# MPRA <br> Munich Personal RePEc Archive 

# Temptation and the efficient taxation of education and labor 

Bethencourt, Carlos and Kunze, Lars

18 November 2016

Online at https://mpra.ub.uni-muenchen.de/75141/
MPRA Paper No. 75141, posted 20 Nov 2016 09:28 UTC

# Temptation and the efficient taxation of education and labor ${ }^{* \dagger}$ 

Carlos Bethencourt ${ }^{\ddagger}$ and Lars Kunze ${ }^{\S}$

November 2016


#### Abstract

This paper studies efficient tax policies in Ramsey's tradition when consumers face temptation and self control problems in inter-temporal decision making. We embed the class of preferences developed by Gul and Pesendorfer into a simple two-period life-cycle model and show that education should be effectively subsidized if the elasticity of the earnings function is increasing in education and if temptation problems are sufficiently severe. By contrast, if temptation problems are not sufficiently severe, efficient education policy calls for taxing education. Moreover, efficient labor taxation calls for subsidizing qualified labor if the strength of temptation is sufficiently large.


Keywords: temptation, self control, second-best efficient taxation, inverse elasticity rule, education policy

JEL-Classification: D91, H21, I28, J24

## 1 Introduction

Individuals face self control problems and temptation in inter-temporal decision making. The analysis of these phenomena has recently received much attention in both the experimental and theoretical literature ${ }^{1}$. Many experimental studies, for example, have documented preference reversals for inter-temporal choices (see Frederick et al. (2002) for an overview). Specifically, if subjects are asked to choose between a large and delayed reward and a smaller immediate one, they tend to prefer the latter whereas for two delayed rewards subjects are more likely to prefer the later and larger one. Provided that the subjects' preferences are stationary, this evidence implies that the same inter-temporal trade-off is resolved differently depending on when the decision is implemented (on what date the reward is received). From a theoretical point of

[^0]view, Gul and Pesendorfer (2001, 2004, 2005) introduce a new class of utility function which may explain preference reversals over time using time consistent preferences ${ }^{2}$. More precisely, to model temptation and self control problems, the utility function by Gul and Pesendorfer consists of two parts: a commitment utility and a temptation utility. While the first part measures individual preferences on actual consumption choices, the second one measures the preference on consumption that would have been chosen had the individual succumbed to temptation. The individual's actual choice is then a compromise between the commitment utility and the cost of self control, resulting from deviations from the temptation utility. As a result, the presence of temptation biasses individuals' choices towards current consumption which, in turn, implies that they over-discount the future.

The aim of the present paper is to study optimal tax policies using the preference representation by Gul and Pesendorfer. More specifically, the present paper extends the inverse elasticity rule of optimal taxation, being usually attributed to Ramsey (1927), when individuals face temptation and self control problems in inter-temporal decision making. In a first step, we study efficient education policies. To do so, we set up a simple two-period life-cycle model of a representative taxpayer who has to make a static decision on education, saving, and labor in both the first period (non-qualified labor) and the second period (qualified labor). Education causes a monetary cost and, as it takes time, a cost in the forgone income earned by non-qualified labor. The source of temptation (the need for immediate gratification) is to over-discount the future. It reduces individual's incentive to save, to invest into education and to have high levels of future consumption. Hence, the agent is over-consuming, under-saving and under-investing in eduction in the first period of life.

Recently, Richter (2009, 2011) has shown how the inverse elasticity rule extends to the context of efficient education policy: Education should effectively be subsidized if the elasticity of the earnings function is increasing in education. ${ }^{3}$ The present paper qualifies this conclusion and shows that it only holds if self control problems are sufficiently severe. Then, the effect of temptation is to increase effective subsidization of education relative to non-qualified labor provided the social costs of taxation are large. By contrast, if self control problems are not too

[^1]severe, efficient education policy calls for taxing education. ${ }^{4}$
The rationale behind this result is the following. The cost of self control is defined as the difference between the temptation utility of the 'most tempting option', i.e. the utility of the preferred consumption choice of an individual exerting no self control when it comes to intertemporal decision making, and the temptation utility of the chosen option. Since the temptation utility of the 'most tempting option' is independent of individuals' decisions, they will always suffer from a (non-controllable) loss of utility. Consequently, a welfare-maximizing planner trades off the following objectives: Maximization of the social ability rent, minimization of the efficiency loss resulting from distorted choices of the utility-generating quantities (standard optimal taxation targets) and the efficiency gains resulting from reductions in the cost of self control (temptation target). While the first two targets are addressed by classic optimal taxation criteria, the temptation target works differently: In the present framework the social planner can reduce the cost of self control by transferring resources from the first period to the second one, e.g. by taxing current labor in the first period and, simultaneously subsidizing consumption (and/or saving or education) in the second one. Specifically, taxing income in the first period makes the value of the agent's choices worse, but since agents are over-consuming and under-investing in education, they may also benefit from reductions in their cost of self control. In particular, the tax can make over-consumption/under-investing less attractive, thereby reducing the temptation. If this effect is large enough, a tax on current labor makes the agent better off.

More precisely, we show that the size of the reduction in the cost of self control depends on two offsetting mechanisms: First, a tax on non-qualified labor reduces earnings and consumption, implying a low level of both the temptation utility of the most tempting option and the temptation utility of the chosen option. Second, it affects individuals' labor supply decisions: A decrease in the share of time spent working lowers individuals' disposable income and thus consumption but also reduces the disutility of labor (for both the temptation utility of the most tempting and the chosen option) which, in turn, moderates the utility losses resulting from the first mechanism. ${ }^{5}$ As individuals smooth consumption over their life-cycle, the total reduction of the temptation utility of the 'most tempting option' will always be larger than the reduction of the temptation utility of the chosen option. Hence, the cost of self control declines, thereby

[^2]increasing individuals' welfare. However, the strength of this latter effect depends on the sensitivity of labor supply to the tax rate and so, on the size of the reduction in earnings due to changes in labor supply. We show that if the elasticity of the marginal disutility of non-qualified labor, i.e. the reciprocal of the wage elasticity, is sufficiently small, then the self control cost reduction is small as well. This would increase the incentive of the social planner to subsidize consumption in the second period and so, to subsidize education. By contrast, education should effectively be taxed if the elasticity of the marginal disutility of non-qualified labor is sufficiently large and the cost of self control decreases substantially.

Summarizing, the presence of temptation does affect the design of efficient education policies and results critically depend on how taxation affects the cost of self control.

In a second step, we derive an extended inverse elasticity rule for the efficient taxation of labor. Again, efficient taxation should increase second period consumption by subsidizing second period labor supply if the strength of temptation is sufficiently strong. The intuition behind this finding is that a subsidy to second period consumption lowers the attractiveness of temptation and thus the welfare loss implied by the cost of self control.

The present paper is related to a growing literature on optimal policy design in the presence of temptation: Kumru and Thanopoulos $(2008,2011)$ and Kumru and Tran (2012) study the normative implications of funded and unfunded public pension programmes ${ }^{6}$ whereas Krusell et al. (2010) and Bishnu and Wang (2013) examine optimal taxation of capital. These studies have demonstrated that temptation issues may play a crucial role in the design of optimal policies. For example, using a neoclassical growth model, Krusell et al. (2010) have shown that the optimal policy in this framework is to subsidize savings when consumers are tempted by impatience. Thus, a subsidy on savings can be used as an instrument to improve welfare because it makes surrender to temptations less attractive. ${ }^{7}$ Similarly, the present paper highlights the

[^3]role of temptation for efficient tax policies when two simultaneous inter-temporal decisions are subject to temptation, namely savings and educational investments.

This paper is structured as follows. Section 2 sets up the model. Section 3 extends the elasticity rule for education and labor taxation when consumers face self control problems. Section 4 shortly concludes.

## 2 A Representative-Household Model

### 2.1 Preferences and Temptation

We start by briefly describing the time consistent model of temptation provided by Gul and Pesendorfer (2004). More precisely, they propose a simple two-period model where, in the first period, the agent takes an action that affects the set of alternatives available in the second period. Thus, in period 2, the agent must pick a consumption alternative from the set determined in period 1.

The model takes as given a preference relation over sets of consumption lotteries. Let $c \in C, p$ and $B$ denote consumption in the second period, a consumption lottery and a set of consumption lotteries, respectively. Gul and Pesendorfer (2004) show that under standard axioms of preferences and the assumption of set betweenness, there are two von NeumannMorgenstern utility functions $u($.$) and v($.$) such that the expected utility of B$ is defined as

$$
\begin{equation*}
U(B)=\max _{p \in B} \int(u(c)+v(c)) d p-\max _{p \in B} \int v(c) d p \tag{1}
\end{equation*}
$$

The function $u($.$) represents the agent's ranking over alternatives when she is committed to$ a single choice, whereas her welfare is affected by the temptation utility represented by the function $v($.$) when she is not committed to a single choice (note that the v$-terms in the above formula drop out when $B$ is a singleton). However, if the choice set $B$ consists of two elements, i.e., $B=\left\{c, c^{\prime}\right\}$, with $u(c)>u\left(c^{\prime}\right)$ and $v\left(c^{\prime}\right)>v(c)$, and the following inequality holds

$$
\begin{equation*}
u\left(c^{\prime}\right)+v\left(c^{\prime}\right)>u(c)+v(c), \tag{2}
\end{equation*}
$$

then $c^{\prime}$ is called a temptation. In this case, the agent succumbs to the temptation and chooses
$c^{\prime}$ in the second period. She had wished having $c$ as the only available alternative. Similarly, if

$$
\begin{equation*}
u(c)+v(c)>u\left(c^{\prime}\right)+v\left(c^{\prime}\right) \tag{3}
\end{equation*}
$$

$c^{\prime}$ is still a temptation. In this case, however, the agent exercises self-control: she chooses $c$ in the second period but incurs a loss of utility, i.e. $v\left(c^{\prime}\right)-v(c)>0$, which is interpreted as the cost of self-control.

Hence, the main idea being formalized with self control preferences is that inter-temporal decisions consist of compromising between the temptation utility and the commitment utility. In terms of the present paper, an alternative will be a bundle of consumption and non-leisure. Moreover, the commitment utility will be represented by standard inter-temporal preferences and thus the household's desire to smooth consumption over the life-cycle. By contrast, the temptation utility ranks bundles of a household only according to the immediate utility level they provide in the present time. Compromising between these two utilities implies that timeconsistent deviations from the household's own long-term interest are mentally costly. Consequently, households have incentives to choose immediate consumption bundles in order to reduce the cost of self control. The source of temptation is to over-discount the future in intertemporal decision making.

### 2.2 The model

We consider a representative household living for two periods and facing self control problems in inter-temporal decision making. ${ }^{8}$ The household's utility function is assumed to be quasi linear in first-period consumption and additive separable in periodic sub-utilities and secondperiod consumption. This is a standard assumption in the literature on optimal taxation which implies that there are no income effects, see e.g. Diamond (1998) and Bovenberg and Jacobs (2005). Furthermore, it allows one to derive simple elasticity rules which is not feasible in the present framework with more general preferences (Richter, 2009). Hence, the household's utility function is:

$$
\begin{equation*}
U=C_{1}-V_{1}\left(L_{1}\right)+u\left(C_{2}\right)-V_{2}\left(L_{2}\right)+\lambda\left(C_{1}-V_{1}\left(L_{1}\right)\right)-\lambda \max _{\tilde{C}_{1}, \tilde{L}_{1}}\left(\tilde{C}_{1}-V_{1}\left(\tilde{L}_{1}\right)\right) \tag{4}
\end{equation*}
$$

[^4]where $C_{i}, L_{i}, \tilde{C}_{1}$ and $\tilde{L}_{1}$ denote consumption, non-leisure time in period $i=1,2$, respectively, as will be further explained below. ${ }^{9}$ The functions $V_{i}(i=1,2)$ are strictly increasing and strictly convex while $u$ is strictly increasing and strictly concave. The parameter $\lambda>0$ captures the strength of temptation. The commitment utility and the temptation utility of the choice as well as the maximum temptation utility are given by $C_{1}-V_{1}\left(L_{1}\right)+u\left(C_{2}\right)-V_{2}\left(L_{2}\right), \lambda\left(C_{1}-V_{1}\left(L_{1}\right)\right)$ and $\lambda\left(\max _{\tilde{C}_{1}, \tilde{L}_{1}}\left(\tilde{C}_{1}-V_{1}\left(\tilde{L}_{1}\right)\right)\right)$, respectively. Hence, the cost of self control (SCC) is defined as:
\[

$$
\begin{equation*}
S C C=\lambda\left(\max _{\tilde{C}_{1}, \tilde{L}_{1}}\left(\tilde{C}_{1}-V_{1}\left(\tilde{L}_{1}\right)\right)-\left(C_{1}-V_{1}\left(L_{1}\right)\right)\right) \tag{5}
\end{equation*}
$$

\]

Clearly, the utility function is increasing in the commitment utility of the choice but decreasing in the self-control cost.

Denote by $\hat{C}_{1}$ and $\hat{L}_{1}$, respectively, the consumption and labor supply choices of a young household that decides to exert no self control when time comes to make inter-temporal decisions. This allocation $\left(\hat{C}_{1}, \hat{L}_{1}\right)$ is called the 'most tempting option'. Formally, $\hat{C}_{1}$ and $\hat{L}_{1}$ are thus the solution to

$$
\begin{equation*}
\max _{\tilde{L}_{1}, S, E} \lambda\left(\tilde{C}_{1}-V_{1}\left(\tilde{L}_{1}\right)\right) \quad \text { s.t. } \quad \tilde{C}_{1}=\omega_{1} \tilde{L}_{1}-S-\left(\omega_{1}+\varphi\right) E \tag{6}
\end{equation*}
$$

where $\omega_{1}$ is the constant first period wage rate and $S$ and $E$ denote individual savings and time spent on education when young, respectively. Note that education causes an opportunity cost in forgone earnings, $\omega_{1} E$, and a monetary cost of tuition, $\varphi E$, and that both costs are assumed to be linear in time. As with this maximization problem, the household does not derive any utility from future consumption, it follows $\hat{S}=\hat{E}=0$. Consequently, the 'most tempting option' is implicitly determined by the following first order condition with respect to $\tilde{L}_{1}$

$$
\begin{equation*}
\omega_{1}=V_{1}^{\prime}\left(\hat{L}_{1}\right) \tag{7}
\end{equation*}
$$

and by $\hat{C}_{1}=\omega_{1} \hat{L}_{1}$. Clearly, even though $\hat{C}_{1}$ is never chosen, households derive some disutility

[^5]from this option being available at all. Furthermore, it affects welfare through changes in $\omega_{1}$ : A decrease in $\omega_{1}$ (e.g. by taxing non-qualified labor) reduces the temptation utility of the 'most tempting option' as the possible level of immediate consumption decreases. In order to explicitly determine the cost of self control, however, we first need to characterize the households' optimization problem.

The representative household maximizes utility (4) by choosing $L_{1}, L_{2}, S$ and $E$ subject to $L_{1} \geq E$ and the first and second period budget constraints:

$$
\begin{equation*}
C_{1}=\omega_{1} L_{1}-\left(\omega_{1}+\varphi\right) E-S=\omega_{1}\left(L_{1}-E\right)-\varphi E-S \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
C_{2}=\rho S+\omega_{2} H(E) L_{2} \tag{9}
\end{equation*}
$$

where $L_{1}-E$ is time spent in the market, $E$ is time spent on education and $\omega_{1}\left(L_{1}-E\right)$ denotes first period income (non-qualified labor income). ${ }^{10}$ The quantities $L_{1}-E$ and $L_{1}$ are thus interpreted as non-qualified labor and non-qualified non-leisure, respectively. $\omega_{2} H(E) L_{2}$ denotes second period income (qualified labor income) and $\omega_{2} H(E)$ is the return to secondperiod labor, where $\omega_{2}$ is constant while the earnings function $H(E)$ displays positive but diminishing returns, $H^{\prime}>0>H^{\prime \prime}$. The quantity $L_{2}$ is interpreted as qualified labor. Finally, denote by $\rho$ the gross rate of return to saving. Combining (8) and (9) yields the lifetime budget constraint: ${ }^{11}$

$$
\begin{equation*}
C_{1}+C_{2} / \rho=\omega_{1} L_{1}+\omega_{2} H(E) L_{2} / \rho-\left(\varphi+\omega_{1}\right) E . \tag{10}
\end{equation*}
$$

In the following, we assume that the household's maximization problem is well behaved so that there exists an interior unique solution that is differentiable in $\omega_{1}, \omega_{2}, \rho, \varphi$. The first-order conditions with respect to $L_{1}, S, L_{2}$ and $E$, respectively, are

$$
\begin{align*}
& \omega_{1}=V_{1}^{\prime}\left(L_{1}\right)  \tag{11}\\
& \rho=(1+\lambda) / u^{\prime}\left(C_{2}\right),  \tag{12}\\
& (1+\lambda) \omega_{2} H(E) / \rho=V_{2}^{\prime}\left(L_{2}\right)  \tag{13}\\
& \omega_{2} H^{\prime}(E) L_{2} / \rho=\omega_{1}+\varphi \tag{14}
\end{align*}
$$

[^6]Clearly, the higher the strength of temptation, the lower are second period consumption $C_{2}$, savings $S$ and the optimal amount of education $E$.

We assume the second order conditions to be fulfilled. This requires some elasticity of the marginal disutility of labor that is sufficiently large at the second-best level of $L_{2}$ :

$$
\begin{equation*}
\nu_{2} \equiv L_{2} V_{2}^{\prime \prime} / V_{2}^{\prime}>\frac{H^{\prime} E / H}{-H^{\prime \prime} E / H^{\prime}} \tag{15}
\end{equation*}
$$

To see this, let $Y\left(L_{2}\right) \equiv \max _{E}\left[\omega_{2} H L_{2} / \rho-\left(\omega_{1}+\varphi\right) E\right]$ be the ability-rent income. The secondorder condition with respect to $L_{2}$ then requires:

$$
\begin{gather*}
0>Y^{\prime \prime}-V_{2}^{\prime \prime} \underset{(12)}{=}-(1+\lambda) \frac{\omega_{2}}{\rho} \frac{H^{\prime 2}}{H^{\prime \prime} L_{2}}-V_{2}^{\prime \prime} \underset{(13)}{=}-\frac{V_{2}^{\prime}}{H} \frac{H^{\prime 2}}{H^{\prime \prime} L_{2}}-V_{2}^{\prime \prime} \\
\Leftrightarrow \nu_{2}=L_{2} V_{2}^{\prime \prime} / V_{2}^{\prime}>\frac{H^{\prime} E / H}{-H^{\prime \prime} E / H^{\prime}} . \tag{16}
\end{gather*}
$$

Richter (2011) provides an example of an earnings function that satisfies all the assumptions needed in the present paper:

$$
\begin{equation*}
H(E) \equiv h E^{\bar{\eta}}+H_{0} \quad \text { with } \quad h>0,1>\bar{\eta}>0, H_{0} \geq 0 \tag{17}
\end{equation*}
$$

This specification implies an increasing elasticity of the earnings function, $\eta \equiv E H^{\prime} / H$, if and only if $H_{0}>0$ (since $\eta=\bar{\eta}\left(1-H_{0} / H(E)\right)$ ). Furthermore, using (17), equation (15) can be rewritten as

$$
\begin{equation*}
\nu_{2} \equiv L_{2} V_{2}^{\prime \prime} / V_{2}^{\prime}>\bar{\eta} /(1-\bar{\eta}) . \tag{18}
\end{equation*}
$$

### 2.3 Welfare Properties: The Cost of Self Control

In contrast to the models analyzed in Richter (2009) and Richter (2011), individuals face temptation in intertemporal decision making. More precisely, individuals are tempted to lower the associated cost of self control by increasing the fraction of time that they devote to work and to consume in the first period. However, regardless of individuals' decision, the temptation utility of the 'most tempting option' remains unchanged. Consequently, individuals are always suffering from a loss of utility. Yet, a social planner might easily reduce this loss by transferring resources from the first period to the second one. According to that, a government might tax current labor in the first period and, simultaneously subsidize consumption (and/or saving or education) in the second one.

But how does a tax on first period income affect the cost of self control? As labor supply decisions are endogenous and individuals smooth consumption over their life-cycle, the effect on the cost of self control seems to be undetermined a priori: While the maximum temptation utility declines, as has been argued in the previous subsection, the effect on the temptation utility from the choice turns out to be ambiguous as individuals increase the amount of leisure time but also face lower consumption levels. Hence, the net effect on the cost of self control could either be positive or negative. In order to clarify this ambiguity, we now explicitly determine the cost of self control.

Comparing equations (7) and (11) reveals that $L_{1}=\hat{L}_{1}$ whereas $C_{1}<\hat{C}_{1}$ as long as $S>0$ or $E>0$. Using (6) and (8), the cost of self control (SCC) is given by ${ }^{12}$

$$
\begin{align*}
S C C & =\lambda\left(\left(\hat{C}_{1}-V_{1}\left(\hat{L}_{1}\right)\right)-\left(C_{1}-V_{1}\left(L_{1}\right)\right)\right) \\
& =\lambda\left(\left(\omega_{1} \hat{L}_{1}-V_{1}\left(\hat{L}_{1}\right)\right)-\left(\omega_{1} L_{1}-V_{1}\left(L_{1}\right)-\left(\omega_{1}+\varphi\right) E-S\right)\right) \\
& =\lambda\left(\left(\omega_{1}+\varphi\right) E+S\right) . \tag{19}
\end{align*}
$$

It is straight forward to show that these costs are unambiguously increasing in $\varphi$ and $\omega_{1} .{ }^{13}$ Intuitively, lowering the costs of tuition (i.e. reducing $\varphi$ ) decreases the cost of self control as the marginal temptation-utility of the choice declines. Similarly, decreasing the return to nonqualified labor (i.e. decreasing $\omega_{1}$, e.g. by increasing the tax on first period income), reduces the temptation utility of the 'most tempting option' and the temptation utility from the choice. However, the net effect turns out to be unambiguously negative. The reason is the following: Increasing the tax on first period income always implies a larger drop in consumption for the 'most tempting option' than for the actual choice (due to the consumption smoothing motive) whereas changes in leisure time exactly cancel each other out (as $L_{1}=\hat{L}_{1}$ ).

Summarizing, the government may reduce the cost of self control and thus increase individuals' welfare by taxing current labor in the first period. However, such a tax also affects the commitment utility from the choice. To analyze how the presence of temptation affects the overall design of efficient tax policies is the aim of the next section.

[^7]
## 3 Second-Best Policy

In the following analysis, we characterize efficient tax policies with respect to education and labor in relation to the taxation of non-qualified labor when individuals face temptation in inter-temporal decision making.

The government's problem is to raise some exogenous amount of revenue $T$ by using four linear and distorting tax instruments that are assumed to be available. These instruments are modeled as the difference between prices before and after taxes and are levied on period i's labor income, on the return to saving, and on the cost of tuition. Specifically, denoting by $\omega_{1}, \omega_{2}, \rho, \varphi$ the endogenous prices after taxes and subsidies and by $w_{1}, w_{2}, r, f$ the corresponding exogenous prices before taxes and subsidies, respectively, taxes are defined as follows: the tax on period i's labor income equals $w_{i}-\omega_{i}$, the tax on capital income $r-\rho$, and the tax on the cost of tuition $\varphi-f$. A negative value implies that the tax is effectively a subsidy. The government's budget is assumed to be balanced:

$$
\begin{align*}
& \left(w_{1}-\omega_{1}\right)\left(L_{1}-E\right)+(\varphi-f) E+\left[\left(w_{2}-\omega_{2}\right) H(E) L_{2}+(r-\rho) S\right] / r \\
& \overline{\overline{(9)}}\left(w_{1}-\omega_{1}\right) L_{1}+\left[\left(\varphi+\omega_{1}\right)-\left(f+w_{1}\right)\right] E+\left[\frac{w_{2}}{r}-\frac{\omega_{2}}{\rho}\right] H L_{2}+\left[\frac{1}{\rho}-\frac{1}{r}\right] C_{2}=T . \tag{20}
\end{align*}
$$

The planner maximizes the representative taxpayer's utility (4) in the quantities $C_{1}, C_{2}, L_{1}, L_{2}, E$ and prices $\omega_{1}, \omega_{2}, \rho, \varphi$ subject to the behavioral constraints (7), (11)-(14), the individual budget constraint (10) and the government's budget constraint (20). Assume that the planner's maximization is well behaved and, following Richter (2011), that efficiency is characterized in terms of wedges. Let

$$
\begin{equation*}
\Delta_{L_{1}} \equiv \frac{w_{1}-\omega_{1}}{\omega_{1}} \tag{21}
\end{equation*}
$$

denote the wedge on non-qualified labor,

$$
\begin{equation*}
\Delta_{C_{2}} \equiv \frac{r-\rho}{\rho} \tag{22}
\end{equation*}
$$

the wedge on second period consumption,

$$
\begin{equation*}
\Delta_{L_{2}} \equiv \frac{w_{2} / r-\omega_{2} / \rho}{\omega_{2} / \rho} \tag{23}
\end{equation*}
$$

the wedge on qualified labor and

$$
\begin{equation*}
\Delta_{E} \equiv \frac{w_{2} H^{\prime} L_{2} / r-f-w_{1}}{\varphi+\omega_{1}} \underset{(14)}{=} \frac{w_{2} / r}{\omega_{2} / \rho}-\frac{f+w_{1}}{\varphi+\omega_{1}} \tag{24}
\end{equation*}
$$

the wedge on education. Second period consumption (education; qualified labor) is effectively subsidized if $\Delta_{C_{2}}\left(\Delta_{E} ; \Delta_{L_{2}}\right)$ is negative. Furthermore, according to (24), the wedge on education can be decomposed into two parts: the ratio of present returns before and after taxes and subsidies and the ratio of costs before and after taxes and subsidies. If these ratios are of same size, the wedge vanishes. It is important to note, however, that a negative value of $\Delta_{E}$ can be achieved by a combination of all four policy instruments. More precisely, effective subsidization is clearly reached by the statutory subsidization of the cost of tuition, but may also be achieved by (i) increasing the tax on non-qualified labor and thus reducing the opportunity cost of education, (ii) by reducing the tax on qualified labor and thus increasing the return to education, and finally (iii) by taxing savings and thus increasing the return to education (cf. Richter (2011, p.4)).

In order to simplify notation, we make the following definitions: $\nu_{1} \equiv L_{1} V_{1}^{\prime \prime} / V_{1}^{\prime}>0$ is the elasticity of marginal disutility of non-qualified labor resulting from the commitment utility, i.e., the reciprocal of the wage elasticity and $\eta_{\eta} \equiv E \eta^{\prime} / \eta$ the second-order elasticity of the earnings function.

Proposition 1. If $\omega_{1}, \omega_{2}, \rho$, and $\varphi$ are optimally chosen, then

$$
\begin{equation*}
\frac{\Delta_{E}}{(1+\lambda) \Delta_{L_{1}}-\lambda \nu_{1}}=-\frac{\eta_{\eta}}{\nu_{1}} \tag{25}
\end{equation*}
$$

## Proof: See Appendix.

Equation (25) corroborates several important results of the existing literature. ${ }^{14}$ Specifically, as has been demonstrated by Richter (2009), and by Bovenberg and Jacobs (2005) and Bovenberg and Jacobs (2011) in models with heterogenous taxpayers, equation (25) implies that education should not be distorted $\left(\Delta_{E}=0\right)$ if the elasticity of the earnings function, $\eta$, is constant. Furthermore, if self control problems are absent, i.e. $\lambda=0$, equation (25) corresponds to the second order elasticity rule derived by Richter (2011).

[^8]The contribution of the present analysis, however, is to extend the inverse elasticity rule when individuals face temptation. In order to interpret (25), we assume that (i) non-qualified labor income is taxed $\left(\Delta_{L_{1}}>0\right)$ and (ii) that the elasticity of the earnings function is increasing $\left(\eta_{\eta}>0\right)$.

While the numerator in the bracketed expression on the left hand side of (25) is unambiguously positive, the denominator consists of two parts: The wedge on non-qualified labor and a self control effect which captures how taxing non-qualified labor affects the cost of self control. With $\lambda=0$, education should effectively be subsidized. With $\lambda>0$, however, the configuration of the tax policy on education turns out to be ambiguous. The denominator can be positive or negative depending on the relative size of the elasticity of marginal disutility of non-qualified labor, $\nu_{1}$ :

$$
\begin{equation*}
\Delta_{L_{1}}(1+\lambda)-\lambda \nu_{1} \gtrless 0 \quad \Leftrightarrow \quad \nu_{1} \lessgtr \frac{(1+\lambda)}{\lambda} \Delta_{L_{1}} \tag{26}
\end{equation*}
$$

Hence, if $\nu_{1}$ is sufficiently low (large), efficient education policy calls for subsidizing (taxing) education. Moreover, whether education should be subsidized more or less heavily as compared to the benchmark without temptation critically depends on the size of $\nu_{1}$. Just note that

$$
\begin{equation*}
\Delta_{L_{1}}(1+\lambda)-\lambda \nu_{1} \gtrless \Delta_{L_{1}} \quad \Leftrightarrow \quad \Delta_{L_{1}} \gtrless \nu_{1} \tag{27}
\end{equation*}
$$

The intuition behind these findings is the following. Taxing non-qualified labor income generates two effects on individuals' lifetime utility: First, the commitment utility from the choice declines as the amount of disposable resources decreases, thereby reducing earnings and consumption in the first period. Moreover, a lower return to non-qualified labor discourages working, which, in turn, reduces earnings and consumption even further. Second, as has been shown in the previous section, the cost of self control declines as well. Hence, the net effect depends on the relative strength of these two changes. Our findings show that the net effect turns out to be positive, i.e. individuals' lifetime utility increases, if the elasticity of marginal disutility of non-qualified labor (the reciprocal of the wage elasticity) is sufficiently large. In this case, income taxation implies only a modest increase in leisure (relative to the decrease in consumption), which generates a substantial reduction in the maximum temptation utility, and, consequently, in the cost of self control. On the contrary, if the elasticity of marginal disutility of non-qualified labor is sufficiently small, income taxation brings about a substantial increase in leisure. This, in turn, generates only a small reduction in the cost of self control and thus a reduction in individuals'
lifetime utility. Therefore, the government has a strong incentive to subsidize education in order to lower the cost of self control.

Consequently, $\nu_{1}$ has a double role in determining optimal education policies: (i) it is part of the inverse elasticity rule of optimal taxation and (ii) it is a key factor in shaping the level of the self control cost which, in turn, determines the dynamic redistribution of resources between the present and the future.

In sum, the planner trades off the objective of maximizing the social ability rent against the objectives of minimizing the efficiency loss resulting from distorted choices of the utilitygenerating quantities $C_{1}, C_{2}, L_{1}$, and $L_{2}$ (as in Richter (2009)) and the efficiency gains resulting from reductions in the cost of self control. If the speed at which working disutility increases is sufficiently low, $\Delta_{L_{1}}>\nu_{1}$, then, the reduction in the self control cost by taxing non-qualified labor is modest and the planer should additionally subsidize second period consumption, which, in turn, implies that education should effectively be subsidized. ${ }^{15}$

We now turn to the analysis of efficient labor taxation. In order to illustrate the effect of temptation on optimal policies, we assume $H(E)=E^{\bar{\eta}}$. In the appendix we show that wage taxes are second best if they satisfy

$$
\begin{equation*}
\frac{(1-\bar{\eta}) \nu_{2}-\bar{\eta}}{\nu_{1}}=\frac{\Delta_{L_{2}}}{\Delta_{L_{1}}(1+\lambda)-\lambda \nu_{1}} \tag{28}
\end{equation*}
$$

Note that the numerator on the left hand side of equation (28) is positive by assumption (recall equation (18)). The above equation contains several familiar results as a special case. Specifically, for both $\lambda=\bar{\eta}=0$, equation (28) equates to the inverse elasticity rule which requires setting wage taxes inversely proportional to the corresponding wage elasticities of labor supply. Furthermore, if only $\lambda=0$, equation (28) corresponds to the extended inverse elasticity rule which accounts for endogenous education (see Richter (2009, eq.(13))). The presence of temptation, however, implies that non-qualified labor should be taxed more heavily relative to qualified labor if the wage elasticity of non-qualified labor is sufficiently large, that is, if the elasticity of marginal disutility of non-qualified labor, $\nu_{1}$, is small enough. ${ }^{16}$ In this case, taxing non-qualified labor lowers the cost of self-control and thus the resulting welfare loss. Moreover,

[^9]if $\Delta_{L_{1}}>0$ and if the strength of temptation, $\lambda$, is sufficiently strong, efficient labor taxation calls for subsidizing qualified labor, i.e. $\Delta_{L_{2}}<0$. The nature of this latter results is generally in line with Krusell et al. (2010) who show that taxation of capital can be welfare improving and that the presence of temptation calls for subsidizing second period consumption.

## 4 Conclusions

This paper extends the inverse elasticity rule of optimal taxation when individuals face temptation in inter-temporal decision making. Efficient education policy requires subsidizing education only if self control problems are sufficiently severe and the elasticity of the earnings function is increasing in education. Analogously, efficient labor taxation calls for subsidizing qualified labor to increase second period consumption, if the strength of temptation is sufficiently large.

A key element in our setting is the sensitivity of individuals to taxes which, in turn, renders the cost of self control endogenous to tax policy. Hence, even if the strength of temptation is large, the total cost of self control might be low for a strong individual response to taxation. Consequently, elasticities matter for two reasons: (i) the inverse elasticity rule of optimal taxation and (ii) the intensity of the effect of taxation in determining the cost of self control.

Our findings highlight the potential importance of temptation and non-standard preferences for the design of optimal policies. While Richter $(2009,2011)$ has shown that education should effectively be subsidized if the elasticity of the earnings function is increasing in education, we demonstrate that this result only holds if temptation problems are sufficiently severe. By contrast, if temptation problems are not sufficiently severe, efficient education policy calls for taxing education. Moreover, our results point to a possible complementarity relation between non-qualified and qualified labor taxation. Countries having a large average elasticity of marginal disutility of labor (a low wage elasticity) may only generate small reductions in labor supply when taxing non-qualified labor, which, in turn, makes taxation of qualified (relative to non-qualified) labor more likely. This may help to understand why developed countries, in which labor supply is less elastic than in developing ones, ${ }^{17}$ show relatively high levels of taxation on qualified labor (i.e., high income groups) and thus more progressive income tax systems

[^10]compared to developing countries ${ }^{18}$.
Our results are derived within the context of a model that is general in some respects, but of course it depends on other, less general assumptions. For example, we have ruled out credibility problems of government policies. In the context of education policies, time consistent policies have been studied, e.g., by Boadway et al. (1996) and Andersson and Konrad (2003). Moreover, our analysis is based on the Ramsey approach to optimal taxation, whereas the socalled Mirrlees approach is used by Bovenberg and Jacobs (2005) and Bovenberg and Jacobs (2011). Finally, the analysis could be extended to allow for heterogenous taxpayers, see e.g. Richter (2009, Sec.3). We leave a more thorough analysis of these important issues for future research.

## Appendix

## Proof of Proposition 1:

The planner's problem can be simplified by replacing $\omega_{1}$ by $V_{1}^{\prime}$ and $\hat{L}_{1}$ by $L_{1}$ (as $\omega_{1}=V_{1}^{\prime}\left(L_{1}\right)=$ $\left.V_{1}^{\prime}\left(\hat{L}_{1}\right)\right)$. The restated planner's problem is

$$
\begin{align*}
\max \left[V_{1}^{\prime}\left(L_{1}\right) L_{1}\right. & -V_{1}\left(L_{1}\right)+\omega_{2} H(E) L_{2} / \rho-\left(\varphi+V_{1}^{\prime}\left(L_{1}\right)\right) E-C_{2} / \rho  \tag{29}\\
& +u\left(C_{2}\right)-V_{2}\left(L_{2}\right)+\lambda\left[V_{1}^{\prime}\left(L_{1}\right) L_{1}-V_{1}\left(L_{1}\right)+\omega_{2} H(E) L_{2} / \rho\right. \\
& \left.\left.-\left(\varphi+V_{1}^{\prime}\left(L_{1}\right)\right) E-C_{2} / \rho\right]-\lambda\left[V_{1}^{\prime}\left(L_{1}\right) L_{1}-V_{1}\left(L_{1}\right)\right]\right]
\end{align*}
$$

in $\varphi, L_{1}, \omega_{2}, E, C_{2}, \rho, L_{2}$, subject to

$$
\begin{gather*}
(1+\lambda) \omega_{2} H(E) / \rho=V_{2}^{\prime}\left(L_{2}\right), \quad(\alpha)  \tag{30}\\
\omega_{2} H^{\prime}(E) L_{2} / \rho=\varphi+V_{1}^{\prime}\left(L_{1}\right), \quad(\mu)  \tag{31}\\
\frac{1+\lambda}{u^{\prime}\left(C_{2}\right)}=\rho, \quad(\kappa)  \tag{32}\\
{\left[w_{1}-V_{1}^{\prime}\left(L_{1}\right)\right] L_{1}+\left[\left(\varphi+V_{1}^{\prime}\left(L_{1}\right)\right)-\left(f+w_{1}\right)\right] E+\left[\frac{w_{2}}{r}-\frac{\omega_{2}}{\rho}\right] H(E) L_{2}+\left[\frac{1}{\rho}-\frac{1}{r}\right] C_{2}=T} \tag{33}
\end{gather*}
$$

[^11]The simplified first-order conditions with respect to $\varphi, L_{1}, \omega_{2}$ and $E$ are as follows: ${ }^{19}$

$$
\begin{align*}
\frac{\partial}{\partial \varphi}: & \mu=(\gamma-(1+\lambda)) E  \tag{34}\\
\frac{\partial}{\partial L_{1}}: & \gamma\left(w_{1}-V_{1}^{\prime}\right) \underset{(34)}{\overline{3}}(\gamma-1) L_{1} V_{1}^{\prime \prime} ;  \tag{35}\\
\frac{\partial}{\partial \omega_{2}}: & 1+\lambda \underset{(34)}{\overline{=}} \gamma-\alpha \frac{1+\lambda}{L_{2}(1-\eta)} ;  \tag{36}\\
\frac{\partial}{\partial E}: & \gamma\left[f+w_{1}-w_{2} H^{\prime} L_{2} / r\right] \\
& =(344),(36)  \tag{37}\\
& =[\gamma-(1+\lambda)]\left[\varphi+V_{1}^{\prime}-\eta \omega_{2} H^{\prime} L_{2} / \rho+\omega_{2} H^{\prime \prime} E L_{2} / \rho\right] \\
& {[1+\lambda)]\left[1-\eta+\frac{H^{\prime \prime} E}{H^{\prime}}\right]\left(\varphi+V_{1}^{\prime}\right)=[\gamma-(1+\lambda)] \frac{E \eta^{\prime}}{\eta}\left(\varphi+\omega_{1}\right) ; }
\end{align*}
$$

Dividing (35) by $V_{1}^{\prime}$ and (37) by $\varphi+\omega_{1}$ and solving the resulting equation system yields (25).

## Proof of equations (28):

The first-order conditions of the simplified planner's problem with respect to $\omega_{2}$ and $C_{2}$ are:

$$
\begin{array}{ll}
\frac{\partial}{\partial \omega_{2}}: & \alpha=\frac{(1-\eta) L_{2}}{1+\lambda}(\gamma-(1+\lambda)) \\
\frac{\partial}{\partial C_{2}}: & \alpha \frac{1+\lambda}{L_{2}(1-\eta)} \underset{(36)}{=} \gamma /\left(1+\Delta_{C_{2}}\right)+\kappa \frac{u^{\prime \prime}\left(C_{2}\right)}{u^{\prime}\left(C_{2}\right)^{2}}(1+\lambda) \rho-u^{\prime}\left(C_{2}\right) \rho \tag{39}
\end{array}
$$

The latter equation can be simplified by inserting equations (22), (32) and (38):

$$
\begin{equation*}
\frac{\partial}{\partial C_{2}}: \quad 0=\gamma(1 / \rho-1 / r)-\kappa \rho u^{\prime \prime}\left(C_{2}\right) / u^{\prime}\left(C_{2}\right) \tag{40}
\end{equation*}
$$

Moreover, the simplified first order condition with respect to $L_{2}$ is given by

$$
\begin{equation*}
\frac{\partial}{\partial L_{2}}: \quad 0 \underset{(34)}{=} \gamma \Delta_{L_{2}}+\eta(\gamma-(1+\lambda))-\alpha \frac{V_{2}^{\prime \prime}\left(L_{2}\right) \rho}{\omega_{2} H(E)} \tag{41}
\end{equation*}
$$

Substitute (38) into (41) and make use of (13) to get

$$
\begin{equation*}
0=\gamma \Delta_{L_{2}}+(\gamma-(1+\lambda))\left(\eta-(1-\eta) \nu_{2}\right) . \tag{42}
\end{equation*}
$$

[^12]Similarly, substituting (36) into (35) and dividing the resulting equation by $V_{1}^{\prime}$ yields

$$
\begin{equation*}
\gamma \Delta_{L_{1}}=\nu_{1} \alpha \frac{1+\lambda}{L_{2}(1-\eta)}+\nu_{1} \lambda \tag{43}
\end{equation*}
$$

Finally, insert (38) into (43) and rearrange terms to reach

$$
\begin{equation*}
\gamma \Delta_{L_{1}}=\lambda \nu_{1}+\nu_{1}(\gamma-(1+\lambda)) \tag{44}
\end{equation*}
$$

Solving the resulting equation system (42), (44) and making use of $H(E)=E^{\bar{\eta}}$ yields (28).

## References

Andersson, F., Konrad, K. A., 2003. Human capital investment and globalization in extortionary states. Journal of Public Economics 87, 1539-1555.

Aronsson, T., Sjögren, T., 2009. Quasi-hyperbolic discounting and mixed taxation. mimeo, Umea University, 1-54.

Banerjee, A., Mullainathan, S., 2010. The shape of temptation: Implications for the economic lives of the poor. NBER Working Paper No. 15973.

Bassi, M., 2010. Mirrlees meets laibson: Optimal income taxation with bounded rationality. mimeo, Centre for Studies in Economics and Finance, 1-47.

Bernheim, B. D., Ray, D., Yeltekin, S., 2013. Poverty and self-control. NBER Working Paper No. 18742.

Besley, T., Persson, T., 2013. Taxation and development. Handbook of Public Economics. In Auerbach, A. J., Chetty, R., Feldstein, M., and Saez, E., editors Chap. 2, v.5, 1-81.

Bishnu, M., Wang, M., 2013. Voting under temptation. Economics Letters 118, 419-423.

Boadway, R., Marceau, N., Marchand, M., 1996. Investment in education and the time inconsistency of redistributive tax policy. Economica 63, 171-189.

Bovenberg, A. L., Jacobs, B., 2005. Redistribution and learning subsidies are siamese twins. Journal of Public Economics 89, 2005-2035.

Bovenberg, A. L., Jacobs, B., 2011. Optimal taxation of human capital and the earnings function. Journal of Public Economic Theory 13, 957-971.

Bucciol, A., 2007. Life-cycle models, economic puzzles and temptation preferences. Giornale degli Economisti e Annali di Economia 66(1), 115-144.

Bucciol, A., 2011. A note on social security welfare with self-control problems. Macroeconomic Dynamics 15, 579-594.

Diamond, P. A., 1998. Optimal income taxation: An example with a u-shaped pattern of optimal marginal tax rates. American Economic Review 88, 83-95.

Frederick, S., Loewenstein, G., O'Donoghue, T., 2002. Time discounting and time preference: A critical review. Journal of Economic Literature 40, 351-401.

Fuest, C., Riedel, N., 2009. Tax evasion, tax avoidance and tax expenditures in developing countries: A review of the literature. Report prepared for the UK Department for International Development (DFID), 1-69.

Gemmell, N., Morrissey, O., 2005. Distribution and poverty impacts of tax structure reform in developing countries: How little we know. Development Policy Review 23, 131-144.

Gruber, J., Köszegi, B., 2004. Tax incidence when individuals are time-inconsistent: the case of cigarette excise taxes. Journal of Public Economics 88(9-10), 1959-1987.

Gul, F., Pesendorfer, W., 2001. Temptation and self-control. Econometrica 69, 1403-1435.
Gul, F., Pesendorfer, W., 2004. Self-control and the theory of consumption. Econometrica 72, 119-158.

Gul, F., Pesendorfer, W., 2005. The revealed preference theory of changing tastes. Review of Economic Studies 72, 429-448.

Guo, J.-T., Krause, A., 2015. Dynamic nonlinear income taxation with quasihyperbolicdiscounting and no commitment. Journal of Economic Behavior and Organization 109, 101-119.

Heckman, J., Pagés, C., 2004. Law and employment: Lessons from Latin America and the Caribbean. NBER Books, National Bureau of Economic Research, Inc., 1-138.

Kocherlakota, N., 2005. Zero expected wealth taxes: A mirrlees approach to dynamic optimal taxation. Review of Economic Studies 73(5), 1587-1621.

Krusell, P., Kuruscu, B., Smith, A. A., 2010. Temptation and taxation. Econometrica 78, 20632084.

Kumru, C. S., Thanopoulos, A. C., 2008. Social security and self-control preferences. Journal of Economic Dynamics and Control 32, 757-778.

Kumru, C. S., Thanopoulos, A. C., 2011. Social security reform and self-control preferences. Journal of Public Economics 95, 886-899.

Kumru, C. S., Tran, C., 2012. Temptation and social security in a dynastic framework. European Economic Review 56(7), 1422-1445.

Kunze, L., Richter, W. F., Schuppert, C., 2013. Efficient tax policy when skilled labour is mobile. TU Dortmund, mimeo.

Laibson, D., 1997. Golden eggs and hyperbolic discounting. The Quarterly Journal of Economics 112, 443-477.

Lee, S., 2012. Self-control and provision of education subsidies. Journal of Economic Research 17, 61-76.

Lipman, B. L., Pesendorfer, W., 2011. Temptation. mimeo, Boston University.

Mikhail Golosov, N. K., Tsyvinski, A., 2003. Optimal indirect and capital taxation. Review of Economic Studies 70(3), 529-587.

Mirrlees, J. A., 1971. An exploration of the theory of optimum income taxation. Review of Economic Studies 38(114), 175-208.

Noor, J., Takeoka, N., 2010. Uphill self-control. Theoretical Economics 5, 127-158.

O’Donoghue, T., Rabin, M., 2006. Optimal sin taxes. Journal of Public Economics 90(10-11), 1825-1849.

Phelps, E. S., Pollak, R. A., 1968. On second-best national saving and game-equilibrium growth. Review of Economic Studies 35, 185-199.

Piketty, T., Quian, N., 2009. Income inequality and progressive income taxation in china and india, 1986-2015. American Economic Journal: Applied Economics 1, 53-63.

Ramsey, F. P., 1927. A contribution to the theory of taxation. Economic Journal 37, 47-61.
Richter, W. F., 2009. Taxing education in Ramsey's tradition. Journal of Public Economics 93, 1254-1260.

Richter, W. F., 2011. Efficient education policy - a second-order elasticity rule. FinanzArchiv / Public Finance Analysis (FA) 67, 1-7.

Richter, W. F., 2013. Mincer equation, power law of learning, and efficient education policy. IZA DP No. 7280.

Schmitt, J., 2003. Is it time to export the US tax model to Latin America? Center for Economic and Policy Research, 1-25.

Shah, A. K., Mullainathan, S., Shafir, E., 2012. Some consequences of having too little. Science 338, 682-685.

St-Amant, P.-A. B., Garon, J.-D., 2015. Optimal redistributive pensions and the cost of selfcontrol. International Tax and Public Finance 22, 723-740.

Strotz, R. H., 1956. Myopia and inconsistency in dynamic utlity maximization. Review of Economic Studies 23.


[^0]:    *Forthcoming in Metroeconomica.
    ${ }^{\dagger}$ We thank Wolfram F. Richter for helpful comments and discussions. We also thank two anonymous referees whose comments and suggestions have undoubtedly helped to improve this article. Finally, Carlos Bethencourt thanks the Spanish Ministry of Science and Technology for Grant ECO2013-48884-C3-3-P for financial support. Any remaining errors are ours.
    ${ }^{\ddagger}$ Bethencourt: Universidad de La Laguna, Departamento de Economía, Contabilidad y Finanzas, Campus de Guajara s/n, 38071 Tenerife, Spain (cbethenc@ull.es).
    ${ }^{\S}$ Kunze: TU Dortmund, Vogelpothsweg 87, 44221 Dortmund, Germany (lars.kunze@tu-dortmund.de). (corresponding author)
    ${ }^{1}$ See Lipman and Pesendorfer (2011) for a survey.

[^1]:    ${ }^{2}$ A second modeling approach where agents have time inconsistent preferences has been developed by Laibson (1997), who in turn builds on the earlier work by Strotz (1956) and Phelps and Pollak (1968).
    ${ }^{3}$ The earnings function is a concave function which accounts for the positive impact of education on the return to qualified labor. See also Kunze et al. (2013) for an analysis of efficient education policy in the presence of labor mobility.

[^2]:    ${ }^{4}$ Note that our qualitative results are the same as in Richter (2011) when self control problems are absent.
    ${ }^{5}$ Note that the term 'disutility' refers to the commitment utility. As will become clear in section 2, however, the disutility of labor will be the same for the temptation utility.

[^3]:    ${ }^{6}$ See also Bucciol (2011) and St-Amant and Garon (2015).
    ${ }^{7}$ The temptation model (Gul-Peserdorfer's preferences) is not the unique mechanism to account for preference reversals. An alternative model that accounts for this type of behavior is the quasi-hyperbolic discounting model (Laibson, 1997). As noted by Aronsson and Sjögren (2009), however, the literature on optimal taxation and hyperbolic discounting is quite scarce. One explanation might be the recent popularity of the temptation model, which preserves the property of time consistency (see Bucciol (2007)) in contrast to Laibson's time inconsistent preferences. Bassi (2010) classifies the existent literature into two groups: the first group analyzes the effect of present-biased preferences on consumption-saving decisions (for instance, Krusell et al. (2010)) whereas the second one studies optimal commodity taxation of addictive goods which are overconsumed by hyperbolic consumers (O'Donoghue and Rabin (2006) and Gruber and Köszegi (2004)). The first group includes a set of papers that extend the static Mirrlees (1971)'s model to a dynamic framework with heterogeneous agents and stochastic shocks (Mikhail Golosov and Tsyvinski (2003), Kocherlakota (2005) and Guo and Krause (2015) among others). In general, these papers show that it is optimal to discourage saving through taxes. In the second group, taxes act as commitment mechanisms that help individuals to behave 'correctly' and to reduce the consumption of addictive goods.

[^4]:    ${ }^{8}$ The basic model is taken from Richter (2009) and Richter (2011). It is extended to allow for self control preferences in order to study the impact of self control problems on efficient tax policies.

[^5]:    ${ }^{9}$ Note that equation (4) implicitly accounts for discounting of future utility. Redefining $u\left(C_{2}\right)=\beta \bar{u}\left(C_{2}\right)$ and $V_{2}\left(L_{2}\right)=\beta \bar{V}_{2}\left(L_{2}\right)$ to introduce an explicit discount factor $\beta$ would leave the results unchanged. Note further that the specification of the utility function implies a quasi concave temptation ranking, which is consistent with the findings in Banerjee and Mullainathan (2010), Shah et al. (2012) and Bernheim et al. (2013). It implies that the cost of self control is more important for poorer than for richer households. Our findings could be generalized, however, to allow for more complex functional forms of the temptation ranking, as e.g. in Noor and Takeoka (2010). While it can be shown that our main carries over to such a framework, analytical complexity increases dramatically. Hence, in order to derive our main result analytically, we stick to the quasi concave formulation and leave a more thorough investigation of alternative cases for future research.

[^6]:    ${ }^{10}$ Alternatively and equivalently, we could assume that the individual has $N$ hours to split between $L_{1}$ and $E$. This would not affect our results.
    ${ }^{11}$ Note that the price of consumption is normalized to one.

[^7]:    ${ }^{12}$ Note that the cost of self control equals zero in the second period as, absent any bequest motive, the individual consumes everything available (see Kumru and Tran (2012)).
    ${ }^{13}$ More precisely, making use of the Envelope theorem, we get $\frac{\partial S S C}{\partial \varphi}=\lambda E>0$ and $\frac{\partial S S C}{\partial \omega_{1}}=\lambda E>0$.

[^8]:    ${ }^{14}$ Richter (2013, Fig.2) uses data from the OECD to calculate tax wedges on non-qualified labor and education. According to his findings, about one third of all OECD countries tax tertiary education in effective terms. The corresponding numbers for $\Delta_{E}$ range from -0.8 to 0.5 . Furthermore, the wedge on non-qualified labor $\Delta_{L_{1}}$ is positive in all countries and takes on values in the range of 0.05 to 0.45 .

[^9]:    ${ }^{15}$ As mentioned in the introduction, an alternative modelling approach of temptation is the one developed by Laibson (1997) where individuals have time inconsistent preferences. Lee (2012) uses this 'hyperbolic discounting' model to study optimal education policies and finds that subsidizing education eases individual's self-control problems. His model, however, abstracts from savings and labor supply decisions which turn out to be important in the present framework.
    ${ }^{16}$ More precisely, $\Delta_{L_{1}} \gtrless(1+\lambda) \Delta_{L_{1}}-\lambda \nu_{1} \Leftrightarrow \nu_{1} \gtrless \Delta_{L_{1}}$.

[^10]:    ${ }^{17}$ Heckman and Pagés (2004) note that informal workers often evade taxation which, in turn, helps explaining why the relevant labor supply to the formal sector in developing countries turns out to be more elastic than in developed ones. See Fuest and Riedel (2009) and Besley and Persson (2013) for recent surveys of the literature on taxation and development.

[^11]:    ${ }^{18}$ Piketty and Quian (2009), Gemmell and Morrissey (2005), and Schmitt (2003) among others find that many tax systems in developing countries are substantially less progressive than those in developed ones.

[^12]:    ${ }^{19}$ Note that the proof does not rely on the derivatives with respect to $L_{2}, C_{2}$ and $\rho$.

