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Abstract

This paper considers the impact of using the regularisation techniques for the
analysis of the (extended) skew normal distribution. The models are estimated using
Maximum Likelihood and compared to OLS based LASSO and ridge regressions
in addition to non- constrained skew normal regression. The LASSO is seen to
shrink the model’s coefficients away from the unconstrained estimates and thus
select variables in a non- Gaussian environment.

1 Introduction & Motivation

Variable selection is an important issue for many fields. A number of approaches such as
stepwise regression or best subset regression are widely used with metrics such Aikake’s
Information Criteria (Akaike [1974]) or Mallows Cp employed as the decision criterion.
There are well documented problems with these approaches. The use of regularized re-
gressions mitigate these problems; the coefficients are shrunk towards zero, which creates
a selection process. In the majority of cases, the use of the regularization techniques is
based upon a linear model and Ordinary Least Squares. That is, it is assumed implicitly
that the residuals in the model are normally or at least symmetrically distributed. There
are, however, applications for which the residuals in a model are neither normally nor
symmetrically distributed. This paper addresses the issue raised by Bühlmann [2013] of
the lack of non-Gaussian distributions using regularisation methods. Specifically, this
paper adds to the regularization literature by applying the Least Absolute Shrinkage &
Selection Operator (henceforth LASSO (Tibshirani [1996]) to accommodate shrinkage
when the residuals in a linear model follow the extended skew normal based regression
model (Adcock and Shutes [2001], Arnold and Beaver, [?]). The procedures described
in this paper provide regularization not only for the mean, but also for the parameters
that regulate skewness, kurtosis and higher moments.

The paper is organized as follows. Section 2 presents necessary background material
and Section 3 summarizes the estimation procedures. Section 4 contains a substantial
example based on simulated data. The aim of the example is to demonstrate the skew-
normal LASSO in operation. This is followed in Section 5 by three empirical studies
based on real data. The first study uses a standard data set from the machine learning
literature, namely that of diabetes patients (see Efron et al. [2004] where it is more
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fully described). The second demonstrates how to construct a replicating portfolio; that
is, a portfolio that designed to replicate the performance of a given index using the
ESN-LASSO to minimize the number of constituent names in the replicator. The final
empirical study applies the ESN-LASSO to the bicycle hire data set of Fanaee-T and
Gama Fanaee-T and Gama [2013]. In general the paper uses standard notation.

2 Background

There are two sub-sections. The first presents a short summary of standard regulariza-
tion methods. The second presents the skew-normal and extended skew-normal distri-
butions.

2.1 Regularization

Regularization has a substantial history and is widely used in many fields, often for
problems which are ill-conditioned.

Ridge regression is perhaps the best known example (see Hoerl & Kennard [1970],
for example, for further details), where the problem of multicollinearity may be dealt
with by the imposition of a penalty on the coefficients of the regressions. The resulting
estimators of the parameters are biased, but have lower estimated standard errors than
those obtained from the standard application of OLS.

In the usual notation the penalised objective function to be minimised is:

βR = argmin
β

(

Yi − β0 −Xiβ
T
)T (

Yi − β0 −Xiβ
T
)

+ νβTβ

=
(

XTX + νI
)

−1
XT y

This approach does not perform any form of variable selection as, although it does
shrink coefficients, it does not shrink them to 0. The ν parameter1 acts as the shrinkage
control with ν = 0 being no shrinkage and therefore ordinary least squares. This can be
compared to the Least Absolute Shrinkage & Selection Operator (LASSO) introduced
by Tibshirani [1996]. In this case the penalty is based on the ℓ1 norm rather than the
ℓ2 norm of the ridge approach. Hence the problem becomes:

βL = argmin
β

{

(Y −Xβ)T (Y −Xβ) + ν || β ||1
}

(1)

In general the intercept is not shrunk in which case the quadratic form in the above
equations is

(Y − β01−Xβ)T (Y − β01−Xβ) ,

where 1 denotes a vector of ones.
1Traditionally the Lagrangean multiplier is denoted λ, however due to the use of λ as the skewness

parameter in the distribution, the Lagrangean is denoted ν throughout this paper.
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The variable selection property is clearly shown graphically in Figure 1 when consid-
ering two parameter estimates, with the LASSO (black) and ridge (red). The estimator
loss functions are shown as ellipses. The point of tangency are the estimates for each

Figure 1: Differences Between LASSO & Ridge Regressions
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technique. The LASSO shrinks β1 to 0, whereas the ridge regression approaches it. The
OLS estimator is given as β̂. The parameter ν controls the amount of penalty applied to
the parameters for the LASSO. Fu and Knight [2000] show that under certain regularity
conditions, the estimates of the coefficients are consistent & that these will have the
same limiting distribution as the OLS estimates.

2.2 The Skew Normal Distribution

The skew skew normal distribution [SN henceforth] has become increasingly well used
within a number of fields since its initial description by Azzalini [1985] and [1986]. The
standard form of the distribution has the probability density function

f (y) = 2φ (y) Φ (λy) ;−∞ < λ < ∞,−∞ < y < ∞, (2)

with λ controlling the degree of skewness of the distribution. The case λ=0 will lead to
a standard normal distribution.

Azzalini [1985] & [1986] show that the SN distribution may be thought of as the
convolution of a normally distributed variable and an independently distributed normal
variable which has a mean of zero and which is truncated from below at zero. This
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is generalized in Arnold & Beaver [2000] and Adcock & Shutes [2001] where the trun-
cated normal variable has a mean of τ , which may take any real value.Using what is
normally referred to as the central parametrization2, the probability density function of
the extended skew normal [ESN] distribution is

f (y) =
1

ωΦ (τ)
φ

(

y − µ

ω

)

Φ

{

τ
√

1 + λ2 + λ

(

y − µ

ω

)}

. (3)

where φ and Φ are the standard normal probability density and distribution functions
respectively and for a linear regression model µ = xTβ. Using this notation, the objective
function to be minimized for a random sample of size n corresponding to equation (2.1)
is

−
n
∑

i=1

log f (yi) + ν || β ||1 . (4)

Under the ESN distribution, it is also possible to shrink the parameters λ and τ , which
control estimates of skewness and other higher moments, using a different shrinkage
parameter in each case. The objective function to be minimized is

−
n
∑

i=1

log f (yi) + ν1 || β ||1 +ν2 || λ ||! +ν3 || τ ||1 . (5)

Applications of the LASSO in conjunction with the SN or ESN distributions are limited.
Wu et al. [2012] consider the variable selection problem for the SN distribution, for
which τ = 0. The skewness parameter λ is estimated but is then treated as fixed and
omitted from the SN-LASSO; that is, Wu et al minimize the objective function at (4)
using a fixed value of λ̂. Their penalised likelihood approach used both in Wu and here
is found in Fan and Li [2001]. This allows both the estimation and standard errors to
be estimated despite the singularity introduced by the constraint.

3 Likelihood Functions

In order to use the LASSO style estimators, it is necessary to consider the relevant like-
lihood estimators in light of the constraints. We can think of the constrained likelihood
as having two elements, the objective and the constraint.

The likelihood function of the extended skew normal distribution is somewhat non-
linear. Using the specification above, the likelihood is given by:

ℓi(y; τ, λ, ω.β) = − log(
√
2π)− log(ω)− 1

2
z2i (6)

+ log
(

Φ
(

τ
√

1 + λ2 + λzi

))

− log (Φ(τ)) + ν (|| β ||1 + || λ ||1 + || τ ||1)

where zi =
yi − βxi

ω
2A different parameterization is given in Adcock and Shutes [2001]. This form of ESN distribution is

not considered in this paper.
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This is the standard log-likelihood function for the extended skew normal with the
addition of the LASSO penally for the coefficients and the skewness parameter.

4 Estimation

For Gaussian based estimations it is possible to leverage the co-ordinate descent approach
to update the estimates of the relevant coefficients until convergence to the LASSO
solution occurs. Assuming uncorrelated predictors, the updating procedure can be based
on the product of the residuals and the relevant predictors and the value of the Lagrange
multiplier. This produces a whole path solution with the different solutions for the
problem providing the starting point for the next optimisation thus reducing the issues
with convergence3 and speed. The approach taken here is to use direct estimation of the
likelihood function for the distributions where τ is unconstrained (the extended skew
normal) and where it is constrained to τ = 0, the skew normal. Each estimator used
the previous estimate as the starting point of the algorithm to increase the speed of
the estimation. Where λ is small, it is sometimes difficult to estimate τ stably. This is
reflected in a number of the results where the skewness based estimates are rather volatile
and not always non-increasing as one would hope with the LASSO type estimators.

4.1 Estimation with Maximum Likelihood

The procedure uses maximum likelihood optimisation with the penalty parameter based
upon a grid. The value of the penalty was selected using a cross-validation procedure.
Initially the unconstrained maximum likelihood estimation was performed. The results
of this are used as the first estimates for the penalised optimisation. Each optimisation
is used as the next starting point for the following procedure. This speeds up the
estimation.

Estimation was performed using a maximum likelihood approach with the nuisance
parameter, ν being based on a grid in the first case and then cross validation being
used to optimise the choice of this parameter. Using the non-constrained maximum
likelihood estimates as the initial points to aid in convergence, the estimations were
performed with a transformation of the parameter ν to exp(ν). This leads to more
satisfactory convergence of the algorithms and allowed a greater range of the parameter
than a simple linear constraint would allow.

The estimation of ν used a 10-fold cross-validation over an identical grid of ν pa-
rameter values. The mean squared cross validation errors are calculated off the hold-out
sample of this, with the ν selected by the min+1S.E. rule of thumb being used as a
fixed parameter within the final, whole sample estimation. Thus the process involves
sampling in order to estimate the nuisance parameter, with that value then being used
to select the model using the whole data set. Alternatives such as a BIC minimisation

3As noted in Azzalini and Capitanio [1999] the likelihood function of the skew normal is not convex
in its standard form.
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or cross-validation based on the (negative) log likelihood are also possible as suggested
in Städler et al. [2010] , though these were not used.

The results of the estimations are presented graphically using the logarithm of the
penalty and the coefficients as a proportion of the unconstrained maximum likelihood
value 4.

5 Data & Maximum Likelihood Estimation Results

A number of data sets are included to demonstrate the approach. These are a simulated
dataset with the second being the diabetes data set (from Efron et al. [2004]). The
simulations are based on 10 variables with 10000 and 1000 observations each. Fifty
different sets of data are used to demonstrate the properties of the estimation. These
are aggregated using the mean coefficients and their standard error, as well as the median
and 25th and 75th quantiles of the estimates in order to demonstrate the properties of
the estimators.

The diabetes data relate the progress of diabetes over a year to the age, weight, BMI,
sex, blood pressure and six serum measurements. There are 442 observations. The data
are standardised to have 0 mean and an unit ℓ2-norm. Though this is not a p >> n

situation, it serves to demonstrate the technique and places this approach in the corpus
of penalised regression.

The bicycle dataset considers the bike rental in Washington DC and inevitably has a
degree of skewness generated by the non-zero nature of the data, though this is reduced
somewhat by using logarithms in the model. The path for all the variables in the
estimation is as one might expect for a LASSO type estimator, though the skewness
parameter remains strong throughout.

Further empirical studies using financial data and the rent of bicycles are also consid-
ered. These data both exhibit skewness and kurtosis and so the extended skew normal
distribution is an attractive tool for modelling these data. The financial application
looks to replicate two Chinese indices using other, global indices, which may be more
liquid or accessible. The non-convexity of the likelihood gives rise to some local issues
in the solution to the LASSO path in these data sets, however these are seen to be only
localised and away from the cross validated solutions.

All estimations are performed using RR Core Team [2016] and the packages bbmle
Bolker and Team [2016], glmnet Friedman et al. [2010] and sn Azzalini [2015].

4This may be substituted for the maximum value in some cases, e.g. where the Maximum Likelihood
estimator is not available.
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5.1 Simulated Data

Fifty simulated data sets of 1000, 10000 and a smaller sample of 100 observations were
created with specific seeding points to ensure reproducibility. These contained 10 in-
dependent variables. Two data generating processes were used identical for all of the
simulations (β1 < 0, β2 < 0, β3 > 0 and β5 > 0 are all non-zero; other coefficients are
equal to zero), the second had coefficients of ±1 for β1, β2, β3 and β5 ). The estimates
are reported as a proportion of the full Maximum Likelihood estimators. In each case,
the inter-quartile range and median are plotted in the first graph and the mean of the
estimators is plotted in the second. These demonstrate the important variables in the
data generating process clearly.

Those variables that are included in the data generating process are stable around
the MLE coefficients (qv. Figures 2, 4a and 5a), whereas those omitted from the data
generating process are restricted and converge to zero (Figure 2, 4a & 5a ) . These have
a wider dispersion than the variables included in the data generating process.

5.1.1 Non-Unit Coefficients

Results for both simulation lengths are similar in substance, though the dispersion is
higher in the smaller data sets. In both cases the skewness parameters (λ and τ) converge
to zero as the penalty increases even though the actual value is not zero (Figures 3, 4b,
5b). This is in part due to the non-linearities associated with the likelihood function.
The instability that this creates gives a median value of zero. The model is penalising
the asymmetry and removing it from the regression in these cases.

Figure 2: Spread of LASSO Regression Coefficients (β) of Variables by ν (N=10000)
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Figure 3: Spread of Skewness Parameter Estimates of Simulation Data (N=10000)
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5.1.2 Unit Coefficients

Using a simulation in the same vein as other, but using unit coefficients, a similar result
is observed, though the skewness and τ parameters are erratic and sometimes have the
‘wrong’ sign. This is due to the local instability of the maximum likelihood estimates
for these parameters. The regression coefficients however are not affected by these and
converge in a more expected manner. The results of these runs are presented in Figures
6a - 7c. Convergence takes place relatively quickly when n is small, with the penalty
becomning more binding relatively soon in the estimations.
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Figure 4: Paths of LASSO Coefficients for the Skew Family of Distributions for the
Simulated Data

(a) Spread of LASSO Regression Coefficients (β) of
Variables by ν (N=1000)
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(b) Spread of Skewness Parameter Estimates of
Simulation Data (N=1000)
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Figure 5: Paths of LASSO Coefficients for the Skew Family of Distributions for the
Simulated Data

(a) Spread of LASSO Regression Coefficients (β) of
Variables by ν (N=100)
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(b) Spread of Skewness Parameter Estimates of
Simulation Data (N=100)
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(b) Simulation Data (N=1000)
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(c) Simulation Data (N=100)
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Figure 7: Skewness Parameter Estimates for Simulations with Unit Coefficients

(a) Simulation Data (N=10000)
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(b) Simulation Data (N=1000)
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(c) Simulation Data (N=100)
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5.2 Diabetes Data Results

The results are presented with skew normal (τ = 0) and extended skew normal (τ 6= 0),
Gaussian LASSO and Ridge regressions in Table 1. The Maximum Likelihood approach
used a grid of Lagrange multipliers and the coefficients from each of these values are
recorded. These are presented graphically in Figure 8 with the coefficients presented as
a proportion of the unconstrained maximum likelihood estimates5. As can be seen the es-
timates converge to zero as the penalty increases. The original skew normal distribution
is known to have issues with stability in estimation; this is less problematic for the
extended skew normal distribution. This is due to the relative smoothness of the likeli-
hood functions under specific conditions (examples are given in Azzalini and Capitanio
[1999]).

The path of the regression coefficients are given in Figure 8 using a grid-based path.
These are given as a proportion of the unconstrained estimates (with a sign modification
to aid visualisation). These diagrams show the variable selection ability of the LASSOs.

The LASSO parameter, ν is selected using the 10-fold cross validation. Using the
rule of thumb that one should maximise the cross validated parameter within a standard
error (Breiman et al. [1984]) of the MSE of the minimum, the optimal value of ln(ν) is
-3.6 for the extended skew normal LASSO as is shown in 9. The relevant ν parameters
are shown in Figure 8 as the vertical dashed line. These results demonstrate that there
is variable selection under the extended skew normal LASSOs.

The selection implies that the variables 2, 3, 4, 7, 9 and 10 are to be included in
the extended skew normal model model with the other coefficients being less than 1%
of their standard MLE estimate as is the case for the Gaussian LASSO.

The parameters associated with the skewness, λ and τ , are estimated from the likeli-
hood function. These are presented below in Figure 10. The skewness parameter under
the extended formulation of the skew normal demonstrates direct convergence.

The OLS ridge regression shrinks the coefficients towards 0 however this is not as
extreme as that of the LASSO in both the Gaussian and non- Gaussian scenarios. The
(leave one out) cross validated LASSO Gaussian coefficients are also given in Table
1. These were estimated using glmnet (Friedman et al. [2010]). The penalty for the
ridge regression is selected using the approach of Cule and De Iorio [2012] based on
cross-validation. There is more shrinkage under the skew normal approaches to the
LASSO. Thus the skew normal creates a more parsimonious regression but the skewness
parameters are non-zero. There is therefore a trade-off between a more parsimonious
regression and a parsimonious distribution. The skew parameters are acting to counter-
act the variable not included.

5Given that the LASSO parameter is re-parameterized as expν , the unconstrained optimum is given
as a small step away from the start of the grid search in order to demonstrate the shrinkage across the
range.
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Figure 8: Path of Extended Skew Normal LASSO Regression Coefficients (β) by ν
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Figure 9: Cross Validation Results for the Selection of ν, the LASSO parameter for the
Extended Skew Normal
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Figure 10: Path of Skewness Parameters λ & τ for the Extended Skew Normal LASSO
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Table 1: Estimates of the Extended Skew Normal LASSO for Diabetes Data

ESN LASSO ESN MLE LASSO Ridge OLS

Coef ESN SE CV.LASSO Ridge Ridge SE OLS OLS SE

µ 152.719 152.138 2.553 152.133 152.133 NA 152.133 2.576
β1 - -6.580 59.923 - -4.816 57.599 -10.012 59.749
β2 -105.654 -237.086 60.687 -196.053 -228.124 59.923 -239.819 61.222
β3 514.916 529.915 65.955 522.070 515.391 63.156 519.840 66.534
β4 244.548 323.484 64.849 296.268 316.125 62.340 324.390 65.422
β5 - -64.026 415.98 -102.047 -206.171 102.045 -792.184 416.684
β6 - -121.526 338.50 - 13.835 99.620 476.746 339.035
β7 -170.463 -208.798 209.892 -223.27 -150.203 91.810 -208.80 211.720
β8 - 118.206 160.11 - 115.787 114.508 177.064 161.476
β9 458.722 463.841 171.51 513.684 518.312 76.632 751.279 171.902
β10 13.586 75.179 65.409 53.937 75.172 63.061 67.625 65.984

λ -9.627 -3.807 0.000
σ 55.237 53.680 1.8192
τ 2.710 10.133 0.000
lp -2434.91 -2387.62

Key:
ESN LASSO= Estimation of Extended Skew Normal LASSO
LASSO= Gaussian based LASSO with penalty parameter estimated using Cross Validation
Ridge= Gaussian based Ridge with penalty parameter estimated using Cross Validation
OLS= Gaussian based regression
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6 Bicyle Hire

This data was acquired from Capital Bikeshare system, Washington DC. This is based
on hourly data with the aggregation being created by Fanaee-T and Gama [2013]. This
data examines the determinants of bicycle hire based on season, holiday/ work day
and weather. There are over 17000 observations per variable. The weather variables
include wind speed, humidity, temperature (normalised to 41 degrees) and a weather
situation, a general weather variable that describes the weather eg mist, clouds etc. The
seasonality was adapted, rather than use Spring, Summer etc.. The seasons were termed
as Quarters. In the analysis these entered as dummy variables, with Q4 (September
to early December) being the base. The weather situation variable was also recoded to
reflect whether it was clear, misty and cloudy (this was taken as the base), there was
light snow or rain or heavy rain or snow.

Jan Feb Mar Apr May June Jul Aug Sep Oct Nov Dec

Q 1 1429 1341 949 0 0 0 0 0 0 0 0 523
Q 2 0 0 524 1437 1488 960 0 0 0 0 0 0
Q 3 0 0 0 0 0 480 1488 1475 1053 0 0 0
Q 4 0 0 0 0 0 0 0 0 384 1451 1437 960

Table 2: Classification of Months By Quarter

The analysis allows us to consider the important drivers of bicycle hire. As one might
expect, there is a considerable inflation at low levels of hiring with even the early hours
seeing some rental(as one finds with international trade statistics). The data is logged
to smooth way a degree of the inflation and also to minimise corner solution issues with
the estimation6.

Time of Day Median(Number of Rentals)

[0,6] 16.00
(6,12] 204.00
(12,18] 281.00
(18,24] 155.00

Table 3: Rentals by 6 hour Period

Using the same approach of constrained optimisation, with the logarithm of the num-
ber of hires as the dependent variable the paths of the coefficients of the independent
variables were mapped. These are shown in Figures 12a-12c. The standard cross vali-
dation techniques were used to ascertain the optimal shrinkage parameter. Interestingly
the ESN produced a more parsimonious model than the standard Gaussian model. In-
deed the ESN has the identical CV constraint for minimum and minimum +1 standard

6The skew normal family of distributions can have problems in the presence of extreme skewness
where the distribution is close to a truncated distribution.
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Figure 11: Bicycle Rentals By Hour of the Day

error values, whereas the Gaussian model has distinct and less constrained optima.
Both the ESN and Gaussian LASSOs converge to the same intercept, however the

ESN selects on the Temperature, Humidity and the Quarter 1 dummy as important in
the 10 fold CV as can be seen in Table 4. It is also worthy of note that the skewness
parameter (γ) is not constrained to be zero in this case, with the other parameter (τ)
also staying important in the results for a substantial part of the range of the LASSO
constraint. Qualitatively the coefficients in the regressions are similar, though there are
differences in the magnitudes as one would expect and the least constrained coefficients
have different signs for the working day variable. Both models keep the same variables,
temperature and humidity and Q1 until last.

As with the previous analyses, the skewness parameters are included in the con-
straints and this may explain the differences in the estimations and fits of the model.
Thus the parsimony of the ESN is driven in part at least by the extra parameter in the
optimisation.

16



Pr
el
im
in
ar
y
D
ra
ft

Figure 12: Regularised Path for Bicycle Hire Data

(a) Path of Index Parameters for the Extended Skew Normal LASSO
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(b) Path of Skewness Parameters λ & τ for the Extended Skew Normal
LASSO
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(c) Path of Gaussian LASSO Parameters for the Bicycle Hire Data
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OLS CV Min ESN CV Min OLS CV 1SE ESN CV 1SE

(Intercept) 4.87362 6.10894 4.77815 6.10894
windspeed 0.41454 . 0.23569 .

temp 3.72884 1.18051 3.24406 1.18051
workingday -0.07714 . -0.00312 .

clear -0.25263 -0.15279
lightrain -0.19318 -0.06773

snow 0.88982 . . .
hum -2.49376 -1.04791 -2.37679 -1.04791

holiday -0.23950 . -0.03591 .
Q3 -0.87053 . -0.57338 .
Q2 -0.52293 . -0.29302 .
Q1 -0.43596 -0.29146 -0.31395 -0.29146

λ . -2.984 . -2.984
σ . 1.898 . 1.898
τ . 0.0001 . 0.0001
lp . -30131.74 . -30131.74

Table 4: Results of 10- fold Cross Validation for LASSO constraint Selection
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6.1 Financial Data

In a number of cases, financial data such as stock returns are seen to be non-normal.
Thus the extended skew normal distribution allows the characterisation of both of the
potentially useful higher moments whilst nesting the normal distribution as a special
case. The example here uses the LASSO to identify the important relationships between
a number of indices. The Shanghai Stock Exchange Index (SSE) and Shenzhen Index
(SZSE) are two of the exchanges in China; neither are completely open to foreign in-
vestors with restrictions being placed on trading in the assets that constitute the indices
Shanghai Stock Exchange [2015]. Though those restrictions might not bind in many
cases, these restrictions might lead to requirement of a replicating portfolio such that
the return on the index might be replicated by other more tradable indices. Using the
LASSO will give the most effective replication- reducing the number of indices invested
in. The indices used as the constituents of the replicating portfolio are the ASX 200, Dow
Jones, CAC 40, FTSE 100, Dax 30, Hang Seng, NASDAQ, KLCI, Nikkei and TAIEX
indices.

Following the previous method, an OLS and the extended skew normal regression are
used as comparisons. Cross-validation was used for the choice of the ν. The approach
implicitly ignores any time series issues. The cross validation is the standard sampling
rather than the forecast evaluation approach with a rolling origin. This allows the
demonstration of the LASSO rather than the data’s use for replication.

For the Shanghai index, using OLS and extended skew normal approaches the Hang
Seng is highly significant with the Dax and NASDAQ also being statistically signifi-
cant. For the Shenzhen only the Hang Seng is statistically significant. Using 10 fold
cross validation, the LASSO for the extended skew normal was estimated in addition
to that of the Gaussian equivalent. The paths are broadly similar in trajectory with
the Hang Seng again clearly being the most important index in explaining the Shang-
hai index. The skewness and τ parameters are somewhat volatile. This is due to the
interaction that exists between them in dealing with the estimation of the likelihood
function. Using the critierion that a variable is dropped when it is less than 1% of the
unregularised coefficient, the extended skew normal are the CAC, DAX, Hang Seng,
Nikkei and TAIEX,though the CAC and DAX are only marginal in the regression7.
The Gaussian equivalent run though a similar 10 fold cross-validation gives the DAX,
Hang Seng, KLCI and TAIEX as important variables. It is interesting that the KLCI
is included in the Gaussian and not the skew normal LASSO. The KLCI is marginally
removed from the asymmetric LASSO. The Gaussian model produces a slightly simpler
model. The paths are given in Figure 13a and 13b. This can be compared with the
OLS based LASSO from Figure 13c using glmnet from Friedman et al. [2010], which
uses the coefficients rather than the proportion of the unconstrained coefficient. These
are a simple transformation from one to the other, though the proportions approach is
sometimes simpler to view when the coefficients are widely dispersed.

Shenzhen is a smaller market than Shanghai. The OLS and extended skew normal

7Increasing the cut-off to 2.5% removes all the non-Asian indices.
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regressions are run and again the Hang Seng is significant. However the DAX and
NASDAQ are also significant with the extended skew normal and OLS. As before the
ESN and Gaussian LASSOs are estimated. The Gaussian LASSO selects the DAX,
Hang Seng and KLCI, whereas the ESN LASSO selects the FTSE, the Hang Seng and
the TAIEX. The paths are given in Figures 14a- 14c. One can see that there are parallels
between the two LASSOs; the two LASSOs select the Hang Seng (as one would expect),
an European index and an Asian index. Again there is some instability in the estimates
of the various regression coefficients, though these are often almost equal and opposite,
suggesting that these instabilities are caused by local optima.
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Figure 13: Regularised Path for the Shanghai Index

(a) Path of Index Parameters for the Extended Skew
Normal LASSO
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(b) Path of Skewness Parameters λ & τ for the Shanghai
Index
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(c) Path of Gaussian LASSO Parameters for the Shang-
hai Index
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Figure 14: Regularised Path for the Shenzhen Index

(a) Path of Index Parameters for the Extended Skew
Normal LASSO
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(b) Path of Skewness Parameters λ & τ for the Shenzhen
Index
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(c) Path of Gaussian LASSO Parameters for the Shen-
zhen Index
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7 Conclusions

The skew normal is an example of a well developed class of asymmetric distributions.
This paper has shown that it is possible to adapt the estimation of regressions based on
this distribution to include a LASSO type penalty. This is seen to shrink the estimates
of regression coefficients and thus perform a variable selection role. There are issues with
instability in certain situations, though other formulations of the various distributions
might minimise these problems.

This therefore allows the analysis of data using a non- Gaussian toolbox and thus
address the issue raised by Bühlmann [2013]. Natural extensions from this work include
a generalisation from the skew normal distribution to include other, spherically sym-
metric distributions. These, such as the skew Student distribution would increase the
application of these approaches to situations where higher moments are critical such as
finance. Further the extension of the LASSO to its generalisation of the elastic net is also
possible as is the Bayesian estimation using double exponential priors on the regularised
coefficients.

The skew normal family of LASSOs will trade off the distribution complexity with the
regression complexity relative to the Gaussian distribution. The skewness parameters
act in the same manner fundamentally as the regression coefficients with the approach
constraining them towards 0 as the penalty increases. Thus the Gaussian and the skewed
variants will converge if the skewness parameters are driven towards 0 relatively soon in
the process.
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Table 5: Estimates for Multifactor Models for Shanghai Index
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Table showing the regression coefficients of the various indices in replicating the Shanghai Index for OLS, the Extended
Skew Normal and associated LASSO approaches.
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Table 6: Estimates for Multifactor Models for Shenzhen Index

SZSE SZSE SZSE SZSE

OLS SE ESN SE LASSO ESN LASSO

µ 0.0003 0.0004 0.0000 NA 0.0003 0.0003
ASX 200 -0.0485819 0.0592407 -0.0486 0.0592 - -
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λ 0.0205 NA 0.0002
σ 0.0148 0.00029 0.0148
τ 0.0330 NA 0.0001
lp 3386.2805 3363.4005

Table showing the regression coefficients of the various indices in replicating the Shenzhen Index for OLS, the Extended
Skew Normal and associated LASSO approaches.
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