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1. Introduction

First of all, the model in this paper is exactly the same as the binomial tree in my earlier
paper, Brogi (2014). What differs now is that, while in my previous paper the tree was
implemented by Monte Carlo simulation, i.e. simulating price trajectories along the tree,
in this paper the whole (recombining) underlying price tree is calculated without
resorting to Monte Carlo, just like for example the classic Cox, Ross and Rubinstein
(1979) binomial tree (CRR tree). This means that the option price is obtained virtually
instantly using for example Matlab on a standard PC. On the other hand, Monte Carlo
simulation was rather lengthy and the resulting option price had a standard error. The
main features that make the tree appealing are unchanged: excess kurtosis and negative
skewness of price distribution of underlying security. For more details please see
simulation in Brogi (2014).

The paper proceeds as follows. In Section 2 the binomial tree is described. Section 3
derives a formula for the risk-neutral measure. Section 4 shows how volatility is
modeled. Section 5 explains how to implement the tree. Finally Section 6 concludes the
paper with some remarks.

2. Binomial Tree

Time-points ¢,, i =0,1,...,n, are equidistant, and time-periods At =t, —¢, ,, i=1,...,n,
and time horizon T =nAtr, which is fixed length of time of expiration of option in
years. f, is current time-point. We also have an extra historical time-point, ¢, which

precedes t,, and such that t, —7_, = At.

The underlying security price can either rise or fall from one-point to the next,
i=1,...,n:

S, =S, u, with probability g, or
S, =S, d, with probability 1-g¢;, (1)

where u, stands for up, d, stands for down, and u, , d, are variable. g, is the risk-
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neutral probability of underlying security price at ¢, S

l

rising to S, u, at t,.

tiy?

Further down we derive a formula for g, .



The definition of continuously compounded return of underlying security from ¢, | to ¢,:

1

R,l_ =10gS,l_ —log$ i=01,...,n. (2)

tiy?

We call current return R, =logS, —logS, , where S, is a known historical price, so

current return is known too. Rearranging (1), and taking logarithms, and using (2) we
define, i =1,...,n,

logS, /S, |o, =logu, =R with probability ¢, or

logS, /S, |o, =logd, =R, with probability 1-g,, 3)
where

R’ = uAt+ o, VAl )

R, = pAt-o, JAr &)

with pAt <o, VAt for large n, or equivalently small Ar. o, NINET part of a volatility

" . .
process, {al_ VAt } 0’ which we need to model, where o, 1s known current annual
i =

volatility.

3. Martingale Condition

Under no arbitrage, the discounted price process of the underlying security, {§ti }LO,

must be a martingale. We now derive a formula for risk-neutral probability g, in (1), so
that {gz, };1:0 1s a martingale.

Let us introduce a sample of independent Bernoulli random variables, which are
independent of {gti }::0

Z. = +1 with probability g, or
Z, = -1 with probability 1—g,,

where ¢, is the risk-neutral probability in (1). Then (4) and (5) can be written as one
equation:

R = uhi+o,JAZ,  i=l.n.

The martingale condition is



E(S, 1S, .5, ...)=5, . i=1..n.
.“)ze—(i—l)rAtSl;l

o, INZ xS
E(e”Am‘ 1S .S ,...):em’,

where r is the risk-free rate of interest, which is constant during time horizon 7, and

LA+, \/EZ,- pAt+o,, Jar
e lo, =" "

phi+o, | MZ,; uht—-o, A
e lo, ="

with probability g, or
with probability 1-g¢,,

so that

VAL ~o, A
.eyAHO-' t + (1 _qi )e,uAt o, VAL erAt.

1
Hence,

erAt _ eﬂAf*O't; Jar

qi - e;AHO’,[x/E e,uAtfcr,’\/E ’

In risk-neutral pricing we set x = r, so that

| ponls

9% = o Tn o im’
e’ —e

i=1,...,n. (6)

For large n, or equivalently small Az, substituting the exponentials in (6) by their series
. . . 3/2 .
expansions ignoring terms of order (At) or higher, we get

qi=l—10',v\/E, i
2 47

l...,n. (7)

So, the risk-neutral probability of S, rising is less than for §, falling. This is true for

any n, or equivalently any Ar.

E(Rt‘. |o, ): pAt+(2g, - 1)o, JA: )
var (Rz,- | Gz,- ): 4q,~ (1 —q,; )thzAl‘ . (9)

Notice that if ¢, =1/2 (which it is not), then

E(R, |0, )=t
var (R;,. lo, ): ol AL
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Setting ¢, as in (6) is an artificial device which forces {gt,. }::0 to be a martingale.

4. Modeling Volatility

As regards the modeling of o, JAr , Black (1976) already noticed a negative correlation

between returns and volatility, i.e. when returns are high, volatility is low, and when
returns are low, volatility is high. Such negative correlation can be captured by the
following equation:

o A =0, JA-alR - unt), i=1,...n, (10)

where O<a<1. When R, = pAt volatility is constant. This can be seen as an
equilibrium. Whilst the more R,  differs from uAt, the more we move away from
equilibrium, and the more pronounced changes in volatility are. It is clear that according

to (10) volatility of returns, o, JAt , can never be negative, because, recalling (4) and

(5),if R, = R,I: , then
o, A =0, At —alo, VAr), i=2,...n, (11)
0 < a<1. Alternatively, if Rr,-,l = Rt’f . then

oA =0, JAt+alo, VAY), i=2,...n, (12)
O<a<l.

Elo, /ot |0, )=0, Vo -alElk, |0, )- )

=0, At — 0:(2%71 - I)O'tH \/Kt

b

where, as in (6),

| pou

£ v — v
e —e

which is known.
From (10) we see that

a,i\/K:O'IO\/K—ai(R,j—,uAZ), i=1,...,n.
=0



Hence,
i—1
E(o;’_ JAr | o, > Utl_iz,...)z o, JAr - ay. (2qj - 1)th NI
=0 '
At ¢, dropping JAr ,

E(O'," | O, +O, s .)= o, - anZ: (2qj -1 L

-1
P

J

and, using (7) for q;-

lim E(o-rn lo, .o, ... .)= o, —«a limZ[— % o, \/A_tja,j =0, (13)

n—1
n—>w n—oo “
Jj=0

because each term in the sum is of order At (order 1/ Jn ), but extra terms are added
to the sum at rate n. So, the expected value of o, has no finite limit.

var(o, VAt o, )=a’var(R, |0, )=4a’q (1-q, )0 At. (14)

Looking at (14), we note that the greater the a, the greater the variance of volatility of
returns, and the greater the variance of volatility of returns, the greater the kurtosis of
the distribution of returns.

5. Implementing the Tree

Before providing commented Matlab code implementing the tree, let me first make it
clear that the tree of underlying security prices is in fact recombining, because

2ult+ . VAt
dt' U = e H ao-tl_l
-1 l

= uti_ldti i = 2,...,71
Furthermore, volatilities are also recombining, because from equations (11) and (12) we
have that

O’tim = ati_lx/ﬂ(l —a) or ati\/ﬂ = ati_lx/ﬂ(l +a) i=2..,n

Given the recombining property of prices and volatilities, the full price tree can be
obtained. Then the option value at expiry is calculated, and from the expiry nodes work
backwards down the tree to obtain option values at earlier nodes in standard fashion, as
in the CRR tree, with the possibility of pricing European or American options. The only
difference in working backwards down the tree compared to the CRR tree is that, while
in the CRR tree the probability of an ‘up’ move is fixed, here we have a different
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probability of an ‘up’ move at each node calculated according to equation (6) or (7). It
is these different probabilities that need to be used when working backwards down the
tree. The option price equals the value obtained at the starting node. See for example
Haug (2007) to see how to work backwards in the CRR tree.

Here follows the Matlab code (comments in green).

function
optionprice=athostree (St0,Shist, k,sigt0,r,T,n,alpha, otype,earlyexercis
e)

$function to calculate the price of a vanilla European or American
$Put or Call option using the binomial tree presented in paper

$"A Binomial Tree to Price European and American Options" by Athos
Brogi.

$Function inputs:

St0 - current price of underlying

Shist - historical price of underlying

k - strike price

r - risk free interest rate (=mu)

T - time horizon in years

n - number of time steps

otype - must be 'PUT' or 'CALL'

earlyexercise - true for American, false for European

o o® o° o® o° o o°

o\

currentreturn=log (St0)-log(Shist) ;

%calculate the recombining volatility tree (vtree)
vtree=nan(n,n);
vtree (1,1)=sigt0*sqrt (T/n)-alpha* (currentreturn-r* (T/n)) ;
% (note: check vtree(l,1)>0)
for i=2:n
vtree(l:i-1,i)=vtree(l:1i-1,i-1)*(1l-alpha);
vtree(i,i)=vtree(i-1,i-1)* (1l+alpha);
end

scalculate the recombining price of underlying tree (ptree)

ptree=nan (n+l,n+1);

ptree(l,1)=St0;

for i=2:n+1
ptree(l:i-1,1i)=ptree(l:i-1,1i-1).*exp(r*(T/n)+vtree(l:1i-1,i-1));
ptree (i, i)=ptree(i-1,1-1).*exp(r*(T/n)-vtree (i-1,1i-1));

end

scalculate the probability tree (probtree), where each node shows
probability

s0f an 'up' move. The probability of a 'down' move equals 1 minus
$probability of an 'up' move

probtree=nan (n,n);

probtree=1/2-1/4*vtree;

$calculate value at expiry
valuetree=nan (size (ptree));
switch otype
case 'PUT'
valuetree (:,end)=max (k-ptree(:,end),0);
case 'CALL'



valuetree (:,end)=max (ptree(:,end)-k,0);
end

swork backwards down the valuetree to get values at earlier nodes
for i=n:-1:1
valuetree (1l:1i,1i)=
exp (-r*T/n) * (probtree (1:1,1) .*valuetree(l:1i,1i+1) ...
+ (1l-probtree(l:1i,1i)) .*valuetree (2:1+1,i+1));
if earlyexercise
switch otype
case 'PUT'
valuetree (l:i,1)=...
max (k-ptree(l:1,1i),valuetree(1l:1i,1));
case 'CALL'
valuetree(l:i,i)=...
max (ptree(l:1i,1) -k,valuetree(1l:1i,1));

end
end
end

%option price

optionprice=valuetree(l);
end

Here are 4 examples of calculated prices.

>> optionprice=athostree(100,98,100,0.3,0.03,1,100,0.05,'PUT"false)
optionprice = 10.1273

>> optionprice=athostree(100,98,100,0.3,0.03,1,100,0.05,'CALL',false)
optionprice = 13.0822

>> optionprice=athostree(100,98,100,0.3,0.03,1,100,0.05,'PUT",true)
optionprice = 10.3303

>> optionprice=athostree(100,98,100,0.3,0.03,1,100,0.05,'CALL',true)

optionprice = 13.0822

6. Final Remarks

The greatest challenge is not implementing the tree, but to choose appropriate values of
a and n for pricing. As we have seen above, equation (13), as n tends to infinity so does
volatility, and therefore the tree explodes. We have also seen, equation (14), that the
greater a, the greater the kurtosis of the distribution of returns. So, the tree explodes also
if a is too large. Therefore, appropriate values of o and n need to be input to avoid the
tree calculating meaningless prices.



However, on the positive side, the tree has a relatively small number of parameters, and
to me it can also be viewed as a sound application of martingale pricing. It also
calculates American and European option prices virtually instantly on a standard PC.
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