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Abstract

This study examines the properties of equilibrium, including the stability, of discrete-

space agglomeration models with social interactions. The findings reveal that while

the corresponding continuous-space model has a unique equilibrium, the equilibrium

in discrete space can be non-unique for any finite degree of discretization by charac-

terizing the discrete-space model as a potential game. Furthermore, it indicates that

despite the above result, any sequence of discrete-space models’ equilibria converges

to the continuous-space model’s unique equilibrium as the discretization of space is

refined.
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1 Introduction

Beckmann’s (1976) social interaction model has been an important benchmark for the study

on spatial agglomeration. Considering the fact that face-to-face communications are impor-

tant for understanding the mechanisms behind spatial distributions of economic activities,

Beckmann (1976) presented a model in which people aiming to interact with others choose

their area of location, referred to as a cell in this study. Although people can reduce the cost

of interactions by locating close to one another, agglomeration can cause congestion, such

as increases in housing prices. Equilibrium population distributions, which are of interest

to this study, emerge as a result of the trade-off between the positive and negative effects

of agglomeration. This type of model has been of particular interest for urban economists

because the cell of an urban center is not specified a priori, unlike classical urban models

such as the monocentric city model.1

Beckmann (1976) also considered social interactions among households for a linear city

represented by a real line. After Beckmann’s (1976) study, Tabuchi (1986) and Mossay

and Picard (2011) considered social interactions among a single type of agent on the real

line.2 All these studies attained symmetric unimodal population distributions as unique

equilibria. This uniqueness result is compelling, and the shape of the equilibrium distribution

is intuitively reasonable. Moreover, this is good news for policymakers since they do not have

to worry about multiple equilibria when internalizing externalities.

Although the results attained in continuous-space models serve as important theoretical

benchmarks, examining whether these results are robust in terms of the discretization of

space is also essential. In particular, if we would like to empirically test the model, we would

have to discretize it. For example, it is virtually impossible to collect population data for

each point. Whatever micro the data is, it is still aggregated over some geographical areas.3

Thus, empirical studies cannot invoke the uniqueness result of the continuous-space model

unless the properties of equilibria of the continuous-space model are transferred to those of

the discrete-space model.

To address this issue, we consider social interactions among consumers in the discrete

space in which a finite number of cells are distributed on a line segment, and we study the

1See, for example, Section 3.3 of Fujita and Thisse (2013).
2Mossay and Picard (2011) considered consumers, whereas Tabuchi (1986) considered firms. Besides

models on the real line, O’Hara (1977) considered the social interactions of firms in a square city, and
Borukhov and Hochman (1977) considered the social interactions of consumers in a circular city. They also
obtained a symmetric unimodal distribution as a unique equilibrium. In Borukhov and Hochman (1977),
though, the cost of social interaction was not weighted by population density, so social interactions did not
cause any externality.

3In fact, Allen and Arkolakis (2014), who studied the relationship between economic activity and geog-
raphy with data, “approximate the continuous space with a discrete number of locations (p. 1113).”
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properties of equilibria accordingly. To this end, this study begins by creating a model for

a general quasi-linear utility function, invoking the fact that this model of location choice

can be described as a potential game (Monderer and Shapley, 1996).4 One important con-

sequence of being a potential game is that the equilibrium can be characterized with a

finite-dimensional optimization problem. Indeed, by assuming that the pairwise interaction

cost between cells is symmetric, we can identify a function, called a potential function, so that

the set of equilibria exactly coincides with the set of Kurash–Kuhn–Tucker (KKT) points

for the maximization problem of the function. Moreover, even if multiple equilibria arise, we

can conduct the stability analysis with the potential function. In fact, every local maximizer

of the potential function is a stable equilibrium under a broad class of myopic individualis-

tic evolutionary dynamics. Note that the stability of equilibria has not been addressed in

continuous-space models.5 The discretization of space reduces the dimension of the stability

analysis, which enables the properties of equilibria to be scrutinized more closely.

We provide both positive and negative results for the issue raised above. Regarding the

negative result, we present cases in which the equilibrium in the discrete space is essentially

non-unique as long as the interaction cost is not too small, meaning that equilibria having

different numbers of populated cells coexist. In particular, we can pin down a range of inter-

action costs in which multiple equilibria arise for any finite number of cells. This result holds,

for example, when the equilibrium condition is described as a system of linear equations,

which is particularly relevant to empirical analysis. This also suggests that contrary to the

case of the unique equilibrium, it is important to be cautious about interpreting implications

from the analysis focusing on a particular equilibrium because it is possible that the equi-

librium is unstable and another stable equilibrium with an essentially different population

distribution exists.

Conversely, we explore the connection between continuous-space and discrete-space mod-

els by focusing on the linear interaction cost. In particular, we make each cell eventually

non-atomic by increasing the number of cells while the total size of location space remains

fixed, and study the limiting properties of equilibria. We show that any sequence of the

discrete-space model’s equilibria converges to the equilibrium of the continuous-space model

as the number of cells goes to infinity or as the distance between adjacent cells vanishes. Since

the equilibrium of the continuous-space model is unique, this means that the set of equilibria

is continuous in the number of cells at their limit. This is a positive result since we may

4The potential function approach has been recognized as a promising analytical tool for regional science
(Fujita and Thisse, 2013). See Oyama (2009a,b) and Fujishima (2013) for applications of the potential game
approach to geography models.

5Naturally, continuous-space models are not always free from the problem of multiple equilibria, as we
will discuss in the concluding remarks.

2



think that as long as the number of geographical zones is sufficiently large, any equilibrium

of a discrete-space model is close to the equilibrium of a limiting continuous-space model. In

other words, a continuous-space model can be viewed as the limit of a discrete-space model

with regard to the size of geographical zones.

To the best of our knowledge, few papers on spatial social interactions have utilized a

discrete-space model. Anas and Xu (1999) presented a multi-regional general equilibrium

model in which every region employs labor and produces goods. Although the technology

exhibited a constant returns to scale, the goods were differentiated over regions and the con-

sumers traveled to each region to purchase them, which yielded an agglomeration force in the

central region.6 Although their model was useful for evaluating urban policies, they entirely

relied on numerical simulations, thus forcing us to consider a particular equilibrium that

might be unstable in the case of multiple equilibria. Turner (2005) and Caruso et al. (2009)

considered one-dimensional discrete-space location models with neighborhood externalities

in the sense that utility at a particular location depends on the population distribution

of the neighborhood.7 Caruso et al. (2009) relied on numerical simulations, while Turner

(2005) generically attained a unique equilibrium outcome by considering an extreme type

of neighborhood externalities in which an individual located between vacant neighborhoods

receives a bonus. However, because they focused on the effects of residential locations on

open spaces, they abstracted away from the endogenous determination of an urban center,

although this remains an important feature of the model in which we are interested.8 More-

over, we emphasize that none of the aforementioned works focused on the relation between

continuous- and discrete-space models.

The remainder of this study is as follows. Section 2 introduces a general class of social

interaction models and characterizes this class as a potential game. Section 3 examines

the stability of equilibria and Section 4 investigates the uniqueness of equilibria. Section

5 studies the connections between discrete- and continuous-space models by increasing the

number of cells. Finally, Section 6 concludes the study. Note that the proofs omitted in the

main text are provided in the Appendix.

6Braid (1988) considered a five-town model having a similar structure, although he abstracted away
from general equilibrium effects. He showed that, depending on the degree of product differentiation, the
equilibrium firm distribution can be bimodal.

7Caruso et al. (2007) considered a two-dimensional discrete space.
8Moreover, they made the so-called open-city assumption in which the equilibrium utility level was ex-

ogenous, whereas the total city population was endogenous.
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2 The model

We start with a general class of discrete-space social interaction models, which includes the

discrete-space analogue of Beckmann’s (1976) and Mossay and Picard’s (2011) models as

special cases. This description enables us to illustrate how the potential function approach

generally works for the equilibrium characterization and the stability analysis of discrete-

space social interaction models.

2.1 Basic assumptions

We consider a region represented by the unit interval [0, 1] divided into K cells. The cells

are labeled by i ∈ S ≡ {1, 2, · · · , K} in order of distance from 0, where the width of cell i

is denoted by δi. The boundary between cells i and i + 1 for i ∈ {1, 2, ..., K − 1} is then

bi = δi+ bi−1, where b0 = 0 and bK = 1. The center of cell i, which is δi
2
+ bi−1, is denoted by

xi.
9 We assume that the land is uniformly distributed, with a density of 1 over the region.

As is common in the literature, the land is owned by absentee landlords. In addition, the

opportunity cost of the land is normalized to zero.

There is a unit mass of identical consumers in this region. Let ni ∈ [0, 1] be the mass of

consumers in cell i, and let ∆ ≡
{

n = (n1, · · · , nK) ∈ R
K
+ :

∑K
i=1 ni = 1

}

denote the set of

consumers’ spatial distributions. Each consumer travels to every other consumer for social

interaction. In each cell, they obtain the same utility u(zi, yi) for residential land yi and for

the composite good zi, which is chosen as the numéraire. Given land rent ri and population

distribution n ∈ ∆, the utility maximization problem of consumers in cell i is expressed as

max
zi,yi

{

u(zi, yi) | zi + riyi + Ti(n) ≤ Y, i ∈ S
}

, (1)

where ri denotes the land rent in cell i, and Y is the fixed income. Ti(n) is the total cost to

consumers from cell i for traveling to other consumers, which is defined as

Ti(n) ≡ τ

K
∑

j=1

dijnj, (2)

where τdij denotes the travel cost from cell i to j. We make the following assumption

regarding the properties of D = (dij):

Assumption 1 D = (dij) fulfills the following four conditions:

9The geometric structure stated here is necessary only in Sections 4.1 and 5. For other places, it is
sufficient to state “there are K cells where the area of cell i is δi and the interaction cost between cells i and
j, to be defined below, is τdij .”
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(i) dii = 0 for all i ∈ S;

(ii) dij = dji for any i, j ∈ S;

(iii) D is negative definite on T∆ ≡
{

z = (z1, · · · , zK) ∈ R
K :

∑K
i=1 zi = 0

}

;

In the terminology of spatial statistics, the first three conditions imply that dij is an isotropic

variogram. This class of travel costs includes the exponential cost (dij = e|xi−xj | − 1) and

the linear cost (dij = |xi − xj|), both of which are commonly assumed in the literature of

spatial interaction. From an economic point of view, condition (iii), which states that D is

negative definite on the tangent space of ∆, can be interpreted as self-defeating externalities.

Suppose that some players change their cells. Then, under this condition, the improvements

in the interaction costs of cells to which they switch are dominated by the improvements in

the interaction costs of cells they abandon.10

The utility function u(zi, yi) is assumed to be quasi-linear:

u(zi, yi) = zi + f(yi), (3)

where we make the following assumptions on the utility of land consumption f :

Assumption 2 f is strictly increasing, concave, and twice continuously differentiable. More-

over, limx→∞ xf ′(x) <∞.

If f(x) = α ln x [resp. f(x) = − α
2x
] where α > 0 is a constant, then we obtain the discrete-

space analogue of Beckmann’s (1976)[resp. Mossay and Picard’s (2011)] model.

Given a population distribution, let us derive the maximum utilities attainable in each

cell. Let population distribution n ∈ ∆ be given, and pick i ∈ S such that ni > 0. Then,

consumers in cell i solve the utility maximization problem (1). Under the quasi-linear utility

function specified in (3), the first-order condition with respect to yi is

f ′(yi) ≤ ri, (4)

where the equality holds whenever yi > 0. However, since the land market clears, we have

yi = δi/ni > 0. Hence, ri = f ′ (δi/ni). Then, we define

h (x) = f
(

x−1
)

− x−1f ′
(

x−1
)

. (5)

10Hofbauer et al. (2009) argued that the self-defeating externalities characterize stable games. In fact, if we
consider a game in which the payoff of strategy i ∈ S is Ti(n), condition (iii) is the necessary and sufficient
condition for the game to be a stable game.
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This represents the net utility from the land consumption in cell i when x = ni/δi, which

is the population density in cell i. Since limx→∞ xf ′(x) < ∞, h is bounded below, but we

allow limx→0 h(x) = ∞. Given n ∈ ∆, the maximum utility attained in cell i is then

vi(n) ≡ ui

(

Y − Ti(n)−
δi
ni

f ′

(

δi
ni

)

,
δi
ni

)

= Y − Ti(n) + h(ni/δi). (6)

If nj = 0 for some j ∈ S, then we assume that the utility attained is

vj(n) ≡ lim
n̂→0

[Y − Tj(n−j, n̂) + h (n̂/δj)], (7)

where (n−j, n̂) = (n1, ..., nj−1, n̂, nj+1, ..., nK). Note that we allow vj(n) = ∞ for j ∈ S such

that nj = 0, which is actually the case in Beckmann’s (1976) model.

2.2 Spatial equilibrium and potential game

We will now define the equilibrium. We consider a two-stage game in which each consumer

first settles in a cell and chooses consumptions of the composite good and land in his/her

cell. Since we impose the subgame perfection, we argue backwards to characterize equilibria.

However, we have aleady specified each cell’s utility levels given n ∈ ∆ (i.e., {vi(n)}i∈S).
Then, in the first stage, each consumer chooses a cell that provides the highest utility, given

the location decisions of other consumers. Formally, the equilibrium is defined as follows11:

Definition 1 A spatial equilibrium is a population distribution n∗ ∈ ∆ such that given

n∗ ∈ ∆, no one has the incentive to change the cell. That is, there exists u∗ ∈ R such that







u∗ = vi(n
∗) if n∗

i > 0,

u∗ ≥ vi(n
∗) if n∗

i = 0.
∀i ∈ S. (8)

If vi(n) = ∞ when ni = 0 for any i ∈ S, then only interior distribution can be an equilibrium.

This is the case for Beckmann’s (1976) model.

By writing the indirect utilities in a vector form, we obtain

v(n) ≡ (vi(n))
K
i=1 = Y 1− T (n) + h(n) (9)

where T (n) = (Ti(n))
K
i=1(= τDn), h(n) = (h(ni/δi))

K
i=1, and 1 is a vector of ones with

an appropriate dimension. People prefer to agglomerate to reduce the social interaction
11Strictly speaking, the definition of the equilibrium should state how people choose their allocations at

the second stage. However, we make it implicit here because, in what follows, we focus on equilibrium
population distributions.
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costs, which are summarized by T (n). However, people also prefer to disperse and avoid

the congestion from the land consumption that is summarized by h(n) since h′(ni/δi) =

(δi/ni)
3f ′′(δi/ni) < 0. As we will see, spatial equilibrium is attained as a result of tradeoffs

between the agglomeration force, represented by T (n), and the dispersion force, represented

by h(n).

In what follows, to characterize spatial equilibria and their stability, we invoke the prop-

erties of a potential game introduced by Monderer and Shapley (1996). Note that our model

may be viewed as a game in which the set of players is [0, 1], the (common) action set is

S, and the payoff vector is (vi)
K
i=1.

12 Moreover, as is evident from the definition, a spatial

equilibrium is actually a Nash equilibrium of the game. Thus, let us denote our game by

G = (vi)
K
i=1. Then, we define that G is a potential game if (vi)

K
i=1 allows for a continuously

differentiable function W such that

∂W (n)

∂ni

− ∂W (n)

∂nj

= vi(n)− vj(n) ∀n ∈ ∆, ∀i, j ∈ S (10)

whereW is defined on an open set that contains ∆ so that its partial derivative is well-defined

on ∆. If the condition above holds, then W is referred to as a potential function.

For the moment, let us suppose that G is a potential game with the potential function

W . As mentioned in the introduction, the equilibria of a potential game are characterized

with the optimization problem of an associated potential function. Indeed, let us consider

the following problem:

max
n∈∆

W (n). (11)

Let γ be a Lagrange multiplier for the constraint
∑K

i=1 ni = 1. Then, the first-order condition

is ∂W (n)
∂ni

≤ γ in which the equality holds whenever ni > 0. Then, by (10), we have vi(n) =

vj(n) for any populated cells i and j, and vk(n) ≤ vi(n) if nk = 0 and ni > 0. Thus, n is a

spatial equilibrium. By similar reasoning, it follows that the converse is also true.13 That is,

if n is a spatial equilibrium, then it satisfies the necessary condition for problem (11). As a

result, the equilibrium set of G exactly coincides with the set of KKT points of problem (11).

The necessary and sufficient condition for the existence of a potential function is given

by, for example, Hofbauer and Sigmund (1988), who referred to the condition as triangular

integrability. In our model, the agglomeration force T (n) is linear and the dispersion force

12A game with a continuum of anonymous players is called a population game (Sandholm, 2001). In our
game, players are anonymous in that the payoff depends on only strategy distributions.

13See Proposition 3.1 of Sandholm (2001).
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h(n) is separable. As a result, the condition is stated as

dij + djk + dki = dik + dkj + dji for any i, j, k ∈ S. (12)

Recall that our travel costs are pairwise symmetric (i.e., dij = dji for any i, j ∈ S). Hence,

the above condition necessarily holds, and our game is, in fact, a potential game. Indeed,

the following lemma explicitly constructs a potential function for (vi)
K
i=1.

Lemma 1 G is a potential game with the potential function

W (n) ≡ τW1(n) +W2(n) (13)

where

W1(n) = −
∮

T (n′)dn′ = −1

2

K
∑

i=1

K
∑

j=1

dijninj, (14)

W2(n) =

∮

h(n′)dn′ =
K
∑

i=1

nif

(

δi
ni

)

. (15)

Here,
∮

denotes the line integral over a path in ∆ connecting 0 to n. Since dij = dji for any

i, j ∈ S, it is guaranteed that the line integrals are path-independent.

Let us observe that in our potential game, we can capture the tradeoff between centrifugal

and centripetal forces as the tradeoff between the concavity and convexity of the potential

function. Indeed, W2 is strictly concave since fi’s are strictly concave, whereas W1 is quasi-

convex since D is non-negative and negative definite on the tangent space of ∆.14 Moreover,

if the concavity of W2 dominates so that W is strictly concave, then a dispersed population

distribution (i.e., an interior point in ∆) is attained as a unique equilibrium. Conversely,

if the convexity of W1 dominates, then the equilibrium population distributions would be

more agglomerated. Therefore, W1 represents the centripetal force, whereas W2 represents

the centrifugal force.15

14See, for example, Theorem 4.4.6 of Bapat and Raghavan (1997).
15Blanchet et al. (2016) generalize the analysis of Mossay and Picard (2011) by taking the potential func-

tion(al) approach to characterize the equilibria of a continuous-space spatial interaction model. Takayama
and Akamatsu (2010), Akamatsu et al. (2014), and this study examine the properties of discrete-space models
by using the potential function, which is a discrete analogue of their potential functional.
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3 Stability of equilibrium

3.1 Adjustment dynamics

We are interested in the stability of equilibria, especially since our model generally includes

multiple equilibria, as shown in the next section. More specifically, we examine whether we

can justify an equilibrium through the existence of a learning process that makes players

settle down in their equilibrium strategies. In this study, we describe players’ learning

processes with evolutionary dynamics, or a (set-valued) dynamical system V that maps

population distribution n0 ∈ ∆ to a set of Lipschitz paths in ∆, which starts from n0.16

Although we usually consider a specific evolutionary dynamics for stability analysis, we will

see that a more general analysis is possible owing to the existence of a potential function;

that is, the stability of equilibria can be characterized under a broad class of dynamics. In

particular, we consider the class of admissible dynamics, which is defined as follows:

Definition 2 An evolutionary dynamics V is admissible for G = (vi)
K
i=1, if, for almost all

t ≥ 0 and for all n0 ∈ ∆, it satisfies the following conditions:

(PC) ṅ(t) ̸= 0 ⇒ ṅ(t) · v(n(t)) > 0 for all n( · ) ∈ V (n0),

(NS) ṅ(t) = 0 ⇒ n(t) is a Nash equilibrium of G for all n( · ) ∈ V (n0).

In order to interpret condition (PC), which is called positive correlation, we rewrite it as

ṅ(t) · v(n(t)) =
K
∑

i=1

ṅi(t)

(

vi(n(t))−
1

K

K
∑

j=1

vj(n(t))

)

. (16)

In general, it would be reasonable to expect that each term in the summation over i

is positive: if the payoff from city i is higher than the average payoff (i.e., vi(n(t)) −
1
K

∑K
j=1 vj(n(t)) > 0), t hen the mass of consumers choosing city i should increase (i.e.,

ṅi(t) > 0), and vice versa. Condition (PC) only requires that this be true in the aggre-

gate. Thus, in learning periods, it is possible that the mass of consumers choosing city i

increases even though it yields a less-than-average payoff. Condition (NS), which is called

Nash stationary, states that if there is a profitable deviation, some consumers change their

cells. Under condition (PC), the converse is also true.17 Therefore, under conditions (PC)

and (NS), ṅ(t) = 0 if and only if n(t) is a Nash equilibrium of G.

Specific examples of admissible dynamics include best response dynamics (Gilboa and

Matsui, 1991), Brown-von Neumann-Nash (BNN) dynamics (Brown and von Neumann,
16Considering a general dynamical system allows us to include set-valued dynamics such as the best-

response dynamics which is important from the game-theoretic point of view.
17See Proposition 4.3 of Sandholm (2001).
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1950), and projection dynamics (Dupuis and Nagurney, 1993).18 One important remark

is that replicator dynamics (Taylor and Jonker, 1978), which is often used in spatial eco-

nomic models (e.g., Fujita et al., 1999), is not admissible. Under replicator dynamics, a rest

point is always attained on the boundary, but the boundary points are not always Nash

equilibria. Therefore, condition (NS) does not hold under replicator dynamics.19

3.2 Stability condition of equilibrium

Admissible dynamics are closely related to the potential function and thereby to the stability

of Nash equilibria. Given such dynamics, we say that a population distribution n ∈ ∆ is

stable if there exists a neighborhood U ⊆ ∆ of n such that n(t) → n for any trajectory n( · )
of the dynamics with n(0) ∈ U . In particular, if we can consider ∆ for U , then n is globally

stable. n ∈ ∆ is unstable if it is not stable.

To understand how admissible dynamics are related to potential function, let us consider

our game G = (vi)
K
i=1, with the potential functionW given by (15). Note that, by conditions

(PC) and (NS), any trajectory n(·) of an admissible dynamic monotonically ascends the

potential function until it reaches a Nash equilibrium since

Ẇ (n(t)) =
K
∑

i=1

∂W (n(t))

∂ni

ṅi(t) =
K
∑

i=1

vi(n(t))ṅi(t) > 0 (17)

whenever ṅ(t) ̸= 0.20 Hence, if Nash equilibrium n∗ does not locally maximize W , then we

can perturb n∗ so that the trajectory ascends W and moves away from the equilibrium. In

other words, assuming that each Nash equilibrium is isolated, a Nash equilibrium is stable

under any admissible dynamics if and only if it locally maximizes an associated potential

function.21 Therefore, if a game has a potential function, we can characterize the stability

of equilibria under admissible dynamics by examining the shape of the potential function.

3.3 Instability of population distributions

In light of the stability condition stated above, we start with investigating the relation

between the interaction cost τ and the instability of spatial equilibria. Given a population

18See Sandholm (2005) for more examples.
19Any non-Nash rest point is never stable, where the stability is defined below, under the replicator

dynamics, though (Sandholm, 2010, Proposition 8.1.1). The replicator dynamics belongs to the class of
strict myopic adjustment dynamics due to Swinkels (1993) where Nash stationary is not imposed.

20Recall that ṅ(t) = 0 if and only if n(t) is a Nash equilibrium.
21See Sandholm (2001) for a formal argument about this.
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distribution, we obtain a sufficient condition under which the population distribution could

not be stable even if it were a spatial equilibrium.

Given a population distribution n ∈ ∆, let supp (n) be the support of n (i.e., supp (n) =

{i ∈ S : ni > 0}). Let us denote the cardinality of a vector x by |x|. Since a stable spatial

equilibrium locally maximizes potential functionW , we may investigate its Hessian while we

have to respect the constraint n ∈ ∆. To this end, let us consider the projection of ∆ onto

R
K−1, which is given by Π∆ = {ν ∈ R

K−1
+ :

∑K−1
i=1 νi ≤ 1}, and represent the constraint

ν ∈ Π∆ with the following inequalities:

qi(ν) = −νi ≤ 0 for i = 1, 2, ..., K − 1, (18)

qK(ν) =
K−1
∑

i=1

νi − 1 ≤ 0, (19)

for ν ∈ R
K−1. Then, the maximization problem of the potential function is written as

max
ν∈RK−1

W (−q(ν)) s.t. qi(ν) ≤ 0 for all i ∈ S, (20)

where q = (qi)
K
i=1. Let γi(ν) ≥ 0 be the Lagrange multiplier for the constraint qi(ν) ≤ 0. We

assume that the problem (20) satisfies the strict complementary condition; that is, qi(ν) =

0 ⇒ γi(ν) > 0 for all i ∈ S. In our context, this means that the spatial equilibrium is

quasi-strict (i.e., the payoff of each unpopulated cell is strictly smaller than the (common)

payoff of populated cells).

Assumption 3 Every spatial equilibrium is quasi-strict.

Let

Q(ν) = [∇qi(ν) : i /∈ supp (−q(ν))] , (21)

where ∇qi(ν) is the gradient of qi(ν) which is a (K − 1)-dimensional vector. Q(ν) is the

matrix comprising the gradients of constraints that are active at ν. Let us denote the matrix

of the orthogonal basis of the null space of Q(ν) by Z(ν).

Since qi(ν) is linear in ν for all i ∈ S, [∇qi(ν) : i ∈ S] =





−1 0 ··· 0
0 −1 ··· 0

...
0 0 ··· −1
1 1 ··· 1



 is independent

of ν ∈ Π∆. Hence, we denote it by Q. Let ∇2W (n) be the Hessian of W (n) at n ∈ ∆.

Then, it follows that, if ν ∈ Π∆ locally maximizes W ,

H(ν) ≡ Z(ν)′Q′∇2W (−q(ν))QZ(ν), (22)
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is negative semi-definite.22 This is the Hessian that needs to be examined.23 In other words,

−q(ν) ∈ ∆ does not locally maximizeW and, thus, is not a stable equilibrium if H(ν) is not

negative semi-definite, which also indicates that the largest eigenvalue of H(ν) is positive.

Example 1 Let K = 4 and consider a population distribution ν ∈ Π∆ = {ν ′ ∈ R
3
+ :

∑3
i=1 ν

′
i ≤ 1} such that ν1 = 0, ν2 > 0, ν3 > 0, and ν2 + ν3 < 1. Then, Q(ν) = ( −1 0 0 ). The

null space of Q(ν) is two dimensional, and we can take Z(ν) = ( 0 1 0
0 0 1 )

′ as its orthogonal

basis. Let n = −q(ν). Then, since QZ(ν) =
(

−1 0 0
0 −1 0
0 0 −1
1 1 1

)

(

0 0
1 0
0 1

)

=

(

0 0
−1 0
0 −1
1 1

)

,

H(ν) =

(

0 −1 0 1

0 0 −1 1

)

Jv(n)

(

0 −1 0 1

0 0 −1 1

)′

(23)

=

(

∂(v2(n)−v4(n))
∂n2

− ∂(v2(n)−v4(n))
∂n4

∂(v2(n)−v4(n))
∂n3

− ∂(v2(n)−v4(n))
∂n4

∂(v3(n)−v4(n))
∂n2

− ∂(v3(n)−v4(n))
∂n4

∂(v3(n)−v4(n))
∂n3

− ∂(v3(n)−v4(n))
∂n4

)

(24)

= τ

{(

d42 d43

d42 d43

)

+

(

d24 d24

d34 d34

)

−
(

d22 d23

d32 d33

)}

+

(

δ−1
2 h′(n2/δ2) + δ−1

4 h′(n4/δ4) δ−1
4 h′(n4/δ4)

δ−1
4 h′(n4/δ4) δ−1

3 h′(n3/δ3) + δ−1
4 h′(n4/δ4)

)

,

(25)

where Jv(n) is the Jacobian of v at n. ■

As shown in the example above, there is room for discretion regarding how to take Z(ν)

even though it does not affect the stability. If supp (−q(ν)) = {i} for some i ∈ S, then it

follows that H(ν) ∝ ∂vi(−q(ν))
∂ni

whatever Z(ν) we take. Hence, −q(ν) cannot be a stable

equilibrium if ∂vi(−q(ν))
∂ni

> 0. If more than one cell is populated, then room for discretion

arises since only the payoff difference matters for the equilibrium. Hence, we may take any

cell in the support as a “reference cell” from which the payoff difference is computed. In

the following, we take the cell having the highest index in the support as the reference cell.

More specifically, given ν ∈ Π∆, let n = −q(ν) and supp (n) = {i1, i2, ..., iL}. Then, let us
take Z(ν) so that

H(ν)kℓ =
∂(vik(n)− viL(n))

∂niℓ

− ∂(vik(n)− viL(n))

∂niL

. (26)

In matrix form, we have

H(ν) = τD̃supp (n) + H̃(n), (27)
22See the Appendix.
23H(ν) is called the reduced Hessian. See, for example, Griva et al. (2009).
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where

D̃supp (n) = 1⊗ (diiL)i∈supp (n)\{iL} + (diiL)
′
i∈supp (n)\{iL}

⊗ 1′ −Dsupp (n) (28)

=













di1iL di1iL · · · di1iL
di2iL di2iL · · · di2iL
...

...
. . .

...

diL−1iL diL−1iL · · · diL−1iL













+













di1iL di1iL · · · di1iL
di2iL di2iL · · · di2iL
...

...
. . .

...

diL−1iL diL−1iL · · · diL−1iL













′

−













di1i1 di1i2 · · · di1iL−1

di2i1 di2i2 · · · di2iL−1

...
...

. . .
...

diL−1i1 diL−1i2 · · · diL−1iL−1













, (29)

H̃(n) =
1

δiL
h′(

niL

δiL
)11′ + diag

(

1

δi1
h′(

ni1

δi1
),

1

δi2
h′(

ni2

δi2
), · · · , 1

δiL−1

h′(
niL−1

δiL−1

)

)

. (30)

In (28), Dsupp (n) is the submatrix of D that corresponds to the indices in supp (n) and ⊗
denotes the Kronecker product, whereas, in (30), diag(x) is the diagonal matrix having x as

its diagonal elements.

To attain a threshold value of τ above which the largest eigenvalue of H(ν) is positive,

we invoke Weyl’s inequality, which states that

µmax(H(ν)) ≡ µL−1(H(ν)) ≥ τµL−j(D̃supp (n)) + µj(H̃(n)) (31)

for 2 ≤ j ≤ L − 1, where µi(M) is the i-th smallest eigenvalue of matrix M .24 Although

we made some adjustments to account for feasibility constraints, we can see that D̃supp (n)

corresponds to the agglomeration force W1(n), whereas H̃(n) corresponds to the dispersion

force W2(n). Indeed, as shown in the proof of Proposition 1 below, D̃supp (n) is positive

definite and all its eigenvalues are positive. Thus, D̃supp (n) acts as the destabilizing force

against interior distributions. Conversely, since h is decreasing, all of H̃(n)’s eigenvalues,

except for one zero eigenvalue, are negative. Hence, H̃(n) acts as the stabilizing force.

Furthermore, the threshold value is attained when these two forces are balanced:

Proposition 1 Under Assumptions 1-3, a population distribution n ∈ ∆ such that supp (n) =

24Weyl’s inequality states that µp(B+C) ≤ µp+q(B)+µn−q(C) for q ∈ {0, 1, 2, ..., n−p} and µp(B+C) ≥
µp−q+1(B) + µq(C) for q ∈ {1, 2, ..., p} where B and C are n × n symmetric matrices. See Theorem 4.3.1
and Corollary 4.3.3 of Horn and Johnson (2013).
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{i1, i2, ..., iL} where L ≥ 2 cannot be a stable spatial equilibrium if

τ > min
2≤j≤L−1

µj−1(diag[(δ
−1
i |h′(ni/δi)|)i∈{i1,i2,...,iL−1}])

µL−j(D̃supp (n))
.

Proof. See the Appendix.

As an illustrating example, let us consider a discrete-analogue of Mossay and Picard’s

(2011) model in which dij = |xi − xj|, f(x) = − α
2x
, and δi = 1/K. Observe that the uniform

discretization, where the same amount of land is allocated to each cell, necessarily implies

δi = 1/K for all i ∈ S since the total area of the region is normalized to one.

Assumption 4 (Uniform discretization) δi = 1/K for all i ∈ S.

Let supp (n) = {i1, i2, ..., iL}. The specifications above imply µj(diag[(δ
−1
i |h′(ni/δi)|)i∈{i1,i2,...,iL−1}]) =

αK for any j ∈ {1, 2, ..., L−1}. We aim to derive explicit expressions for the threshold values

of τ .

To this end, we exploit the fact that if the interaction cost is linear, then the support

of a spatial equilibrium can be considered to be a downsized replica of the entire region.

More specifically, any populated cells in a spatial equilibrium are congregated (i.e., there is

no vacant cell between any populated cells), as shown in the following lemma25:

Lemma 2 Suppose Assumption 2 and dij = |xi−xj|. Then, the support of spatial equilibrium
is given by {i1, i2..., iL} ⊆ S, where ik+1 = ik + 1 for any k = 1, ..., L− 1.

Proof. See the Appendix.

Let n ∈ ∆ be a spatial equilibrium such that supp (n) = {i1, i2, ..., iL}, where L ≥ 2. By

Lemma 2, D̃supp (n) is written as

D̃supp (n) =
2

K



















L− 1 L− 2 L− 3 · · · 1

L− 2 L− 2 L− 3 · · · 1

L− 3 L− 3 L− 3 · · · 1
...

...
...

. . .
...

1 1 1 · · · 1



















. (32)

Note that if two equilbria have the same number of populated cells, then the Hessian is

the same in the model. This will be a key observation when addressing the multiplicity of

equilibria in the following section. When deriving eigenvalues of D̃supp (n), it turns out to be

25Mossay and Picard (2011) invoke an analogue observation for their continuous space model.
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more convenient to examine its inverse, which is given by

D̃−1
supp (n) =

K

2























1 −1

−1 2 −1

−1 2 −1
. . . . . . . . .

−1 2 −1

−1 2























. (33)

This is an (L−1)×(L−1)-dimensional tridiagonal Toeplitz matrix in which the upper-left cor-

ner is perturbed and for which explicit expressions of eigenvalues are known. In particular, we

have µj(D̃
−1
supp (n)) = K

(

1− cos (2j−1)π
2L−1

)

, and hence µj(D̃supp (n)) =
1
K

(

1− cos (2(L−j)−1)π
2L−1

)−1

.

Note that these eigenvalues depend on the number of populated cells but not on the distri-

bution over the support of equilibrium. Hence, the following result is obtained:

Corollary 1 Suppose Assumptions 3-4, dij = |xi−xj|, and f(x) = − α
2x
. Then, a population

distribution n ∈ ∆ having L (≥ 2) populated cells cannot be a stable spatial equilibrium if

τ > τ l(L) ≡
(

1− cos
3π

2L− 1

)

αK2. (34)

There are two remarks here. First, since τ l(2) > τ l(3) > τ l(4) > · · · , the maximum

possible number of populated cells that might constitute a stable spatial equilibrium is non-

increasing in τ . Second, since K 7→ τ l(K) is continuous on R+ and limK→∞ τ l(K) =
9
8
απ2 <∞, it is bounded. Thus, if τ is sufficiently large, then a population distribution with

full support cannot be a stable spatial equilibrium for any finite K.

4 Characterization of equilibria

This section characterizes the equilibrium of the discrete-space model to compare its prop-

erties with those of the continuous-space model. In the continuous-space model, it follows

that a unimodal population distribution is attained as the unique spatial equilibrium up to

translation (Mossay and Picard, 2011).26 Section 4.1 shows that, as in the continuous-space

model, the equilibrium population density of the discrete-space model is unimodal. How-

ever, in Section 4.2, we see that the equilibrium is essentially non-unique in the sense that

equilibria with different population distributions over the support coexist.

26In the next section, we will show that the spatial equilibrium of a general class of continuous-space model
is unimodal (Lemma 5)
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4.1 Equilibrium population distribution

Suppose that the interaction cost is linear (i.e., dij = |xi−xj|). Then, by Lemma 2, populated

cells in a spatial equilibrium are congregated, i.e., supp (n) = {i−, i− + 1, ..., i+ − 1, i+} for

some i−, i+ ∈ S. Then, since vi(n) = vi−1(n) for all i ∈ supp (n)\{i−}, the equilibrium

condition is written as

h

(

ni

δi

)

− h

(

ni−1

δi−1

)

= τϵi







2
i−1
∑

k=i−

nk − 1







∀i ∈ supp (n)\{i−}, (35)

where ϵi = xi − xi−1 > 0. Since
∑

k∈supp (n) nk = 1, (35) implies that there exist i∗ ∈ S

such that h(ni/δi) is decreasing [resp. increasing] in i for i ≤ i∗ [resp. i ≥ i∗], as long as
∑i−1

k=i−
nk ̸= 1

2
for any i ∈ supp (n)\{i−}. If

∑i−1
k=i−

nk =
1
2
for some i ∈ supp (n)\{i−}, then

there are two cells at which h attains its bottom. In any case, {−h(ni/δi)}i∈S is unimodal.

Since h is strictly decreasing, this is also true for (ni/δi)i∈S.

Proposition 2 Suppose Assumption 2 and dij = |xi−xj|. Then, the equilibrium population

density distribution (ni/δi)i∈S of the discrete-space model is unimodal.

This proposition shows that the equilibrium population density distribution (ni/δi)i∈S of

the discrete-space model exhibits a property similar to that of the continuous-space model.

Furthermore, the equilibrium population distribution n is also unimodal, especially if we

consider the uniform discretization of space (i.e., δi =
1
K

for all i ∈ S).

4.2 Multiplicity of spatial equilibria

4.2.1 Non-uniform discretizations

In this subsection, we examine the uniqueness of equilibrium in discrete space. We first

consider the case of the non-uniform discretization of space (i.e., there exists i, j ∈ S such

that δi ̸= δj).
27 We show through examples that different population distributions can be

KKT points of problem (11) (and thus spatial equilibria) in this case. We consider two

models: Beckmann’s (1976) model in which f(x) = α ln x and Mossay and Picard’s (2011)

model in which f(x) = − α
2x
. In either model, we consider the linear interaction cost in

which dij = |xi − xj|. We assume that K = 3, (b1, b2) = (0.2, 0.5), and α = 1.0. Under

these parameters, Figures 1 and 2 depict the contour plots of each model’s potential function,

27Note that when we perform an empirical analysis, we often need to discretize a space non-uniformly
since social and economic data is aggregated over some geographical areas and, in general, these areas are
not uniformly sized.
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(b) τ = 8.0

Figure 1: Contour plot of the potential function of Mossay and Picard’s (2011) model (•:
stable, ◦: unstable)
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(b) τ = 8.0

Figure 2: Contour plot of the potential function of Beckmann’s (1976) model (•: stable, ◦:
unstable)

respectively. In these figures, the background color represents the value of potential function:

the regions in which the value is the largest are red, while the regions in which the value is

the smallest are blue. To characterize equilibria with these figures, we invoke the fact that

local maximizers of potential function are stable equilibria, whereas any other KKT points

are unstable equilibria.

According to Figure 1, we can see that when τ = 1.0, the potential function is strictly

concave, and thus, there exists a unique equilibrium that is stable. However, when τ = 8.0,

the potential function fails to concave, and three equilibria arise: 1) full agglomeration in

cell 3, the largest cell; 2) the population is agglomerated in cells 1 and 2, the two smaller

cells; and 3) full support in which all cells are populated. As shown in Figure 2, Beckmann’s

(1976) model has qualitatively similar properties to those of Mossay and Picard’s (2011)
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Figure 3: Contour plot of the potential function of uniformly discretized Mossay and Picard’s
(2011) model (•: stable equilibrium, ◦: unstable equilibrium)

model. These results show that if we consider a non-uniform discretization, then equilibria

with different population distributions can coexist.

4.2.2 Uniform discretizations

Based on the results above, one might think that they stem from the exogenous asymmetry

in space. Hence, we next consider uniform discretizations. In this case, the label of the

cell should not matter when discussing the multiplicity of equilibria. That is, we do not

distinguish between two equilibria such that one equilibrium is obtained by horizontally

shifting the other one, which can arise in this case. For example, let us look at two unstable

equilibria in Figure 3, which depicts a contour plot of the potential function of Mossay and

Picard’s (2011) model with K = 3, [b1, b2] = [1
3
, 2
3
], α = 1.0, and τ = 15.0. One equilibrium is

(1
2
, 1
2
, 0) whereas the other equilibrium is (0, 1

2
, 1
2
). However the two population distributions

can be merged through translation.

In what follows, we assume that the equilibrium, if any, is unique for each possible

support.

Assumption 5 The number of equilibria is, at most, one for each possible support.

This is true for Mossay and Picard’s (2011) model in which the equilibrium solves the system

of linear equations. In this case, since the interaction cost is symmetric, we can regard any

two equilibria as qualitatively identical in the above sense whenever they have the same num-

ber of populated cells. In other words, two equilibria are indistinguishable up to translation

unless they have different numbers of populated cells. Therefore, under Assumption 5, we

say that the spatial equilibrium is essentially non-unique if equilibria with different numbers

of populated cells simultaneously exist, and we focus on this essential multiplicity.
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We show that the equilibrium can be essentially non-unique, even if the space is uniformly

discretized. To this end, we refer to the index theorem of Simsek et al. (2007), which is

applicable to the set of KKT points (See Proposition 5.2 of the paper). This is relevant

for us since our equilibrium problem is reduced to finding KKT points of the optimization

problem of the potential function. In our context, their result is stated as follows.

Recall that the problem (20) is the optimization problem that characterizes spatial equi-

libria. Denote the map ν 7→ W (−q(ν)) by W ◦ (−q). Given the problem (20), let

Γ(ν) = Z(ν)′



HW◦(−q)(ν) +
∑

i/∈supp (−q(ν))

γi(ν)Hqi(ν)



Z(ν), (36)

where HW◦(−q)(ν) [resp. Hqi(ν)] is the Hessian of W ◦ (−q) [resp. qi] at ν. Let KKT(W, q)

be the set of KKT points of the problem (20). Then, for each ν ∈ KKT(W, q), we define the

index by

indΓ(ν) =



















1 if det(Γ(ν)) > 0,

0 if det(Γ(ν)) = 0,

−1 if det(Γ(ν)) < 0,

(37)

where det(Γ(ν)) is the determinant of Γ(ν). Then, under the assumptions mentioned later,

the index theorem states that

∑

ν∈KKT(W,q)

indΓ(ν) = 1. (38)

Note that all of the constraints (qi)
K
i=1 are linear. Hence, Hqi is the zero matrix for any i ∈ S.

Then, since HW◦(−q)(ν) = Q′∇2W (−q(ν))Q, it turns out that Γ(ν) = H(ν). Observe that

this is exactly the Hessian that we have used for the stability analysis. This illustrates how

useful the potential function is, not only for the stability analysis, but also for analysis of

the multiplicity of equilibria.

The index theorem holds under the following three assumptions. The first one is that

W ◦ (−q) is twice continuously differentiable, which holds under Assumption 2. The second

one is that the problem (20) satisfies the strict complementary condition, which holds under

Assumption 3. The final one is that Γ(ν) is non-singular at any ν ∈ KKT(W, q). Since

Γ(ν) = H(ν) and the KKT points of the problem (20) correspond to spatial equilibria, the

following assumption is necessary:

Assumption 6 For any ν ∈ Π∆ such that −q(ν) ∈ ∆ is a spatial equilibrium, H(ν) is

nonsingular.
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In order to apply the index theorem to the issue of the multiplicity of equilibria, we assume

the linear interaction cost in order to invoke Lemma 2. Lemma 2, together with Assumption

5, enables us to determine the number of equilibria for each number of populated cells. More

specifically, if an equilibrium with L populated cells exists, then there are K − L + 1 such

equilibria. Moreover, since these equilibria have the same distribution over the support (i.e.,

these equilibria are essentially indistinguishable), all their indices have the same value. These

observations lead us to the following result:

Lemma 3 Suppose Assumptions 2-6 and dij = |xi − xj|. If there is a spatial equilibrium n

such that |supp (n)| < K, then there is another spatial equilibrium n′ such that |supp (n′)| ̸=
|supp (n)|.

Proof. Suppose, to the contrary, that for some L < K, |supp (n)| = L for any equilibrium

n. By Lemma 2, the number of equilibria is thenK−L+1. Since the population distribution

over the support is identical for all equilibria, the index given by (37) is the same for all

equilibria. Hence, the total sum of the indices is either K −L+ 1,−(K −L+ 1), or 0. Any

of them contradicts the index theorem.

Thus, if a spatial equilibrium having some unpopulated cells exists, then there is necessar-

ily another spatial equilibrium that is essentially different from the equilibrium. Therefore,

if the spatial equilibrium exists uniquely, then all the cells in the region must be populated

in the unique equilibrium.

Recall that, given a full-support distribution, we have obtained a sufficient condition

under which it is not an equilibrium or it is an unstable equilibrium (Proposition 1). Observe

that, since the potential function is continuous and ∆ is compact, a stable equilibrium, which

is a maximizer of the potential function, exists. Hence, if a full-support distribution is not

an equilibrium, then Lemma 3 immediately implies the essential multiplicity of equilibria.

Furthermore, if a full-support distribution is an equilibrium but unstable, a maximizer of

the potential function, which is a stable equilibrium, does not have the full support. Thus,

even if a full-support distribution is an equilibrium, Lemma 3 applies as long as it is not

stable. Therefore, by Proposition 1, we conclude the following result.

Proposition 3 Suppose Assumptions 2-6 and dij = |xi − xj|. If

τ > sup
{n∈∆:supp (n)=S}

min
2≤j≤K−1

µj−1(diag[(δ
−1
i |h′(ni/δi)|)i∈S])

µK−j(D̃S)
,

then the equilibrium is essentially non-unique.
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For a corollary of the above result, let us consider Mossay and Picard’s (2011) model in which

f(x) = − α
2x
. Then, the threshold value of τ is independent of the population distribution,

and the equilibrium is essentially non-unique when τ > τ l(K), where τ l is given by (34).

Moreover, since maxK∈N τ
l(K) exists, the spatial equilibrium is essentially non-unique for

any finite K if τ is larger than the maximal value.

Overall, the (essential) multiplicity of equilibria in a discrete space suggests that im-

plications derived from (theoretical/empirical) analyses focusing on a particular equilibrium

might be questionable since its equilibrium might be unstable and another stable equilibrium

with an essentially different population distribution can exist.

5 The limit of discrete-space models

5.1 Continuous-space models

This section examines the continuous limit of discrete-space model. However, we begin by

presenting the structure of a continuous-space model and consider the real line for the region,

even though we subsequently focus on the unit interval, as in the discrete-space model. Let

λ ∈ {λ ∈ L1(R) : λ ≥ 0,
∫

λ(x)dx = 1} be an (integrable) population density over R. In the

continuous-space model, the indirect utility at location xi is given by

vλ(xi) ≡ Y − τ

∫

|x− xi|λ(x)dx+ h(λ(xi)), (39)

where we focus on the linear interaction cost. Let supp (λ) ⊆ R be the support of population

density λ. For a continuous-space model, the spatial equilibrium is defined in relation to

the population density. That is, λ∗ is a spatial equilibrium if there exists u∗ ∈ R such that

vλ∗(x) = u∗ for any x ∈ supp (λ∗) whereas vλ∗(x) ≤ u∗ for any x /∈ supp (λ∗). In addition,

we make the following assumption on the support of the spatial equilibrium.

Assumption 7 supp (λ∗) is finite for every spatial equilibrium λ∗.

For example, this is the case for Mossay and Picard’s (2011) model.

In a discrete-space model, we have seen that the population distribution is congregated

at any spatial equilibrium when the interaction cost is linear (Lemma 2). Naturally, this

also holds for the continuous-space model:

Lemma 4 Suppose Assumptions 2 and 7, and the linear interaction cost. Then, the support

of the spatial equilibrium of the continuous-space model is a finite open interval.
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Proof. See the Appendix.

In Section 4.1, we represented the equilibrium condition as a difference equation in order

to characterize equilibria of the discrete-space model. Likewise, we represent the equilibrium

condition as a differential equation to characterize equilibria of the continuous-space model.

To this end, let H(x) = h(λ(x)) be the net utility from the land consumption at location

x. As it turns out, looking at H, instead of directly looking at λ, is more convenient for

characterizing equilibria. In fact, at the equilibrium, H(x) satisfies the following condition:28

Lemma 5 Suppose Assumptions 2 and 7, and the linear interaction cost. Then, H(x) is

the equilibrium net utility from the land consumption of the continuous-space model if and

only if it solves the following equations:

dH(x)

dx
= τ

{

2

∫ x

x−

g(H(z))dz − 1

}

∀x ∈ [x−, x+], (40a)

∫ x+

x−

g(H(x))dx = 1, g(H(x)) ≥ 0 ∀x ∈ [x−, x+], (40b)

H(x−) = H(x+) = h(0), (40c)

for some x−, x+ ∈ R with x− ≤ x+, where g is the inverse function of h.

Proof. See the Appendix.

(40a) and (40b) imply that there exists x0 ∈ [x−, x+] such that dH(x)
dx

< 0 for x ∈ [x−, x
0)

and dH(x)
dx

> 0 for x ∈ (x0, x+]. That is, H(x) is U-shaped. This shows that as in the discrete-

space model (Proposition 2), the spatial equilibrium λ(x) = h−1(H(x)) of the continuous-

space model is unimodal.

5.2 Continuous limit of discrete-space models

The continuous-space model has been rigorously studied by Blanchet et al. (2016), and

we can invoke some of their results if we additionally assume that limx→0 h(x) = 0.29 In

particular, since the utility of land consumption f is strictly concave and increasing, and

the interaction cost is symmetric and linear, the spatial equilibrium of the continuous-space

model is essentially unique by Theorem 3 in Blanchet et al. (2016). This is in sharp contrast

to the results of the discrete-space model obtained thus far. Nevertheless, we show in this

28Lemma 5 implies that for a given x− (or x+), the equilibrium net utility from the land consumption and
x+ (or x−) of the continuous-space model is obtained by solving (40).

29In this case, Beckmann’s (1976) model is excluded.
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subsection that the continuous-space model can be viewed as the continuous limit of the

discrete-space model.

For discrete-space models, we consider a finite region, whereas the region of continuous-

space models is infinite. One might worry that the boundaries of this region will affect the

analysis. However, the following lemma shows that, as long as we consider a region that is

larger than the length of the continuous-space model’s equilibrium support, a full-support

distribution cannot be an equilibrium of the discrete-space model when K is large. Observe

that, since the spatial equilibrium is unique up to translation in the continuous-space model,

the length of the continuous-space model’s equilibrium support is uniquely determined.

Lemma 6 Suppose Assumption 2 and dij = |xi − xj|. Consider a discrete-space model

for which the region is given by [0, L] where L is larger than the length of the equilibrium

support of the continuous-space model over R. Then, a full-support distribution cannot be

an equilibrium for sufficiently large Ks.

Proof. See the Appendix.

Hence, as long as the region can contain the equilibrium of the continuous-space model, we

do not have to worry about the exogenous boundaries. Therefore, without loss of generality,

we assume that the length of the continuous-space model’s equilibrium support is less than

one so that we can keep the original setting in which the region is given by the unit interval.

Now let us consider a sequence {nK} of equilibria of discrete-space models, where nK

is an equilibrium of the discrete-space model with K cells. Given {nK}, let HK
i = h(λKi ),

where λKi = nK
i /δi, denote the equilibrium net utility from the land consumption at cell i

in the discrete-space model with K cells. By Lemma 2, the support of nK is represented by

{iK− , iK− + 1, ..., iK+ − 1, iK+} for some iK− and iK+ where 1 ≤ iK− ≤ iK+ ≤ K. Then, it follows

from (35) that, for each K, HK = {HK
i }i∈supp (nK) solves the following equations:

HK
i −HK

i−1

ϵi
= τ







2
i−1
∑

j=iK
−

g(HK
j )δj − 1







∀i ∈ {iK− , iK− + 1, ..., iK+ − 1, iK+}, (41a)

iK
+
∑

j=iK
−

g(HK
j )δk = 1, g(HK

i ) ≥ 0 ∀i ∈ {iK− , iK− + 1, ..., iK+ − 1, iK+}, (41b)

which converge to (40a) and (40b) respectively as K → ∞. Let x− = limK→∞ xiK
−

and

x+ = limK→∞ xiK
+
. Since xiK

−

, xiK
+
∈ (0, 1) for all K, x− ≥ 0 and x+ ≤ 1. Furthermore, since

the length of the continuous-space model’s equilibrium support is unique and less than one,

we have either x− > 0, x+ < 1, or both by Lemma 6. Without loss of generality, suppose
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x+ < 1. Then, for sufficiently large K, xiK
+
+1 ≤ 1 for which viK

+
≥ viK

+
+1 and λK

iK
+
+1

= 0.

Hence,

h(0)− h(λ(xiK
+
)) = HK

iK
+
+1 −HK

iK
+

≤ τϵiK
+
+1 ⇒ h(0)− h(λ(x+)) ≤ 0. (42)

Since h is decreasing, λ(x+) = 0. The symmetry of the equilibrium then implies λ(x−) = 0.

Thus, the equilibrium condition of the discrete-space model eventually coincides with that

of the continuous-space model, as K → ∞.

Unfortunately, the finite difference method, which studies the relationships between dif-

ference and differential equations, shows that the convergence of the equilibrium condition

does not imply that of the equilibrium.30 Therefore, in the following, we show the conver-

gence of the equilibrium.

Let nK be an equilibrium of the discrete-space model with K cells. Our aim is to show

that, for any sequence of equilibria {nK}, there exists an equilibrium λ of the continuous-

space model such that

lim
K→∞

{

max
i∈supp (nK)

|λ(xi)− λKi |
}

= 0, (43)

where λKi = nK
i /δ

K
i . However, as the preceding arguments have demonstrated, considering

the net utility from the land consumption is more convenient than directly considering the

population density. More specifically, let H(x) = h(λ(x)) and HK = {h(λKi )}i∈supp (nK). The

following proposition shows that

lim
K→∞

{

max
i∈supp (nK)

∣

∣H(xi)−HK
i

∣

∣

}

= 0. (44)

Under Assumption 2, g, the inverse of h, is Lipschitz continuous. As a result, for some

C > 0,

|λ(xi)− λKi | = |g(H(xi))− g(HK
i )| ≤ C|H(xi)−HK

i |. (45)

Therefore, (44) implies (43).

In order to obtain the result, we impose a restriction on how space is discretized, by

assuming that limK→∞ maxi∈S Kδ
K
i < ∞. Obviously, this includes the case of the uniform

discretization since δKi = 1/K for all i ∈ S implies maxi∈S Kδ
K
i = 1 for all K.

Proposition 4 Suppose Assumptions 2 and 7, and the linear interaction cost. Moreover,

suppose limK→∞ maxi∈S Kδ
K
i < ∞. Let {nK} be a sequence of the discrete-space model’s

30See LeVeque (2007).
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equilibria with support {iK− , iK−+1, · · · , iK+−1, iK+} for eachK. Then, there exists a continuous-

space model’s equilibrium λ with support (x−, x+) ⊂ [0, 1] where x− = limK→∞ xiK
−

and

x+ = limK→∞ xiK
+
such that (44) holds.

Proof. See the Appendix.

Observe that the sequence of spatial equilibria is arbitrary. Thus, any sequence of spatial

equilibria converges on the unique equilibrium of the continuous-space model. In addition,

recall that the spatial equilibrium in a discrete space is generally not unique. Nevertheless,

every equilibrium converges on the single equilibrium as K → ∞. This means that the set

of spatial equilibria parametrized by K is upper hemi-continuous at the limit. Furthermore,

since the spatial equilibrium in the continuous space is unique, the lower hemi-continuity is

implied by the upper hemi-continuity. Therefore, the set of spatial equilibria is continuous

in K at the limit.31 This is a positive result for the continuous-space model. As long as K

is sufficiently large, the continuous-space model can be viewed as a good approximation of

the discrete-space model, which is relevant for real economies.

6 Conclusion

We studied the discrete-space agglomeration model with social interactions and its connec-

tion to the corresponding continuous-space model. We showed that any sequence of the

discrete-space model’s equilibria converges on the unique equilibrium of the continuous-

space model, as the distance between adjacent cells vanishes. However, by appealing to the

properties of the potential game, we found that, contrary to the continuous-space model,

the spatial equilibrium can be essentially non-unique for any finite number of cells. Thus,

while all equilibria should be close to one another when the cell size is sufficiently small, the

problem of multiple equilibria is not negligible.

In this paper, we considered social interactions among a single type of agents. Hence,

the natural extension is to consider multiple types of agents. There is rich literature on

(continuous-space) social interaction models that include both consumers and firms.32 Owing

to general equilibrium effects, the properties of equilibrium are more complex than the class

of models considered here. In particular, equilibrium is generally not unique even in the

continuous-space model, although the stability of equilibria has not been explored. It is

31Recall that the equilibrium of the continuous-space model is only unique up to translation. Thus, strictly
speaking, what we are actually considering here is the set of population distributions over their supports
that are attained at equilibria, rather than the set of equilibria itself.

32See Chapter 6 of Fujita and Thisse (2013) and references therein.
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difficult to determine the stability of equilibria in the continuous-space model, but we may

be able to address this by approximating the model with a discrete-space model.33

Finally, although we did not engage in policy discussions, the spatial equilibrium of our

model is generally not efficient since social interactions cause externalities. Indeed, the

population distribution is more concentrated at the social optimum than at the market

equilibrium. This is a consequence of positive externalities in social interactions, which

yields under-agglomeration.34 Thus, in order to achieve the social optimum, it is necessary

that planners internalize these externalities. However, since the equilibrium under such an

intervention is not necessarily unique as in a laissez-faire case, there may exist a stable

equilibrium besides social optima. Therefore, in contrast to the continuous world, the policy

design to achieve a social optimum in the discrete world is not straightforward, owing to the

multiplicity of equilibria. This is an important subject for future research.35

Appendix

Derivation of the Hessian (22)

Suppose that the first-order conditions of the problem (20) hold at ν ∈ R
K−1. Then, we

are interested in whether ν (locally) maximizes the potential function. A feasible direction

p from ν satisfies Q(ν)p ≤ 0. Let γ̂(ν) be the vector of Lagrange multipliers for active

constraints (i.e., γ̂(ν) = {γi(ν)}i/∈supp (−q(ν))). If Q(ν)p < 0, then we have

p′∇W (−q(ν))′ = p′Q(ν)′γ̂(ν) < 0

under the strict complementarity. Thus, we may focus on direction p such that Q(ν)p = 0.

Note that any feasible point is written as ν ′ = ν + p. Because p belongs to the null space

of Q(ν), the set of feasible points is then {ν ′ : ν ′ = ν + Z(ν)x,x ∈ R
K−1}.

Hence, we may study the second-order condition of the problem (20) at ν ∈ Π∆ by

examining the following unconstrained problem:

max
x∈RK−1

W (−q(ν + Z(ν)x)). (46)

The condition that the Hessian (22) is negative-semidefinite corresponds to the second-order

33Blanchet et al. (2016) pave the way for using a potential function(al) to characterize the equilibria of a
continuous-space model. However, they still abstract away from the stability analysis.

34Observe that the dispersion force due to the housing congestion is a pecuniary externality.
35Sandholm (2007) and Fujishima (2013) consider Pigouvian tax policies in the presence of multiple equi-

libria.
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necessary condition of the problem (46) at x = 0.

Proof of Lemma 2. Suppose, on the contrary, that there exists an equilibrium n ∈ ∆

in which, for some i, j ∈ supp (n) with j − i ≥ 2, nℓ = 0 for all i < ℓ < j. Let k ∈
{i+1, .., j− 1}. Since nk = 0 at equilibrium, h(0) <∞. Without loss of generality, suppose
∑i

ℓ=1 nℓ ≥
∑K

ℓ=j nℓ. Then, because dℓk+dkj = dℓj for ℓ ≤ i whereas dkj +djℓ = dkℓ for ℓ ≥ j,

vi(n)− vj(n) ≥ vk(n)− vj(n)

= τ
∑

ℓ

(djℓ − dkℓ)nℓ + h(0)− h(nj/δj)

> τ
∑

ℓ

(djℓ − dkℓ)nℓ ∵ h is decreasing

= τdjk

(

i
∑

ℓ=1

nℓ −
K
∑

ℓ=j

nℓ

)

≥ 0,

which contradicts the supposition i, j ∈ supp (n).

Proof of Proposition 1. Given ν ∈ Π∆, let n = −q(ν) and supp (n) = {i1, i2, ..., iL} ⊆ S

where L ≥ 2 (and hence |supp (n)| = L). At first, we show that D̃supp (n) is positive definite.

Let x ∈ R
K be a vector such that xi = 0 for all i /∈ {i1, i2, ..., iL−1}, and let x̃ ∈ R

K be

a vector such that x̃i = xi for all i ̸= iL and x̃iL = −∑iL−1

i=i1
xi. Note that x̃ ∈ T∆. Since

[D̃supp (n)]ij = diiL + diLj − dij,

iL−1
∑

i,j=i1

(diiL + diLj − dij)xixj = −
iL−1
∑

i=i1

diiLxix̃iL −
iL−1
∑

j=i1

diLjx̃iLxj −
iL−1
∑

i,j=i1

dijxixj

= −
iL
∑

i,j=i1

dijx̃ix̃j = −
K
∑

i,j=1

dijx̃ix̃j > 0,

where the last inequality follows from the assumption that D is negative definite on T∆.

Then, since (xi)i∈{i1,i2,...,iL−1} is arbitrary, D̃supp (n) is positive definite. Hence, all of D̃supp (n)’s

eigenvalues are positive. Second, we have

H̃(n) = diag[(δ−1
i h′(ni/δi))i∈{i1,i2,...,iL−1}] + δ−1

iL
h′(niL/δiL)11

′, (47)

where diag(x) is a diagonal matrix having xi for its (i, i)-th element, and 1 is a row vec-

tor of ones with an appropriate dimension. The eigenvalues of δ−1
iL
h′(niL/δiL)11

′ are (L −
1)δ−1

iL
h′(niL/δiL) and 0. Accordingly, the matrix has exactly one negative eigenvalue, since h

is decreasing. Thus, byWeyl’s inequality, µj(H̃(n)) ≥ µj−1(diag[(δ
−1
i h′(ni/δi))i∈{i1,i2,...,iL−1}])+

µ2(δ
−1
iL
h′(niL/δiL)11

′) = µj−1(diag[(δ
−1
i h′(ni/δi))i∈{i1,i2,...,iL−1}]) for each j = 2, 3, ..., L.
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Then, by invoking Weyl’s inequality for τD̃supp (n) + H̃(n), we obtain

µmax(H(ν)) ≡ µL−1(H(ν)) ≥ τµL−j(D̃supp (n)) + µj(H̃(n)) (48)

≥ τµL−j(D̃supp (n)) + µj−1(diag[(δ
−1
i h′(ni/δi))i∈{i1,i2,...,iL−1}])

(49)

where 2 ≤ j ≤ L−1. Since ni > 0 for all i ∈ {i1, i2, ..., iL−1}, µj−1(diag[(δ
−1
i h′(ni/δi))i∈{i1,i2,...,iL−1}]) ∈

(−∞, 0) for any j ∈ {2, 3, ..., L− 1}. Therefore, we obtain the stated result.

Proof of Corollaries 1. We invoke the results of Yueh and Cheng (2008), which are

restated as follows:36

Theorem 2 (Yueh and Cheng, 2008) Consider the n× n real matrix of the form























m2 +m4 m3

m1 m2 m3

m1 m2 m3

. . . . . . . . .

m1 m2 m3

m1 m2 +m5























. (50)

(i) Let 0 < θ < π. Then, the eigenvalues of the matrix above are given by

µ = m2 + 2
√
m1m3 cos θ, (51)

where θ solves

m1m3 sin(n+ 1)θ +m4m5 sin(n− 1)θ −√
m1m3(m4 +m5) sinnθ = 0. (52)

(ii) If ρ̃ =
√

m1/m3 [resp. ρ̃ = −
√

m1/m3] solves

m1m3(n+ 1) +m4m5(n− 1)−m3ρ̃(m4 +m5)n = 0, (53)

then m2 + 2
√
m1m3 [resp. m2 − 2

√
m1m3] is an eigenvalue of the matrix above (these

correspond to the case in which θ ∈ {0, π}).

Our matrix (33) corresponds to the case in which m1 = m3 = −K
2
,m2 = K,m4 =

36They consider more general matrices than (50), where upper right and lower left corners can also be
nonzero. They also allow complex matrices.
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−K
2
,m5 = 0, and n = L− 1. Then, (52) becomes

K4

4
(sinLθ − sin(L− 1)θ) =

K4

4
sin

θ

2
cos

(2L− 1)θ

2
= 0. (54)

Because 0 < θ < π, sin θ
2
̸= 0 and hence cos (2L−1)θ

2
= 0 ⇒ θ = (2j−1)π

2L−1
where j = 1, 2, ..., L−1.

Moreover, (53) is given by
K2

4
(L− ρ̃(L− 1)) = 0, (55)

and neither ρ̃ = 1 nor ρ̃ = −1 solves the equation above. Hence, the eigenvalues of matrix

(33) are given by K(1 − cos (2j−1)π
2L−1

) where j = 1, 2, ..., L − 1. In particular, since K(1 −
cos (2j−1)π

2L−1
) is its j-th smallest eigenvalue, µj(D̃supp (n)) =

1
K
(1− cos (2(L−j)−1)π

2L−1
)−1. Thus,

min
2≤j≤L−1

µj−1(diag[(|h′i(ni)|)i∈{i1,i2,...,iL−1}])

µL−j(D̃supp (n))
=

αK

max2≤j≤L−1 µL−j(D̃supp (n))
(56)

= αKµL−2(D̃supp (n))
−1 (57)

=

(

1− cos
3π

2L− 1

)

αK2. (58)

Proof of Lemma 4. By Corollary 1 of Blanchet et al. (2016), the spatial equilibrium is

continuous. Hence, the support of the equilibrium is open. We argue in an analogue manner

as the proof of Lemma 2. Suppose, to the contrary, that there exists an equilibrium λ for

which supp (λ) = (x1−, x
1
+) ∪ (x2−, x

2
+) with x

1
+ < x2−.

Let x1 ∈ (x1−, x
1
+), x

2 ∈ (x2−, x
2
+), and x̂ ∈ (x1+, x

2
−), respectively. Without loss of general-

ity, suppose
∫ x1

+

x1
−

λ(z)dz ≥
∫ x2

+

x2
−

λ(z)dz. Then, we have

vλ(x
1)− vλ(x

2) ≥ vλ(x̂)− vλ(x
2)

> −τ
∫

|x̂− z|λ(z)dz + τ

∫

|x2 − z|λ(z)dz ∵ h is decreasing

= τ(x2 − x̂)

(

∫ x1
+

x1
−

λ(z)dz −
∫ x2

+

x2
−

λ(z)dz

)

≥ 0,

which contradicts the supposition x1, x2 ∈ supp (λ).

Proof of Lemma 5. Suppose that λ is an equilibrium. By Lemma 4, supp (λ) = (x−, x+)

for some x−, x+ ∈ R. Then, vλ(x) = v∗ for all x ∈ (x−, x+) where v∗ is the equilibrium
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utility level. Moreover, since vλ(x) is continuous in x, vλ(x−) = vλ(x+) = v∗. Hence,

y − τ

∫ x+

x−

|x− y|λ(y)dy + h(λ(x)) = v∗ ∀x ∈ [x−, x+]. (59)

Differentiating this equation with respect to x yields

dh(λ(x))

dx
= τ

{∫ x

x−

λ(z)dz −
∫ x+

x

λ(z)dz

}

∀x ∈ [x−, x+]. (60)

Substituting the population constraint
∫ x+

x−

λ(z)dz = 1 and λ(x) = g(H(x)) into this,37 we

have (40a). Meanwhile, (40b) is obtained from the population constraint, while (40c) is

obtained from λ(x−) = λ(x+) = 0.

Conversely, suppose that λ solves the system (40a)-(40c) for some x−, x+ ∈ R. Let

x1, x2 ∈ [x−, x+] with x
2 > x1. Then, integrating (60) over [x1, x2],

h(λ(x2))− h(λ(x1)) = τ

{

∫ x2

x1

∫ x

x−

λ(z)dzdx−
∫ x2

x1

∫ x+

x

λ(z)dzdx

}

. (61)

By integration by parts,

∫ x2

x1

∫ x

x−

λ(z)dzdx = x2
∫ x2

x−

λ(z)dz − x1
∫ x1

x−

λ(z)dz −
∫ x2

x1

zλ(z)dz, (62)

∫ x2

x1

∫ x+

x

λ(z)dzdx = x2
∫ x+

x2

λ(z)dz − x1
∫ x+

x1

λ(z)dz +

∫ x2

x1

zλ(z)dz. (63)

However, observe that

∫ x+

x−

|x2 − z|λ(z)dz −
∫ x+

x−

|x1 − z|λ(z)dz

= x2

{

∫ x2

x−

λ(z)dz −
∫ x+

x2

λ(z)dz

}

− x1

{

∫ x1

x−

λ(z)dz −
∫ x+

x1

λ(z)dz

}

− 2

∫ x2

x1

zλ(z)dz.

(64)

Therefore, vλ(x
1) = vλ(x

2). This implies that there exists v∗ ∈ R such that vλ(x) = v∗ for

37Since h(·) is a strictly decreasing function, the inverse function g(·) exists.
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all x ∈ [x−, x+]. Now, let x < x−. Because λ(x−) = λ(x) = 0 and
∫ x+

x−

λ(z)dz = 1,

vλ(x)− vλ(x−) = τ

{∫ x+

x−

(z − x−)λ(z)dz −
∫ x+

x−

(z − x− + x− − x)λ(z)dz

}

(65)

= τ(x− x−) < 0. (66)

Similarly, we have vλ(x) < vλ(x+) for x > x+. Hence, λ is an equilibrium.

Proof of Lemma 6. Suppose that the region is given by [0, L] where L is larger than

the length of the equilibrium support of the continuous-space model over R. Let nK be a

full-support distribution in the discrete-space model with K cells. Then, let

λK(x) =
nK
i

δKi
for x ∈ [bKi−1, b

K
i ) (67)

where i ∈ S and λK(x) = 0 otherwise. For each j ∈ S, let xKj be the middle point of

[bKj−1, b
K
j ] at which the discrete model’s payoff in cell j is defined. Then,

vλK (xKi ) = Y − τ

∫

|xKi − y|λK(y)dy + h(λK(xKi )) (68)

= Y − τ

K
∑

j=1

∫ bKj

bKj−1

|xKi − y|
nK
j

δKj
dy + h(nK

i /δ
K
i ) (69)

= Y − τ

i−1
∑

j=1

∫ bKj

bKj−1

(xKi − y)
nK
j

δKj
dy + τ

K
∑

j=i+1

∫ bKj

bKj−1

(xKi − y)
nK
j

δKj
dy (70)

− τ

∫ bKi

bKi−1

|xKi − y|n
K
i

δKi
dy + h(nK

i /δ
K
i ). (71)

We have

∫ bKj

bKj−1

(xKi − y)
nK
j

δKj
dy = nK

j x
K
i −

nK
j

δKj

(bKj )
2 − (bKj−1)

2

2
(72)

= nK
j

(

xKi −
bKj + bKj−1

2

)

(73)

= nK
j

(

xKi − xKj
)

∵ bKj = xKj +
δKj
2
, bKj−1 = xKj −

δKj
2
, (74)
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for j ∈ S \ {i}. Moreover, since xKi is the middle point of [bKi−1, b
K
i ],

∫ bKi

bKi−1

|xKi − y|n
K
i

δKi
dy = 2

∫ xK
i

bKi−1

(xKi − y)
nK
i

δKi
dy

= 2nK
i

(

1

2
xKi − xKi + bKi−1

4

)

∵ bKi−1 = xKi − δKi
2

=
1

2
nK
i (x

K
i − bKi−1) =

1

4
nK
i δ

K
i

Hence,
K
∑

j=1

∫ bKj

bKj−1

|xKi − y|
nK
j

δKj
dy =

K
∑

j=1

|xKi − xKj |nK
j +

1

4
nK
i δ

K
i . (75)

Therefore,

vλK (xKi ) = vi(n
K)− τ

4
nK
i δ

K
i . (76)

Let z ∈ [0, L]. For each K, there exists iKz ∈ {1, 2, ..., K} such that z ∈ [bKiKz −1, b
K
iKz
).

Then, we have

vλK (xKiKz )− τ |xKiKz − z| ≤ vλK (z) ≤ vλK (xKiKz ) + τ |xKiKz − z| (77)

⇔ viKz (n
K)− τ

4
nK
iKz
δKiKz − τ |xKiKz − z| ≤ vλK (z) ≤ viKz (n

K)− τ

4
nK
iKz
δKiKz + τ |xKiKz − z|, (78)

where we use the triangle inequality for (77); and (76) for (78).

Suppose that, for any K̄ ≥ 1, there exists K ≥ K̄ such that nK is an equilibrium. Then,

we can take a sequence {Kℓ}ℓ∈N such that nKℓ is an equilibrium for all ℓ.38 Then, in light of

(78), we have

v1(n
Kℓ)− τ

4
nKℓ

i
Kℓ
z

δKℓ

i
Kℓ
z

− τ |xKℓ

i
Kℓ
z

− z| ≤ vλKℓ (z) ≤ v1(n
Kℓ)− τ

4
nKℓ

i
Kℓ
z

δKℓ

i
Kℓ
z

+ τ |xKℓ

i
Kℓ
z

− z| (79)

⇔ vλKℓ (x
Kℓ

1 ) +
τ

4
(δKℓ

1 nKℓ

1 − nKℓ

i
Kℓ
z

δKℓ

i
Kℓ
z

)− τ |xKℓ

i
Kℓ
z

− z|

≤ vλKℓ (z) ≤ vλKℓ (x
Kℓ

1 ) +
τ

4
(δKℓ

1 nKℓ

1 − nKℓ

i
Kℓ
z

δKℓ

i
Kℓ
z

) + τ |xKℓ

i
Kℓ
z

− z|, (80)

where we use the equilibrium condition of nKℓ for (79); and (76) for (80). Since δKℓ

i vanishes

for all i when ℓ → ∞, whereas nKℓ is finite for any ℓ, δKℓ

1 nKℓ

1 − nKℓ

i
Kℓ
z

δKℓ

i
Kℓ
z

→ 0 as ℓ → ∞.

Moreover, since xKℓ

1 = δKℓ

1 /2, limℓ→∞ vλKℓ (x
Kℓ

1 ) = vλ(0) where λ = limℓ→∞ λKℓ . Then, since

xKℓ

i
Kℓ
z

→ z as ℓ → ∞, (80) implies vλ(z) = vλ(0). Since z ∈ [0, L] is arbitrary, we have

obtained a spatial equilibrium λ of the continuous-space model with support [0, L], but this

38There exists K1 ≥ 1 such that nK1 is an equilibrium. This, in turn, enables us to take K2 ≥ K1 + 1
such that nK2 is an equilibrium. Continuing in this way, we obtain the desired sequence.
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is a contradiction.

Proof of Proposition 4. Let {nK} be a sequence of discrete-space models’ equilibria with

supp (nK) = {iK− , iK− +1, · · · , iK+ − 1, iK+}. Since the length of the equilibrium support of the

continuous-space model is assumed to be less than one, we have either limK→∞ xiK
−

> 0 or

limK→ ∞ xiK
+
< 1 (or both) by Lemma 6. Without loss of generality, suppose limK→∞ xiK

−

>

0. Let λ be the solution to the system (40a)-(40c) where x− = limK→∞ xiK
−

. By Taylor’s

theorem, if i ∈ supp (nK) and λ(xi) > 0 so that λ is differentiable, H(xi) is expressed as

H(xi) = H(xi−1) + ϵKi
dH(xi−1)

dx
+

(ϵKi )
2

2

d2H(xi−1 + θiϵ
K
i )

dx2
, (81)

where θi ∈ (0, 1). Thus, by (41a) and Lemma 5, H(xi)−HK
i is given by

H(xi)−HK
i = H(xi−1)−HK

i−1 + τϵKi Υ
K
i +

(ϵKi )
2

2

d2H(xi−1 + θiϵ
K
i )

dx2
, (82)

where ΥK
i = 2

{

∫ xi−1

x−

g(H(z))dz −∑i−1
j=iK

−

g(HK
j )δ

K
j

}

. Furthermore, Taylor’s theorem yields

∫ bKi

bKi−1

g(H(z))dz =

∫ bKi

x−

g(H(y))dy −
∫ bKi−1

x−

g(H(y))dy

=

∫ xi

x−

g(H(y))dy +
δKi
2
g(H(xi)) +

(
δKi
2
)2

2

dg(H(xi + ηi
δKi
2
))

dx

−
∫ xi

x−

g(H(y))dy +
δKi
2
g(H(xi))−

(− δKi
2
)2

2

dg(H(xi − ψi
δKi
2
))

dx

= δKi g(H(xi)) +
(δKi )2

8

{

dg(H(xi + ηi
δKi
2
))

dx
− dg(H(xi − ψi

δKi
2
))

dx

}

, (83)

where ηi ∈ (0, 1) and ψi ∈ (0, 1). Therefore, we have

ΥK
i = 2





i−1
∑

j=iK
−

{

g(H(xj))− g(HK
j )
}

δKj −
∫ bKi−1

xi−1

g(H(z))dz −
∫ x−

bK
iK
−

−1

g(H(z))dz +mK
i−1



 ,

(84)

where

mK
i =

i
∑

j=iK
−

(δKj )2

8

{

dg(H(xj + ηjδ
K
j /2))

dx
−

dg(H(xj − ψjδ
K
j /2))

dx

}

. (85)
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By Lemma A1,
∣

∣

∣

d2H(xi−1+θiϵ
K
i )

dx2

∣

∣

∣
≤ 2τ ḡ0 where ḡ0 is a bound of g(H(x)). Hence,

|H(xi)−HK
i | ≤ |H(xi−1)−HK

i−1|+ τϵKi |ΥK
i |+ τ ḡ0(ϵ

K
i )

2. (86)

We also have
∣

∣

∣

dg(H(x))
dx

∣

∣

∣ ≤ ḡ1 for some ḡ1 > 0 by Lemma A1. Hence,

|mK
i | ≤

ḡ1
4

i
∑

j=iK
−

(δKj )2 ≤ ḡ1
4
δ̄K

i
∑

j=iK
−

δKj ≤ ḡ1
4
δ̄K ,

where δ̄K = maxi∈S δ
K
i . Then,

1

2
|ΥK

i | ≤
i−1
∑

j=iK
−

|g(H(xj))− g(HK
j )|δKj +

ḡ0δ
K
i−1

2
+ ḡ0|x− − bKiK

−
−1|+

ḡ1
4
δ̄K

≤
i−1
∑

j=iK
−

|g(H(xj))− g(HK
j )|δKj + ḡ0|x− − xiK

−

|+
(

ḡ0 +
ḡ1
4

)

δ̄K

where the last inequality follows from

|x− − bKiK
−
−1| ≤ |x− − xiK

−

|+ |xiK
−

− bKiK
−
−1| = |x− − xiK

−

|+
δK
iK
−

2
,

and δK
iK
−

, δK
iK
−
−1

≤ δ̄K . Therefore,

∣

∣H(xi)−HK
i

∣

∣ ≤
∣

∣H(xi−1)−HK
i−1

∣

∣+ 2τϵKi

i−1
∑

j=iK
−

|g(H(xj))− g(HK
j )|δKj

+ 2τϵKi

{

ḡ0|x− − xiK
−

|+
(

ḡ0 +
ḡ1
4

)

δ̄K +
ḡ0ϵ

K
i

2

}

. (87)

In addition, since g is continuously differentiable (and hence Lipschitz continuous), there

exists C ∈ (0,∞) such that |g(H(xi))− g(HK
i )| ≤ C|H(xi)−HK

i |. Thus, we obtain

∣

∣H(xi)−HK
i

∣

∣ ≤
∣

∣H(xi−1)−HK
i−1

∣

∣+ 2τCϵKi

i−1
∑

j=iK
−

|H(xj)−HK
j |δKj

+ 2τϵKi

{

ḡ0|x− − xiK
−

|+
(

ḡ0 +
ḡ1
4

)

δ̄K +
ḡ0ϵ

K
i

2

}

. (88)
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Then, we consider the following difference equation: for i ∈ supp (nK) \ {iK−},

XK
i = XK

i−1 + 2τCϵ̄K δ̄K
i−1
∑

j=iK
−

XK
j + 2τ ϵ̄K

{

ḡ0|x− − xiK
−

|+
(

ḡ0 +
ḡ1
4

)

δ̄K +
ḡ0ϵ̄

K

2

}

, (89)

and XK
iK
−

= |H(xiK
−

)−HK
iK
−

| where ϵ̄K = maxi∈S ϵ
K
i . By induction, Xi ≥ |H(xi)−HK

i | for all
i ∈ supp (nK). Hence, it suffices to show that, for all i ∈ supp (nK), XK

i converges to zero

as K → ∞.

Since limK→∞Kδ̄K < ∞, Kϵ̄K ≤ Kδ̄K ≤ δ̄ for some δ̄ ∈ (0,∞) (c.f., ϵKi =
δKi +δKi−1

2
).

Then, by XK
i+1 > XK

i , we have

XK
i ≤ (1 + 2τCϵ̄K)XK

i−1 + 2τ ϵ̄K
{

ḡ0|x− − xiK
−

|+
(

ḡ0 +
ḡ1
4

)

δ̄K +
ḡ0ϵ̄

K

2

}

≤ (1 + 2τCϵ̄K)i−iK
−XK

iK
−

− 1− (1 + 2τCϵ̄K)i−iK
−

C

{

ḡ0|x− − xiK
−

|+
(

ḡ0 +
ḡ1
4

)

δ̄K +
ḡ0ϵ̄

K

2

}

≤
(

1 +
2τCδ̄

K

)K {

XK
iK
−

+
1

C

(

ḡ0|x− − xiK
−

|+
(

ḡ0 +
ḡ1
4

)

δ̄K +
ḡ0ϵ̄

K

2

)}

. (90)

Then, because δ̄K → 0, ε̄K → 0, |x− − xiK
−

| → 0, and
(

1 + 2τCδ̄
K

)K

→ e2τCδ̄ <∞ as K → ∞,

we obtain

lim
K→∞

XK
i = 0 ∀i ∈ supp (nK) if lim

K→∞
XK

iK
−

= 0. (91)

Because x− > 0 by supposition, for sufficiently large K, xiK
−
−1 > 0 for which λK

iK
−
−1

= 0.

Since λ(x−) = 0, we have HK
iK
−
−1

= H(x−), and thus

lim
K→∞

XK
iK
−

≤ lim
K→∞

[

|H(xiK
−

)−H(x−)|+ |HK
iK
−
−1 −HK

iK
−

|
]

≤ lim
K→∞

τϵKiK
−
−1 = 0. (92)

This and (91) yield the desired conclusion.

Lemma A1 Let H(x) = h(λ(x)) where λ is an equilibrium such that supp (λ) = (x−, x+).

Then, under Assumption 2 and the linear interaction cost, g(H(x)), dg(H(x))
dx

, and d2H(x)
dx2 are

bounded over [x−, x+].

Proof. It follows from Corollary 1 of Blanchet et al. (2016) that g(H(x)) = λ(x) is continu-

ous in x at the equilibrium. In addition, g(H(x)) satisfies the population constraint. Thus,

g(H(x)) is bounded. Moreover, since dh(λ(x))
dx

= h′(λ(x))dλ(x)
dx

and it follows from (60) [resp.

Assumption 2] that dh(λ(x))
dx

[resp. h′(λ(x))] is continuous, dλ(x)
dx

is continuous. Hence, dg(H(x))
dx
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is bounded over [x−, x+]. Furthermore, differentiating (40a) with respect to x, we obtain

d2H(x)

dx2
= 2τg(H(x)) ∀x ∈ [x−, x+]. (93)

This shows that d2H(x)
dx2 is bound over [x−, x+].
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