5000 MW, however, increasing the reserve require-
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ment to 1500 MW impacts upon both the reserve price (at the peak hour only) and on the

capacity price. At these lower peak load levels, the necessity to meet the more stringent reserve

requirement dominants investment decisions, that is the reserve market constraint becomes bind-

ing, and thus firms invest in order to meet the reserve requirement, not the capacity target. This

results in capacity prices of e0 for all cases, while the reserve price is extremely low at all hours,

except at the peak hour where the reserve price is e25. Figure 5 highlights that the increased

reserve requirement at a peak load of 2500 MW incentives greater levels of investment in mid-

merit and peaking generation.

Figure 5: Change in Installed Generating Capacity with increasing reserve requirement with no wind generation

- 2500 MW

While the same change in technology is not noted at peak load levels of 5000 MW or 7500

MW, there is a change in the installed capacity of each firm, with a tendency towards greater

levels of installed capacity for firms with more expensive baseload units, particularly firm 5.

However, as will be shown in section 3.3, particularly in Table 9, this increase in the capacity of

the most expensive baseload unit results in only a very marginal increase in the system operating

costs (an increase less than 0.053%).

At a peak load of 7500 MW however, there are capacity prices greater than e0, but it is

noted that there is a dependency on whether DR is participating in the capacity market. In the

cases were DR is not participating in the capacity market, the capacity price is e25, while it is

e0 when DR does provide capacity.
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3.2.2. Capacity Bids of the DR Resources

The estimated capacity bids for the DR resource with different peak load and wind gener-

ation levels are now considered. Table 6 compares the capacity bid estimations of the DR re-

sources, capdr, with the Effective Load Carrying Capability (ELCC) estimations obtained from

the methodology developed and presented in [8]. Both metrics are then expressed as a percent-

age of the installed capacity of the DR resource. Interestingly, the magnitude of the net change

in generating capacity does not change with the different scenarios, irrespective of whether there

is wind participation, unless load-shifting DR is participating in the capacity market. This is

as expected. The initial total endowment of capacity is 5400 MW and the peak system load

is typically similar or higher than this. The TARGET parameter for the capacity market is

set to be 1.2 times the peak system load, which results in a target for capacity exceeding the

initial endowment. In order to reach this target there is a requirement for additional generating

capacity, and as wind does not participate in the capacity market in these case studies, this

need for additional capacity results in investment in generation. When load-shifting DR does

participate in the capacity market, the net change in generating capacity is less than the case

without DR, as would be expected. It is found here that there is no change in the capacity bid

estimates of the DR resource, irrespective of whether or not reserve is provided. This is a result

of the fact that exit and investment decisions are incorporated.

Table 6: Comparison of the capacity bid estimation, capdr, of the DR resource with the Effective Load Carrying
Capability estimation at a peak load of 7500 MW and with 0 MW of wind generation

Metric MW Estimate CV

capdr 126 MW 23%

ELCC 132 MW 24%
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Table 7: Capacity bids of DR, capdr, with and without reserve provision, with a system reserve requirement of
500 MW

Peak Wind With Without

Load Level reserve reserve

2500 MW
0 MW 71 MW 71 MW

1500 MW 0 MW 0 MW

5000 MW
0 MW 123 MW 123 MW

1500 MW 110 MW 110 MW

7500 MW
0 MW 126 MW 126 MW

1500 MW 114 MW 118 MW

3.3. Impact of Demand Response on System Operating Costs

In order to determine the system operating costs, Equation (5a) is utilized for the model

without DR, while Equation (5b) is employed for all MCP models with DR. These system costs

are the total costs paid by consumers, rather than fuel, carbon and other costs incurred by the

generating firms. These equation represents the cost incurred by the system in meeting demand,

reserve and capacity requirements. The energy cost associated with wind participation in the

energy market is also considered.

CostnoDR
System =

∑

t

∑

i

∑

j

(Gent,i,j×λt+Reserve
t,i,ij
Gen ×µt)+

∑

i

∑

j

(Cap
i,j
Bid)×κ+WINDt×λt (5a)

CostwithDR
System =

∑

t

∑

i

∑

j

(Gent,i,j × λt +Reserve
t,i,ij
Gen × µt)+

∑

i

∑

j

(Cap
i,j
Bid)× κ+

∑

t

(ReservetDR × µt) + CapDR × κ+WINDt × λt (5b)

The analysis here shows that the increase in system costs with increasing peak load is roughly

commensurate with the magnitude of the increase in peak load. For example, the system costs

at 5000 MW are effectively two times the system costs at 2500 MW. Similarly, the system costs

at 7500 MW are a factor of 1.5 greater than the corresponding costs at a peak load of 5000 MW.

The percentage change in system costs with the addition of DR is 5%, 2.8% and 3.9%, for peak

load levels of 2500 MW, 5000 MW and 7500 MW, respectively.

Table 8 presents the system cost savings attainable for the different peak load levels and
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different wind penetrations, following the introduction of DR, with savings up to 7.4% possible.

The final row, which shows the results for the case with a peak load of 7500 MW and with 1500

MW of wind, includes two values. The first corresponds to the case where the DR resource does

not participate in the capacity market, and the second for when it does. The reason for the large

increase in system operating cost savings for this scenario is a result of the decrease in capacity

price, κ, following the introduction of the DR resource in the capacity market, see Table 5.

Table 8: Percentage reduction in system operating costs, including wind costs, following inclusion of Demand
Response

Peak Wind Percentage

Load Level Reduction

2500 MW
0 MW 5.9%

1500 MW 7.4%

5000 MW
0 MW 2.8%

1500 MW 2.8%

7500 MW
0 MW 1.1%

1500 MW 0.8% or 2.1%

The system operating costs for a range of different scenarios are presented in Table 13. It is

found that, for the majority of cases, there is no change between the cases with DR participation

in different combinations of energy markets. Once DR is added, the only change to the system

is participation of DR in the reserve and capacity markets, which, as seen earlier, does not result

in changes to either the reserve price or the capacity prices. As noted in the previous section,

at low levels of reserve requirement (in this case, 500 MW) the reserve price is zero at all times,

and participation of DR in the capacity market, which as was noted earlier, for the most part,

does not change with the addition DR.

The only scenario examined in which the system operating costs change with varying DR

market participation is the case with under-capacity and high wind penetration, i.e the case

with a peak load of 7500 MW and an installed wind capacity of 1500 MW. This is not surprising

given that this was the only case which experienced differing capacity prices with changing DR

participation.
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Table 9: System costs with DR participating in all markets with different reserve requirements - no wind gener-
ation

Peak Reserve Reserve

Load 500 MW 1500 MW

2500 MW e130,249,339 e130,296,961

5000 MW e271,405,604 e271,415,101

7500 MW e412,907,825 e413,126,622

As mentioned earlier, increasing the reserve requirement has an impact on both the reserve

price and the capacity price. Thus it is conceivable that there would be a similar impact on the

system operating costs. Table 9 compares the system operating costs with two different levels

of reserve requirement and illustrates that, as expected, the higher reserve requirement results

in increased system operating costs.

3.3.1. Generating firms’ Profits

Unlike the case with system operating costs, generator profit is not dramatically impacted

by the participation of DR in the various electricity markets. In fact, in some cases, firms’ profit

actually increases slightly with the introduction of the DR resource. Crucially, it appears that

generator profit is more heavily affected by the increasing penetration of wind generation than it

is by the participation of DR. These results differs from the work presented in [34], where it was

found that the introduction of more flexible demand generally reduces the profits of generators.

However, in this paper, the profit of the generator includes consideration of the cost of investing

in new generator technology as per Equation 2a, while in the work in [34], generator investment

decisions, and associated costs, were not included. Consequently, here it is seen that the profit

of generatoring firm increases slightly due to the fact that the introduction of DR results in less

generator investment. Generator profit, not accounting for investment costs, however, reveals

that there is indeed a reduction following the introduction of DR, thus confirming the results in

[34], albeit for a different system using a different method.

At a low load level, where the capacity of the DR resource represents 22% of the system peak

demand, the inclusion of DR in the energy market and in the energy and reserve markets has

an impact on the profit of Firms 3 and 5 (firms with both mid-merit and peaking technologies),

with these firms receiving considerably less profit. At higher load levels, the impact of DR on
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the profit of these firms becomes less pronounced. This is a result of the fact that the size of the

DR resource relative to the system load is reducing and thus its ability to impact upon energy

prices is also reducing.

Interestingly, at a peak load of 7500 MW, with an installed wind capacity of 1500 MW there

is a spike in the profit of Firms 2, 3 and 5 (the only firms with mid-merit generation), particularly

when the DR resource is not participating in the capacity market, which is not evident at other

load levels. The key reason for this spike in generator profit is due to the large increase in

capacity price seen at this wind level, as illustrated in Table 5. Furthermore, Firms 2,3 and 5

are profiting from the absence of the DR resource in the capacity auction.

3.4. Demand Response Aggregator Costs and Optimal Demand Response Portfolio

Tables 10, 11 and 12 indicate that the costs incurred by the DR aggregator decrease following

the inclusion of the resource in electricity markets. The aggregator cost savings as a result of

market participation are between 4% and 12%. However, for the different scenarios examined,

and for the chosen test system, it is found that there is only a very marginal reduction in

aggregator costs, and thus benefit to the consumers, as a result of participating in all three

markets, compared to participating in the energy market only. This suggests that there is no

simple formula for optimal DR participation - it is a case by case consideration.

As discussed in [7], savings on customers’ electricity bills may not be sufficient enough to

warrant investment in equipment and to compensate for the inconvenience [35] associated with

engaging in a DR program. This does indeed seem to be the case here.

The capacity payments earned by the DR resource varies depending on the peak load level,

since, as discussed earlier, the capacity price varies considerably with peak load level. In general,

however, the capacity payment acquired by the DR resource is less than e3,000, except at a

peak load level of 7500 MW and with a wind penetration of 1500 MW. The increase in capacity

payment in this scenario is not driven by a change in operating decisions on the part of the DR

aggregator. Rather it is a result of significantly higher capacity prices (see final row in Table 5).

From the results presented here it is difficult to ascertain the optimal DR portfolio. It is

found from Tables 10, 11 and 12 that the DR aggregator savings increase with increasing peak

load level. However, varying the marginal cost inputs, and thus the generating portfolio, it is

found that the DR aggregator savings remain relatively constant with increasing peak load level.
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Again, this hints at the optimal portfolio for DR being highly system dependent, as was the case

with the CV estimates presented in section 3.2.2.

In [36], it is discovered that system cost savings increase with increasing load participation

rates but do not grow at the same rate as load participation does. A similar trend in system

operational cost savings was noted here. Interestingly, aggregator cost savings have been found

to decrease with increasing participation rates. Furthermore, it is discovered that considerable

additional savings, over and above the savings as a result of participating in the energy only

market, are not awarded to the DR aggregator following the participation in the reserve market.

This is because it was found that reserve prices for this particular case study were effectively

zero at all times. Therefore, it could be argued that, for this particular stylized system and for

this specific DR resource, there is no benefit for the DR aggregator to participate in the reserve

market as there is little revenue to be earned. A slight increase in cost savings is achieved

through participation in the energy and capacity market, savings which increase at high peak

load levels and high installed wind levels. This a result of the fact that, as can be seen in Table

5, the capacity prices increase dramatically for this case. However, at lower wind levels and

at lower peak load levels, the optimal portfolio for the load-shifting resource examined here is

found to be participation in the energy market only.

The results here suggest that load-shifting resources, such as the type of DR resource consid-

ered here, do not benefit from participation in markets other than the energy market. Choosing

to participate in the reserve market may not result in considerable reward and may in fact put

consumers at a risk of inconvenience, in the form of their load requirements not being met during

emergency operating periods, that is periods when the DR resource is called upon to provide

reserve. This risk stems from the assumptions employed that any inconvenience placed on cus-

tomers as a result of failure to meet their heating requirements during emergency operation is

compensated by the revenue they receive by permitting their devices to be committed to pro-

viding reserve. It has been shown here that the reserve market may not in fact be particularly

lucrative for load-shifting DR resources, which concurs with the concerns stated in [35] that the

cost savings associated with DR may not justify the inconvenience placed on consumers.

While this assumption may be a misrepresentation of a load-shifting DR resource’s ability

to participation in the reserve market without inconveniencing the end-user, this is, in effect,
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captured within in the MCP results. The DR resource chooses to provide limited reserve, with

maximum reserve provision of between 7% and 13% of the installed capacity of the DR resource,

for all peak load levels and wind levels examined, for a reserve requirement of 500 MW. At

the higher level of reserve requirement, 1500 MW, it is found that the DR resource does opt

to provide slightly more reserve capacity, but this is a result of the fact that reserve prices at

the peak are now higher and the capacity prices are often zero, as discussed in Section 3.2.1.

It is acknowledged that some systems do not have reserve markets, but they do have reserve

payments. In such a system it may still be worthwhile for a DR resource, such as the type of

resource described here, to provide reserve.

As previously alluded to, load-shifting DR resources have an inherent contribution to gener-

ation adequacy as a result of their operation. Thus, given that the ability of the DR resource

to participate the capacity market is, in effect, a consequence of the operation of the resource

in the energy market, there does not appear to be any indication that participation in both the

energy and capacity markets results in a trade-off. Thus, in conclusion, the optimal portfolio

for the type of DR resource examined here is participation in the energy and capacity markets

only.

Table 10: DR Aggregator Costs - peak load 2500 MW

Wind Energy

DR Case Level Costs Savings

No DR

0 MW

e7,268,961 —
Energy Only e6,992,656 3.8%
Energy & Reserve e6,992,614 3.8%
Energy & Capacity e6,992,332 3.8%
All Markets e6,992,118 3.8%

No DR

1500 MW

e7,113,773 —
Energy Only e6,538,263 8.1%
Energy & Reserve e6,538,263 8.1%
Energy & Capacity e6,538,263 8.1%
All Markets e6,538,263 8.1%
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Table 11: DR Aggregator Costs - peak load 5000 MW

Wind Energy

DR Case Level Costs Savings

No DR

0 MW

e7,174,783 —
Energy Only e6,530,838 9%
Energy & Reserve e6,530,013 9%
Energy & Capacity e6,527,760 9%
All Markets e6,526,908 9%

No DR

1500 MW

e7,192,125 —
Energy Only e6,643,309 7.6%
Energy & Reserve e6,643,563 7.6%
Energy & Capacity e6,640,156 7.7%
All Markets e6,640,284 7.7%

Table 12: DR Aggregator Costs - peak load 7500 MW

Wind Energy

DR Case Level Costs Savings

No DR

0 MW

e7,193,387 —
Energy Only e6,526,963 9.3%
Energy & Reserve e6,528,960 9.3%
Energy & Capacity e6,523,612 9.3%
All Markets e6,525,829 9.3%

No DR

1500 MW

e7,191,498 —
Energy Only e6,528,872 9.2%
Energy & Reserve e6,529,387 9.2%
Energy & Capacity e6,497,859 9.7%
All Markets e6,361,990 11.5%

4. Conclusion

This paper examined the participation of a load-shifting DR resource in energy, reserve and

capacity markets in order to inform the discussion on the impact of DR. Five different models

considering different combinations of DR market participation are developed. These markets are

modeled as MCPs, permitting optimization of six different generating firms’ problems and a DR

aggregator’s problem simultaneously. An approach to approximate the contribution of the DR

resource to generation adequacy is also presented, permitting DR participation in the capacity

market.
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The results indicate that, in general, the DR resource can have a positive impact on electricity

markets. However, this impact is largely limited to the energy market. The participation of DR

in the energy market does succeed in reducing variability in SMP, whilst increasing prices at

off-peak hours and decreasing peak prices. There are significant system operating cost savings

to be obtained following the introduction of DR into electricity markets, mainly driven by the

impact of the DR resource on the energy market. It is found that there is minimal impact on

generating firms’ profits following the addition of DR in the various electricity markets.

In general, there are no major increases in DR aggregator savings as a result of DR partici-

pation in more than one market simultaneously, even at high peak load levels. It appears that

the ‘optimal DR portfolio’ is very much a case by case, system by system, consideration.
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Appendix

KKT conditions for firm providing energy, reserve and capacity

The KKT optimality conditions for all firms are given below:

0 ≤ gent,i,j ⊥ −λt + θ
t,i,j
1 +MC i,j ≥ 0, ∀t, i, j, (6a)

0 ≤ reserve
t,i,j
Gen ⊥ −µt + θ

t,i,j
1 ≥ 0, ∀t, i, j, (6b)

0 ≤ cap
i,j
bid ⊥ −κ+ θ

i,j
2 ≥ 0, ∀t, i, j, (6c)

0 ≤ investi,j ⊥ ICOSTi,j −
∑

t

θ
t,i,j
1 − θ

i,j
2 ≥ 0, ∀t, i, j, (6d)

0 ≤ exiti,j ⊥ −MCOSTi,j +
∑

t

θ
t,i,j
1 + θ

i,j
2 ≥ 0, ∀t, i, j, (6e)

0 ≤ θ
t,i,j
1 ⊥ CAPi,j − exiti,j + investi,j − gent,i,j − reserve

t,i,j
Gen ≥ 0, ∀t, i, j, (6f)
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0 ≤ θ
i,j
2 ⊥ CAP i,j − exiti,j + investi,j − cap

i,j
bid ≥ 0, ∀t, i, j. (6g)

As firm i’s problem is convex, the KKT conditions are both necessary and sufficient for optimality

[11].

KKT conditions for DR providing energy, reserve and capacity

The KKT conditions for the DR aggregator are shown below.

0 ≤ drtdown ⊥ −λt + γt
1 + γt′

3 ≥ 0, ∀t, t′ ∈ H, (7a)

0 ≤ drtup ⊥ λt + γt
2 − γt′

3 ≥ 0, ∀t, t′ ∈ H, (7b)

0 ≤ reservetDR ⊥ −µt + γ1 ≥ 0, ∀t, (7c)

0 ≤ CVDR ⊥ −κ+ γ4 ≥ 0, ∀t, (7d)

0 ≤ γt
1 ⊥ DREF t − drtdown − reservetDR ≥ 0, ∀t, (7e)

0 ≤ γt
2 ⊥ DMAX − drtup −DREF t ≥ 0, ∀t, (7f)

0 =
t′+23∑

t=t
′

(drtdown)−
t′+23∑

t=t
′

(drtup), γt′

3 free, ∀t′ ∈ H, (7g)

0 ≤ γ4 ⊥
∑

i

INV EST i
NoDR −

∑

i

investiDR + slack ≥ 0. (7h)

As above, since the DR aggregator problem is convex, the KKT conditions are both necessary

and sufficient for optimality [11].
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Table 13: System operating costs, including wind costs, with different DR market participation combinations

Peak Wind No Energy Energy & Energy All

Load Level DR Only Capacity & Reserve Markets

2500 MW 0 MW e138,338,447 e130,249,339 e130,249,340 e130,249,340 e130,249,339

2500 MW 1500 MW e135,567,215 e125,590,205 e125,590,205 e125,590,205 e125,590,205

5000 MW 0 MW e279,132,776 e271,405,604 e271,405,605 e271,405,605 e271,405,604

5000 MW 1500 MW e278,979,306 e271,142,327 e271,142,327 e271,142,327 e271,142,327

7500 MW 0 MW e420,624,322 e412,907,825 e412,907,825 e412,907,825 e412,907,825

7500 MW 1500 MW e421,068,019 e417,519,853 e412,535,101 e417,519,853 e412,328,448
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