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Abstract

In interactions under strategic complementarity, naive players have a dispropor-

tionally large effect on the aggregate outcome, resulting in a nonlinear relationship

between the proportion of sophisticated and naive players and the aggregate outcome.

This paper studies this relationship in a beauty contest game by informing some play-

ers the game theoretic solution and systematically varying the proportion of informed

players. The results show that the conditions predicted by strategic complementarity

stand empirical test.

Keywords: Beauty contest, Strategic complementarity, Beliefs, Bounded rationality
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1 Introduction

Canonical economic analyses typically assume rational decision makers. However, mounting

empirical evidence suggests that human beings frequently and systematically behave in ways

at odds with rational prescriptions (Camerer, 2003; Kahneman, 2011). Moreover, there are

large individual differences in how closely people resemble the ideal agent economists have

in mind (e.g, List, Haigh, & Nerlove, 2005; Palacios-Huerta & Volij, 2009).

When individuals with heterogeneous information processing ability engage in strategic

interactions, how do they influence each other and how do their mutual influences shape the

aggregate outcomes? The answers depend on a pair of concepts about the specific strate-

gic environment, known as strategic substitutability and strategic complementarity (Bulow,

Geanakoplos, & Klemperer, 1985; Haltiwanger & Waldman, 1985; Camerer & Fehr, 2006):

Strategies are substitutes if a change in strategy by one player creates incentives for other

players to change their strategies in the opposite direction. In such situations, rational indi-

viduals (partly)correct the “errors” of less rational individuals, thereby bring the aggregate

outcome close to the predictions of rational models. On the other hand, strategies are com-

plements if a change in strategy by one player creates incentives for other players to change

in the same direction as that player. In such situations, rational individuals (partly) mimic

the strategies of less rational individuals, thereby drive the aggregate outcome away from

rational predictions.

Consistent with this idea, Fehr and Tyran (2008) found in a price setting game that price

adjustment toward the new equilibrium after an anticipated monetary shock was extremely

quick under strategic substitutability, yet very slow under strategic complementarity. Along

the same line, Sutan and Willinger (2009) studied the beauty contest game (BCG) involving

either strategic complementarity or strategic substitutability. In the standard BCG, a group

of players each choose a number (real or integer) within [0, 100]. The player whose choice

is closest to a target number – some parameter p times the average of all chosen numbers –

wins a fixed prize. When p < 1, the game has a unique Nash equilibrium where all players

choose zero, reached by iterated elimination of dominated strategies. It is easy to see that

strategies in the standard BCG are complements, and experimental studies have indeed

shown that choices in this game are reliably far from zero (Bosch-Domènech, Montalvo,
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Nagel, & Satorra, 2002). Sutan and Willinger (2009) compared two versions of modified

BCGs: one called BCG+ where the target number is 2

3
(mean+30); the other called BCG−

where the target number is (100 − 2

3
mean). The Nash equilibrium in both games are 60,

but strategies are complements in BCG+, and substitutes in BCG−. Sutan and Willinger

(2009) observed that choices were closer to 60 in BCG− than in BCG+.

Under different strategic environments, how do the aggregate behaviors change as a

function of the relative proportions of rational and irrational individuals? Haltiwanger and

Waldman (1985) provided such an analysis. Assume the population is composed of two

types of players: a proportion ω of sophisticated agents who always form correct beliefs

about what others will do and always best respond, and a proportion 1− ω of naive agents

who all play the same, fixed strategy regardless of ω. It can then be deduced that, under

strategic complementarity, the absolute distance between the aggregate outcome and the

rational equilibrium, denoted D, is a decreasing and concave function of ω. If D is twice

differentiable with respect to ω, then we have:
∂D

∂ω
≤ 0 and

∂2D

∂ω2
≤ 0. A similar analysis

shows that under strategic substitution, D is a decreasing and convex function of ω. The

interpretations of these conditions are straightforward. The first order conditions indicate

that, regardless of the strategic environment, the aggregate outcome comes closer to the

equilibrium prediction as the relative proportion of sophisticated agents increases. The

second order conditions indicate that, under strategic complementarity, naive players have

a disproportionally large impact on the aggregate outcome. Given these conditions, D(ω) is

flatter at the lower end of ω and steeper at the higher end of ω, which suggests that adding

a few sophisticated agents into a group of naive agents may have limited effect on the group

behavior, while adding a few naive agents into a population of sophisticated agents will have

a large effect on the group behavior. By the same logic, the opposite is true for strategic

substitutability.

This paper puts the above analyses under empirical test. It reports an experiment on

the standard BCG that examines how the aggregate behavior changes as a function of rel-

ative proportions of sophisticated and naive players, and how sophisticated players behave

differently under different group compositions. Importantly, we can directly test whether

the actual behaviors fit the specifications of strategic complementarity by Haltiwanger and

Waldman (1985). First, let’s look at how the conditions of strategic complementarity apply
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in the BCG.

Assume a standard BCG with a proportion ω of sophisticated players and 1−ω of naive

players. The target number is p times the average of all chosen numbers (p < 1). Following

Haltiwanger and Waldman (1985), the naive players choose the identical, fixed strategy

Cn. In this context, Cn is a number within [0, 100]. The number Cn is common knowledge

among sophisticated players, thanks to their unlimited ability to form expectations. Because

the game is symmetric, choices of sophisticated players must be identical in equilibrium.

Therefore, we have Cs = p[(1 − ω)Cn + ωCs], where Cs denotes the choice of sophisticated

players.1 This equation can be easily solved for Cs:

Cs = p
1− ω

1− pω
Cn (1)

The distance between aggregate outcome and the rational equilibrium is simply the av-

erage chosen number of all players, given by M = ωCs + (1− ω)Cn. Therefore:

M =
1− ω

1− pω
Cn (2)

The function M(ω) at some values of Cn with p = 2/3 is depicted in Figure 1. It can be

easily shown that
∂M

∂ω
≤ 0 and

∂2M

∂ω2
≤ 0 for all 0 < p < 1, 0 ≤ ω ≤ 1 ,and 0 ≤ Cn ≤ 100,

with strict inequality holds for both conditions when ω 6= 1 and Cn 6= 0. Therefore, the BCG

satisfies the conditions of strategic complementarity. Note that Cs(ω) is also a decreasing,

concave function, meaning that the choices of sophisticated players should also decrease

nonlinearly (first slow, then fast) as the proportion of their own type increases. This pattern

can also be put under empirical test.

The existing empirical literature on the strategic environment provides not direct insight

for the relationship between group composition and aggregate behavior. First, most studies

(e.g., Fehr & Tyran, 2008; Sutan & Willinger, 2009) do not include a measure of individual

rationality, and therefore the group composition is unknown. Second, in the studies that

do measure individual rationality (e.g., Kluger & Wyatt, 2004), the relative proportion of

rational and less rational participants in an experimental session is not systematically varied

by the researchers, and most sessions predominantly represent one type of participants.

1The choice of sophisticated players can also be computed by iterated elimination of dominated strategies,

starting from zero.
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Therefore, to study the group composition effect, we need to identify the level of rational-

ity of each participating individual and assemble groups with varying proportions of different

types of players. To achieve these goals, the current study “manipulates” rationality (in this

specific game) by offering some participants private information. Next, I will deliberate on

this approach.

In the context of the BCG, rationality can be approximately interpreted as the ability to

understand the iterated elimination of dominated strategies, and hence realize that everyone

choosing zero is the only surviving outcome if rationality is common knowledge. Therefore,

we can “create” rational agents by directly informing them the reasoning process and the so-

lution. This is done in the written experimental instructions. The wording of the instructions

was carefully considered with the goal of being as clear and simple as possible. Game theory

jargons were generally avoided so that no special knowledge is necessary for understanding

the material (see Appendix A.2 for an English translation of the private information).2

The above information is only available to a subset of the participants. The critical

treatment is the relative proportion of informed and uninformed players in a group, which

systematically varies across experimental sessions. The group composition (i.e., how many

players are informed and how many are uninformed) is made common knowledge by public

announcement.

The goal of the information manipulation is not to make the informed players more

rational in general, but to enhance their knowledge of how canonical theory reasons about

this particular game. The BCG is ideal for the current purpose. On the one hand, the

game is complex enough that very few subjects can solve it within the time limit of a lab

experiment. This is supported by the results of two-person BCGs. When the BCG is played

in groups of 2 with p = 2/3, the lower number is always closer to 2/3 of the average.

Therefore, choosing zero is the weakly dominant strategy and always wins no matter what

the opponent chooses. In spite of this simplicity, Grosskopf and Nagel (2008) found that only

2As a pilot test, I showed these instructions, along with the rules of the game, to 10 undergraduate

students from the same population as the main experiment, and let them read for 5 minutes. Then they

were asked to explain what was said in the information with their own words, without looking at the

instructions again. All the 10 students were able to communicate the key points (iterated dominance and

choosing zero).
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9.85% of college students chose zero in the two-person BCG. Since the Nash equilibrium is

more difficult to compute under n > 2 than n = 2, the proportion of subjects who can solve

the n > 2 game is likely to be even lower. On the other hand, the BCG has been widely used

as the classical demonstration of iterated dominance in introductory game theory courses,

suggesting that its reasoning, once pointed out, is simple enough for novices to comprehend.

These features give us confidence that the manipulation will work as intended — that almost

all informed players will indeed understand the reasoning and can be seen as more rational

(in this particular game), while almost no uninformed players will be able to figure out the

solution and they are therefore less rational.

The informed players in this study are apparently much less omnipotent than the sophis-

ticated players depicted in Haltiwanger and Waldman (1985). Importantly, our informed

players do not necessarily form correct beliefs about other players. Also, rationality is un-

likely to be common knowledge even when all players are informed. Similarly, the uninformed

players in this study might not be as naive as the agents in Haltiwanger and Waldman (1985)

as well. Since the group composition is common knowledge, some uninformed players might

react to the existence of informed players. Nevertheless, since the strategic environment ef-

fects are observed in a variety of contexts where the classification of rational and boundedly

rational agents are much less extreme than that of Haltiwanger and Waldman (1985), we

expect that the first and second order conditions of strategic complementarity will be met

in our design.

The rest of paper is organized as follows. Section 2 details the experimental design.

Section 3 articulates the hypotheses to be tested. Section 4 describes the results. Section 5

provides a modified model that better describes the average behavior of the informed players

than the Cs(ω) specified above. Section 6 discusses and concludes the paper.

2 Experimental Design

The game was similar to that studied by Nagel (1995). Choices were limited to integers

within [0, 100]. The parameter p = 2/3. The winner earned a prize of 100 Chinese yuan

(About 15 US dollars at the time). In case of a tie the prize was shared by the winners.

The game was repeated for 5 rounds. In this paper we only focus on choices in the first
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round, when learning has not taken place and choices are based solely on beliefs. Results

with regard to learning will be discussed in a separate paper. I conducted 15 experimental

sessions in a large classroom at Beijing Normal University between January and May 2016.

The 232 participants (141 females, Meanage = 22.6) were predominantly undergraduate and

graduate students enrolled at Beijing Normal University.3 Economics majors were excluded

from participation. There were 13-16 participants in each session.4

Based on the proportion of players who were informed of the game theoretic reasoning

and solution, there were 6 treatment conditions: the Baseline treatment where no player was

informed, the Few-Informed treatment where 2 players were informed, the Half-Informed

treatment where half of the players were informed, the Most-Informed treatment where all

but 2 players were informed, the All-Informed treatment where all players were informed,

and the Lecture treatment where all players were informed by written instructions plus a

short lecture (See below for details). The summary of experimental design and the number

of sessions conducted in each treatment is available in Table 1.

The experiment was implemented paper based. The procedure of the Baseline treatment

is as follows. Upon arrival, participants were seated far apart to prevent communication.

Participants first read the written instructions on their own (see Appendix A.1 for an English

translation of the instructions). Then one of the two experimenters read the instructions

aloud to ensure that the rules of the game were common knowledge. Any questions concern-

ing the rules of the game were answered. Subjects had 4 minutes to write their choice on a

paper card. Experimenters then collected the cards and record the choices.

In the Few-Informed, Half-Informed, and Most-Informed treatments, the corresponding

number of players were randomly selected to receive the private information. Public verbal

announcements from the experimenter included: 1) rules of the game identical to those

announced in the Baseline treatment; and 2) the fact that m out of the n players had private

information “regarding the game theoretical analysis of this game”. These facts should

therefore (ideally) be common knowledge.

3The rest participants were college students from nearby universities.
4I aimed for 16 participants per session. So I assigned 21 slots for each session on the sign-up web

page. In the event that more than 16 participants showed up, the extra participants were paid 15 yuan and

dismissed. In the event that fewer than 16 participants showed up, the session started as was.
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In the All-Informed treatment, the aforementioned equilibrium information was available

for all players and this fact was publicly announced.5

In the Lecture treatment, the aforementioned equilibrium information was available for

all players and this fact was publicly announced. After that, the experimenter gave a 10-

minute lecture explaining the equilibrium information. On a number line from 0 to 100

projected on the screen, the experimenter explains step by step why any number larger than

100× 2

3

k
cannot win against 100× 2

3

k
at Step k, and therefore should be eliminated, leading

to the conclusion that 0 is the unique equilibrium. Compared with written instructions only,

the lecture may facilitate the formation of common knowledge in two ways: 1) Attending to

the same instructions in the same room should strengthen one’s belief that a) everyone has

received the information, and b) that everyone believes everyone has received the information,

and so on; 2) Players may better understand the argument, and have more confidence in

other players’ understanding of the argument, and have more confidence in other players’

confidence in other players’ understanding, and so on. Differences between the All-Informed

and the Lecture treatment may highlight the role of common knowledge of rationality. 6

For all treatments, after 5 rounds of play, the participants filled in a questionnaire con-

taining demographic information and some open-ended questions. At the end of the session,

participants were paid 25 yuan show-up fee plus any reward they won in the game. The

Lecture session lasted for about 50 minutes. Sessions in other treatments lasted for about

40 minutes.

3 Hypotheses

Our main hypothesis is that the results will satisfy the theoretically deduced conditions of

strategic complementarity, which can further break down into several testable hypotheses.

On the aggregate level:

5The information itself was not read out to the players.
6I do not claim that the equilibrium is common knowledge in the Lecture treatment. I only suggest that

equilibrium information is closer to common knowledge in the Lecture treatment than in the All-Informed

treatment.
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Hypothesis 1:
∂M

∂ω
≤ 0 and

∂2M

∂ω2
≤ 0. This means that, average choice decreases as

the proportion of informed players increases. The decrease is slow when ω is small and fast

when ω is large. It allows the possibility that average choice does not significantly decrease

with ω when ω is small.

Additionally, we argue that rationality is not common knowledge even when all players are

informed, and that the Lecture treatment may facilitate the formation of common knowledge

of rationality. This means:

Hypothesis 2: Average choice is lower in the Lecture treatment than in the All-Informed

treatment.

For uninformed players:

Hypothesis 3: Average choices of uninformed players do not change with the group com-

position.

For informed players:

Hypothesis 4:
∂Cs

∂ω
≤ 0 and

∂2Cs

∂ω2
≤ 0. This means that, average choice of informed

players decreases as the proportion of informed players increases. The decrease is slow when

ω is small and fast when ω is large. It allows the possibility that average choice of informed

players does not significantly decrease with ω when ω is small.

4 Results

Descriptive statistics for each session are shown in Table 2. Figure 2A presents the distri-

bution of choices in the Baseline treatment. Among the 47 chosen numbers, the smallest is

16, and only 2 are larger than 67. Therefore, consistent with previous studies, choices are

well away from the equilibrium, and weakly dominated strategies are rarely played. Table

3 reports descriptive statistics from the Baseline choices, as well as from some previous p-
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beauty contest experiments with similar settings (conducted in classroom, on college student

populations). The data is generally comparable to those reported in the literature. Notice-

ably, average choice in the current sample is the smallest among the studies listed here.

That said, average choice in this range is common among other populations and settings

(Bosch-Domènech et al., 2002). Therefore:

Result 0: Distribution of the choices in the Baseline treatment resembles those reported

in other 2/3-beauty contest experiments.

Figures 2A-F present the distributions of the choices in each treatment. There is a visible

trend that choices decrease as the group contains more informed players. Using Kruskal

Wallis H test, I can reject the null hypothesis that choices in all treatments are drawn from

the same distribution at the .0001 level. To examine potential non-linearity, I compare each

pair of treatments using Mann-Whitney U tests. Table 4 summarizes the results of this

analysis. Some notable regularities are:

1. Distributions of choices in the Baseline, Few-Informed and Half-Informed treatments

are not significantly different (Medians: 29, 26.5, 31, respectively).

2. As the proportion of informed players continues to increase, choices begin to decrease.

Median choice drops from 31 in the Half-Informed treatment to 24 in the Most-Informed

treatment (p = .027), then to 20 in the All-Informed treatment (p = .06).

3. Median choice drops sharply from 20 in the All-Informed treatment to 9.5 in the Lecture

treatment (p < .001).

The above observations also find support in the comparison of cumulative frequencies of

choices (Figure 3): the Baseline, Few-Informed, and Half-Informed treatments are mostly

tangled together; while the Most-Informed, All-Informed, and Lecture treatments lie progres-

sively to the left, although not all the comparisons follow strict dominance. To summarize:

Result 1: Aggregate choices tend to decrease as the proportion of informed players in-

creases, but only when the proportion of informed players is large. This result supports our

7All tests are two-tailed in this paper.
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Hypothesis 1.

Result 2: When all players are informed, an additional public lecture deliberating the rea-

soning and solution halves the median choice. This result supports our Hypothesis 2.

Next, we move on to analyze the choices of each type of players. The average choices by

player type are presented in Figure 4. We first look at uninformed players. I cannot reject

the null hypothesis that choices of uninformed players in the Baseline, Few-Informed, Half-

Informed, and Most-Informed treatments (Medians are 29, 26.5, 31, and 31, respectively)

are drawn from the same distribution (Kruskal Wallis H test, p = .35). Therefore:

Result 3: Choices of uninformed players are not affected by the group composition. This

result supports our Hypothesis 3.

We then look at informed players. Figure 4 shows a general trend that informed players

tend to choose smaller numbers as the proportion of their own type increases. Indeed, I can

reject the null hypothesis that choices of informed players in the Few, Half, Most and All-

Informed treatments are drawn from the same distribution (Kruskal Wallis H test, p < .01).

Choices of informed players do not change much from Few to Half-Informed treatment (Me-

dian: 30 to 31.5, p = .98). As the proportion of informed players increases further, median

choice decreases from 31.5 in the Half-Informed treatment to 22.5 in the Most-Informed

treatment (p = .03), and then to 20 in the All-Informed treatment (p = .13), or 9.5 in the

Lecture treatment (p < .001).

Result 4: Choices of informed players tend to decrease as the proportion of informed players

increases, but only when the proportion of informed players is large. This result supports

our Hypothesis 4. There is a caveat, however, that there are only 6 observations of informed

players in the Few-Informed treatment.

There are 32 observations of both informed and uninformed players in the Half-Informed

treatment, which allows a direct comparison between the two types of players. No difference

is found in this comparison (Mann-Whitney U test, p = .99). Moreover, neither of these two

12



distributions significantly differs from the Baseline treatment (ps > .5). This indicates that

telling as many as 8 out of 16 players how the game should be played has completely no

effect on how the game was actually played. Since the informed players do react to the group

composition, we can rule out the possibility that the majority of informed players simply

are not influenced by the information. Therefore, the informed players in the Half-Informed

treatment seemed to choose to play high numbers after taking the group composition into

consideration. I will further discuss this point in Section 5.

Result 5: In the Half-Informed treatment, choices of informed and uninformed players

do not differ.

5 Estimates of Average Informed Play

Recall that under the assumptions of Haltiwanger and Waldman (1985), the choice of so-

phisticated players follows Equation (1): Cs = p
1− ω

1− pω
Cn. This model provides insights

into the general pattern of choices changing as a function of group composition, which leads

to our hypotheses. However, it does not adequately describe the actual behaviors of our

informed players. Most saliently, the model predicts that everyone will choose zero in the

All-Informed treatment, which is far away from our observations.

We now modify this model to make it better reflect the realities in this experiment.

First, we retain the assumption that all informed players best respond to their beliefs, but

acknowledge the possibility that informed players may doubt if other informed players will act

like themselves. They may not believe that everyone has understood the private information,

or they may not believe that no one would consider the possibility that someone might not

have understood the information. To account for these potential doubts, in all treatments

except for the Lecture treatment, we assume that all informed players have the same belief

that only a proportion π (0 ≤ π ≤ 1) of the informed players will actually behave like

informed players.8 To avoid introducing new parameters, the rest 1−π informed players are

8Because the Lecture treatment was designed to reduce these doubts, π should be larger in the Lecture

treatment than in other treatments, which we shall show later.
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assumed to act like uninformed players. In other words, informed players give ω a discount

and behave as if only πω players are informed.

Second, informed players are unlikely to always form correct expectations about what

the uninformed players will choose. In this regard, we assume that informed players all have

the same belief about the average choice of uninformed players, denoted as C ′

n, and that C ′

n

is common knowledge among informed players. Importantly, C ′

n does not necessarily reflect

the actual average choice of uninformed players.

With these two modifications, the best response is now given by: Cs = p[(1 − πω)C ′

n +

πωCs]. Solving the equation for Cs yields:

Cs = p
1− πω

1− pπω
C ′

n (3)

Table 5 reports the least squares estimates for π and C ′

n. The assumptions that all in-

formed players have the same beliefs about π and C ′

n are highly simplified. These parameters

may be better interpreted as the means of the distributions that describe the corresponding

beliefs. Accordingly, we look at how well the model predicts the average choice at each value

of ω as an approximation for goodness of fit. As visualized in Figure 5, the predicted choices

by the model are very close to the actual averages except for the Few-Informed treatment.9

The estimated values of the two parameters are worth discussing. The estimated value of

C ′

n implies that an average informed player believes the average choice of uninformed player

is 56.6. This belief may seem unusually high. However, we note that the parameter C ′

n

represents the latent belief derived from choices, given best response, not participants’ stated

beliefs. Stated beliefs usually reveal higher levels of reasoning than latent beliefs (Costa-

gomes & Weizsäcker, 2008). Nevertheless, the high estimated latent belief seems to imply

that informed players may have underestimated the average sophistication of uninformed

players. This is a potential explanation for why informed players choose similar numbers as

uninformed players in the Few and Half-Informed treatments.

The estimated value for π implies that informed players expect that 3/4 of all informed

players will act in a rational way. This further confirms that our information manipulation is

successful. The Lecture treatment was designed to facilitate formation of common knowledge

9The less precise prediction for the Few-Informed treatment is quite understandable since there are only

6 data points at this value of ω and therefore the estimation gives it a small weight.
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of rationality. Assume that C ′

n stays the same, we can estimate π in the Lecture treatment

with least squares. This estimate is 0.88. Comparing the Lecture treatment with the All-

Informed treatment, a 16% increase in π leads to a 60% decrease in average choice. This

again shows that under strategic complementarity, behaviors are very sensitive to changes

of rational expectations when the average level of rationality is already quite high.

6 Discussion

Strategies are complements in the beauty contest game. If a player believes other players will

choose high numbers, she should choose high numbers as well. Therefore, limitedly rational

players should have a disproportionally large impact on the aggregate behavior in the BCG.

By informing a subset of players the game theoretic solution and systematically varying the

proportion of informed players across sessions, this paper shows that the conditions predicted

by strategic complementarity stand empirical test.

Other researchers have also studied the BCG with players of heterogeneous strategic

sophistication. Slonim (2005) studied the competitions between experienced and inexperi-

enced players. Experienced players are those who have already played the game for several

rounds. The results showed that, inexperienced players do not behave differently whether

their opponents are experienced or not, while experienced players tend to choose higher

numbers when they face inexperienced than experienced new opponents. These results are

related to our findings that uninformed players are not sensitive to who they play with but

informed players are. However, there are important distinctions between the two studies:

Our informed players are more sophisticated in the sense that they have a better idea how

the game should be played. The experienced players in Slonim (2005) are more sophisticated

in the sense that they have a better idea how the game are actually played.

Using the strategy method, Agranov et al. (2012) studied the BCG with undergraduate

students playing against a varying mixture of random-choosing computers and graduate

students. They found that, players systematically lower their choices as the group contains

more graduate students, because they believe the graduate students are more sophisticated

than the random-choosing algorithm. So why haven’t our uninformed players choose lower

numbers as they know there are more players who have private information “regarding the
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game theoretical analysis of this game”? I argue for two reasons: First, the gap in strategic

sophistication between graduate students and random-choosing computers is more obvious

than that between informed and uninformed players. Second, the within-subjects design of

Agranov et al. (2012) allows players to systematically adjust their choices based on the group

composition, which is impossible in our current between-subjects design.

Although the group compositions are discussed in terms of relative “proportions” in this

paper and in the analysis of Haltiwanger and Waldman (1985), I do not claim that the group

size does not matter. In the context of the BCG, Ho, Camerer, and Weigelt (1998) showed

that 7-player groups converge to equilibrium faster than 3-player groups. More recently,

Hanaki, Sutan, and Willinger (2016) found that choices in BCG+ and BCG− only differ

when group n ≥ 5, but not when n < 5. Future studies can investigate whether and how

the relationship between the group composition and the aggregate behavior depends on the

group size.

The number of informed and uninformed players is always publicly announced in this

experiment. It might be informative to run a treatment where the group composition is

hidden from the participants. Although we do not have that data, given the prevalence of

ambiguity aversion (Ellsberg, 1961), I suspect that informed players, not knowing the group

composition, will choose numbers no smaller than our informed players in the Half-Informed

treatment. Therefore, it is possible that if we tell every player the equilibrium solution, but

do not tell them how many others are also informed, the group may act as if no one has any

information. The test of this hypothesis is left for future work.

References

Agranov, M., Potamites, E., Schotter, A., & Tergiman, C. (2012). Beliefs and endogenous

cognitive levels: An experimental study. Games and Economic Behavior , 75 (2), 449–

463.

Bosch-Domènech, A., Montalvo, J. G., Nagel, R., & Satorra, A. (2002). One, two, (three),

infinity, ... : Newspaper and lab beauty-contest experiments. American Economic

Review , 92 (5), 1687–1701.

16



Bulow, J. I., Geanakoplos, J. D., & Klemperer, P. D. (1985, June). Multimarket Oligopoly:

Strategic Substitutes and Complements. Journal of Political Economy , 93 (3), 488-511.

Camerer, C. (2003). Behavioral game theory: Experiments in strategic interaction. Princeton

University Press.

Camerer, C., & Fehr, E. (2006). When Does “Economic Man” Dominate Social Behavior?

Science, 47 .
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Table 1: Summary of experimental design for each treatment

Treatment N of sessions Player type Written instructions Verbal announcement

Baseline 3 Uninformed RGa RG

Few-Informed 3

Uninformed
RG
2/16 players have AIb

RG
2/16 players have AI

Informed
RG
2/16 players have AI
AI

RG
2/16 players have AI

Half-Informed 4

Uninformed
RG
8/16 players have AIc

RG
8/16 players have AI

Informed
RG
8/16 players have AI
AI

RG
8/16 players have AI

Most-Informed 2

Uninformed
RG
14/16 (or 12/14) players have AI

RG
14/16 (or 12/14) players have AI

Informed
RG
14/16 (or 12/14) players have AI
AI

RG
14/16 (or 12/14) players have AI

All-Informed 2 Informed
RG
All players have AI
AI

RG
All players have AI

Lecture 1 Informed
RG
All players have AI
AI

RG
All players have AI
AI

a RG = Rules of the game and other baseline instructions
b AI = Additional information (the equilibrium analysis)



Table 2: Descriptive statistics for each session

Session Treatment N N informed Mean Median Std. Dev.

Base1 Baseline 15 0 30.2 29 10.3

Base2 Baseline 16 0 31.6 29 13.3

Base3 Baseline 16 0 33.5 29.5 13.8

Few1 Few-Informed 16 2 26.3 22.5 10.9

Few2 Few-Informed 16 2 27.6 22.5 13.8

Few3 Few-Informed 16 2 31.9 32.5 10.0

Half1 Half-Informed 16 8 30.6 33 9.8

Half2 Half-Informed 16 8 32.1 30 16.0

Half3 Half-Informed 16 8 41.8 34.5 24.5

Half4 Half-Informed 16 8 30.1 30 10.2

Most1 Most-Informed 16 14 25.2 24 12.5

Most2 Most-Informed 14 12 24.2 24 14.9

All1 All-Informed 16 16 19.1 25 11.8

All2 All-Informed 13 13 16.7 15 10.9

Lect1 Lecture 14 14 10.9 9.5 11.6



Table 3: Descriptive statistics for Baseline choice and other beauty contest experiments

Mean Median Std. dev. Group size

Baseline treatment 31.8 29 12.4 15-16

Nagel (1995) 37.2 33 20 14-16

Ho et al. (1998) 40 35 24.8 7

Kocher and Sutter (2005) 34.9 32 - 17-18

Agranov et al. (2012) 35.1 33 21 8

Luccasen (2013) 33.5 30 17.2 18

Cubel and Sanchez-Pages (2016) 36.1 33 23 110-170

Table 4: Comparisons of choices under each pair of treatments

Treatment 1 2 3 4

Baseline 29

Few-Informed 26.5 26.5

Half-Informed 31

Most-Informed 24 24

All-Informed 20

Lecture 9.5

Note: Entries are medians from each treatment. Treatments that appear in the same

column are not different from each other at the .05 level of significance.



Table 5: Parameter estimates for informed play

Parameter Estimate Std. Err.

C ′

n
56.63 4.37

π 0.76 0.06

π (Lecture) 0.88 0.04



Appendix A Experimental Instructions

A.1 Instructions for the Baseline Treatment:

Welcome to the experiment. Please read the following instructions carefully.

1. Do not communicate:

Throughout the experiment, please do not talk to other participants or communicate in any

other way. Please do not make comments no matter you win or not. This is a competition

game. Communicating with others will not help you win, and will compromise the reliability

of our data. If you have any questions, please raise your hand and we will come to assist you.

2. Rules of the Game:

Unlikely some experiments you might have participated, there is no deception in this game.

Therefore, all the information provided to you is real.

You will play a game that repeats for 5 rounds. In each round of the game, everyone

chooses an integer between 0 and 100 (including 0 and 100). Please write your choice on

an answer card given to you. We will collect all the cards, and calculate the average of all

chosen numbers. The average multiplied by 2/3 is called the target number. The player

whose choice is closest to the target number (i.e., 2/3 of the average) wins 100 yuan. Other

players win nothing. In case there are multiple winners, the 100 yuan reward will be split

evenly among them. For example, if 3 players choose the same number and this number is

closest to the target number, then each of the 3 players wins 33.33 yuan. The same game

will repeat for 5 rounds, with 100 yuan reward for each round. After each round, we will

announce all chosen numbers, the average, the target number and the winner’s choice on the

screen in front.

3. Payment:

At the end of the experiment, you will receive 25 yuan show-up fee, plus all the reward you

win in the game. We will pay you via Alipay transfer.

4. ID:
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Each player has a unique ID, which is written in the upper-left corner of their answer cards.

We use this ID to identify players. Please remember your ID.

5. Confidentiality:

The data will only be used for research purposes.

We will conduct similar experiments in the near future. So please do not mention the details

of this experiments to other people. We have no control over this matter but we trust you.
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A.2 Equilibrium information (Half-Informed treatment)

You have additional information. In this group, 8 players have this additional information,

and the other 8 players do not.

Additional information:

Because choices are restricted to numbers between 0 and 100, 2/3 of the average must be

between 0 and 66.67. Therefore, 67 must be closer to 2/3 of the average than any number

within [68, 100]. Therefore, any number within [68, 100] cannot win against 67. Therefore,

a rational player will not choose a number larger than 67.

One step further, if all players are rational, then all chosen numbers will be between 0

and 67, and 2/3 of the average has to be between 0 and 44.67. Therefore, any number larger

than 45 cannot win against 45. Therefore, a rational player who believes all other players

are also rational will not choose a number larger than 45.

This thinking process can go on infinitely, until all numbers are eliminated except 0. So,

if all players:

1) are rational;

2) believe all players are rational;

3) believe all players believe all players are rational;

...

ad infinitum,

The game has only one stable way of play: every player chooses 0.

This is the additional information you have. Remember, all the inferences are based on

the corresponding premises. How to use this information in the actual game depends on

your own judgment.
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