MPRA

Munich Personal RePEc Archive

Estimation of Log-GARCH Models in
the Presence of Zero Returns

Sucarrat, Genaro and Escribano, Alvaro

BI Norwegian Business School, Universidad Carlos IIT de Madrid

9 September 2013

Online at https://mpra.ub.uni-muenchen.de/75010/
MPRA Paper No. 75010, posted 11 Nov 2016 12:46 UTC



Estimation of Log-GARCH Models in the Presence of Zero
Returns!

Genaro Sucarrat? and Alvaro Escribano?®

First version: 9 September 2013
This version: 3 October 2016

Abstract

A critique that has been directed towards the log-GARCH model is that its log-volatility
specification does not exist in the presence of zero returns. A common “remedy” is to
replace the zeros with a small (in the absolute sense) non-zero value. However, this renders
estimation asymptotically biased. Here, we propose a solution to the case where the true
return is equal to zero with probability zero. In this case zero returns may be observed
because of non-trading, measurement error (e.g. due to rounding), missing values and other
data issues. The algorithm we propose treats the zeros as missing values and handles these
by estimation via the ARMA representation. An extensive number of simulations verify the
conjectured asymptotic properties of the bias-correcting algorithm, and several empirical
applications illustrate that it can make a substantial difference in practice.
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1 Introduction

Models in the Autoregressive Conditional Heteroscedasticity (ARCH) class due to Engle
(1982) have been extensively used to model the time-varying volatility of financial return
(see Francq and Zakoian (2010) for a survey of ARCH models). In particular, the first-
order Generalised ARCH model of Bollerslev (1986), i.e. the GARCH(1,1), has become
especially popular, since it parsimoniously captures the volatility persistence commonly
exhibited by financial returns. Pantula (1986), Geweke (1986) and Milhgj (1987) inde-
pendently proposed specifications within the log-ARCH class of models as an alternative
to non-exponential ARCH models. Their main motivation was to ensure the positivity of
fitted volatilities — this is not guaranteed in non-exponential ARCH models (in particular
when additional exogenous or predetermined conditioning information is added), and to
allow for richer dynamics (e.g. negative ARCH parameters for cyclical or contrarian dy-
namics).* Engle and Bollerslev (1986) argued against log-ARCH models because of the
possibility of applying the log-operator on zero-values.® This occurs whenever the return
or mean-corrected return equals zero. Subsequently Nelson (1991) proposed an alternative
exponential ARCH specification, the EGARCH model, where the problem is sidestepped
by replacing the problematic term with an expression that does not involve the log op-
erator. This solution, however, comes at a considerable cost: Restrictive assumptions
and complicated conditions are needed to ensure that the Quasi Maximum Likelihood
Estimator (QMLE) provides Consistent and Asymptotically Normal (CAN) estimates
(Wintenberger (2013)), and unconditional moments (e.g. the unconditional variance of
returns) will generally not exist for ¢-distributed densities (see condition (A1.6) and the
subsequent discussion in Nelson (1991, p. 365)).

Zero returns occur in two different types of situations. In the first the zero-probability
of actual return is zero, but zeros are nevertheless observed due to, say, non-trading,
discreteness approximation error (e.g. rounding error), missing values and other data
issues. For example, missing quotes or transaction prices are typically replaced by the
previous observation, which in many cases results in an observed zero return even though
the actual one is non-zero. Similarly, financial prices are usually quoted with a few digits
only (typically two), so financial returns are thus often measured as zero even though
the true return is non-zero. This leads to the observation that an asset often exhibit
more zeros when low-priced (in nominal terms), since a tick then corresponds to a higher
return than when highly-priced. Accordingly, one may argue that zeros should be treated
as missing values instead of zeros. Finally, impulse dummies are sometimes used to mean-
correct returns in the conditional mean. This leads to mean-corrected returns equal to
zero. When the impulse dummies are intended to neutralise the effect of large outliers or
“jumps” — this is often the motivation in macroeconomics and finance, then one may argue

*However, Pantula (1986, p. 73) also stressed that it enables tests for integrated log-variance via
Dickey and Fuller (1979) tests for unit roots.

5 Another critique that has been directed towards the log-GARCH (e.g. Terdisvirta (2009)) is that the
first unconditional autocorrelations of the squared returns, a measure of volatility persistence, can be
unreasonably high. But this only occurs in very specific cases: The log-GARCH class allows for a much
larger range of autocorrelation patterns than ordinary GARCH models, since the autocorrelation pattern
depends on the shape of the conditional density (the more fat-tailed, the lower correlations) in addition
to the persistence parameters.



that the zeros should be treated as missing observations of actual returns. The second
type of situation in which zero returns occur is when the zero-probability of actual return
is truly non-zero. This is explored in Sucarrat and Grgnneberg (2016). Here, therefore,
our focus is exclusively on the first type of situation in which the zero probability is zero.

Estimators that do not rely on a specific distribution are greatly appreciated by prac-
titioners, since then one needs not change the conditional density from application to
application, or alternatively to use a sufficiently general and extra-parametrised density
that makes estimation and inference more challenging numerically. Two types of such
estimators have been proposed for the log-GARCH model, one “Standard” and one based
on the ARMA representation. Francq et al. (2013) prove CAN under mild assumptions
for a QMLE of the first type. In their estimator the density of conditional return is used
for estimation, hence their estimator being Standard. For the second type, Sucarrat et al.
(2016) exploit that the log-GARCH model admits an ARMA representation with Inde-
pendent and Identically Distributed (IID) errors. Next, they show that CAN estimation
of the ARMA representation by well-known methods provides CAN estimates of all the
log-GARCH parameters, as long as the intercept bias in the log-volatility specification in-
duced by the ARMA representation is appropriately adjusted for. Subsequently, another
ARMA-based estimator was proposed by Francq and Sucarrat (2013). Their QMLE uses
the centred exponential chi-squared distribution as instrumental density, which is more
efficient when the conditional return is normal or close to normal. Both the Standard
and the ARMA-based estimators are valid under mild assumptions, both types rely on
the assumption that the probability of a zero return is zero and both types produce
asymptotically biased estimates in the presence of zeros.

This paper makes three contributions. First, in Sections 2.2 and 2.3, we provide a
framework for observed zero returns and propose an algorithm for unbiased estimation in
their presence. The algorithm treats zeros as missing observations and replaces them with
estimates of their conditional expectation. The algorithm is computationally simple and
straightforwardly implemented with ARMA-based QMLEs and Least Squares Estimators
(LSEs).® However, it is not available for the Standard QMLE. Bondon and Bahamonde
(2012) proposed an estimator for non-exponential ARCH models, i.e. an ARCH model
without the important GARCH term, in the presence of missing observations. But to
the best of our knowledge no such estimator has been put forward for GARCH models
(neither exponential nor non-exponential). Second, we undertake an extensive set of
Monte Carlo simulations (Section 3) to shed light on the effect of zeros, and to verify
the conjectured asymptotic properties of our algorithm. If the algorithm we propose is
not used when zeros are observed, then the simulations show that the downwards bias of
volatility increases with the number of zeros, that the empirical standard errors are larger
and that the reaction to volatility shocks is underestimated. The extent of these features
depend on the parameter values, on the exact value used to replace zeros, on whether
the conditional density is fat-tailed or not and on the type of estimator. By contrast,
if the algorithm we propose is used, then the simulations show that the estimates are
unbiased, and that the sample-size adjusted empirical standard error correspond well
to their asymptotic counterparts. An additional simulation study suggests that we can

6The R package 1garch implements the algorithm for several ARMA-based estimators, see Sucarrat
(2014).



usefully include estimated zero-probabilities as conditioning variables in a log-GARCH-
X model. Third, several empirical applications (Section 4) illustrate that the parameter
estimates and the fitted conditional standard deviations can differ substantially in practice
if zeros are not appropriately handled, and a case study of the Apple stock sheds further
light on the relationship between return volatility, zeros and volume.

The rest of the paper is organised as follows. The next section, Section 2, provides
an overview of the log-GARCH model and how estimation via the ARMA-representation
is implemented. The section also contains the underlying framework that we rely upon
and the details of our algorithm. Section 3 contains the Monte Carlo studies. Section 4
contains the empirical applications, whereas Section 5 concludes. Tables and Figures are
located at the end.

2 Model, framework and algorithm

2.1 The log-GARCH model

If ¢, denotes financial return (possibly mean-corrected), then the log-GARCH(p, ¢) model
is given by

€ — Oz, Zt IID(O, 1), PI'(Zt = 0) == 0, oy > 0, (1)
p g

Ino? = ozg—i-Zozilnef_i—I—Zﬁj Ino} ;, te, (2)
i=1 j=1

where p is the ARCH order and ¢ is the GARCH order. Let L denote the lag-operator
and let p* = max{p, ¢}. A sufficient condition for the existence of a strictly stationary
solution is that the roots of the lag polynomial (1 — YY" (a; + ;) L) are all outside the
unit circle, see Francq et al. (2013, example 2.2). For the log-GARCH(1,1), this condition
is oy + 1| < 1. In the context of log-GARCH models, the socalled inlier issue (see Breidt
and Carriquiry (1996) for a discussion in a Stochastic Volatility (SV) context) amounts
to whether F(Inz?) exists. For the Student’s ¢ density and for the Generalised Error
Distribution (GED), the two most common distributions in finance, E(Inz?) generally
exists. Francq et al. (2013) provide general conditions for the existence of log-moments.
It is well-known that (2) admits an ARMA representation, see e.g. Pantula (1986),
Psaradakis and Tzavalis (1999) and Francq and Zakoian (2006). Specifically, if |E(In 27)| <
0o, then adding In 2?7 to each side of (2), and then adding and subtracting F(In 2?) - (1 —
;].:1 f3;) to the right-hand side, yields (by re-arranging the terms) the ARMA(p, q) rep-
resentation

P g
In€ = ¢g + Z p;lne? , + Z Ojurj +uy, w =1z — E(ln2z}), (3)

i=1 j=1



where ¢ < p, u; ~ [1D(0,02),

q
¢0:a0+(1—ZBJ)E(1nzf), ¢Z:O£Z—|—5Z and 9]:—5] (4)

j=1

Moreover, if E[(In2?)?] < oo, then 2 < co. It is well known that (3) admits a strictly
stationary solution if the roots of the AR-polynomial A(L) =1 — ¢ L — -+ — ¢, LP" are
all outside the unit cirle. In fact, this condition is exactly the same as the one above. In
other words, consistent and asymptotically normal estimates of all the ARMA parameters
— and hence all the log-GARCH parameters except the log-volatility intercept «g — are
thus readily obtained via usual ARMA estimation methods (e.g. the Gaussian QMLE
or the LSE) subject to additional regularity conditions (most importantly, invertibility
of the MA polynomial, and that the AR and MA polynomials have no common roots),”
see e.g. Brockwell and Davis (2006 [1991]). For a consistent estimate of «g, however, a
consistent estimate of F(In z?) is needed. Sucarrat et al. (2016) derive

;I
—1In [T tz:; exp(Uy)

as estimator of E(In 2?), where the @’s are the ARMA residuals, and provide conditions
for its consistency and asymptotic normality. As a consequence, all the log-GARCH(p, q)
parameters can be estimated consistently via the ARMA representation for a range of
ARMA estimators, including the Gaussian QMLE and the LSE. Additional terms, e.g.
asymmetry /leverage terms, or exogenous or predetermined conditioning information (i.e.
“X”), can also be added without affecting the relationship between the log-GARCH and
ARMA parameters, nor the structure of the bias-correction procedure. Francq and Su-
carrat (2013) propose another ARMA-based QMLE that uses the centred exponential
chi-squared distribution instead of the Gaussian as instrumental density. The motivation
for this estimator is that it is asymptotically more efficient than the Gaussian ARMA-
QMLE when the conditional error z; is normal or close to normal. In the (empirical)
presence of zeros, however, both are biased if zeros are replaced with a non-zero value c.

The Standard QMLE of Francq et al. (2013) undertakes estimation in terms of the
conditional density of €, i.e. by maximising Zthl In f(e;04), where f is the Gaussian
density. Also, they use a slightly different version of the (symmetric) log-volatility speci-
fication. In their setup (2) is replaced by

(5)

P q
Ino? = o+ Z ol zoyIne; ; + Z Bilno} ;, (6)

i=1 j=1

where I, .0y is an indicator function equal to 0 if z;_; = 0, and 1 otherwise. Of course,
(2) and (6) are equal for all ¢ with probability 1 under the assumption that Pr(z, = 0) = 0.
In empirical practice, however, (6) avoids the problem of possibly applying the natural

"For the log-GARCH(1,1), invertibility of the MA polynomial is equivalent to || < 1, and the no
common root assumption is equivalent to a; # 0.



logarithm on zero values. Nevertheless, since the Standard QMLE also relies on the
assumption Pr(z; = 0) = 0, the empirical presence of zeros also leads to biased estimates.

2.2 Observed zeros — a framework

If €; denotes the actual or true return, then the observed return €, is given by
gt = etIt; It € {0, 1} (7)

Accordingly, the actual return ¢ is correctly observed whenever I; = 1, whereas it is
incorrectly observed or “missing” whenever I; = 0. This approach is similar to that of
Bondon and Bahamonde (2012). The process that determines true return ¢; we refer to
as the Data Generating Process (DGP), whereas the process that determines I; we refer
to as the Zero Generating Process (ZGP). If I; is non-random and known, then the main
condition for the validity of our algorithm is usually satisfied.® By contrast, if the ZGP
is random, then the condition is not necessarily satisfied. Accordingly, our focus will
henceforth be on the random case.

Let mp; = Pr;_1(I; = 0) denote the (possibly) time-varying zero-probability conditional
on the past. Of course, this means Pr, (I, = 1) = 7y = 1 — my;. To fix ideas we will
specify the zero probability as a dynamic logit model, but we are by no means restricted
to this class of models. In the simplest case, therefore, when I is 11D, we have that

hy = po, where
1

1+ exp(—hy)

For convenience we will sometimes refer to 7y; (and transformations thereof, e.g. h; =
In(my;/mo:)) as the zero-probability, since my, can straightforwardly be obtained via 7y, (and
transformations thereof, e.g. mo; = 1—my;. Let Z,_; denote the set of past information, and
let Itz_l = {Zt—la 24—y . - } and It[—l = {[t—h It_27 .. } with both Itz_l C It—l and It[—l C
7Z; 1. Since the algorithm we propose replaces the missing values with the conditional
expectations of the ARMA representation whenever I; = 0, the key condition for its
validity is that

hy = ln(ﬂ—lt/WOt); 1t

Ei_i(Ine}) = E(lné |, T_y), (8)
where E;_;(In€?) is the expectation of Ine€? conditional on the past associated with the
ARMA representation. Little and Rubin (2002) distinguish between three cases, and we

may provide a similar distinction adapted to the current setting:
1. Missing Completely at Random (MCAR): z; and I; are independent for all pairs i, j

2. Missing at Random (MAR): z; and I; are contemporaneously independent condi-
tional on Z,_;

3. Missing Not at Random (MNAR): z; and I; are contemporaneously dependent

8An example where I; may be viewed as non-random and known is when zero daily returns are due
to known closures of the financial trading venue in question.



The algorithm we propose below will be valid for the MCAR and — by a straightforward
extension — MAR cases, but not necessarily for the MNAR case.

In the MCAR case the ZGP is entirely independent of the DGP. Accordingly, condition
(8) will hold if Z, ; = 77 ; UZ] |, and if the ARMA representation (3) is stationary and
invertible, since then E;_i(In€}) = E(ln€|Z7 ;) = o + Yoy thilnzt, + E(lnz?). A
straightforward example of MCAR is when ¢ is governed by (1)-(2) and when [, is IID.
Another example is when [; is independent over time, but with a deterministic trend
in the zero probability, e.g. hy = pg + p1 - t. This model is of special interest, since it
provides a simple description of a steady decrease (or increase) in the zero probability over
time without an effect on return variability. We will return to variations of this model in
Sections 3.3 and 4.2.

In the MAR case the log-volatility In o7 can depend on past values of I;. If this is the
case, then condition (8) will not hold for the ARMA representation (3). However, the
log-GARCH model — and hence the ARMA representation — can readily be extended to
allow past values of I; to have an effect on In 7 by means of a log-GARCH-X specification.
The log-GARCH-X model is given by

P q
Ino? = ag + Z a;lne ; + Z Bilnoy ; +g(A z1), (9)

i=1 j=1

where g is a linear or nonlinear function of the exogenous or predetermined variables x;_1,
and a parameter vector \. If Pr(z; = 0) = 0 and |E(In z?)| < oo, then (9) admits the
ARMA-X representation

P q
Ine? = ¢ + Z p;lnel ; + Z 0w + g\, x—1) + uy, (10)

i=1 j=1

where the ARMA coefficients are related to the log-GARCH coefficients in the same
ways as before, i.e. by (4), and where u; is the same as earlier, i.e. u;, = Inz} —
E(lnz?). Accordingly, with suitable assumptions on the z;, the log-GARCH-X model
can be estimated via the ARMA-X representation, see Sucarrat et al. (2016). Examples
of X-variables of interest include leverage, volatility proxies, volume and past values of
I; (or transformations thereof, e.g. past values of h;). The log-GARCH-X specification
is therefore particularly interesting in the current context, since it provides a framework
in which the effects of past observed zeros, volume, etc. on volatility can be studied
jointly. Let the set of past information now be given by Z, ; = Z7 ; U Z;X |, where
7 =z 1,229, }, IYy = {1, 249,...} and Il | C Z,. In other words, the
conditioning X-vector contains the past information associated with the zero-process. If
Eia(Inef) = BE(Inef|Z, 1) = ¢o + D20 dilne ; + 30 Ojuej + g(A 201) is equal to
E; ((In€?|1;,Z;_1), then condition (8) holds.

In the MNAR case condition (8) may not hold, since z; and I; are contemporane-
ously dependent. This implies that also ¢; and I; are contemporaneously dependent. If
observed zeros are due to discrete prices or rounding errors, then this seems to suggest
that missingness depends on the true return being close to zero, i.e. that ¢, and I; are
contemporaneously dependent. However, this is not necessarily the case. Define the true



log-return as ¢ = (In P, —In P,_1), so that the true price at ¢ is given by P, = P, 1 -e“. A
zero return is thus observed whenever the rounded price ﬁt is equal to the rounded price
P,_4. Clearly the occurrence of zeros depends on a range of factors, including the degree
of discreteness (e.g. the tick-size), the nominal level of the price (i.e. the lower price, the
more likely a zero will be observed),? the level of conditional volatility (i.e. the higher,
the less likely a zero will be observed), the dynamics of volatility (e.g. the sensitivity to
shocks) and the value of |2;|. Accordingly, zeros due to rounding are not necessarily due
to small values of |z;|. However, if they are, then condition (8) may not hold, since this
then implies a contemporaneous dependence between z; and I;.

2.3 Algorithm

The actual return ¢; is correctly observed whenever I, = 1 in (7). Whenever I, = 0,
then the actual return ¢; is missing. A common approach to missing observations is
the Expectation-Maximisation (EM) algorithm popularised by Dempster et al. (1977).
There, missing values are handled in what they characterised as two separate steps: The
Expectation or E-step and the Maximisation or M-step. A common approach to missing
observations in an ARMA context is state-space models, see e.g. Jones (1980), Shumway
and Stoffer (1982), Kohn and Ansley (1986), and Gomez and Maravall (1994). Shumway
and Stoffer (1982) combines the state-space approach with the EM-algorithm. A third
approach to missing observations exploits the specific structure of an ARMA model with-
out putting it into state-space form. An example of this approach is Wincek and Reinsel
(1986).

The algorithm we propose is in the spirit of the EM-algorithm, since it can be viewed as
maximising the approximate conditional (quasi) log-likelihood while replacing the missing
values by estimates of their conditional expectations. However, the separation between the
E and M steps is not as sharp as usual, and it exploits the recursive nature of the ARMA
model. The algorithm holds several advantages compared to those cited above. First, it is
conceptually simpler than state-space approaches, since we do not cast the ARMA model
into its state-space form. Second, our algorithm is computationally simpler, since we work
with the approximate conditional log-likelihood. Third, the key condition (8) holds for
a much larger range of ZGPs. In particular, it holds for certain MAR schemes, where
conditional volatility depends on past zeros. Fourth, it is valid for several ARMA-based
estimators. For concreteness we outline our algorithm for the Gaussian QMLE only, but
it can straightforwardly be adapted to the LSE and the centred exponential Chi-squared
QMLE of Francq and Sucarrat (2013) as well. The next section, Section 3, contains
simulations that supports that the conjectured asymptotic properties of the algorithm in
combination with the Gaussian QMLE are retained in the presence of zeros.

Let agk), 55’“), ceey &Eg(,k) and é\(lk), ceey é?j” denote the parameter estimates of the ARMA
representation (3) after & iterations with some numerical method (e.g. Newton-Raphson).
The initial parameter estimates are given at k£ = 0. If there are no observed zeros, then
at the kth. iteration the numerical method thus proceeds in the usual way:

9For example, suppose the true return at t is +0.25%. If prices are rounded to two decimals, then
P;_1 =1 will result in an observed zero return at t, that is, In P, — In P;_; will be zero. By contrast, if
P,_; =10, then the observed return at ¢ will be zon-zero.



1. Compute, recursively, for t =1,...,T"

P q
W - - e - YA, )
i=1 j=1
where ﬂgk_l) is an estimate of u;, and where the initial values Inef, ..., Ine* , and
Ug, ..., U_qq1 are replaced by estimates at each iteration &.
2. Compute the approximate conditional lo hkehhood In k 2 aq(f_l) , Where
g- t 1
f is the univariate Gaussian density and 5*~ ) the estimate of 1ts scale parameter,

and other quantities (e.g. the gradient and/or Hessian) needed by the numerical
o, 0,0

method to generate q/g((]k), AR and o)

The algorithm we propose modifies this procedure in several ways. Let 7 denote the
locations of the non-zero values of ¢;, and let T* denote the number of non-zero values.
The kth. iteration now proceeds as follows:

1. Compute, recursively, for t =1,...,T"

S(=1) { Ine? ifter (12)

1
a) Ine; B (ne2)®=D ift ¢ 7

where

P q
By y(ne2)k D = gl +Z¢§’“ Sy ey (13)

=1

.

P q
~k-1) _ Tak=1)  Nk-1) =] 2
b)) =t - 4 qui D DL RN CE)
7j=1
The initial values Inez,...,In 63p+1 and ug,...,u_gy are replaced by estimates at

each iteration k.

2. Compute the approximate conditional log-likelihood ), In f(ﬂgk_l); Ez(ﬁ_l)), where

f is the univariate Gaussian density and 57 the estimate of its scale parameter,
and other quantities (e.g. the gradient and/or Hessian) needed by the numerical
o, 07,0

method to generate q/g(()k), AR and o)

Step 1.a) means the value of In € is replaced by an estimate of the conditional expectation
FE; 1(In€?) at zero locations. This estimate does not rely on any specific assumption on
the density of In 27 (say, Gaussianity), nor on the density of z;, apart from Pr(z, = 0) =0
and the existence of F(Inz?). However, it is worth noting that, at the population level,
the value E;_{(In€?) is not only the value that minimises the conditional forecast er-
ror variance, it is also the value that maximises the conditional expected log-likelihood
Ey 1 [In f(ue; 04)] at ¢ if f is the Gaussian density. In other words, if the Gaussian dis-
tribution is used as the instrumental density in a QMLE, then there is a clear link to
the EM-algorithm, where missing values are estimated by maximising the expected log-

likelihood conditional on the observed data, see Dempster et al. (1977, page 6). In Step

9



1.b) the recursion value ﬂgk_l) is, by construction, equal to 0 at the zero-locations. This

has implications for Step 2, where the symbolism ¢ € 7 means the log-likelihood only in-
cludes contributions from non-zero locations. An important practical implication of this
is that likelihood comparisons with competing models should be in terms of the average
log-likelihood with division by 7™ rather than 7. After estimation of the ARMA repre-
sentation the ARMA residuals @, at non-zero locations are used to estimate F(In z?) with
(5). Next, estimates of the log-GARCH parameters are obtained via the formulas in (4).
The algorithm we have outlined is valid for the MCAR case. However, by straightforward
modifications, i.e. replacing the log-GARCH and ARMA expressions with log-GARCH-X
and ARMA-X expressions, respectively, the algorithm can also be applied to log-GARCH-
X models when zeros occur according to the MAR scheme. In the Standard QMLE the
algorithm is not applicable. The reason for this is that an estimate of In €7 is needed as a
replacement for the missing observations in the recursion of the log-volatility specification
(6), and this is not provided by the estimator when it is interpreted as a QMLE. If the
Standard QMLE is interpreted as an ezxact MLE, however, then a similar algorithm to
the one above can be used. In that case z; is standard normal and E(In 27) = —1.27.

It is well known that both the Gaussian QMLE and the LSE produce consistent and
asymptotically normal estimates of the ARMA parameters under mild assumptions when
there are no missing values, see e.g. Hannan (1973), and Brockwell and Davis (2006
[1991]) (Francq et al. (2011), and the references therein, contain more recent and general
results). In particular, it is not required that the initial values in the recursion (11) are
equal to their true values Inej,...,Ine? .\, ug,...,u_qr1. This can be referred to as
an “irrelevance of initial values” condition. If u; denotes the ARMA error at the true
parameter values but having started at ¢ = 1 (i.e. not in the infinite past) with some
arbitrary initial values on Ine? and wu;, then the irrelevance of initial values condition
means the difference between u; and u; becomes sufficiently small in some appropriate
sense as t — oo. Heuristically, our algorithm can be viewed as repeatedly — instead of
only once — creating an initial value issue, since the true value of In€? is replaced by its
conditional expectation whenever I, = 0. In other words, whenever I; = 0, then the u; is
perturbed away from u;. This suggests zeros cannot occur too often, since — heuristically —
uy; may need sufficient time to converge back towards u; before it is perturbed away again.
Otherwise the cumulated difference may not be asymptotically irrelevant. How large
the zero-probability can be before the cumulated discrepancy becomes relevant (in some
appropriate sense), however, is not clear. The perturbation is minimal in the conditional
variance sense, since the missing values are replaced by their conditional expectations. So
a reasonable conjecture is that the probability can be sufficiently large to be of practical
interest (in daily financial data the zero-proportion is usually between 0 and 0.05). This
is certainly supported by the simulations in Section 3.

3 A Monte Carlo study

3.1 Effect of zeros

To shed light on the effect of observed zeros on parameter estimates we compare the
Standard QMLE and the Gaussian ARMA-QMLE in a simulation experiment. In the

10



experiment the DGP of return ¢; is given by the log-GARCH(1,1) specification
€ = Otlt, Zr ™~ ]ID(O, 1), In Utz = Qo + o1 In 6?71 + 51 In 0‘?717 (15)

for empirically relevant combinations of the parameters ag, a7 and 5. These combinations
are referred to as A, B and C. The zero probability is constant over time and equal to
either 0, 0.05, 0.10 or 0.20. In other words, the ZGP is random and entirely independent
of the DGP, i.e. the MCAR case (we relax this assumption in Section 3.3).

For the Gaussian ARMA-QMLE estimation is undertaken with the adjusted return

z Etif_[tzl,
et_{cif]t:O, ¢ > 0. (16)

The log-volatility specification is thus Ino? = oy + ayIné? | + By lno? . Clearly the
choice of ¢ will influence the results. In particular, among the natural choices of ¢, i.e.
values between the numerical minimum of the statistical software in question and, say,
0.1, the closer to zero, the larger the bias is likely to be in our experience. Moreover, the
closer to 0, the more often numerical issues (e.g. non-convergence) are encountered. As
an intermediate choice we therefore choose ¢ = 0.01 for the simulations. For the Standard
QMLE the zeros of observed return ¢; are simply not included in the recursion because of
the indicator function in the log-volatility specification (6). It is worth noting, however,
that this is equivalent of setting ¢ = 1 in (16). In other words, any difference in simulation
result is not only due to the estimator, but also due to the different value of c.

Table 1 contains the results, and Figures 1-2 provides a comparison with the algorithm
(see Section 3.2) for parameter combinations A and C. We do not report the graphs for
B, since they are very similar to those of C. For the Standard QMLE the effect of zeros
is straightforward: The higher the zero probability, the greater the bias, and the bias is
almost invariably equal or higher when the conditional density is fat-tailed (i.e. standard-
ised ¢(5)). The log-volatility intercept «y is biased downwards, which means volatility will
generally be biased downwards in the presence of zeros. The ARCH parameter «y, which
controls the impact of shocks on volatility, is also biased downwards. The presence of ze-
ros thus means volatility will be under-responsive to shocks. This effect is exacerbated by
the upward bias of f;, since this parameter controls the effect of the long-term component
of volatility. Finally, increasing the zero probability increases the standard errors.

For the Gaussian ARMA-QMLE the biases are generally bigger compared with the
Standard QMLE, but not always as straightforward. This is most readily seen in the
Figures. Higher zero probability means larger negative bias for both oy and «y, although
the bias is not always larger for oy when compared with those of the Standard QMLE.
For 3, the effect of zeros is more complex since the bias can change sign. Finally, also for
the Gaussian ARMA-QMLE do the empirical standard increase when the zero probability
increases, but the increase can be much bigger.

3.2 Properties of algorithm

To study the properties of the Gaussian ARMA-QMLE in combination with our algorithm
we conduct two experiments. The first is similar to the one in the previous subsection
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in that the ZGP is IID, whereas in the second the zero probability decreases over time.
Both experiments corresponds to the MCAR case, where the ZGP is entirely independent
of the DGP.

The results of the first experiment are contained in Panel 1 of Table 2, and Figures
1-2 compare the finite sample bias with those of Section 3.1. It is clear that the algorithm
corrects the bias for all three parameters. The finite sample biases increase slightly (and
more so for z; ~ t(5)) as the zero probability increases, but this is not surprising since
more observations are lost by treating zeros as missing values when the zero probability
increases. The empirical standard errors are virtually unaffected as the the zero probabil-
ity increases, which is in stark contrast to the QMLEs without the algorithm. Moreover,
the empirical standard error correspond well to their (adjusted) asymptotic counterparts.
Finally, compared with the Standard QMLE the finite sample bias is substantially smaller
for the location-parameter «y, i.e. the most important parameter in determining the level
of volatility.

In the second experiment we study the properties of our algorithm in combination
with the Gaussian QMLE when the zero probability is steadily decreasing. This is in
line with the empirical observation that the zero probability falls over time, e.gq. due
to increased liquidity and/or volume, reduced discreteness/smaller ticks, higher nominal
prices and other changes in how markets operate. As earlier we specify the DGP as a
log-GARCH(1,1) with the same parameter values as earlier, i.e. A, B and C. The ZGP is
entirely independent of the DGP, with the zero probability steadily falling according to a
dynamic logit model. Let “relative” time be given by t/T for t = 0,1,2,...,T such that
t/T € [0,1]. The ZDP is then given by the dynamic logit-model

b= po + p1 - (¢/T), (17)

where h; = In(my/mo), 71 = 1/(1 + exp(—hy)) and py = 1.9, p; = 3.4. The values of
po and p; are chosen on the basis of the empirical estimates in Section 4.2. This means
the zero-probability is given by 7y = 1 — my; = 0.130 at the beginning of the sample (i.e.
t =0), and by 7y, = 0.005 at the end (i.e. t =T).

The results are contained in Panel 2 of Table 2. On average, the zero proportion 7
produced by the ZGP given by (17) is about 0.04, and the properties of the Gaussian
ARMA-QMLE w/algorithm is therefore virtually identical to the results in Panel 1 when
mp = 0.05. The biases are corrected, and the empirical standard errors correspond well to
their (adjusted) asymptotic counterparts.

3.3 Can we condition on estimated zero-probabilities?

An X-variable of special interest is the zero-probability itself (or transformations thereof).
Of course, in empirical practice one is unlikely to have access to the true zero-probabilities.
To shed light on whether one in practice may (usefully) try to model volatility in terms of
estimated past zero-probabilities, we device an experiment where the true return depends
on (transformations of) past zero probabilities (i.e. we are in the MAR case). Specifically,
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the ZDP is given by (17), but the DGP is given by the log-GARCH(1,1)-X specification
Ino? = ag+aylne |+ Bilno? |+ Ay 1, (18)

where A = —0.1, and where the combinations of ag, a; and f3; are the same as in the pre-
vious simulations (i.e. A, B and C). The results, which are available in the supplementary
material, suggests estimates of h; as conditioning variables are capable of proxying their
true values reasonably well, even for small (in financial contexts) samples.

4 Empirical applications

This section contains two empirical applications. In the first our objective is simply to
illustrate how much volatility estimates can differ if zero-returns are not properly handled.
In the second we illustrate how a log-GARCH-X model can be exploited to shed further
light on the relationship between return volatility, observed zeros and volume.

4.1 The effect of zero-returns on volatility

We compare the difference in parameter estimates and fitted conditional standard de-
viations for six daily financial returns: The Apple and Ekornes stocks (more informa-
tion on Ekornes shortly), the Standard and Poor’s 500 stock market index (SP500), the
EUR/USD exchange rate, the WTTI oil price and the London gold price. These account
for a variety of market characteristics. For example, whereas the EUR/USD is traded
in a global market almost continuously 24-hours a day and seven days a week — possibly
with thousands of trades per second, the London Gold price is only fixed twice a day, and
presumably not on Bank holidays and in weekends. In that regard it should be noted
that we exclude weekends from our analysis for all six returns (i.e. zeros are not due to
weekends). Our interest in the Ekornes stock price return is due to its relatively large
proportion of zeros (about 19%), and the main reason for the zeros is non-trading (i.e.
a zero volume). Ekornes is a leading Nordic furniture manufacturer that is listed on the
Oslo Stock Exchange. Tt can be described as a medium-sized company in international
terms, since its market value is approximately 300 million euros at the end of the sample.
The sources of the data are Yahoo Finance (http://finance.yahoo.com/) for the Apple,
Ekornes and SP500 series, the European Central Bank (http://www.ecb.int/) for the
EUR/USD series, the US Energy Information Agency (http://www.eia.gov/) for the
WTI crude oil price (in USD) per barrel series and Kitco (http://www.kitco.com/) for
the London afternoon (i.e. PM) gold price series.

The sample dates and descriptive statistics of the returns are contained in the upper
part of Table 3. The returns exhibit the usual properties of excess kurtosis compared
with the normal, and ARCH as measured by the first order autocorrelation in the squared
return. The number of zeros varies from only 2 observations (about 0.1% of the sample)
for SP500 to 667 observations (about 19% of the sample) for Ekornes. The reasons for
each zero are likely to differ substantially both within and across markets. We do not try
to identify these reasons, since our main objective is to illustrate how the estimates and
fitted conditional standard deviations differ according to estimation method.
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The middle part of Table 3 contains the estimates of the log-GARCH(1,1) specification

€ = 0124, Ino} =ap+ailne |+ filno; |, (19)

where ¢, is the log-return in percent (i.e., the log-difference of the financial price multiplied
by 100). We use two estimators. In the first, labelled 0-adj, we replace zero returns by the
minimum of the absolute non-zero value, and then estimate with the Gaussian ARMA-
QMLE. In the second, labelled Algo, zeros are kept and then the algorithm proposed
in Section 2.3 is used in combination with the Gaussian ARMA-QMLE. Unsurprisingly,
the biggest numerical differences in the parameter estimates are produced by Ekornes
(highest number of zeros; 19% of the sample), and the smallest are produced by SP500
(only two zeros; 0.1% of the sample). The estimates of the intercept «y, which controls
the unconditional variance, are always higher for the algorithm, apart from Ekornes. This
is somewhat surprising, due to the high number of zeros for Ekornes. There clearly seems
to be some interaction with the persistence parameter [y, since it is unusually low, 0.784,
when zeros are replaced with the minimum of non-zero returns. Similarly, the algorithm
estimate of ) for Ekornes is the only one that is substantially higher (0.943). In the other
five cases the algorithm estimates are slightly lower. With respect to the estimate of the
ARCH parameter a;, which controls the short-term impact of shocks or large (in absolute
value) returns at ¢t — 1, the estimates of the algorithm are always higher — in most cases
substantially, except for Ekornes (in which it is lower). Finally, the residual diagnostic test,
a Ljung and Box (1979) test of second-order autocorrelation in the squared standardised
residuals (Z7), suggests the algorithm provides an improvement in all six cases, in the
sense that the test-statistic falls. However, the significance results do not suggest that
a plain log-GARCH(1,1) specification is fully adequate. In all but one case (Gold) is
the null of no second-order autocorrelation rejected at the usual significance levels. We
explore possible reasons in relation with the estimates of the asymmetric models (below).

Descriptive statistics of the fitted conditional standard deviations are contained in
Table 4, and graphs of their ratios are contained in Figure 3. They clearly suggest that
estimation method can matter a lot, both nominally and in relative terms. For example,
for Apple the algorithm yields fitted conditional standard deviations that are up to 2.15
times higher, and the maximum nominal difference is 1.9. Such differences can make a
huge difference in risk analysis and asset pricing. The Apple graphs also reveals what
seems to be an inverse tendency. In the beginning of the sample the algorithm produces
higher fitted conditional standard deviations. However, this is reversed in the second
part of the sample. A possible reason is that there are fewer zeros in the second part
of the sample (see the graph of I, in Figure 4). For most returns the average fitted
conditional standard deviation is higher for the algorithm. The only case where the
average difference is not positive is oil. There, the average is negative, but very close
to zero (—0.008). The ratio graph, however, clearly shows that, in relative terms, the
algorithm occasionally produce values that are up to 66% higher. So, all in all, the
comparison of fitted conditional standard deviations show that the algorithm generally
produces higher values, and sometimes much higher.

Financial returns often exhibit asymmetry (i.e. leverage). To explore the effect of
zeros on asymmetry we also estimate a log-GARCH(1,1) specification with an asymmetry
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term equivalent to that of Francq et al. (2013). Specifically, for each of the six returns we
estimate

€ = 0424, Ino? =ag+ailne |+ BiIno? |+ A(In 6?,1)1{&,1@}, (20)

where I, <oy is and indicator function equal to 1 at ¢ if ¢, < 0, and 0 otherwise.'® We use
the same estimation procedures as in the symmetric case above. The estimation results
are contained in bottom part of Table 3, and they show that the differences between the
0-adj and Algo estimates are almost identical to the symmetric case: In all but one case
(Ekornes) is the intercept estimate @y equal to or higher for Algo, in all but one case
(Ekornes) is the ARCH estimate a; higher for Algo, and in all but one case (Ekornes)
is the GARCH estimate Bl lower for Algo. As to whether there is asymmetry or not,
approximate tests can be conducted by using the approximate standard errors. In the
Algo case, the t-ratios (in absolute value) for Apple, Ekornes and Oil are 3.83, 4.67 and
2.71, respectively. This suggests these returns exhibit asymmetry. For the other three
return series the t-ratios (in absolute value) are 1.67 or lower. In the 0-adj case, only
Ekornes and Oil exhibit asymmetry (¢-ratios of 2.52 and 3.00, respectively), as the t-ratios
of the others are 1.67 or lower in absolute value. The parameter estimates for EUR/USD
can be compared with those of Francq et al. (2013). Re-parametrised for comparison,
the latter’s estimates are: ay = 0.024, a; = 0.027, Bl = 0.971 and Xl = —0.011. That
is, closer to the estimates of Algo than those of 0-adj in nominal terms. Finally, just
as in the symmetric case, the test statistics for second order ARCH in the standardised
residuals Z; are better (i.e. lower) for Algo. However, even though the asymmetry term
appears to improve the diagnostics in several cases, the null of no ARCH is still rejected
at usual significance levels for Apple, Ekornes, SP500 and Oil (EUR/USD is at the border
with a p-value of 10%). This may be due to structural breaks, or the fact that we have
not mean-corrected returns (zeros disappear if we mean-correct), or that a higher order
log-GARCH specification is needed. Another possibility is that the diagnostic test we use
has not been adequately modified to handle missing values (observations containing zeros
are removed).

A comparison of the fitted conditional standard deviations reveals that they are very
similar to the symmetric case. Accordingly, we do not report these, but they are available
in the supplementary material.

4.2 Apple: Return volatility, zeros and volume

The proportion of observed zeros changes over time. Including past zero probabilities
(and/or transformations thereof) and other variables to the X-vector in a log-GARCH-X
model enables us therefore to study the impact on volatility in more detail. Here, we

10The stability condition is more complicated in the asymmetric case, see Francq et al. (2013). Specif-
ically, in our parametrisation, under the assumption that a;,3; > 0, the condition is |a; + A1y, <oy +
Br|FrE>0) oy — A Iy, sop 4 B[P FTE>0 < 1) where Ay = (a14 —ai_), I{y, <o} is an indicator variable
equal to 1 if A\; < 0 and 0 otherwise, and Iy, -0} is an indicator variable equal to 1 if A\; > 0 and 0
otherwise. All the models in the bottom panel of Table 3 satisfy this condition under the assumption
that the density of z; is symmetric (i.e. Pr(z; > 0) = 1/2).
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illustrate this by a simple case study of the Apple stock return.

Figure 4 contains graphs of the Apple stock price, return, I; (i.e. I; = 0 means
return is zero on day t), volume (in USD) and log-volume. The graph of I, clearly shows
that the occurrence of zeros is less likely towards the end of the sample. Similarly, the
volume graph reveals that volume is higher in the second half of the sample, and the
price graph reveals that the nominal price is increasing over the sample. To shed light on
whether the increase in volume or nominal price is indeed one of the reasons for the fall
in zero-probability, we estimate the four dynamic logit models

hy = po,

he = po+p1-(t/T),
hy = po+p1InV,
hi = po+p1lnkp,

(
(
(
(
where h; = In(my /7o) and my = 1/(1 + exp(—ht)). In the first the zero-probability
is constant, in the second the zero-probability is determined by a time-trend, in the
third volume determines the zero-probability, whereas in the fourth the nominal price
P; determines the zero probability. To recall, the last model is motivated by the fact
that higher (nominal) prices often results in fewer zeros than when an asset is low-priced
for the same tick-size. Table 5 contains the estimation results. The latter three models
produce a substantially higher log-likelihood than the first, and among the latter three the
log-likelihood of the volume-model is slightly higher. This can be interpreted to suggest
that increased volume rather than discreteness (i.e. fewer zero due to higher nominal
prices) is the main reason for the downwards trend in the zero probability.

To shed light on whether zeros and volume have an effect on volatility, we estimate
four volatility models that are all contained in

Ino? =ay+ailneé |+ B lno? | + M\ (ln 6?71)[{€t—1<0} +XoInViy + Xl + /\4ﬁt_1,
(25)

where &y are the fitted values of (23). We use the Gaussian ARMA-QMLE in combination
with the algorithm proposed in Section 2.3, and Table 6 contains the estimation results.
Unsurprisingly, the constant volatility model has a much smaller log-likelihood than the
three other models, and fares worse according to the Schwarz (1978) Information Criterion
(BIC). Maybe somewhat surprisingly, however, is that the lags of InV;, I, and Et do
not improve the fit in terms of BIC compared with the asymmetric log-GARCH(1,1).
(The reason the log-likelihoods are lower for the last two specifications even though they
contain more terms, is that the comparison is in terms of ), In f(e;5;) rather than
the log-likelihood of the ARMA-X representation, d.e. ), In f(u;0,), where f is the
normal density.) Also, the standard errors are high relative to the parameter estimates,
so approximate f{-tests with nulls Ay = 0, A3 = 0 and Ay = 0 do not reject at usual
significance levels. All in all, then, this simple analysis does not suggest past volume nor
past zeros or zero probabilities have an effect on volatility.
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5 Conclusions

We propose an estimation procedure for log-GARCH models that is asymptotically unbi-
ased in the presence of zero returns, as long as there are not too many zeros. The algorithm
relies on estimation via the ARMA representation, so it is not available for the Standard
QMLE of Francq et al. (2013). The estimation procedure we propose distinguishes be-
tween true and observed return, and rests on the assumption that the true return is equal
to zero with zero probability. This is compatible with observed return being zero due
to missing values, non-trading, certain types of rounding or discreteness approximation
error, impulse dummies in the mean specification to neutralise jumps or “outliers” and
other data issues. In our framework zeros may occur non-randomly, randomly, or due to a
combination of both. The zero probability can be time-varying, and volatility can depend
on past zeros and zero probabilities. However, our framework is not guaranteed to be valid
if the occurrence of a zero depends contemporaneously on the value of the de-volatilised
return. Monte Carlo simulations show that volatility is generally underestimated when
zeros are present if our algorithm is not used, and that our algorithm corrects the bias
with the empirical standard errors corresponding well to their asymptotic counterparts.
The empirical illustrations confirm that volatility is generally underestimated when zeros
are present, and that the impact of shocks on volatility is underestimated in the presence
of zeros. In practice this means the fitted conditional standard deviations are generally
underestimated — sometimes substantially. Moreover, even when the average difference
between risk-estimates is small, the day-to-day differences can be very large. Finally, a
case study of Apple return, whose zero-probability has been steadily decreasing, suggests
volatility does not depend on past zeros, nor on past zero-probabilities or the level of
volume.

The results in this paper may be extended in several ways. First, if zeros are the result
of measurement error of a true return whose zero probability is zero, then this also leads
to biased estimates for other ARCH models, e.g. the GARCH of Bollerslev (1986), the
EGARCH of Nelson (1991) and the Beta-t-EGARCH model of Harvey (2013). Estimation
procedures in combination with an algorithm similar to the one we have proposed here
can be used in all three classes. Second, the ideas in this paper can be used to develop
an estimator in which the zero probability is truly non-zero, by appropriately scaling the
return. This is pursued in Sucarrat and Grgnneberg (2016).
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Table 1: The Standard QMLE and the Gaussian ARMA-QMLE when zero returns are replaced by ¢ > 0 (see Section 3.1)

Standard QMLE: Gaussian ARMA-QMLE:
(D DGP 51) 0 m(&o)  se(&o) m(&1) se(d1) m(B1)  se(B1) m(é&o)  se(&o) m(&1) se(d1) m(B1)  se(B1)
s ap,ar,B

N(0,1): A: 0, 0.10, 0.80 0.00 -0.001 0.009 0.100 0.004 0.799 0.011 -0.003 0.015 0.100 0.007 0.798 0.017
0.05 -0.020 0.010 0.097 0.005 0.807 0.012 -0.019 0.018 0.071 0.007 0.826 0.021

0.10 -0.040 0.012 0.094 0.005 0.813 0.013 -0.033 0.023 0.055 0.007 0.843 0.025

0.20 -0.076 0.015 0.089 0.005 0.826 0.013 -0.195 0.579 0.034 0.010 0.767 0.403

B: 0, 0.05, 0.90 0.00 -0.001 0.006 0.050 0.003 0.899 0.008 -0.001 0.010 0.050 0.005 0.899 0.012
0.05 -0.011 0.007 0.048 0.004 0.903 0.009 -0.012 0.014 0.036 0.005 0.912 0.016

0.10 -0.020 0.008 0.047 0.004 0.907 0.009 -0.035 0.182 0.028 0.005 0.908 0.140

0.20 -0.039 0.011 0.044 0.004 0.913 0.010 -0.225 0.662 0.018 0.007 0.797 0.450

C: 0, 0.03, 0.95 0.00 -0.001 0.005 0.030 0.002 0.949 0.005 -0.002 0.008 0.030 0.004 0.949 0.007
0.05 -0.007 0.006 0.028 0.002 0.952 0.005 -0.007 0.010 0.023 0.004 0.955 0.009

0.10 -0.013 0.007 0.027 0.003 0.955 0.005 -0.014 0.117 0.019 0.004 0.958 0.061

0.20 -0.024 0.009 0.025 0.003 0.959 0.006 -0.138 0.600 0.013 0.005 0.906 0.286

t(5): A: 0, 0.10, 0.80 0.00 -0.002 0.019 0.100 0.008 0.798 0.019 -0.002 0.018 0.100 0.007 0.798 0.017
0.05 -0.026 0.021 0.095 0.007 0.807 0.018 -0.021 0.022 0.076 0.007 0.822 0.020

0.10 -0.048 0.024 0.091 0.008 0.815 0.021 -0.038 0.026 0.061 0.007 0.836 0.023

0.20 -0.091 0.029 0.084 0.008 0.828 0.023 -0.080 0.156 0.042 0.007 0.847 0.093

B: 0, 0.05, 0.90 0.00 -0.001 0.015 0.050 0.006 0.899 0.015 -0.002 0.013 0.050 0.005 0.898 0.013
0.05 -0.015 0.017 0.048 0.006 0.902 0.017 -0.013 0.016 0.038 0.005 0.910 0.014

0.10 -0.026 0.019 0.046 0.006 0.906 0.017 -0.024 0.020 0.031 0.005 0.916 0.018

0.20 -0.048 0.023 0.042 0.007 0.913 0.019 -0.083 0.317 0.021 0.006 0.900 0.182

C: 0, 0.03, 0.95 0.00 -0.001 0.012 0.030 0.004 0.949 0.009 -0.002 0.010 0.030 0.004 0.949 0.007
0.05 -0.010 0.012 0.028 0.004 0.953 0.009 -0.007 0.012 0.024 0.004 0.954 0.008

0.10 -0.018 0.015 0.026 0.004 0.955 0.009 -0.016 0.140 0.021 0.004 0.956 0.059

0.20 -0.031 0.020 0.023 0.004 0.959 0.011 -0.175 0.795 0.015 0.005 0.901 0.314

DGP, In o't2 =ag+ailn 6?71 + 81 lnat271 with z¢ ~ ITD(0,1) and T' = 10000. N (0, 1), z¢ is standard normal. ¢(5), 2z; is standardised ¢t with 5 degrees of freedom. ID,
parameter identifier (i.e. A, B or C). 7, the zero probability associated with Iy ~ IID, I; € {0,1}. Standard QMLE, zeros replaced with ¢ = 1. Gaussian ARMA-QMLE,
zeros replaced with ¢ = 0.01. m(-), sample average of estimates. se(-), sample standard deviation of estimates (division by S, not by S — 1, where S = 1000 is the number

of Monte Carlo simulations). All computations in R, see R Core Team (2015). Simulations and estimation with the lgarch package version 0.5, see Sucarrat (2014).
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Table 2: The Gaussian ARMA-QMLE w/algorithm in the presence of zeros (see Section 3.2)

Panel 1 (It ~ IID, 7o = Pr(I; = 0)):

( DGP 1) T m(ag) se(ap) m(aj) se(aq) ase(ay) m(B1) se(B1) ase(fB1) m(E‘(lnz?) se(E(lnztz) ase(E(lnz?)
ID: ap, 1,81
N(0,1): A: 0, 0.10, 0.80 0.00 -0.003 0.015 0.100 0.007 0.007 0.798 0.017 0.017 -1.270 0.018 0.017
0.05 0.000 0.014 0.101 0.007 0.007 0.797 0.017 0.017 -1.274 0.017 0.018
0.10 0.003 0.015 0.102 0.008 0.007 0.796 0.018 0.018 -1.277 0.018 0.018
0.20 0.007 0.015 0.105 0.008 0.008 0.794 0.020 0.019 -1.286 0.019 0.019
B: 0, 0.05, 0.90 0.00 -0.001 0.010 0.050 0.005 0.005 0.899 0.012 0.013 -1.270 0.017 0.017
0.05 -0.001 0.011 0.050 0.006 0.005 0.898 0.014 0.013 -1.272 0.017 0.018
0.10 0.000 0.011 0.051 0.006 0.005 0.898 0.015 0.013 -1.272 0.019 0.018
0.20 0.003 0.011 0.052 0.006 0.006 0.897 0.015 0.014 -1.277 0.020 0.019
C: 0, 0.03, 0.95 0.00 -0.002 0.008 0.030 0.004 0.004 0.949 0.007 0.007 -1.270 0.017 0.017
0.05 -0.002 0.009 0.031 0.004 0.004 0.948 0.008 0.007 -1.272 0.018 0.018
0.10 -0.001 0.009 0.031 0.004 0.004 0.948 0.008 0.008 -1.273 0.018 0.018
0.20 0.000 0.009 0.032 0.005 0.004 0.947 0.009 0.008 -1.275 0.019 0.019
t(5): A: 0, 0.10, 0.80 0.00 -0.002 0.018 0.100 0.007 0.007 0.798 0.017 0.017 -1.568 0.027 0.028
0.05 0.000 0.019 0.101 0.007 0.007 0.797 0.018 0.017 -1.572 0.030 0.028
0.10 0.002 0.019 0.103 0.008 0.007 0.795 0.018 0.018 -1.575 0.028 0.029
0.20 0.009 0.019 0.105 0.009 0.008 0.795 0.020 0.019 -1.582 0.031 0.031
B: 0, 0.05, 0.90 0.00 -0.002 0.013 0.050 0.005 0.005 0.898 0.013 0.013 -1.568 0.027 0.028
0.05 -0.001 0.013 0.051 0.005 0.005 0.897 0.014 0.013 -1.568 0.033 0.028
0.10 0.000 0.013 0.051 0.006 0.005 0.897 0.014 0.013 -1.571 0.029 0.029
0.20 0.001 0.014 0.052 0.006 0.006 0.896 0.015 0.014 -1.575 0.029 0.031
C: 0, 0.03, 0.95 0.00 -0.002 0.010 0.030 0.004 0.004 0.949 0.007 0.007 -1.567 0.027 0.028
0.05 -0.002 0.010 0.030 0.004 0.004 0.949 0.008 0.007 -1.569 0.029 0.028
0.10 -0.002 0.010 0.031 0.004 0.004 0.948 0.008 0.008 -1.569 0.029 0.029
0.20 0.000 0.011 0.032 0.004 0.004 0.947 0.008 0.008 -1.574 0.031 0.031
Panel 2 (hy =1.943.4-(t/T)):
(D DGP 51) E0) m(éo) se(éo) m(éq) se(d1) ase(&1) m(B1) se(B1) ase(f1) m(E(In z?) se(E(In ztz) ase(E(In z?)
P ap,«1,P1
N(0,1): A: 0, 0.10, 0.80 0.040 0.000 0.014 0.101 0.007 0.007 0.797 0.017 0.017 -1.274 0.018 0.017
B: 0, 0.05, 0.90 0.039 -0.001 0.010 0.050 0.005 0.005 0.898 0.013 0.013 -1.272 0.017 0.017
C: 0, 0.03, 0.95 0.039 -0.002 0.009 0.030 0.004 0.004 0.949 0.008 0.007 -1.270 0.017 0.017
t(5): A: 0, 0.10, 0.80 0.040 0.000 0.018 0.101 0.007 0.007 0.798 0.017 0.017 -1.569 0.031 0.028
B: 0, 0.05, 0.90 0.040 -0.002 0.013 0.051 0.005 0.005 0.898 0.013 0.013 -1.569 0.029 0.028
C: 0, 0.03, 0.95 0.040 -0.002 0.011 0.031 0.004 0.004 0.948 0.008 0.007 -1.567 0.028 0.028

DGP, In a't2 =ap+ailn 6?71 + B1 In 0?71 with z; ~ IID(0,1) and T' = 10000. N (0, 1), z¢ is standard normal with E(ln th) ~ —1.27 and Va/r’(zt2 —In z?) = 2.93. t(5),

z¢ is standardised ¢ with 5 degrees of freedom, and with E(In z?) =~ —1.57 and Va.r(zt2 — In z?) = 7.63. ID, parameter identifier (i.e. A, B or C). In Panel 2, 7g is the

average proportion of zeros. m(-), sample average of the Monte Carlo estimates. se(-), sample standard deviation of the Monte Carlo estimates (division by S, not by

S — 1, where S = 1000 is the number of Monte Carlo simulations). ase(z), asymptotic standard error of z, computed as /av(z)/VT*, where av(z) is the asymptotic

variance of z, T* = (1 — mp)T in Panel 1 and T*

Davis (2006, pp. 259-260), whereas av(£(ln 22))

(Sucarrat (2014)) under R, see R Core Team (2015).

= (1 — #9)T in Panel 2. The expressions of av(&1) and av(B31) are based on the ARMA(1,1) formulas in Brockwell and

= Var(zt2 —In ziz) is derived in Sucarrat et al. (2016). Simulation and estimation with the lgarch package version 0.5



Table 3: Descriptive statistics and log-GARCH estimates of six daily financial returns (see Section
4.1)

Descriptive statistics:

Sample s ARCH,(r}) pwal T 0s o
Apple 10/9/1984 — 23/8/2013  55.03 7.11 0.01 7303 294 0.040
Ekornes 4/1/2000 — 26/8/2013  10.32  54.00 0.00 3546 667 0.188
EUR/USD 5/1/1999 — 18/1/2012 5.44 139.39 0.00 3343 27 0.008
SP500 5/1/1999 — 23/8/2013 10.30 143.07 0.00 3684 2 0.001
Oil 5/4/1983 — 19/8/2013 18.80 160.58 0.00 7621 73 0.010
Gold 4/1/2006 — 23/8/2013 7.29 10.94 0.00 1929 20 0.010

Log-GARCH(1,1):

Qo a1 se(ay) o1 se(81) ARCH> p-val

Apple 0-adj 0.034 0.014 0.003 0.983 0.005 64.7 0.00
Algo 0.048 0.029 0.004 0.967 0.005 19.2 0.00

Ekornes 0-adj 0.374 0.087 0.016 0.784 0.059 42.1 0.00
Algo 0.074 0.047 0.011 0.943 0.016 15.6 0.00

EUR/USD 0-adj 0.024 0.020 0.004 0.973 0.006 7.3 0.03
Algo 0.025 0.022 0.005 0.971 0.007 7.9 0.02

SP500 0-adj 0.070 0.045 0.006 0.946 0.008 61.8 0.00
Algo 0.071 0.046 0.006 0.946 0.008 99.4 0.00
Oil 0-adj 0.074 0.043 0.004 0.951 0.005 87.0 0.00
Algo 0.075 0.046 0.004 0.948 0.005 76.6 0.00
Gold 0-adj 0.055 0.029 0.006 0.959  0.009 0.8 0.68

Algo 0.058 0.033 0.006 0.956 0.009 0.6 0.75

Log-GARCH(1,1) w/asymmetry:
Qo ay se(ay) B se(B) M se(\1) ARCH,(z}) p-val

Apple 0-adj 0.042 0.015 0.004 0.978 0.008 0.007 0.005 47.1 0.00
Algo 0.047 0.016 0.005 0.968 0.006 0.023  0.006 21.0 0.00
Ekornes 0-adj 0.340 0.066 0.017 0.793 0.057 0.063  0.025 314 0.00
Algo 0.034 0.007 0.008 0.973 0.009 0.042 0.009 15.0 0.00
EUR/USD 0-adj 0.023 0.024 0.005 0.973 0.006 -0.008 0.006 4.6 0.10
Algo 0.023 0.026 0.006 0.971 0.007 -0.010 0.006 4.6 0.10
SP500 0-adj 0.068 0.037 0.007 0.948 0.008 0.015 0.009 99.1 0.00
Algo 0.069 0.039 0.007 0947 0.008 0.013  0.009 57.4 0.00
0il 0-adj 0.072 0.032 0.005 0.952 0.005 0.021  0.007 80.2 0.00
Algo 0.072 0.035 0.005 0.950 0.005 0.019 0.007 77.9 0.00
Gold 0-adj 0.055 0.028 0.008 0.959 0.009 0.004 0.012 0.8 0.68
Algo 0.058 0.036 0.008 0.956 0.009 -0.006 0.012 0.5 0.77

s, sample kurtosis. ARCHy,(z) and p-val, Ljung and Box (1979) test statistic for kth. order autocor-
relation in x and its p-value. T', number of returns. Os, number of zero returns. 7y, proportion of zero
returns. 0O-adj, zero returns replaced by the minimum of the absolute non-zero value before estimation.
Algo, estimation with algorithm (i.e. zeros not replaced, but treated as missing values). se(-), standard
error of estimate (based on the numerically estimated Hessian of the ARMA representation). All
computations in R, see R Core Team (2015). Estimation with the lgarch package version 0.5 (Sucarrat
(2014)) using the Gaussian ARMA-QMLE.
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Table 4:
Section 4.1)

Descriptive statistics of fitted conditional standard deviations (see

Apple: SP500:
Mean s° Max Min Mean s> Max Min
0-adj 297 0.75 6.35 1.51 1.19 0.33 4.73 0.44
Algo 299 080 6.17 1.10 1.19 0.33 4.77 0.43
Diff 0.01 036 190 -1.09 0.00 0.00 0.39 -0.01
Ratio 1.02 0.06 2.14 0.63 1.00 0.00 1.36 0.99
Ekornes: Oil:
Mean s? Max Min Mean s> Max Min
0-adj 236 022 5.28 1.30 220 097 7.53 041
Algo 257 039 547 1.35 2.19 090 7.42 043
Diff 0.21 0.27 3.23 -0.93 -0.01 0.02 1.04 -0.22
Ratio 1.10 0.06 2.61 0.66 1.01 0.01 166 0.94
EUR/USD: Gold:
Mean s> Max Min Mean s> Max Min
0-adj 0.66 0.02 1.19 0.36 1.32 0.10 2.58 0.72
Algo 0.66 0.02 1.19 0.37 1.33 0.12 288 0.67
Diff 0.00 0.00 0.08 -0.03 0.01 0.01 048 -0.07
Ratio 1.00 0.00 1.16 0.95 1.00 0.00 1.26 0.92

Mean, sample average. s>

mum value.

, sample variance. Max, maximum value. Min, mini-

Diff, the difference between fitted conditional standard deviations:

Ot,Algo — Ot0-adj- Ratio, the ratio between fitted conditional standard deviations:

Ot ,Algo/0¢,0-aj- All computations in R, see R Core Team (2015).

Table 5:  Models of the zero probability of daily Apple returns (see Section 4.2)

Model Do se(po) p1 se(p1) k LogL BIC

hy = po 3.171 0.060 - - 1 -1232.465 0.3387
hi = po+p1-(t/7T) 1.870 0.094 3.437 0.263 2 -1123.887 0.3102
hi =po+p1InV; -16.081 1.374 1.212 0.088 2 -1122.887 0.3100
hy =po + p11n P, 1.230 0.156 0.808 0.072 2 -1134.604 0.3132

Dynamic logit models where m; = 1/(1 + exp(—h¢)), he

In(mi¢/moe), Vi is the

traded volume in USD and P; is the stock price. se(-), standard error of estimate

(computed as the square root of the diagonal of -H —! where H is the numerically

estimated Hessian). Estimation by maximum likelihood. k, number of parameters.
LogL, the attained log-likelihood. BIC, the Schwarz (1978) information criterion
computed in terms of the average log-likelihood LogL/T. All computations in R,

see R Core Team (2015).
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Table 6: Models of Apple stock return volatility (see Section 4.2)

Model a() &1 Bl )\1 )\2 )\3 )\4 LOgL* BIC

(s.e.) (s.e.) (s.e.) (s.e.) (s.e.) (s.e.)

1 2.266 - - - - - - -17885.217  5.105

2 0.047 0.016 0.968 0.023 - - - -17237.252  4.924
(0.005)  (0.005)  (0.006)

3 0.080 0.017 0.967 0.023 —0.002 - - -17243.879  4.927
(0.005)  (0.005)  (0.006)  (0.001)

4 5.723 0.017 0.967 0.023 —0.428 0.011 0.351 -17242.810 4.929

(0.005)  (0.006)  (0.006) (0.782)  (0.029)  (0.601)
Gaussian ARMA-QML estimates w/algorithm of specifications contained in

Ino? = ap + arlnel | + Blno? | + M InVi g + Aoly 1 + Agﬁt,l. se(+), standard
error of estimate (based on the numerically estimated Hessian of the ARMA representa-

tion). LogL*, log-likelihood computed as ), In f(e;;0¢), where f is the normal density,
0y is the fitted conditional standard deviation and 7 is the set of non-zero locations. BIC,
Schwarz (1978) information criterion computed in terms of the average log-likelihood
LogL*|T*, where T* is the number of non-zero returns. Estimation in R (R Core Team
(2015)) with the 1garch package version 0.5, see Sucarrat (2014).
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Figure 1: Bias (estimate — true value) of three estimators for parameter combination A,
see Sections 3.1 and 3.2
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Figure 2: Bias (estimate — true value) of three estimators for parameter combination C,
see Sections 3.1 and 3.2
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from 10 September 1984 to 23 August 2013 (7' = 7303 observations), see Section 4.2
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