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Abstract: This paper extends the concept of interaction platforms and explores the evolution of 

interaction and cooperation supported by individuals‟ changing trust and trustworthiness on 

directed weighted regular ring network from the angle of micro scope by using agent-based 

modeling. This agent-based model integrates several considerations below via a relatively delicate 

experimental design: 1) a characteristic of trust is that trust is destroyed easily and built harder 

(Slovic, 1993); 2) trustworthiness may be reflected on both strategy decision and payoff structure 

decision; 3) individuals can decide whether or not to be involved in an interaction; 4) interaction 

density exists, not only between neighbors and strangers (Macy and Skvoretz, 1998), but also 

within neighbors; 5) information diffusion. In this agent-based model, marginal rate of 

exploitation of original payoff matrix and relative exploitation degree between two payoff 

matrices are stressed in their influence of trust-destroying; influence of observing is introduced via 

imagined strategy; relationship is maintained through relationship maintenance strength, and so 

on. This paper treats number of immediate neighbors, degree of embeddedness in social network, 

mutation probability of payoff matrix, mutated payoff matrix, proportion of high trust agents and 

probabilities of information diffusion within neighborhood and among non-neighbors as important 

aspects happening on interaction platforms, and the influences of these factors are probed 

respectively on the base of a base-line simulation.  

Keywords: Trust, trustworthiness, directed weighted regular ring network, agent-based modeling, 

marginal rate of exploitation, relative exploitation degree, imagined strategy, relationship 

maintenance strength, number of neighbors, degree of embeddedness in social network, mutation 

of payoff matrix, information diffusion, social mobility, institutional quality, evolution of 

interaction, evolution of cooperation 

Introduction  

Trust as a lubricant permeates almost every aspect of social and economic life. It typically 

functions on human individuals and is reflected in their social and economic interactions. From 

the individuals‟ perspective, different personal experiences (including direct interaction 

experiences and observation experiences) may drive different trust of individuals. At the same 

time, individuals‟ diverse traits may lead to that their trust gets influenced to different degrees by 

even the same trust-influencing events. Put another way, individuals would not react to the same 

degree to external information; there exist people more easily being influenced. Thus, trust is 

heterogeneous across individuals in a given population, and is more or less subjective. 

The micro interactions (interactions of individuals) can be and are often modeled by games, such 
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as Prisoners‟ Dilemmas or coordination games et cetera. Cooperation in dilemma-like payoff 

structure is a remarkable research topic in game theory. (e.g., Axelrod, 1984/2006) In research of 

trust by modeling micro interactions by non-cooperative Prisoners‟ Dilemmas, diachronic share of 

cooperation in the whole society (number of cooperation over population size) is often adopted as 

a measure of (social) trust. This method actually treats global share of trustworthy behaviors as 

equal to (social) trust and has reasonability, to some extent. However, some possible 

disadvantages accompany, at the same time. For example, given the payoff structure, this method 

cannot distinguish the different degrees of influences on an agent of trust-increasing and 

trust-decreasing events. It implies trust-decreasing events have an equivalent impact with 

trust-increasing events (even with very opposite directions). But generally speaking, trust is 

produced harder but can be destroyed easily. Slovic (1993) also states, “It (Trust) typically created 
rather slowly, but it can be destroyed in an instant by a single mishap or mistake”; the “fragile” 
nature of trust may, added by Slovic (1993), result from human psychological disposition to regard 

trust-destroying news as more credible. (Slovic, 1993) However, this characteristic of trust, which 

contributes to research of decline of trust, has rarely been considered into formal models.   

Trustworthiness, as an inseparable aspect of trust research, is reflected not only on the chosen 

strategy, but also on the chosen payoff structure. Given a payoff structure, unilateral defection 

destroys partners‟ trust; when an individual enlarges the interest conflict in the original payoff 

structure, his unilateral defection probably to a larger extent destroys his partners‟ trust than in the 

original payoff structure. Imagine a situation that a consumer is going to buy baby formula. The 

bad situation he has known or he can imagine is that at worst the formula is not worth the price he 

has paid. However, the consequence turns out to be that the baby of the consumer gets very sick 

after drinking the formula. The game is still the same one, namely “buying baby formula”, 

however the payoff structure does not consistent with the original one. Thus, it can be said that 

social trustworthiness also mirrors institutional quality: in a society with a relatively perfect 

institutional system, probably less events destroying public trust happen.  

Additionally, people do not definitely participate in a potential interaction. They can make a 

decision not only on which strategy and payoff structure to use in an interaction, but also on 

whether or not to be involved in an interaction (Macy and Skvoretz, 1998). Trust, therein, is a 

crucial factor to enable interactions. (Elsner and Schwardt, 2015)  

As to interactions, the probability of encountering different persons is not the same, which is a 

salient characteristic of social interactions. The random-pairing mechanism actually implies equal 

probability of meeting any other in the whole simulated population. Macy and Skvoretz (1998) 

argue that random-pairing and one-shot Prisoners‟ Dilemma experiments overlook “the 

embeddedness of the game in social networks”. (Macy and Skvoretz, 1998) High degree of 

embeddedness, in the paper of Macy and Skvoretz (1998), means high probability to reencounter 

each other. Thus, players, in their paper, are endowed with two types of relationships, namely 

neighbors and strangers, and interactions with neighbors are set with high degree of embeddedness 

while interactions with stranger with low embeddedness. (Macy and Skvoretz, 1998) This is a 

much more realistic pairing mechanism since interactions are locally dense in individuals‟ 
interaction network.  

Interaction density exists, both between neighbors and strangers and within neighbors.  Hence, 
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even within neighborhood, interactions also always accompany partner selections. Besides that 

one‟s relationships with others are with “to exist or not to exist”, they are also with different 

(unilateral) link weights. When an individual has an opportunity to interact with one of his 

neighbors, he probably would like to interact with those relatively trustworthy.  

Interactions are a relatively direct experience while non-interactions (for simplicity, observations1) 

provide another way to get others‟ interaction information. Information both from direct 

interactions and observations is channels that an individual gets to know about the status of the 

whole society. An obvious phenomenon about information diffusion in contemporary era is that its 

channels get more, its coverage gets larger and its speed gets faster. Besides traditional mass 

media, the technological support of improving information technology and internet access, the 

popularization of personal computers and mobile terminals, the emergent new media and the 

diverse on-line social platforms extremely largely improve the probability that an individual 

acquires information. Information acquired through observations (here means non-interactions) 

which is about others‟ interactions and contains information of others‟ trustworthiness in the 

society shapes the information receivers‟ trust. 

It has been realized that taking individuals‟ heterogeneity into account in economic researches 

coincides with evolutionary thinking. Gowdy et al (2016) argue that the average behavior of 

representative agents is one of the causes that make the modern economics non-evolutionary. 

(Gowdy et al, 2016, p 327) Modeling heterogeneity is the very strength of agent-based modeling 

(ABM) and is also the core difference between ABM and other methodologies, such as systematic 

dynamics. ABM places “a strong emphasis on heterogeneity and social interactions”. (Banisch, 

Lima and Araújo, 2012) So far, ABM gets more and more adopted in research in different fields 

and different topics of social sciences. (e.g., Axelrod, 1997; Macy and Willer, 2002; Tran and 

Cohen, 2004; Pyka and Fagiolo, 2005; Tesfatsion and Judd (Eds.), 2006; Gilbert, 2008; 

Geanakoplos et al, 2012; Chen et al, 2015; Spaiser and Sumpter, 2016) Research on trust with 

agent-based modeling also emerges. (e.g., Kim, 2009; Chen et al, 2015) 

In this paper, agents‟ heterogeneity is reflected on three main aspects below: 1) agents‟ trust 

(namely, their willingness to participate in a potential interaction in this paper) and their 

trustworthiness (i.e., their probability to cooperate in an actual interaction in this paper); 2) agents‟ 
capabilities of acquiring others‟ interaction information both from his neighbors and 

non-neighbors, respectively; 3) agents‟  trust-updating weights of different acquired interaction 

information (of mutual neighbors or mutual non-neighbors, and from personal interactions or 

observations). As to social interactions, an interaction contains (at least) the decision-makings 

below: 1) whether to initiate (or participate in) a potential interaction; 2) which partner to choose 

if the potential interaction is within neighborhood; 3) which (pure) strategy to use in the actual 

interaction; 4) which payoff matrix to apply. 

The aim of this paper is to explore the evolution of interaction and cooperation supported by 

individuals‟ changing trust and trustworthiness on a directed weighted regular ring network under 

different conditions of environment from the angle of micro scope via designing an agent-based 

model. Additionally, what is presented in the experimental design in this paper also provides 

                                                             
1 For simplicity, we use “observations” to refer to all non-interactive ways of acquiring others‟ interaction 
information. 
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useful insights in research of the decline of trust. 

Section 1 explains and extends the concept of “deep” network structure and enumerates some 

aspects reflecting “deep” network structure, information diffusion and institutional quality which 

are important for the micro process of the agent-based model in this paper. Section 2 describes the 

whole agent-based simulation in detail. Section 3 presents the simulation results, including 

influence of some selected single parameters based on a base-line simulation and a comparison of 

2 societies. Section 4 is a short presentation about some enlightenment on institutional emergence. 

Section 5 concludes. 

1 “Deep” network structure 

The title of this paper gives special stresses on “„deep‟ network structure”. This concept tightly 

relates the conception of “meso”-sized interaction platforms and arenas in several papers of Elsner 

and Elsner et al. (e.g. Elsner, 2007; Elsner and Heinrich, 2009; Elsner, 2010; Elsner and Heinrich, 

2011; Elsner and Schwardt, 2014; Elsner and Schwardt, 2015) In their papers, Elsner and Elsner et 

al accentuate the size dimension of the interaction platforms and arenas. Elsner (2007) argues that 

meso level, i.e. mid-sized groups, is a proper level on which institutional or structural emergence 

take places. (Elsner, 2007) Elsner et al. (2009) further dig into the co-evolution of an institution 

and the size of its carrier group by using a supergame of prisoners‟ dilemma from a population 

perspective. (Elsner and Heinrich, 2009) However, argue Elsner and Schwardt (2015), “it (size of 

interaction arenas) is not about absolute size in terms of overall population but the „inner‟ size 
structure of interaction arenas”. (Elsner and Schwardt, 2015)  

The word “structure” usually refers to a kind of spatial or proportional arrangements. How 

different interaction platforms are arranged generates a structure. Despite the size dimension, it is 

the interdependent individuals‟ micro interaction processes that are carrying on on these 

interaction platforms. That a particular individual interacts across different platforms means 

different interaction platforms may contain some (at least one) same individuals; these platforms 

therefore overlap. Inspired by Elsner and Schwardt (2014), Dai (2015) classifies interaction 

platforms into four types, namely political platforms, economic platforms, social platforms and 

international platforms. (Dai, 2015, p 100-102) However, I would like to provide another way of 

considering interaction platforms and, at the same time, the overlapping of interaction platforms. 

Note that this is not even a roughly exhausted classification of interaction platforms; it just 

provides different angles of thinking and understanding overlapping interaction platforms.  

Geographical-location-related platforms Geographical adjacency increases the probability of 

interaction. As an individual moves to different geographical locations, he encounters different 

interaction partners. Faster mobility enlarges chances of encountering more strangers.  

Social-roles-related platforms Multiplicity of a human‟s social roles also provides possibilities of 

the overlap of interactions platforms. For example, a female can be both a mother and a teacher at 

the same time. As a mother, she interacts with her children and other people related to her 

responsibility of a mother; as a teacher, she interacts with her students, others teachers and other 

staff in her school.  

Events-related platforms Interaction platforms can vary depending on different events that an 
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individual deals with. When an individual is involved in an event, he enters the platform and 

interacts with others also involved in the event; when the event finished, the platforms dismisses. 

Thus, different events offer different interaction platforms. 

Technology-based platform This kind of platforms is mainly for distinguishing from realistic 

social interaction networks. Supported by modern information technology, various on-line social 

platforms emerge, such as Facebook, Twitter, LinkedIn. In China, there are on-line social 

networks like Sina Weibo, and instant communication softwares like Tencent QQ and WeChat. 

These on-line social platforms overlap with realistic social networks and provide communication 

at any time anywhere. However, what is remarkable about on-line social platforms is that they 

supply more opportunities of communicating with and getting information about a lot more 

strangers.  

Treating an interaction platform as a conceptual brace in this paper, we also take into account 

what have been mentioned in the introduction, such as the different interaction densities both 

between neighbors and non-neighbors and within neighborhood, the different influences of 

trust-decreasing and trust-increasing events, information acquired via both interactions and 

observations and institutional quality et cetera when considering the environment of and what is 

happening on an interaction platform in order to better describe and understand the 

socio-economic mechanism on this “deep” network, rather than focusing on the size dimension. 

Before presenting experimental design, it is necessary to figure out some parameters and their 

meaning that we use to explore socio-economic processes underlying trust in our agent-based 

simulation. In a word, they are all about with whom to interact and how, essentially. 

Number of immediate neighbors Number of neighbors in our simulation is how many direct, or 

immediate, or one-degree separated neighbors an individual has. The probability of a given 

neighbor is chosen as an interaction partner is higher if an individual has fewer neighbors ceteris 

paribus if the choosing scope is within his neighborhood.  

Embededness in social network Inspired by Macy and Skvoretz (1998), embeddedness in one‟s 
social network here refers to the probability that a potential interaction will be with an immediate 

neighbor (one-degree separated neighbor) and is represented by a real number within range [0, 1]. 

Thus, 1 minus means social embeddedness degree is the probability that a potential interaction 

will be with a non-neighbor. What is more meaningful, social embeddedness is used to indicate 

social mobility.  

Mutated payoff matrix Mutated payoff matrix is a mutated version of the original and popular 

payoff matrix. Interactions are modeled as symmetric non-cooperative prisoners‟ dilemmas in this 

paper. The original and the mutated payoff matrix have the same payoff values for pure strategies 

against themselves, while have different payoff values for pure strategies against the different pure 

strategies. The mutated payoff matrix is endowed with a larger interest conflict and is used as an 

ingredient of indicating relative degree of exploitation of the mutated payoff matrix over the 

original payoff matrix.  

Mutation probability of payoff structure Mutation probability of payoff structure is the probability 

that the original payoff matrix is changed to the mutated payoff matrix by the initiator of a 

potential interaction on condition that the initiator has decided to play “Defection” in the 
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forthcoming actual interaction. This is an indicator for institutional quality in this paper. 

Proportion of high trust individuals Proportion of high trust individuals in the whole population in 

this paper is the proportion of individuals whose trust is equal to or higher than 2/3 in the whole 

population.1 This is a parameter to represent the whole trust status in a society.  

Probability of interaction information diffusion in neighbors Probability of interaction information 

diffusion in neighbors is the probability that the interaction information, including the strategies 

and payoffs of the interaction parties, get spread in agents who are neighbors of either of the 

interaction parties. 

Probability of interaction information diffusion in non-neighbors Probability of interaction 

information diffusion in non-neighbors is the probability that the interaction information, 

including the strategies and payoffs of the interaction parties, get spread in agents who are 

neighbors of neither of the interaction parties.  

2 Experimental design 

2.1 Artificial society 

Consider an artificial society with n agents. The set of all agents is denoted by a finite set N = {ai | 

1≤ i ≤ n, i ∈ N+} = {a1, a2, a3, ... ai ..., an-1, an} with the subscripts representing the unique 

identity of a given agent. As shown in set N, the identities, namely the ids of agents, are 

represented by continuous non-negative integers from 1 to the population size of the simulated 

artificial society. 

2.2 Self’s social network structure 

After all agents are instantiated with a unique identity, they are arranged on a network of directed 

weighted regular ring sequentially with an equal number of neighbors. ai‟s neighbors are those 

who are nearest to him on the ring. On “ring” networks, the two agents with the smallest id and 

the largest id are next to each other. Thus, the agents‟ ids are joined head to tail.  

Additionally, let Neigi be ai‟s neighborhood (here means ai‟s set of immediate neighbors with 1 

degree separated in this paper) and Neigi
C = N - Neigi - {a} represent ai‟s non-neighbor set. As 

soon as the ring network structure is generated, a “memory” list consisting of one-dimension 

arrays, which is for unilateral ink weights updating, is created for each agent with which an agent 

can memorize the id of his neighbors, the times of cooperation that each of his neighbors applies 

to him in a current period, and his times of actual interactions with each of his neighbors in a 

current period. Subsequently, the non-neighborhood can be accordingly achieved. Before agents 

interact, the order of each agent‟s neighbor list and non-neighbor list, and agent list (containing all 

agents) are shuffled.  

2.3 Initialization of agents’ attributes  

In this part, some important attributes and their initialization are stressed, even though there are 

still some other attributes in the initialization process of agents. The specific use will be illustrated 

                                                             
1 The trust level in this paper is a real number within range [0, 1). 
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in 2.4 in detail. 

2.3.1 Initialization of trust and trustworthiness 

Each agent‟s trust is generated as a float number in range [0, 1). If an agent‟s trust is equal to or 

higher than 2/3, he is treated as a high trust agent. An agent with probability p
HTr (namely 

proportion of high trust individuals in the whole population) is initialized as a high trust agent. 

Agents‟ trust in ranges [0, 2/3) and [2/3, 1) follows uniform distribution in corresponding ranges, 

respectively. That is, 

𝑇𝑟𝑖 ,𝑖𝑛𝑖𝑡  ~  U  2

3
, 1    if  𝑟𝑖𝑡𝑟 ∈ [0,𝑝𝐻𝑇𝑟)

U  0,
2

3
      if  𝑟𝑖𝑡𝑟 ∈ [𝑝𝐻𝑇𝑟 , 1)

       
𝑇𝑟𝑖 ,𝑖𝑛𝑖𝑡  is agent ai‟s initial trust. 𝑟𝑖𝑡𝑟  is a pseudo random number (namely, a sample value of a 

random variable following uniform distribution in range [0, 1)). 𝑝𝐻𝑇𝑟  is proportion of high trust 

individuals in the whole population.  

Similar with trust, one‟s trustworthiness is a float number randomly chosen from uniform 

distribution [0, 1). Namely,  𝑇𝑟𝑤𝑖,𝑖𝑛𝑖𝑡  ~ U 0, 1  𝑇𝑟𝑤𝑖,𝑖𝑛𝑖𝑡  represents agent ai‟s initial trustworthiness 

Additionally, what should be pointed out here is that, as shown above, it is not assumed in advance 

any direct relationship between an agent‟s trust and his own trustworthiness.1  

2.3.2 Initialization of probability of information acquisition 

Information acquisition here means that an agent acquires others‟ interaction information via 

non-interaction (namely, observing hereinafter, for convenience). An agent‟s probability of 

information acquisition indicates his capability to obtain and his attention paid to others‟ 
interactions.  

Each agent has two probabilities of information acquisition: one is about information acquired 

from neighbors 𝑝𝑖𝐼𝐴𝑁 ; the other is about information acquired from non-neighbors 𝑝𝑖𝐼𝐴𝑁𝑛 . They 

are both randomly chosen from uniform distribution in range [0, 1) and do not change across time. 

That is, 𝑝𝑖𝐼𝐴𝑁  ~ U 0, 1  𝑝𝑖𝐼𝐴𝑁𝑛  ~ U 0, 1  
Now, let ai be an observing agent. When a piece of interaction information gets diffused within the 

                                                             

1
 In this paper, an agent‟s trust and his own trustworthiness is not directly related because I have not found 

literature writing about that, to the best of my present limited knowledge. 
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neighborhoods of two interaction parties, as long as one of the two interaction parties is the 

observing agent‟s neighbor, the observing agent would following 𝑝𝑖𝐼𝐴𝑁  observe; when the piece 

of interaction information gets diffused within non-neighborhoods of the interaction parties, if 

neither of the two interaction parties is the observing agent‟s neighbor, the observing agent would 

following 𝑝𝑖𝐼𝐴𝑁𝑛  observe.  

2.3.3 Initialization of weights of four kinds of information sources 

We assume that there are four kinds of information sources on which an agent can depend to 

adjust his trust: 1) interactions with neighbors, 2) interactions with non-neighbors, 3) observing 

interactions between two mutual neighbors (that is, the two interacting parties are mutual 

neighbors), 4) observing interactions between two mutual non-neighbors.  

Let 𝑤𝑖𝑁𝑒𝑖𝑔𝑠  denote ai‟s weight of information about mutual neighbors, let 𝑤𝑖𝑁𝑛𝑒𝑖𝑔𝑠  be ai‟s weight 

of information about mutual non-neighbors, let 𝑤𝑖𝐼𝑛𝑡𝑒  represent ai‟s weight of information 

acquired through interactions and let 𝑤𝑖𝑂𝑏𝑠  indicate ai‟s weight of information acquired via 

observations. All of an agent‟s four weights are randomly chosen from uniform distribution on 

range [0, 1) and do not change across time. The weights of four kinds of information sources in 

trust-updating is four linear combinations of either 𝑤𝑖𝑁𝑒𝑖𝑔𝑠  or 𝑤𝑖𝑁𝑛𝑒𝑖𝑔𝑠 and either 𝑤𝑖𝐼𝑛𝑡𝑒  or 𝑤𝑖𝑂𝑏𝑠 .1  That is, the weight of interacting with neighbors in ai‟s trust-updating is a linear 

combination of 𝑤𝑖𝑁𝑒𝑖𝑔𝑠  and 𝑤𝑖𝐼𝑛𝑡𝑒 ; the weight of interacting with non-neighbors in ai‟s 

trust-updating is a linear combination of 𝑤𝑖𝑁𝑛𝑒𝑖𝑔𝑠  and 𝑤𝑖𝐼𝑛𝑡𝑒 ;the weight of observing interactions 

between two mutual neighbors in ai‟s trust-updating is a linear combination of 𝑤𝑖𝑁𝑒𝑖𝑔𝑠  and 𝑤𝑖𝑂𝑏𝑠 ; 

the weight of observing interactions between two mutual non-neighbors in ai‟s trust-updating is a 

linear combination of 𝑤𝑖𝑁𝑛𝑒𝑖𝑔𝑠  and 𝑤𝑖𝑂𝑏𝑠 . Specifically, we set the weights of four kinds of 

information sources as follows (see Table 2.3-1): 

Table 2.3-1 Weights of four kinds of information sources in ai‟s trust-updating 

 𝑤𝑖𝐼𝑛𝑡𝑒 ~ U 0, 1  𝑤𝑖𝑂𝑏𝑠~ U 0, 1  
𝑤𝑖𝑁𝑒𝑖𝑔𝑠~ U 0, 1  0.5 ∗ (𝑤𝑖𝐼𝑛𝑡𝑒 + 𝑤𝑖𝑁𝑒𝑖𝑔𝑠 ) 0.5 ∗ (𝑤𝑖𝑂𝑏𝑠 + 𝑤𝑖𝑁𝑒𝑖𝑔𝑠 ) 

𝑤𝑖𝑁𝑛𝑒𝑖𝑔𝑠 ~ U 0, 1  0.5 ∗ (𝑤𝑖𝐼𝑛𝑡𝑒 + 𝑤𝑖𝑁𝑛𝑒𝑖𝑔𝑠 ) 0.5 ∗ (𝑤𝑖𝑂𝑏𝑠 + 𝑤𝑖𝑁𝑛𝑒𝑖𝑔𝑠 ) 

2.3.5 Initialization of unilateral link weights 

Unilateral link weights are what an agent, say ai, depends on to actively choose a neighbor as a 

potential interaction partner when his scope of choosing is within neighborhood, and unilateral 

link weights do not change within a time period. The neighbor to whom ai assigns larger unilateral 

link weight is with higher probability to be chosen. Let LWi,t be the set of unilateral link weights 

that ai holds for all his neighbors in time period t. We set 𝐿𝑊𝑖,𝑡 = {𝑙𝑤𝑖𝑗 ,𝑡 |𝑎𝑗 ∈ 𝑁𝑒𝑖𝑔𝑖 , 0 ≤ 𝑙𝑤𝑖𝑗 ,𝑡 ≤ 1 and  𝑙𝑤𝑖𝑗 ,𝑡 = 1𝑗 }  

                                                             

1 Here an implicit assumption is that 𝑤𝑖𝑁𝑒𝑖𝑔𝑠 , 𝑤𝑖𝑁𝑛𝑒𝑖𝑔𝑠 , 𝑤𝑖𝐼𝑛𝑡𝑒  and 𝑤𝑖𝑂𝑏𝑠  are mutually independent.  
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and set 𝑝𝑖𝑗 ,𝑡 ,𝜏𝐴𝑃𝐼 = 𝑙𝑤𝑖𝑗 ,𝑡    (0 ≤ 𝜏 ≤ 𝑅𝑒𝑞𝑖,𝑡𝐼𝑛𝑡𝑒  and 𝜏ϵN+) 

Therein, lwij,t the unilateral link weight that ai assigns to his neighbor aj in time period t. It equals 𝑝𝑖𝑗 ,𝑡 ,𝜏𝐴𝑃𝐼 , the probability that ai actively chooses his arbitrary neighbor aj as a potential interaction 

partner when neighborhood is ai‟s choosing scope in sub-time period 𝜏 of time period t. Note that 𝑙𝑤𝑖𝑗 ,𝑡 ≠ 𝑙𝑤𝑗𝑖 ,𝑡 , since the network structure is a directed weighted graph in this paper, as 

aforementioned. 

Initially, an agent‟s unilateral link weights follow discrete uniform distribution, which means that 

in the first time period, each neighbor of ai is with probability 
1𝑁𝑢𝑚 𝑖𝑁𝑒𝑖𝑔𝑠  (𝑁𝑢𝑚𝑖𝑁𝑒𝑖𝑔𝑠 is the number 

of ai‟s neighbors) to be chosen as a potential interaction partner by ai. That is, initially, 

𝑝𝑖𝑗 ,𝑡=1,𝜏𝐴𝑃𝐼 = P 𝑃𝑎𝑟𝑡𝑛𝑒𝑟𝑖 ,𝑡=1,𝜏𝐴𝑃𝐼 = 𝑎𝑗 |𝑃𝑇𝑖,𝑡=1,𝜏𝐴𝑃𝐼 = 0 =
1𝑁𝑢𝑚𝑖𝑁𝑒𝑖𝑔𝑠       (𝑎𝑗 ∈ 𝑁𝑒𝑖𝑔𝑠𝑖 ;  0 ≤ 𝜏≤ 𝑅𝑒𝑞𝑖,𝑡𝐼𝑛𝑡𝑒  and 𝜏ϵN+)  𝑃𝑎𝑟𝑡𝑛𝑒𝑟𝑖 ,𝑡=1,𝜏𝐴𝑃𝐼  represents the partner that ai actively chooses as his potential interaction partner in 

sub-time period 𝜏 of time period t=1. 𝑃𝑇𝑖,𝑡=1,𝜏𝐴𝑃𝐼 = 0 represents the condition that the partner type 

of the chosen potential interaction partner is a neighbor (“neighbors” is represented by 0 and 

“non-neighbors” by 1). The specific mechanism agents update their unilateral link weights for the 

next time period when a time period ends will be introduced in detail in section 2.4.3.  

2.4 Micro-level process 

Each time period contains 𝜏 = 𝑅𝑒𝑞𝑖 ,𝑡𝐼𝑛𝑡𝑒  sub-time periods (𝑅𝑒𝑞𝑖 ,𝑡𝐼𝑛𝑡𝑒 = 20 in this paper). The 

micro-level process in each time period contains three main tasks: 1) all agents one by one have an 

opportunity to actively make an interaction request (described in 2.4.1), and this rotation repeats 

for 𝑅𝑒𝑞𝑖,𝑡𝐼𝑛𝑡𝑒  times; 2) all agents one by one update their trustworthiness (namely probability to 

cooperate in each actual interaction) for the next time period (described in 2.4.2); 3) all agents one 

by one modify their unilateral link weights for the next time period (described in 2.4.3).  

2.4.1 Interaction, information diffusion and trust-updating 

1) Interaction decision for active potential interactions 

For each sub-period 𝜏 (𝜏 ∈ N+ and 𝜏 ≤ 𝑅𝑒𝑞𝑖 ,𝑡𝐼𝑛𝑡𝑒 ) in time step t, every agent, in turn in a shuffled 

order, has an opportunity to actively make an interaction request to others. Whether an agent will 

grasp the opportunity and enter the next step of choosing a potential interaction partner is 

determined by his willingness to interact, namely his own trust in this paper. That is, ai with a 

probability equal to his trust continues to choose a potential interaction partner.  

Before we go further, I would like to talk about potential interactions. A potential interaction is 

acquired whenever an agent has an opportunity to interact, however has not yet actually interacted. 

Thus, number of potential interactions of an agent i in time period t can be calculated in two 

different ways. The first way is: 
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𝑁𝑢𝑚𝑖 ,𝑡𝑃𝐼 = 𝑁𝑢𝑚𝑖 ,𝑡𝑃𝐼,𝑁
+ 𝑁𝑢𝑚𝑖 ,𝑡𝑃𝐼,𝑁𝑛  𝑁𝑢𝑚𝑖 ,𝑡𝑃𝐼  represents ai‟s number of potential interactions within time period t. 𝑁𝑢𝑚𝑖 ,𝑡𝑃𝐼,𝑁

 represents 

ai‟s number of potential interactions with his neighbors in time period t. 𝑁𝑢𝑚𝑖 ,𝑡𝑃𝐼,𝑁𝑛  represents ai‟s 

number of potential interactions with his non-neighbors in time period t.  

However, as we notice, an agent‟s number of potential interactions also equals his active 

interaction requests and interaction requests from others (passive interactions).Thus, the second 

way to calculate an agent‟s number of potential interactions within time period t is: 𝑁𝑢𝑚𝑖 ,𝑡𝑃𝐼 = 𝑁𝑢𝑚𝑖 ,𝑡𝐴𝑃𝐼 + 𝑁𝑢𝑚𝑖 ,𝑡𝑃𝑃𝐼 = 𝑅𝑒𝑞𝑖 ,𝑡𝐼𝑛𝑡𝑒 + 𝑁𝑢𝑚𝑖,𝑡𝑃𝑃𝐼  𝑁𝑢𝑚𝑖 ,𝑡𝐴𝑃𝐼  represents ai‟s number of active potential interactions in time period t. 𝑁𝑢𝑚𝑖 ,𝑡𝑃𝑃𝐼  
represents ai‟s number of passive potential interactions in time period t. According to the setting in 

this paper, 𝑁𝑢𝑚𝑖,𝑡𝐴𝑃𝐼 = 𝑅𝑒𝑞𝑖 ,𝑡𝐼𝑛𝑡𝑒 = 20. 

2) To choose a potential interaction partner   

Following Macy and Skvoretz (1998), in this paper the degree of embeddedness in social network 

is also assumed. Degree of embededness in social network, as a parameter, is represented by a 

float number in range [0, 1). When ai is going to actively propose an interaction request, his 

potential interaction partner will be chosen either from his neighborhood with probability equal to 

degree of embeddedness in social network or from his non-neighborhood with probability equal to 

1 minus degree of embeddedness in social network.1  

If ai‟s potential interaction partner is definitely going to be chosen from neighborhood, which 

neighbor on earth will be chosen hinges on ai‟s unilateral link weights assigned to his neighbors. 

On contrast, if ai‟s potential interaction partner is definitely outside his neighborhood, a 

non-neighbor will be randomly chosen among ai‟s non-neighbors with equal likelihood. That is, 

𝑝𝑖𝑗 ,𝑡 ,𝜏𝑃𝐼 =  𝑙𝑤𝑖𝑗 ,𝑡         if 𝑎𝑗 ∈ 𝑁𝑒𝑖𝑔𝑠𝑖
1𝑁𝑢𝑚𝑖𝑁𝑛𝑒𝑖𝑔𝑠          if 𝑎𝑗 ∈ 𝑁𝑒𝑖𝑔𝑠𝑖𝐶   

𝑝𝑖𝑗 ,𝑡 ,𝜏𝑃𝐼  represents the probability that ai chooses aj as his potential interaction partner in sub-time 

period 𝜏 of time period t. If aj belongs to ai‟s neighbors, the probability that aj is chosen is 𝑙𝑤𝑖𝑗 ,𝑡; 
if aj belongs to ai‟s non-neighbors, the probability is 

1𝑁𝑢𝑚 𝑖𝑁𝑛𝑒𝑖𝑔𝑠 . 𝑁𝑢𝑚𝑖𝑁𝑛𝑒𝑖𝑔𝑠  is the number of ai‟s 

non-neighbors. If the former (𝑎𝑗 ∈ 𝑁𝑒𝑖𝑔𝑠𝑖), aj‟s number of passive potential interactions (namely, 

passive potential interactions) from neighbors in the current time period increases by 1.2 Namely, 

𝑁𝑢𝑚𝑗 ,𝑡𝑃𝑃𝐼 ,𝑁 ← 𝑁𝑢𝑚𝑗 ,𝑡𝑃𝑃𝐼 ,𝑁
+ 1     if 𝑎𝑗 ∈ 𝑁𝑒𝑖𝑔𝑠𝑖 

                                                             

1 “Degree of embededness in social network” here only represents the probability that an agent encounters a 

neighbor in a potential interaction; it does not represent an agent‟s subjective willingness to interact with a 

neighbor. 
2 The number of passive potential interactions with non-neighbors is not counted. 
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Number of passive potential interactions from neighbors is counted for trustworthiness updating in 

2.4.2. Whether ai‟s chosen potential interaction partner aj (either a neighbor or a non-neighbor) 

would like to participate in the interaction then depends on aj willingness to interact determined by 

aj‟s own trust. Only if aj agrees to interact, the interaction will actually happen, and ai and aj enter 

the next step of strategy decision; otherwise, the actual interaction won‟t happen.  

3) Pure strategy decision 

Applying which pure strategy for the forthcoming actual interaction is determined by the agents‟ 
probability of cooperation, namely their own trustworthiness in this paper. If a random number 

chosen from uniform distribution in range [0, 1) is smaller than an agent‟s trustworthiness 

(probability to cooperate), his strategy will be “Cooperate”; otherwise, his strategy will be 

“Defect”. Hence, each agent is actually using a mixed strategy. That is,  

𝑃𝑆𝑖 ←   0    if 𝑟𝑖𝑠𝑡𝑟𝑎 ∈ [0,𝑇𝑟𝑤𝑖,𝑡]

1    if 𝑟𝑖𝑠𝑡𝑟𝑎 ∈ (𝑇𝑟𝑤𝑖,𝑡 , 1)
  

𝑃𝑆𝑖  represents the pure strategy that agent ai would use in a forthcoming actual interaction. “0” 

represents “Cooperation” and “1” “Defection”. 𝑟𝑖𝑠𝑡𝑟𝑎  is a pseudo number following uniform 

distribution in range [0, 1). 𝑇𝑟𝑤𝑖,𝑡  is agent ai‟s trustworthiness in time period t.  

4) Payoff matrix mutation 

The actual interaction process is modeled by non-cooperative and symmetric prisoners‟ dilemmas. 

Denote matrix Ag as a general form of payoff matrixes of prisoners‟ dilemma and set 

𝑨𝑔 =   𝑎11 𝑎12𝑎21 𝑎22
  

a11 is an agent‟s payoff when both he and his partner apply strategy “Cooperation”; a12 is an 

agent‟s payoff when he alone uses strategy “Cooperation” while his partner uese strategy “Defect”; 

a21 is an agent‟s payoff when he plays strategy “Defect” and his partner plays strategy 

“Cooperation”; a22 is an agent‟s payoff when both players apply strategy “Defect”. Then, the 

elements of payoff matrix Ag should satisfy 𝑎21 >  𝑎11  >  𝑎22  >  𝑎12  and 𝑎11  >  
𝑎21 + 𝑎12

2
 for a 

game to be a prisoners‟ dilemma.  

What is more important for trust-updating later in this paper, we define marginal rate of 

exploitation (MRE) of a given payoff matrix Ag as 

𝑀𝑅𝐸Ag ,𝐶/𝐷 =
𝑎11 − 𝑎12𝑎21 − 𝑎11 

 

𝑀𝑅𝐸𝐴𝑔 ,𝐶/𝐷 represents marginal rate of exploitation of pure strategy “Defection” to pure strategy 

“Cooperation” under payoff matrix Ag. It measures how much a defector can gain from deviating 

one unit of payoff from pure strategy “Cooperation” on the loss of his game partner who is a 

cooperator. MRE is positive. 

Consider two symmetric prisoners‟ dilemmas with A and Amut having different numerical payoffs: 
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𝑨 =   𝑎11
𝐴 𝑎12

𝐴𝑎21
𝐴 𝑎22

𝐴                and          𝑨𝑚𝑢𝑡 =   𝑎11
𝐴𝑚𝑢𝑡 𝑎12

𝐴𝑚𝑢𝑡𝑎21
𝐴𝑚𝑢𝑡 𝑎22

𝐴𝑚𝑢𝑡   
Therein, Amut is a mutated version of A. Thus, the marginal rate of exploitation of payoff matrix A 

is: 

𝑀𝑅𝐸𝐴,𝐶/𝐷 =
𝑎11
𝐴 − 𝑎12

𝐴𝑎21
𝐴 − 𝑎11

𝐴  

Besides the general conditions a prisoners‟ dilemma should satisfy, A and Amut in this paper also 

satisfy 𝑎11
𝐴𝑚𝑢𝑡 = 𝑎11

𝐴 , 𝑎22
𝐴𝑚𝑢𝑡 = 𝑎22

𝐴 , 𝑎21
𝐴𝑚𝑢𝑡 > 𝑎21

𝐴  and 𝑎12
𝐴𝑚𝑢𝑡 < 𝑎12

𝐴  to ensure that the mutated 

payoff matrix Amut enlarges the exploitation degree of unilateral defection compared to the original 

payoff matrix A, and to have comparability as well. At the same time, we denote relative 

exploitation degree (RED) of payoff matrix Amut over A as 

𝑅𝐸𝐷𝐴𝑚𝑢𝑡 /𝐴 =  
𝑎21
𝐴𝑚𝑢𝑡 − 𝑎12

𝐴𝑚𝑢𝑡𝑎21
𝐴 − 𝑎12

𝐴  

Relative exploitation degree is constructed to measure to which degree a mutated payoff matrix 

A
mut enlarges the interest conflict of the original payoff matrix A. Both marginal rate of 

exploitation and relative exploitation degree are for trust updating in 6) in 2.4.1. Numerically, A =  3 1

4 2
  in this paper and Amut is a parameter with different candidate values. For example, when 

A
mut =  3 0

5 2
 , we get 

𝑀𝑅𝐸𝐴,𝐶/𝐷 =
𝑎11
𝐴 − 𝑎12

𝐴𝑎21
𝐴 − 𝑎11

𝐴 =
3 − 1

4 − 3
= 2 

𝑅𝐸𝐷𝐴𝑚𝑢𝑡 /𝐴 =  
𝑎21
𝐴𝑚𝑢𝑡 − 𝑎12

𝐴𝑚𝑢𝑡𝑎21
𝐴 − 𝑎12

𝐴 =  
5 − 0

4 − 1
=

5

3
 

Payoff matrix decision comes after pure strategy decision. The initiator (the active interaction 

party) of a potential interaction has an exclusive right to unilaterally change payoff matrix from A 

to Amut with probability pAmut which is a parameter in this paper, on condition that the initiator has 

already decided to apply “Defection” for this forthcoming actual interaction.1 As long as no 

payoff matrix mutation happens, the interaction will carry on with the original payoff matrix A. 

That is,  

𝑃𝑀𝑖,𝑡 ,𝜏 =  𝐴         if 𝑟𝑃𝑀 ∈ [0,𝑝𝐴𝑚𝑢𝑡 ]𝐴𝑚𝑢𝑡     if 𝑟𝑃𝑀 ∈ (𝑝𝐴𝑚𝑢𝑡 , 1)
       

𝑃𝑀𝑖,𝑡 ,𝜏  represents ai‟s payoff matrix decision for his active potential interaction in sub-time period 𝜏 in time period t. 𝑟𝑃𝑀  is a pseudo random number. Due to the specific conditions that A and Amut 

should satisfy in this paper, we suppose that when active actor chooses Amut: 1) the passive actor 

cannot discover he is under Amut unless the passive actor plays “Cooperation”; 2) observers cannot 

                                                             
1 Even though mutation probability is very small in nature (e.g., Seltzer and Smirnov, 2015), it is not set that small 
in this paper. 
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either detect their observed interaction is under Amut unless the observed interaction is unilateral 

defect. 

5) To play the game 

After pure strategies and payoff matrix for the forthcoming interaction have been decided, the two 

interaction parties begin to play the game. What each of both interacting parties should record 

through each actual interaction in a current time period is two aspects: i) counting his own actual 

interactions (including both active ones and passive ones) and “Cooperation” (no matter what pure 

strategy his partner uses) no matter whether his partner is a neighbor or a non-neighbor; ii) 

counting actual interactions happening with each of his neighbors and “Cooperation” that each of 

his neighbors applies to him according to his neighbors‟ identity. All these are reset to zero at the 

beginning of every time period (not sub-time period). Therein, i) is for trustworthiness updating in 

2.4.2; ii) is for unilateral link weights updating in 2.4.3.  

Formally, in each actual interaction, for purpose of i), 𝑁𝑢𝑚𝑖 ,𝑡𝐴𝐼 ← 𝑁𝑢𝑚𝑖,𝑡𝐴𝐼 + 1   𝑁𝑢𝑚𝑖 ,𝑡𝐶 ← 𝑁𝑢𝑚𝑖 ,𝑡𝐶 + 1            if 𝑃𝑆𝑖 = 0  𝑁𝑢𝑚𝑖 ,𝑡𝐴𝐼  represents the times of ai‟s actual interactions in time period t. 𝑁𝑢𝑚𝑖 ,𝑡𝐶  represents the 

times that ai uses “Cooperation” in time period t. For purpose of ii), 𝑁𝑢𝑚𝑖𝑗 ,𝑡𝐴𝐼 ← 𝑁𝑢𝑚𝑖𝑗 ,𝑡𝐴𝐼 + 1    if 𝑎𝑗 ∈ 𝑁𝑒𝑖𝑔𝑠𝑖  
𝑁𝑢𝑚𝑖𝑗 ,𝑡𝐶𝑗 ← 𝑁𝑢𝑚𝑖𝑗 ,𝑡𝐶𝑗

+ 1    if 𝑎𝑗 ∈ 𝑁𝑒𝑖𝑔𝑠𝑖  and 𝑃𝑆𝑗 = 0 

𝑁𝑢𝑚𝑖𝑗 ,𝑡𝐴𝐼  represents the times of ai‟s actual interactions with his neighbor aj in time period t. 𝑁𝑢𝑚𝑖𝑗 ,𝑡𝐶𝑗  represents the times that his neighbor aj applies “Cooperation” to ai in time period t.  

6) Diffusion of interaction information (Observed by others) 

It is possible that others who are not interacting parties get informed of the situation and result of 

an interaction. Except the two interaction parties, say ai and aj, the agents in the artificial society 

are separated into two sets: one is the union-neighbor set UNeigij in which the agents are 

neighbors of either of the interaction parties; the other is set DNeigij in which agents are neighbors 

of neither of the interaction parties. Thus, when the interaction parties ai and aj are mutual 

neighbors,  𝑈𝑁𝑒𝑖𝑔𝑖𝑗 = 𝑁𝑒𝑖𝑔𝑖 ∪ 𝑁𝑒𝑖𝑔𝑗 − {𝑎𝑖 ,𝑎𝑗 } 𝐷𝑁𝑒𝑖𝑔𝑖𝑗 = 𝑁 − (𝑁𝑒𝑖𝑔𝑖 ∪ 𝑁𝑒𝑖𝑔𝑗 ) 

When the interaction parties ai and aj are mutual non-neighbors, 𝑈𝑁𝑒𝑖𝑔𝑖𝑗 = 𝑁𝑒𝑖𝑔𝑖 ∪ 𝑁𝑒𝑖𝑔𝑗  
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𝐷𝑁𝑒𝑖𝑔𝑖𝑗 = 𝑁 −  𝑁𝑒𝑖𝑔𝑖 ∪ 𝑁𝑒𝑖𝑔𝑗  − {𝑎𝑖 ,𝑎𝑗 } 

The probability that the interaction information of ai and aj diffuses in these two interacting parties‟ 
neighborhoods UNeigi,j is pIDN, and the probability diffusing in their non-neighborhoods DNeigi,j is 

p
IDNn. Both pIDN

 and pIDNn
 are random numbers following uniform distribution in range [0,1) and 

act as parameters whose influence will be investigated under four different candidate values.  

Then, the interaction information of ai and aj starts “diffusing” separately in UNeigi,j and DNeigi,j. 

Whether an outside agent ak (an agent who is not one of the interacting parties) will get informed 

of the just happening interaction depends on whether he belongs to UNeigi,j or DNeigi,j, and his 

own probability of information acquisition from neighbors 𝑝𝑘𝐼𝐴𝑁  and from non-neighbors 𝑝𝑘𝐼𝐴𝑁𝑛 . 

That is, 

𝑝𝑘𝐺𝐼 =  𝑝𝑘𝐼𝐴𝑁     if 𝑎𝑘 ∈ 𝑈𝑁𝑒𝑖𝑔𝑖𝑗𝑝𝑘𝐼𝐴𝑁𝑛     if 𝑎𝑘 ∈ 𝐷𝑁𝑒𝑖𝑔𝑖𝑗   𝑝𝑘𝐺𝐼  is the probability that an outsider ak gets informed of a piece of interaction information 

between ai and aj. What an observing agent will get informed about others‟ interaction is 1) the 

strategy combination, that is whether the observed interaction is “mutual cooperation”, “unilateral 

defection” or “mutual defection”;2) the relationship between the observed interacting parties, 

namely “mutual neighbors” or “mutual non-neighbors” and 3) the specific payoff matrix, that is 

whether the payoff matrix is a mutated one. Note that Amut can only manifest itself in the situation 

of unilateral defection because A
mut has the same values with A in situations of “mutual 

cooperation” and “mutual defection” according to the settings in this paper. 

7) To update self‟s trust 

i) Trust-updating directions (qualitative trust-updating) 

Changes of trust have three directions: increase, decrease and remain unchanged. In order to 

clarity how trust changes and when, it is necessary for us to at first distinguish trust-increasing 

events, trust-destroying events and trust-invariant events. This is analyzed from two angles: 

interacting agents and observing agents. 

·Interacting agents 

For the two interacting agents, in the situation of mutual cooperation, both agents‟ trust increase; 

in the situation of unilateral defection, the cooperative agent‟s trust decreases while the defective 

agent‟s trust remains unchanged; in the situation of mutual defection, both agents‟ trust keeps 

invariant. (Also see Table 2.4-1) 

·Observing agents 

For an observing agent, he first images which (pure) strategy he would have applied if he had been 

in the interaction. An observing agent‟s imagined pure strategy with probability equal to his 

trustworthiness is “Cooperation”. If his imagined (pure) strategy is “Cooperation”, his trust will 

increase when he observes mutual cooperation, and his trust will decrease when he observes 

unilateral defection or mutual defection. If his imagined (pure) strategy is “Defection”, his trust 
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will not change. (Also see Table 2.4-1) 

Table 2.4-1 Trust-updating directions 

Information acquiring 

method 

Strategy Trust-updating directions 

Interaction self partner self partner 

C C ↑ ↑ 

C D ↓ ---- 

D C ---- ↓ 

D D ---- ---- 

Observation Observed strategy 

combination 

Observer‟s imaged strategy 

C D 

Mutual cooperation ↑ ---- 

Unilateral defection ↓ ---- 

Mutual defection ↓ ---- 

ii) Quantitative trust-updating 

Quantitative trust-updating is based on a certain amount ∆𝑇𝑟𝐵𝑎𝑠𝑒  which equals 0.05. How much 

exactly an agent will update his trust hinges on 1) marginal rate of exploitation of payoff matrix A 

(namely, 𝑀𝑅𝐸A,𝐶/𝐷), 2) relative exploitation degree of Amut compared to A (namely, 𝑅𝐸𝐷𝐴𝑚𝑢𝑡 /𝐴), 

and 3) ai‟s own weights for four kinds of information sources (the four possible combinations of 

either 𝑤𝑖𝑁𝑒𝑖𝑔𝑠or 𝑤𝑖𝑁𝑛𝑒𝑖𝑔𝑠  and either 𝑤𝑖𝐼𝑛𝑡𝑒 or 𝑤𝑖𝑂𝑏𝑠  shown in Table 2.3-1).  

·Interacting agents 

Assume ai interacts with his neighbor aj. If both ai and aj apply “Cooperation”,  𝑇𝑟𝑖 ← min⁡(𝑇𝑟𝑖 + 0.5 ∗  𝑤𝑖𝑁𝑒𝑖𝑔𝑠 + 𝑤𝑖𝐼𝑛𝑡𝑒  ∗ ∆𝑇𝑟𝐵𝑎𝑠𝑒 , 1) 

If ai unilaterally uses “Cooperation” under payoff matrix A,  
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𝑇𝑟𝑖 ← max⁡(𝑇𝑟𝑖 − 0.5 ∗ 𝑀𝑅𝐸𝐴,𝐶/𝐷 ∗  𝑤𝑖𝑁𝑒𝑖𝑔𝑠 + 𝑤𝑖𝐼𝑛𝑡𝑒  ∗ ∆𝑇𝑟𝐵𝑎𝑠𝑒 , 0) 

If ai unilaterally uses “Cooperation” under payoff matrix Amut,  𝑇𝑟𝑖 ← max⁡(𝑇𝑟𝑖 − 0.5 ∗ 𝑅𝐸𝐷𝐴𝑚𝑢𝑡 /𝐴 ∗ 𝑀𝑅𝐸𝐴,𝐶/𝐷 ∗  𝑤𝑖𝑁𝑒𝑖𝑔𝑠 + 𝑤𝑖𝐼𝑛𝑡𝑒  ∗ ∆𝑇𝑟𝐵𝑎𝑠𝑒 , 0) 

When ai‟s interaction partner is a non-neighbor aj, 𝑤𝑖𝑁𝑛𝑒𝑖𝑔𝑠  should replace 𝑤𝑖𝑁𝑒𝑖𝑔𝑠 . At the same 

time, aj should also update his trust according to the same rule. 

·Observing agents 

Assume ak observes the interaction between two mutual neighbors ai and aj. If both ai and aj apply 

“Cooperation” and ak‟s imaged pure strategy is also “Cooperation”, 𝑇𝑟𝑘 ← min⁡(𝑇𝑟𝑘 + 0.5 ∗  𝑤𝑘𝑁𝑒𝑖𝑔𝑠 + 𝑤𝑘𝑂𝑏𝑠 ∗ ∆𝑇𝑟𝐵𝑎𝑠𝑒 , 1) 

If not both ai and aj apply “Cooperation”, when ak‟s imaged pure strategy is “Cooperation” and the 

observed payoff matrix is not Amut, 𝑇𝑟𝑘 ← max⁡(𝑇𝑟𝑘 − 0.5 ∗ 𝑀𝑅𝐸𝐴,𝐶/𝐷 ∗  𝑤𝑘𝑁𝑒𝑖𝑔𝑠 + 𝑤𝑘𝑂𝑏𝑠 ∗ ∆𝑇𝑟𝐵𝑎𝑠𝑒 , 0) 

If not both ai and aj apply “Cooperation”, when ak‟s imaged pure strategy is “Cooperation” but the 

observed payoff matrix is Amut, 𝑇𝑟𝑘 ← max⁡(𝑇𝑟𝑘 − 0.5 ∗ 𝑅𝐸𝐷𝐴𝑚𝑢𝑡 /𝐴 ∗ 𝑀𝑅𝐸𝐴,𝐶/𝐷 ∗  𝑤𝑘𝑁𝑒𝑖𝑔𝑠 + 𝑤𝑘𝑂𝑏𝑠 ∗ ∆𝑇𝑟𝐵𝑎𝑠𝑒 , 0) 

When ak observes an interaction happening between two mutual non-neighbors, 𝑤𝑘𝑁𝑛𝑒𝑖𝑔𝑠  should 

replace 𝑤𝑘𝑁𝑒𝑖𝑔𝑠 .  

2.4.2 To update self‟s trustworthiness 

Agents‟ updating of their own trustworthiness (namely their probability of cooperation in an 

interaction) is considered as a process of strategy learning. We constrain the objects of an agent‟s 

strategy-learning within his neighbors. Every agent updates his trustworthiness near the end of a 

time period. What needs to be done for an agent ai is searching out his neighbor, say 𝑎𝑗0
, with 

highest number of passive potential interactions  𝑁𝑢𝑚𝑗0 ,𝑡𝑃𝑃𝐼 ,𝑁  in the current time period. If 

𝑁𝑢𝑚𝑗0 ,𝑡𝑃𝑃𝐼 ,𝑁  is larger than ai‟s own times of passive potential interactions 𝑁𝑢𝑚𝑖,𝑡𝑃𝑃𝐼 ,𝑁 , ai would 

switch his trustworthiness to 𝑎𝑗0
‟s cooperation rate of 𝑅𝑗0 ,𝑡𝐶  in the current time period t and take it 

as his (mixed) strategy for the next time period; otherwise, ai would maintain his current 

trustworthiness over to the next time period. The reason why the base of strategy learning is set at 

agents‟ cooperation rate of a current time period t rather than agents‟ probability of cooperation in 

an interaction is that it is assumed that an agent‟s probability of cooperation in an interaction is not 

observable for other agents while his cooperation rate is, on contrast. 

Formally, let Neigi represent the set of ai‟s neighbor set in which his strategy-learning candidates 

are in time period t and aj be an arbitrary element in Neigi. The agent aj0 with the highest number 

of passive potential interactions in the current time step t in Neigi satisfis 
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𝑗0 = argmax𝑗   𝑗    𝑁𝑢𝑚𝑗 ,𝑡𝑃𝑃𝐼 ,𝑁
,𝑎𝑗 ∈ 𝑁𝑒𝑖𝑔𝑖} 

Thus, 

𝑇𝑟𝑤𝑖,𝑡+1 =   𝑅𝑗0 ,𝑡𝐶         if 𝑁𝑢𝑚𝑗0 ,𝑡𝑃𝑃𝐼 ,𝑁
>  𝑁𝑢𝑚𝑖,𝑡𝑃𝑃𝐼 ,𝑁𝑇𝑟𝑤𝑖,𝑡                                 otherwise

  
Therein 

𝑅𝑗0 ,𝑡𝐶 =  
𝑁𝑢𝑚𝑗0 ,𝑡𝐶𝑁𝑢𝑚𝑗0 ,𝑡𝐴𝐼      𝑁𝑢𝑚𝑗0 ,𝑡𝐴𝐼 ≠ 0  1 

𝑅𝑗0 ,𝑡𝐶  represents agent j0‟s cooperation rate in time period t, 𝑁𝑢𝑚𝑗0 ,𝑡𝐶  represents agent j0‟s total 

times of cooperation in time period t and 𝑁𝑢𝑚𝑗0 ,𝑡𝐴𝐼  represents agent j0‟s total times of actual (not 

potential) interactions in time period t.  

2.4.3 To update self‟s unilateral link weights 

At the end of each time step t, each agent updates his unilateral link weights for the next time step 

t+1. At first, ai evaluates each of his neighbor‟s cooperation rates only to him according to 

𝑅𝑖𝑗 ,𝑡𝐶𝑗
=    

 𝑁𝑢𝑚𝑖𝑗 ,𝑡𝐶𝑗𝑁𝑢𝑚𝑖𝑗 ,𝑡𝐴𝐼     (𝑁𝑢𝑚𝑖𝑗 ,𝑡𝐴𝐼 ≠ 0)

   0.2       (𝑁𝑢𝑚𝑖𝑗 ,𝑡𝐴𝐼 = 0)

           (𝑎𝑗 ∈ 𝑁𝑒𝑖𝑔𝑠𝑖) 

𝑅𝑖𝑗 ,𝑡𝐶𝑗  represents ai‟s evaluation on his arbitrary neighbor aj‟s cooperation rate to him in the end of 

time period t. 𝑁𝑢𝑚𝑖𝑗 ,𝑡𝐶𝑗  is the times that ai‟s neighbor aj applies “Cooperation” to ai in time period 

t. 𝑁𝑢𝑚𝑖𝑗 ,𝑡𝐴𝐼  is the times of ai‟s actual interactions with his neighbor aj in time period t. (𝑁𝑢𝑚𝑖𝑗 ,𝑡𝐶𝑗   

and 𝑁𝑢𝑚𝑖𝑗 ,𝑡𝐴𝐼  have been introduced in 5) in 2.4.1.) 𝑁𝑢𝑚𝑖𝑁𝑒𝑖𝑔𝑠  is ai‟s number of neighbors. 0.2 is 

used as a proxy of 𝑅𝑖𝑗 ,𝑡𝐶𝑗
 whenever ai has no actual interaction records of his neighbor aj in time 

period t. 

Then ai updates his link weights for the next time period t+1 according to the mechanism below:  

                                                             

1 𝑁𝑢𝑚𝑗0 ,𝑡𝐴𝐼  will be definitely larger than 0 if  𝑁𝑢𝑚𝑗0 ,𝑡𝑃𝑃𝐼 ,𝑁
>  𝑁𝑢𝑚𝑖 ,𝑡𝑃𝑃𝐼 ,𝑁 , since the lower limit of an arbitrary agent‟s 

 𝑁𝑢𝑚𝑖,𝑡𝑃𝑃𝐼 ,𝑁 is zero. 
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𝑙𝑤𝑖𝑗 ,𝑡+1 = 𝑝𝑖𝑗 ,𝑡+1,𝜏𝐴𝑃𝐼 =  
𝑅𝑖𝑗 ,𝑡𝐶𝑗

+ 𝛿
  𝑅𝑖𝑗 ,𝑡𝐶𝑗

+ 𝛿 𝑖+𝑁𝑢𝑚 𝑖𝑁𝑒𝑖𝑔𝑠
2𝑗=𝑖−𝑁𝑢𝑚 𝑖𝑁𝑒𝑖𝑔𝑠

2

=

𝑅𝑖𝑗 ,𝑡𝐶𝑗
+

1𝑁𝑢𝑚𝑖𝑁𝑒𝑖𝑔𝑠  𝑅𝑖𝑗 ,𝑡𝐶𝑗
+

1𝑁𝑢𝑚𝑖𝑁𝑒𝑖𝑔𝑠 𝑖+𝑁𝑢𝑚 𝑖𝑁𝑒𝑖𝑔𝑠
2𝑗=𝑖−𝑁𝑢𝑚 𝑖𝑁𝑒𝑖𝑔𝑠

2

     

  

(𝑎𝑗 ∈ 𝑁𝑒𝑖𝑔𝑠𝑖 , 0 ≤ 𝜏 ≤ 𝑅𝑒𝑞𝑖 ,𝑡𝐼𝑛𝑡𝑒  and 𝜏 ∈ N+) 𝑙𝑤𝑖𝑗 ,𝑡+1 represents the unilateral link weight that ai assigns to his neighbor aj for the next time 

period. 𝑝𝑖𝑗 ,𝑡+1,𝜏𝐴𝑃𝐼  represents the probability that ai actively chooses his neighbor 𝑎𝑗  as his 

potential interaction partner when ai should choose an potential interaction partner within his 

neighborhood in any sub-time period 𝜏 of time period t+1. What is more, we define 𝛿 as 

relationship maintenance strength which is a constant and used for: 1) controlling to which degree 

a relationship is maintained over to the next time period even if an agent‟s neighbor defects in all 

actual interaction between them in the current time period; 2) and at the same time for an agent to 

attach enough importance on neighbors‟ cooperation rate in the actual interactions between them 

in the current time period. The link-weights updating rule is created like this because 

embeddedness in social network is an interested parameter in this paper and, hence, it is 

undesirable to totally delete any relationship forever. In this paper, we set 𝛿 = 𝑙𝑤𝑖𝑗 ,𝑡=1 =

1𝑁𝑢𝑚 𝑖𝑁𝑒𝑖𝑔𝑠 , namely ai‟s initial unilateral link weight to his arbitrary neighbor aj, in order to keep 

consistence with the fact that, generally, a neighbor is with less probability to be chosen in a larger 

neighborhood 

3 Results and analysis 

Simulations are constrained within an artificial society of 100 agents and with an original payoff 

matrix of  3 1

4 2
 , and focus on the influence of seven parameters, namely number of immediate 

neighbors, degree of embededness in social network, mutation probability of payoff structure, 

mutated payoff matrix, proportion of individuals with high trust in population, probability of 

information diffusion in neighbors and probability of information diffusion in non-neighbors.  

The candidate values of each parameter of interest are listed in Table 3-1:1 

Table 3-1: Candidate values of each parameter of interest 

Parameters Candidate values 

1) Population size (ps) 100 

2) Number of immediate neighbors (nn) 4, 6, 8, 10 

                                                             
1 The abbreviations of these terms in section 3 are not the same as the mathematical symbols in section 2. The 
abbreviations in this section are used for annotations in simulation figures. 
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3) Degree of embededness in social network 

(se) 

0.6, 0.7, 0.8, 0.9 

4) Mutation probability of payoff structure 

(mpps) 

0.1, 0.2, 0.3, 0.4 

5) Original payoff matrix (A)  3 1

4 2
  

6) Mutated payoff matrix (Amut)  3 0
5 2

 ,  3 −1
6 2

 ,  3 −2

7 2
 ,  3 −3

8 2
  

7) Proportion of individuals with high trust in 

population (pht) 

0.6, 0.7, 0.8, 0.9 

8) Probability of information diffusion in 

neighbors (pidn) 

0.6, 0.7, 0.8, 0.9 

9) probability of information diffusion in 

non-neighbors (pidnn) 

0.1, 0.2, 0.3, 0.4 

Note: Numbers or matrixes with a short horizontal line underneath are the parameter values used 

in base-line simulation. 

For every parameter value portfolio under investigation, we are interested in the evolution of two 

variables: person-time of interaction and person-time of cooperation. Person-time, in this paper, is 

the sum of every individual‟s number of some record (such as, actual interaction and cooperation) 

in a time period. Formally, 

𝑃𝑒𝑟𝑠𝑜𝑛𝑇𝑖𝑚𝑒𝑡𝐴𝐼 =  𝑁𝑢𝑚𝑖 ,𝑡𝐴𝐼100

𝑖=1

 

𝑃𝑒𝑟𝑠𝑜𝑛𝑇𝑖𝑚𝑒𝑡𝐶 =  𝑁𝑢𝑚𝑖 ,𝑡𝐶100

𝑖=1

 

𝑃𝑒𝑟𝑠𝑜𝑛𝑇𝑖𝑚𝑒𝑡𝐴𝐼  is the person-time of actual interactions within time period t which equals the 

sum of each agent‟s number of actual interactions in time period t. 𝑃𝑒𝑟𝑠𝑜𝑛𝑇𝑖𝑚𝑒𝑡𝐶  is the 

person-time of “Cooperation” within time period t which is the sum of each agent‟s number of 

“Cooperation” in time period t. Both are in range [0, 2 ∗ 𝑅𝑒𝑞𝑖,𝑡𝐼𝑛𝑡𝑒 ∗ 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑆𝑖𝑧𝑒], namely [0, 
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4000].1 “Person-time” is adopted because multiple interactions within a time period are allowed 

for each agent and every agent is actually using a mixed strategy rather than a fixed pure strategy 

in a time period, and additionally, it is the impact of interaction information that is important for 

both interacting agents and observing agents. 

Since there are very large potential combinations of parameter values, we will explore the 

influence of each parameter of interest based on a base-line simulation.  

3.1 Base-line simulation 

The results of base-line simulation are shown in Figure 3.1-1 and Figure 3.1-2. From Figure 3.1-1 

and Figure 3.1-2, two variables of interest (namely, person-time of interaction and person-time of 

cooperation, respectively) undergo a process of approaching to the largest possible value and the 

distribution of these two variables of interest are largely skew to the left especially in the first 10 

time periods.  

 

Figure 3.1-1                           Figure 3.1-2 

Figure 3.1-1 and Figure 3.1-2 Base-line simulation. Figure 3.1-1 Evolution of person-time of 

interaction (minimum, mean and maximum). Figure 3.1-2 Evolution of person-time of cooperation 

(minimum, mean and maximum). Both run 100 times. The blue lines in both big figure and the 

small figure are the mean values of 100 simulation runs. The light blue shadow in the big figure is 

the area between minimum and maximum values of the 100 simulation runs.  

3.2 Number of immediate neighbors 

Four different values of number of neighbors, namely nn=4, 6, 8 and 10, with the other parameters 

having the same value with those in the base-line simulation. The simulation results are shown 

from Figure 3.2-1 to Figure 3.2-3. From Figure 3.2-1 and Figure 3.2-2, number of immediate 

neighbors does not exhibit monotonous influence on the two variables of interest: when nn=6 and 

10, the two variables of interest situate at high level and rapidly approach to the largest possible 

values; when nn=4, at lower middle level; when nn=8, at very low level. Additionally, when nn=8, 

cooperation collapses.   

·Impacts on trust  

                                                             
1 𝑃𝑒𝑟𝑠𝑜𝑛𝑇𝑖𝑚𝑒𝑡𝐴𝐼  and 𝑃𝑒𝑟𝑠𝑜𝑛𝑇𝑖𝑚𝑒𝑡𝐶  are in range [0, 2 ∗ 𝑅𝑒𝑞𝑖 ,𝑡𝐼𝑛𝑡𝑒 ∗ 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑆𝑖𝑧𝑒] rather than in range [0, 𝑅𝑒𝑞𝑖 ,𝑡𝐼𝑛𝑡𝑒 ∗ 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑆𝑖𝑧𝑒] because each actual interaction contains two players. 
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Each agent is a representative of a mixed strategy. On the condition that agents‟ trustworthiness 

(probability to cooperate) is invariant within a time period, given a particular actual interaction 

partner, the probabilities of increasing and decreasing personal trust are therewith determined. 

When nn is relatively small, the probability to meet the same neighbor is relatively high, ceteris 

paribus. The more times an agent meets the same neighbor, the less probability that he encounters 

diverse mixed strategies, and the stronger the impact of a particular neighbor‟s trustworthiness on 

his trust-updating, and the more certain his two trust-updating directions. Thus, encountering the 

same neighbor reinforces trust-updating directions: the more trustworthy a neighbor, the more 

opportunities an agent increases trust; the less trustworthy a neighbor, the more chances an agent 

decreases trust. This influence of number of neighbors on trust therefore is a double-edged sword 

similar to putting all eggs into one basket. More neighbors offer possibility of dispersing risk of 

being locked in local environment of trustworthiness constructed by neighbors.  

·Impacts on trustworthiness 

More neighbors result in less actual interactions with each neighbor and, hence, fewer samples of 

evaluating the cooperation rate of each neighbor within a time period. This, however, tends to 

cause polarized evaluation of neighbors, and the “first impression” becomes very important. For 

example, if an agent carries on one actual interaction with a neighbor, the neighbor‟s cooperation 

rate can only be 0 or 1. On contrast, if an agent conducts four times of actual interactions with a 

neighbor, the neighbor‟s cooperation rate can be five values, namely 0, 1/4, 2/4, 3/4 and 1. For 

example, assume an agent ai‟s trustworthiness is 1/4 and the trustworthiness of his neighbor aj 

who receives the most potential interaction requests is 3/4. In the former situation, aj interacts 

once in total in a time period and cooperates. aj‟s evaluated cooperation rate will be 1 and ai will 

update his trustworthiness to 1. In the latter situation, aj interacts four times and cooperates three 

times. aj‟s evaluated cooperation rate will be 3/4 and ai will update his trustworthiness to 3/4. For 

another example, assume an agent ai‟s trustworthiness is 1/4 and the trustworthiness of his 

neighbor aj who receives the most potential interaction requests is 2/4. In the former situation, aj 

interacts once and defects. aj‟s evaluated cooperation rate will be 0 and ai will not update his 

trustworthiness and stick to 1/4. In the latter situation, aj interacts four times and cooperates twice. 

aj‟s evaluated cooperation rate will be 2/4 and ai will update his trustworthiness to 2/4. This may 

to some extent explain why the behaviors of the two variables of interest when nn=8 and nn=10 

are quite different.  

 

Figure 3.2-1                         Figure 3.2-2 
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Figure 3.2-1 and Figure 3.2-2 Comparison of different values of number of immediate neighbors. 

Figure 3.2-1 Evolution of mean person-time of interaction. Figure 3.2-2 Evolution of mean 

person-time of cooperation. Both run 100 times.  

 

Figure 3.2-31 Comparison of different values of number of immediate neighbors. Difference 

between mean person-time of interaction and cooperation. Run 100 times.  

3.3 Degree of embeddedness in social network  

Four different values are compared for degree of embeddedness in social network, namely se=0.6, 

0.7, 0.8 and 0.9 with the other six parameters having the same value with those in the base-line 

simulation. The simulation results are exhibited from Figure 3.3-1 to Figure 3.3-3. From Figure 

3.3-1 and Figure 3.3-2, when se=0.8 and 0.9, two variables of interest situate at high level and 

approach to largest possible value within 20 time periods. On contrast, when se=0.6 and 0,7, the 

two variables of interest locate very low and mean person-time of cooperation even touches zero. 

In Figure 3.3-3, when se=0.8 and 0.9, the difference between mean person-time of interaction and 

that of cooperation is very small; however, when se=0.6 and 0.7, the gap is relatively large. What 

is more, the gap between person-time of interaction and cooperation exists all the time for all the 

four candidate values, and the difference is relatively stable. 

The principle behind somehow shares the same vein with the impact of number of immediate 

neighbors on the two variables of interest. When degree of embeddedness in social network is 

higher, interactions more likely happen within neighborhood, ceteris paribus. Thus, when degree 

of embeddedness in social network is higher, on one hand, an agent‟s trust-updating relates 

stronger to his fixed neighbors‟ trustworthiness; on the other hand, an agent has more samples of 

their neighbors, and more values of cooperation rate and more chances for him to update 

trustworthiness, which avoid being locked in low trustworthiness trap. Learnt trustworthiness, then, 

is reflected on interactions. As aforementioned, degree of social embeddedness is an indicator of 

                                                             
1 The relatively dark blue shadow is the difference between mean person-time of interaction and that of 
cooperation of 100 simulation runs, while the light blue shadow is the area of mean person-time of cooperation of 
the 100 simulation runs. The same with Figure 3.3-3, Figure 3.4-3, Figure 3.5-3, Figure 3.6-3, Figure 3.7-3, Figure 
3.8-3. 
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social mobility in this paper. Thus, as social mobility accelerates, both trust and trustworthiness 

may collapse.  

As to the relatively stable gap between mean person-time of interaction and that of cooperation, it 

may be attributed to: 1) Information acquisition capability. Assume an agent whose current trust is 

low. If his information acquisition capability via observing (both neighbors and non-neighbors) is 

at the same time low, then he has fewer chances to increase trust and will always not participate in 

actual interactions. 2) Unilateral link weights updating. An agent‟s most defective neighbor has 

less likelihood to be chosen as a potential interaction partner if other neighbors are more 

cooperative. 

 

Figure 3.3-1                         Figure 3.3-2 

Figure 3.3-1 and Figure 3.3-2 Comparison different values of degree of embeddedness in social 

network. Figure 3.3-1 Evolution of mean person-time of interaction. Figure 3.3-2 Evolution of 

mean person-time of cooperation. Both run 100 times.  

 

Figure3.3-3 Comparison of different values of degree of embeddednss in social network. 

Difference between mean person-time of interaction and cooperation. Run 100 times.  

3.4 Mutation probability of payoff structure 
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Four different values are compared for mutation probability of payoff structure, namely 0.1, 0.2, 

0.3 and 0.4 with the other six parameters having the same value with that in the base-line 

simulation. The simulation results are shown from Figure 3.4-1 to Figure 3.4-3. From Figure 3.4-1 

and Figure 3.4-2, both the two variables of interest increase and approach to the largest possible 

value under different parameter values of mutation probability of payoff structure. When 

mpps=0.1, 0.2, and 0.3, two variables of interest soar within about 10 time periods, while 

mpps=0.4, increase does not take place until about the 20th time period. Again, from Figure 3.4-3, 

the gap between mean person-time of interaction and that of cooperation is small and relatively 

stable.  

The reason why two variables of interest increase under all candidate values of mutation 

probability of payoff structure is that mpps is a conditional probability. That is, it is the probability 

of the original payoff matrix being changed to a mutated one by an initiator of a potential 

interaction on condition that the initiator has already decided to play “Defection” in the 

forthcoming actual interaction, as mentioned before. Therefore, as agents learn to be more 

trustworthy, they choose fewer times of “Defection” for actual interactions. Consequently, the 

probability of changing payoff matrix also gets lower. Because payoff values of a mutated payoff 

matrix enter trust-updating via relative exploitation degree (RED), a mutated payoff matrix 

renders trust-decreasing more severe for an unilateral cooperative party than the original payoff 

matrix. Therefore, it takes more time for trust to recover and arise when mpps is higher, ceteris 

paribus.  

 

Figure 3.4-1                         Figure 3.4-2 

Figure 3.4-1 and Figure 3.4-2 Comparison different values of mutation probability of payoff 

structure. Figure 3.4-1 Evolution of mean person-time of interactions. Figure 3.4-2 Evolution of 

mean person-time of cooperation. Both run 100 times.  
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Figure 3.4-3 Comparison of different values of mutation probability of payoff structure. 

Difference between person-time of interaction and cooperation. Run 100 times.  

3.5 Mutated payoff matrix 

Four different candidates are compared for mutated payoff matrix, namely  3 0
5 2

 ,  3 −1
6 2

 ,

 3 −2

7 2
  and  3 −3

8 2
  with the other parameters having the same values with those in the 

base-line simulation. The simulation results are presented from Figure 4.5-1 to Figure 4.5-3. From 

Figure 4.5-1 and Figure 4.5-2, both the two variables of interest increase under different 

candidates of mutated payoff matrix. However, as ex post interest conflict of mutated payoff 

matrix enlarges, the two variables of interest move downward almost as a whole. From 4.5-3, the 

gap between mean person-time of interaction and cooperation under Amut= 3 −2

7 2
 and  3 −3

8 2
  

is obviously larger than under Amut= 3 0
5 2

 and  3 −1
6 2

 . It is because relative exploitation degree 

(RED) amplifies the decrease of trust as ex post interest conflict of mutated payoff matrix gets 

stronger, which causes trust to decrease more severe for a unilateral cooperator, cetera paribus.  

 

Figure 3.5-1                         Figure 3.5-2 
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Figure 3.5-1 and Figure 3.5-2 Comparison of different candidates of mutated payoff matrix. 

Figure 3.5-1 Evolution of mean person-time of interaction. Figure 3.5-2 Evolution of mean 

person-time of cooperation. Both run 100 times.  

 

Figure 3.5-3 Comparison of different candidates of mutated payoff matrix. Difference between 

mean person-time of interaction and that of cooperation. Run 100 times.  

3.6 Proportion of high trust agents 

Four different values are compared for proportion of high trust agents, namely 0.5, 0.6, 0.7, 0.8 

with the other parameters having the same value with those in the base-line simulation. Results are 

shown from Figure 4.6-1 to Figure 4.6-3. In Figure 4.6-1 and Figure 4.6-3, when pht=0.6, 0.7, 0.8, 

the two variables of interest locate at high level and increase to the largest possible value. 

However, when pht=0.5, the two values lie at very low level and cooperation collapses. 

Additionally, for each variable of interest, similar patterns are achieved respectively under pht=0.6, 

0.7, 0.8, even though the taking-off time-points are not monotonously increase as pht decreases. In 

Figure 4.6-3, when pht=0.6, 0.7 and 0.8, the gap between mean person-time of interaction and that 

of cooperation is quite small, nearly entirely coincides. On contrast, when pht=0.5, even though 

there are still a certain amount of actual interactions, no cooperation exists at all. The impact of 

pht somehow shares a common point with that of mpps, since, roughly speaking, they both 

generate a horizontal movement as parameter value changes, which is in contrast with the impact 

of Amut that causes vertical movement.  

According to the experimental design in this paper, an agent updates his trust in response to his 

latest encountering event, either a personal interaction or an observation, on the base of his latest 

trust level. Hence, an agent‟s initial trust and the continuous shocks of trust-influencing events of 

same direction to a large degree affect his personal evolutionary path of trust, ceteris paribus. An 

agent‟s trust is reflected on his willingness of interaction. The higher an agent‟s trust, the more 

possible he would participate in a potential interaction. Higher proportion of high trust agents, 

equivalent to more skewness to the left of trust distribution among population, therefore definitely 

results in universal improvement of the willingness of interaction among population. Whereas a 
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small quantity of actual interactions cannot provide enough information of others‟ trustworthiness, 

the whole artificial society gets stuck in vicious circle of low trust trap. 

 

Figure 3.6-1                         Figure 3.6-2 

Figure 3.6-1 and Figure 3.6-2 Comparison of different values of proportion of high trust agents. 

Figure 3.6-1 Evolution of mean person-time of interaction. Figure 3.6-2 Evolution of mean 

person-time of cooperation. Both run 100 times. 

 

Figure 3.6-3 Comparison of different values of proportion of high trust agents. Difference between 

mean person-time of interaction and that of cooperation. Run 100 times.  

3.7 Probability of information diffusion in neighbors 

Four different values are compared for probability of information diffusion in neighbors, namely 

0.5, 0.6, 0.7 and 0.8, with the other parameters having the same value with those in the base-line 

simulation. Results are exhibited from Figure 3.7-1 to Figure 3.7-3. In Figure 3.7-1 and Figure 

3.7-2, when pidn=0.5, 0.7 and 0.8, two variables of interest situate at high level. Specifically, 

when pidn=0.8, the three variables soars first, then when pidn=0.5. Both when pidn=0.5 and 0.8, 

the two variables approach the largest possible value. When pidn=0.7, the two variables do not 

develop as well as those when pidn=0.5 and 0.8. On contrast, when pidn=0.6, the two variables 

locate at low level. In 3.7-3, when pidn=0.5 and 0.8, the gap between mean person-time of 
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interaction and cooperation is smaller than that when pidn=0.7, and a lot smaller than that when 

pidn=0.6.  

As aforementioned, observing is an important channel of acquiring information about others‟ 
interactions and, at the same time, trust-updating. A characteristic of information diffusion within 

neighborhoods is that informational coverage is relatively small but informational arrival is 

relatively frequent. That is, the impact of information diffusion within neighborhoods is mainly 

local. Therefore, agents are more likely to have heterogeneous information via observing 

neighbors. As pidn increases, both the chances of observing trust-increasing events and 

trust-decreasing events rise. However, trust-decreasing events have larger impacts on agents‟ trust 

than trust-increasing events. Thus, the effect of a certain amount of trust-decreasing events needs a 

more quantity of trust-increasing events to compensate. That is, the impact of pidn on the two 

variables of interest may depend on the number contrast between trust-increasing events and 

trust-decreasing events. Only when trust-increasing events are observed as many times as enough 

can the two variables of interest locate high and soar. Specifically, when pidn is very high (e.g., 

0.8), both trust-increasing and trust-decreasing events get very frequently spread and, what is more 

important, a preponderance of trust-increasing events overwhelm trust-decreasing events. So do 

when pidn is medium high (e.g., 0.5). However, when pidn is either not extremely high or medium 

high (e.g., 0.7, especially 0.6), an absence of absolute number advantage of trust-increasing events 

over trust-decreasing events causes the two variables not to perform quite well. 

 

Figure 3.7-1                         Figure 3.7-2 

Figure 3.7-1 and Figure 3.7-2 Comparison of different values of probability of information 

diffusion in neighbors. Figure 3.7-1 Evolution of mean person-time of interaction. Figure 3.7-2 

Evolution of mean person-time of cooperation. Both run 100 times. 
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Figure 3.7-3 Comparison of different values of probability of information diffusion in neighbors. 

Difference between mean person-time of interaction and that of cooperation. Run 100 times.  

3.8 Probability of information diffusion in non-neighbors 

Four different values are compared for probability of information diffusion in non-neghbors, 

namely 0.1, 0.2, 0.3 and 0.4 with the other parameters having the same value with those in the 

base-line simulation. Results are presented from Figure 3.8-1 to Figure 3.8-3. In Figure 3.8-1 and 

Figure 3.8-2, when pidnn=0.1 and 0.4, two variables of interest situate high and increase to the 

largest possible value within about 10 time periods; when pidnn=0.3, locate at lower middle level; 

when pidnn=0.2, lie at very low level and cooperation collapses. In Figure 3.8-3, when pidnn=0.1 

and 0.4, the gap between mean person-time of interaction and that of cooperation is very small. 

On contrast, when pidnn=0.2 and 0.4, the difference is large, especially when pidnn=0.3. 

The principle behind is largely similar with that of the impacts of pidn. What is different here for 

pidnn is that the impact of information diffusion among non-neighbors is relatively global and 

agents are more likely to have homogeneous information via observing non-neighbors.  

 

Figure 3.8-1                         Figure 3.8-2 

Figure 3.8-1 and Figure 3.8-2 Comparison of different values of probability of information 

diffusion in non-neighbors. Figure 3.8-1 Evolution of mean person-time of interaction. Figure 
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3.8-2 Evolution of mean person-time of cooperation. Both run 100 times. 

 

Figure 3.8-3 Comparison of different values of probability of information diffusion in 

non-neighbors. Difference between person-time of interaction and that of cooperation. Run 100 

times.  

4 Conclusion 

This paper explores the evolution of interaction and cooperation, supported by individuals‟ 
changing trust and trustworthiness respectively, on a directed weighted regular ring network from 

the angle of micro scope by using agent-based modeling. This agent-based model takes into 

account agents‟ heterogeneity on: 1) trust and trustworthiness; 2) capabilities of acquiring 

information from neighbors and non-neighbors; 3) weights of different kinds of information 

sources. It also integrates several considerations below via relatively delicate experimental design: 

1) a characteristic of trust is that trust is destroyed easily and built harder (Slovic, 1993); 2) 

trustworthiness may be reflected on both strategy decision and payoff structure decision; 3) 

individuals can decide whether or not to be involved in an interaction; 4) interaction density exists, 

not only between neighbors and strangers (Macy and Skvoretz, 1998), but also within neighbors; 5) 

information diffusion.   

This agent-based model regard trust as the decisive factor of willingness to interact and 

trustworthiness as the decisive factor of probability to cooperate, and applies somehow relatively 

novel and plausible trust-updating, trustworthiness-updating and link-weight-updating mechanism. 

Marginal rate of exploitation of original payoff matrix and relative exploitation degree between 

two payoff matrices are stressed in their influence of trust-destroying; influence of observing is 

introduced via imagined strategy; relationship is maintained through relationship maintenance 

strength, and so on. 

This paper extends the concept of interaction platforms: interaction platforms can be 

geographical-location related, social-roles related, events related and technology based. It also 

treats number of immediate neighbors, degree of embeddedness in social network, mutation 

probability of payoff matrix, mutated payoff matrix, proportion of high trust agents and 
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probabilities of information diffusion within neighborhood and among non-neighbors as important 

aspects happening on interaction platforms, and the influences of these factors are probed 

respectively on the base of a base-line simulation of the agent-based model in this paper. 

It should be figured out here that the results somehow may only fit the experimental design and 

parameter values in this paper. However, several ideas in the experimental design provide 

important inspiration for further research on trust (such as, decline of trust), which is the most 

important contribution of this paper.  

Acknowledgement 

I wish to express my sincere gratitude to China Scholarship Council (CSC) for financial support, 

my parents Wenfu Gao and Yingchun Gao for love and support, Torsten Heinrich for seminar 

“Simulation Models” in University of Bremen, and Wolfram Elsner, Torsten Heinrich, Rebecca 

Schmitt and Tong-Yaa Su for valuable comments.  

References 

Axelrod, R.M., 1997. The Complexity of Cooperation: Agent-Based Models of Competition and 

Collaboration. Princeton University Press. 

Axelrod, R.M., 1984/2006. The Evolution of Cooperation. rev. ed 2006. Basic Books, New York. 

Banisch, S., Lima, R., Araújo, T., 2012. Agent based models and opinion dynamics as Markov 

chains. Social Networks, Vol.34, pp.549-561. 

Chen, S.-H., Chie, B.-T., Zhang, T., 2015. Network-Based Trust Games: An Agent-Based Model. 

The Journal of Artificial Societies and Social Simulation, 18(3)5, 

<http://jasss.soc.surrey.ac.uk/18/3/5.html>. 

Dai, S., 2015. Networks of Institutions: Institutional emergence, social structure and national 

systems of policies. Routledge, London, UK/New York, NY. 

Elsner, W., 2007. Why Meso? On “aggregation” and “Emergence”, and why and How the Meso 

Level is Essential in Social Economics. Forum for Social Economics, Vol.36, No.1, pp.1-16. 

Elsner, W., 2010. The Process and a Simple Logic of „Meso‟. Emergence and the Co-evolution of 

Institutions and Group Size. Journal of Evolutionary Economics, Vol.20, No.3, pp.445-477. 

Elsner, W., Heinrich, T., 2009. A Simple Theory of „Meso‟. On the Co-evolution of Institutions 

and Platform Size—With an Application to Varieties of Capitalism and „Medium-sized‟ Countries. 

The Journal of Socio-Economics, Vol.38, No.5, pp. 843-858. 

Elsner, W., and Heinrich, T., 2011. Coordination on „Meso‟-Levels: On the Co-evolution of 

Institutions, Networks and Platform Size. In S Mann (Ed.), Sectors matter! Exploring 

mesoeconomics (pp. 115-163). Berlin: Springer. 

Elsner, W., Schwardt, H., 2014. Trust and Arena Size: Expectations, Institutions, and General 

Trust, and Critical Population and Group Sizes. Journal of Institutional Economics, Vol.10, No.1, 



32 

 

pp.107-134. 

Elsner, W., Schwardt, H., 2015. From Emergent Cooperation to Contextual Trust, and to General 

Trust: Overlapping Meso-Sized Interaction Arenas and Cooperation Platforms as a Foundation of 

Pro-Social Behavior. Forum for Social Economics, Vol.44, No.1, pp.69-86. 

Geanakoplos J., Axtell, R., Farmer, J.D., Howitt, P., Conlee, B., Goldstein, J., Hendrey, M., 

Palmer, N.M., Yang, C.-Y., 2012. Getting at Systemic Risk via an Agent-Based Model of the 

Housing Market. American Economic Review, Vol.102, No.3, pp. 53-58. 

Gilbert, N., 2008. Agent-Based Models. Series: Quantitative Applications in the Social Sciences. 

SAGE Publications, No.153. 

Gowdy, J., Mazzucato, M., van den Bergh, J.C.J.M., van der Leeuw, S.E., Wilson, D.S., 2016. 

Shaping the Evolution of Complex Societies. In: Wilson, D.S., Kirman, A. (Eds.), Complexity and 

Evolution: Toward a New Synthesis for Economics. The MIT Press, Cambridge, Massachusetts/ 

London, England, pp.327-350. 

Kim, W.-S., 2009. Effects of a Trust Mechanism on Complex Adaptive Supply Networks: An 

Agent-Based Social Simulation Study, The Journal of Artificial Societies and Social Simulation, 

12 (3) 4, <http://jasss.soc.surrey.ac.uk/12/3/4.html>. 

Macy, M.W., Skvoretz, J., 1998. The Evolution of Trust and Cooperation between Strangers: A 

Computational Model. American Sociological Review, Vol.63, No.5, pp. 638-660. 

Macy, M.W., Willer, R., 2002. From Factors to Actors: Computational Sociology and 

Agent-Based Modeling. Annual Review of Sociology, Vol. 28, pp. 143-166. 

Pyka, A., Fagiolo, G., 2005. Agent-based Modelling: A Methodology for Neo-Schumpeterian 

Economics. In: Hanusch, H., Pyka, A. (Eds.), The Elgar Companion to Neo-Schumpeterian 

Economics. Edward Elgar, Cheltenham. 

Seltzer, N., Smirnov, O., 2015. Degrees of Separation, Social Learning, and the Evolution of 

Cooperation in a Small-World Network. The Journal of Artificial Societies and Social Simulation, 

18(4)12, <http://jasss.soc.surrey.ac.uk/18/4/12.html>. 

Slovic, P., 1993. Perceived Risk, Trust, and Democracy. Risk Analysis, Vol.13, No.6, pp.675-682. 

Spaiser, V., Sumpter, D.J.T., 2016. Revising the Human Development Sequence Theory Using an 

Agent-Based Approach and Data. The Journal of Artificial Societies and Social Simulation, 

19(3)1, <http://jasss.soc.surrey.ac.uk/19/3/1.html>. 

Tesfatsion, L., Judd, K.L. (Eds.), 2006. Handbook of Computational Economics Volume 2: 

Agent-Based Computational Economics. Elsevier, Amsterdam. 

Tran, T., Cohen, R., 2004. Improving User Satisfaction in Agent-Based Electronic Marketplaces 

by Reputation Modelling and Adjustable Product Quality. AAMAS‟04: Proceedings of the Third 

International Joint Conference on Autonomous Agents and Multiagent Systems (Washington, DC, 

USA), IEEE Computer Society, pp. 828-835. 


