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1. Introduction 
    
First of all, the model in this paper is exactly the same as the binomial tree in my earlier 
paper, Brogi (2014). What differs now is that, while in my previous paper the tree was 
implemented by Monte Carlo simulation, i.e. simulating price trajectories along the tree, 
in this paper the whole (recombining) underlying price tree is calculated without 
resorting to Monte Carlo, just like for example the classic Cox, Ross and Rubinstein 
(1979) binomial tree (CRR tree). This means that the option price is obtained virtually 
instantly using for example Matlab on a standard PC. On the other hand, Monte Carlo 
simulation was rather lengthy and the resulting option price had a standard error. The 
main features that make the tree appealing are unchanged: excess kurtosis and negative 
skewness of price distribution of underlying security. For more details please see 
simulation in Brogi (2014). 
The paper proceeds as follows. In Section 2 the binomial tree is described. Section 3 
derives a formula for the risk-neutral measure. Section 4 shows how volatility is 
modeled. Section 5 explains how to implement the tree. Finally Section 6 concludes the 
paper with some remarks. 
 
 

2. Binomial Tree 
 

Time-points it , ni ,,1,0  , are equidistant, and time-periods 1 ii ttt , ni ,,1 , 

and time horizon tnT  , which is fixed length of time of expiration of option in 

years. 0t  is current time-point. We also have an extra historical time-point, 1t , which 

precedes 0t , and such that ttt  10 . 

The underlying security price can either rise or fall from one-point to the next, 
ni ,,1 : 

 

 
iii ttt uSS

1
  with probability iq  or 

 
iii ttt dSS

1
  with probability iq1 ,      (1) 

 

where 
it

u  stands for up, 
it

d  stands for down, and 
it

u , 
it

d  are variable. iq  is the risk-

neutral probability of underlying security price at 1it , 
1it

S , rising to 
ii tt uS

1
 at it . 

Further down we derive a formula for iq . 
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The definition of continuously compounded return of underlying security from 1it  to it : 

 

 
1

loglog



iii ttt SSR , ni ,,1,0  .     (2) 

 

We call current return 
100

loglog


 ttt SSR , where 
1t

S  is a known historical price, so 

current return is known too. Rearranging (1), and taking logarithms, and using (2) we 
define, ni ,,1 , 
 

 
 iiiii ttttt RuSS log|log

1
  with probability iq  or 

 
 iiiii ttttt RdSS log|log

1
  with probability iq1 ,   (3) 

 
where 
 

 ttR
ii tt   ,        (4) 

 ttR
ii tt   ,        (5) 

 

with tt
it
   for large n, or equivalently small t . t

it
  is part of a volatility 

process,  n
it t

i 0
 , which we need to model, where 

0t
  is known current annual 

volatility. 
 
 

3. Martingale Condition 

 

Under no arbitrage, the discounted price process of the underlying security,  n
iti

S
0

~


, 

must be a martingale. We now derive a formula for risk-neutral probability iq  in (1), so 

that  n
iti

S
0

~


 is a martingale. 

Let us introduce a sample of independent Bernoulli random variables, which are 

independent of  n
iti

S
0

~


: 

 

 1iZ  with probability iq  or 

 1iZ  with probability iq1 , 

 

where iq  is the risk-neutral probability in (1). Then (4) and (5) can be written as one 

equation: 
 

 itt ZttR
ii
  , ni ,,1 . 

 
The martingale condition is 
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  
121

~
,

~
,

~
|

~



iiii tttt SSSS  ,   ni ,,1 , 

  
1211

)1(,
~

,
~

|


 
iii

it

i t

tri

tt

R

t

tir SeSSeSe   

   tr

tt

Ztt
eSSe

ii

iit  

,

~
,

~
|

21


, 

 
where r is the risk-free rate of interest, which is constant during time horizon T, and 
 

 
tt

t

Ztt
it

i

iit ee
   |  with probability iq  or 

 
tt

t

Ztt
it

i

iit ee
   |  with probability iq1 , 

 
so that 
 

   trtt

i

tt

i eeqeq itit   
1 . 

 
Hence, 
 

 
tttt

tttr

i
itit

it

ee

ee
q














. 

 
In risk-neutral pricing we set r , so that 

 

 
tt

t

i
itit

it

ee

e
q













1

, ni ,,1 .     (6) 

 
For large n, or equivalently small t , substituting the exponentials in (6) by their series 

expansions ignoring terms of order   2/3
t  or higher, we get 

 

 tq
iti  

4

1

2

1
,  ni ,,1 .     (7) 

 

So, the risk-neutral probability of 
1it

S  rising is less than for 
1it

S  falling. This is true for 

any n, or equivalently any t . 
 

     tqtR
iii titt   12|       (8) 

     tqqR
iii tiitt  214|var  .      (9) 

 

Notice that if 21iq  (which it is not), then 

 

   tR
ii tt  |  

   tR
iii ttt  2|var  . 
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Setting iq  as in (6) is an artificial device which forces  n
iti

S
0

~


 to be a martingale. 

 
 

4. Modeling Volatility 
 

As regards the modeling of t
it
 , Black (1976) already noticed a negative correlation 

between returns and volatility, i.e. when returns are high, volatility is low, and when 
returns are low, volatility is high. Such negative correlation can be captured by the 
following equation: 
 

  tRtt
iii ttt 



11

,  ni ,,1 ,   (10) 

 
where 10  . When 𝑅𝑡𝑖−1 =  𝜇∆𝑡 volatility is constant. This can be seen as an 

equilibrium. Whilst the more 𝑅𝑡𝑖−1 differs from  𝜇∆𝑡, the more we move away from 

equilibrium, and the more pronounced changes in volatility are. It is clear that according 

to (10) volatility of returns, t
it
 , can never be negative, because, recalling (4) and 

(5), if 



11 ii tt RR , then 

 

  ttt
iii ttt 
 11

 ,  ni ,,2 ,   (11) 

 

10  . Alternatively, if 



11 ii tt RR , then 

 

  ttt
iii ttt 
 11

 ,  ni ,,2 ,   (12) 

 
10  . 

 

 
    

  tqt

tRtt

ii

iiiii

tit

ttttt









 11

1111

12

||

1 


, 

 
where, as in (6), 
 

 
tt

t

tt

t

ee

e
q










00

01
0 



, 

 
which is known. 
From (10) we see that 
 

  





1

0
0

i

j

ttt tRtt
ji

 ,  ni ,,1 . 
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Hence, 
 

    







1

0

12,,|
021

i

j

tjtttt tqtt
jiii

  . 

 

At nt , dropping t , 

 

    







1

0

12,,|
021

n

j

tjtttt jnnn
q   , 

 

and, using (7) for 
jq , 

 

   





  




 

1

0 2

1
lim,,|lim

021

n

j

tt
n

tttt
n jjnnn

t   ,  (13) 

 

because each term in the sum is of order t  (order n1 ), but extra terms are added 

to the sum at rate n. So, the expected value of 
nt

  has no finite limit. 

 

       tqqRt
iiiii tiitttt 
 

2
11

22

1111
14|var|var  .  (14) 

 
Looking at (14), we note that the greater the α, the greater the variance of volatility of 
returns, and the greater the variance of volatility of returns, the greater the kurtosis of 
the distribution of returns. 

 

 

5. Implementing the Tree 
 
Before providing commented Matlab code implementing the tree, let me first make it 
clear that the tree of underlying security prices is in fact recombining, because 
 𝑑𝑡𝑖−1𝑢𝑡𝑖 = 𝑒2𝜇∆𝑡+𝛼𝜎𝑡𝑖−1√∆𝑡 = 𝑢𝑡𝑖−1𝑑𝑡𝑖               𝑖 = 2, … , 𝑛 

 
Furthermore, volatilities are also recombining, because from equations (11) and (12) we 
have that 
 

 𝜎𝑡𝑖√∆𝑡 = 𝜎𝑡𝑖−1√∆𝑡(1 − 𝛼)  or  𝜎𝑡𝑖√∆𝑡 = 𝜎𝑡𝑖−1√∆𝑡(1 + 𝛼)         𝑖 = 2, … , 𝑛 

 
Given the recombining property of prices and volatilities, the full price tree can be 
obtained. Then the option value at expiry is calculated, and from the expiry nodes work 
backwards down the tree to obtain option values at earlier nodes in standard fashion, as 
in the CRR tree, with the possibility of pricing European or American options. The only 
difference in working backwards down the tree compared to the CRR tree is that, while 
in the CRR tree the probability of an ‘up’ move is fixed, here we have a different 
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probability of an ‘up’ move at each node calculated according to equation (6) or (7). It 
is these different probabilities that need to be used when working backwards down the 
tree. The option price equals the value obtained at the starting node. See for example 
Haug (2007) to see how to work backwards in the CRR tree. 
 
Here follows the Matlab code (comments in green). 
 
function 

optionprice=athostree(St0,Shist,k,sigt0,r,T,n,alpha,otype,earlyexercis

e) 
%function to calculate the price of a vanilla European or American 
%Put or Call option using the binomial tree presented in paper 
%"A Binomial Tree to Price European and American Options" by Athos 

Brogi. 
%Function inputs: 
% St0 - current price of underlying 
% Shist - historical price of underlying 
% k - strike price 
% r - risk free interest rate (=mu) 
% T - time horizon in years 
% n - number of time steps 
% otype - must be 'PUT' or 'CALL' 
% earlyexercise - true for American, false for European 

  
currentreturn=log(St0)-log(Shist); 

  
%calculate the recombining volatility tree (vtree) 
vtree=nan(n,n); 
vtree(1,1)=sigt0*sqrt(T/n)-alpha*(currentreturn-r*(T/n)); 
%(note: check vtree(1,1)>0) 
for i=2:n 
    vtree(1:i-1,i)=vtree(1:i-1,i-1)*(1-alpha); 
    vtree(i,i)=vtree(i-1,i-1)*(1+alpha); 
end 

  
%calculate the recombining price of underlying tree (ptree) 
ptree=nan(n+1,n+1); 
ptree(1,1)=St0; 
for i=2:n+1 
    ptree(1:i-1,i)=ptree(1:i-1,i-1).*exp(r*(T/n)+vtree(1:i-1,i-1)); 
    ptree(i,i)=ptree(i-1,i-1).*exp(r*(T/n)-vtree(i-1,i-1)); 
end 

  
%calculate the probability tree (probtree), where each node shows 

probability 
%of an 'up' move. The probability of a 'down' move equals 1 minus 
%probability of an 'up' move 
probtree=nan(n,n); 
probtree=1/2-1/4*vtree; 

  
%calculate value at expiry 
valuetree=nan(size(ptree)); 
switch otype 
    case 'PUT' 
        valuetree(:,end)=max(k-ptree(:,end),0); 
    case 'CALL' 
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        valuetree(:,end)=max(ptree(:,end)-k,0); 
end 

  
%work backwards down the valuetree to get values at earlier nodes 
for i=n:-1:1 
    valuetree(1:i,i)=... 
        exp(-r*T/n)*(probtree(1:i,i).*valuetree(1:i,i+1)... 
        +(1-probtree(1:i,i)).*valuetree(2:i+1,i+1)); 
    if earlyexercise 
        switch otype 
            case 'PUT' 
                valuetree(1:i,i)=... 
                    max(k-ptree(1:i,i),valuetree(1:i,i)); 
            case 'CALL' 
                valuetree(1:i,i)=... 
                    max(ptree(1:i,i)-k,valuetree(1:i,i)); 
        end 
    end 
end 

  
%option price 
optionprice=valuetree(1); 
end 

 
Here are 4 examples of calculated prices. 
 
>> optionprice=athostree(100,98,100,0.3,0.03,1,100,0.05,'PUT',false) 
 
optionprice = 10.1273 
 
>> optionprice=athostree(100,98,100,0.3,0.03,1,100,0.05,'CALL',false) 
 
optionprice = 13.0822 
 
>> optionprice=athostree(100,98,100,0.3,0.03,1,100,0.05,'PUT',true) 
 
optionprice = 10.3303 
 
>> optionprice=athostree(100,98,100,0.3,0.03,1,100,0.05,'CALL',true) 
 
optionprice = 13.0822 
 
 

6. Final Remarks 
 
The greatest challenge is not implementing the tree, but to choose appropriate values of 
α and n for pricing. As we have seen above, equation (13), as n tends to infinity so does 
volatility, and therefore the tree explodes. We have also seen, equation (14), that the 
greater α, the greater the kurtosis of the distribution of returns. So, the tree explodes also 
if α is too large. Therefore, appropriate values of α and n need to be input to avoid the 
tree calculating meaningless prices. 
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However, on the positive side, the tree has a relatively small number of parameters, and 
to me it can also be viewed as a sound application of martingale pricing. It also 
calculates American and European option prices virtually instantly on a standard PC. 
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