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November 2016

Franz Dietrich1

Abstract

A group is often construed as a single agent with its own probabilistic beliefs (cre-

dences), which are obtained by aggregating those of the individuals, for instance

through averaging. In their celebrated contribution “Groupthink”, Russell et al.

(2015) apply the Bayesian paradigm to groups by requiring group credences to un-

dergo a Bayesian revision whenever new information is learnt, i.e., whenever the in-

dividual credences undergo a Bayesian revision based on this information. Bayesians

should often strengthen this requirement by extending it to non-public or even private

information (learnt by not all or just one individual), or to non-representable infor-

mation (not corresponding to an event in the algebra on which credences are held).

I propose a taxonomy of six kinds of ‘group Bayesianism’, which differ in the type of

information for which Bayesian revision of group credences is required: public rep-

resentable information, private representable information, public non-representable

information, and so on. Six corresponding theorems establish exactly how individual

credences must (not) be aggregated such that the resulting group credences obey

group Bayesianism of any given type, respectively. Aggregating individual credences

through averaging is never permitted. One of the theorems – the one concerned with

public representable information – is essentially Russell et al.’s central result (with

minor corrections).

1 Three challenges for Bayesian groups

Bayesianism requires an agent’s beliefs to take the form of coherent probability as-

signments (probabilism) and to be revised via Bayes’ rule given new information

(conditionalization). Let us apply these requirements to a group agent: let a group

itself hold probabilistic beliefs and revise them via Bayes’ rule. Such Bayesianism

for groups – or group Bayesianism – faces three challenges which distinguish it from

ordinary Bayesianism for individuals.

1Paris School of Economics & CNRS, www.franzdietrich.net, fd@franzdietrich.net. I am very

grateful to Marcus Pivato. Important parts of the technical results were developed jointly with him

in February 2015.

1



The first challenge comes from the fact that group beliefs are not free-floating,

but determined at any point of time by the current beliefs of the group members,

as is usually assumed. Formally, there exists a function, the pooling rule, which

transforms any possible combination of individual credences into group credences.

For instance the averaging rule defines the group credence in an event as the average

individual credence in it. The question is: which pooling rules guarantee group

Bayesianism? To see the problem, imagine new information comes in. According to

the pooling rule, the new group beliefs are obtained by pooling the new individual

beliefs. Meanwhile by group Bayesianism the new group beliefs are obtained by

revising the old group beliefs via Bayes’ rule. So pooling the revised individual

beliefs should yield the same as revising the old group beliefs. This places a severe

mathematical constraint on the choice of pooling rule. The mentioned averaging

rule violates this constraint; so it generates non-Bayesian group beliefs. One might

try to defend averaging by arguing that Bayesian conditionalization is not always

the right revision policy (Joyce 1999, Hájek 2003) and that averaging may suit the

different revision policy of ‘imaging’ (Leitgeb forth.), and besides that averaging is

the basis of Lehrer and Wagner’s (1981) consensus formation theory. But if we accept

the Bayesian paradigm, as in this paper, then the failure of group beliefs to obey

conditionalization is a death penalty for the averaging rule, so that we must search

for other pooling rules, as done by Russell et al. (2015) and the present paper.

The second challenge pertains to the question of what information learning ac-

tually means for a group. Who learns? I propose to distinguish between public

information (learnt by all members), private information (learnt by only one mem-

ber), and partially spread information (learnt by some but not all members). The

question is for which type(s) of information to require Bayesian revision of group

beliefs.

The third challenge pertains to the fact that some information might not be

representable by any event in the domain (algebra) on which credences are defined.

The group might learn that the radio forecasts rainy weather, but it might hold

credences only relative to ‘weather events’, not ‘weather-forecast events’. In such

a case ordinary Bayesian revision is not even defined. Yet a generalized form of

Bayesian revision can still be applied, as explained later. The question is whether

to require Bayesian revision of group beliefs even for non-representable information.

This question is of course not strictly limited to group agents; it could be raised for

individual agents too. But the question is far more pressing for group agents, because

the domain of group beliefs (the algebra of events to which the group assigns proba-

bilities) tends to be much smaller than the domain of an individual’s beliefs, so that

information tends to be far less often representable for groups than for individuals.

This is true for practical and theoretical reasons.2 It is thus urgent to account for

2In practice, it is hard or impossible to form group beliefs on more than a few events via explicit

aggregation or voting. So the domain of real-life group beliefs formed via voting is a fortiori small.
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non-representable information when properly studying the revision of group beliefs.

The second and third challenges pertain to the notion of information relevant to

groups. Instead of definitely opting for some notion of information, I will consider

different notions: public representable information, private representable informa-

tion, public non-representable information, and so on. Each type of information

considered will give rise to a specific form of group Bayesianism, requiring Bayesian

conditionalization on information of this type.

The paper makes a conceptual and a mathematical contribution. The conceptual

contribution is to lay out a taxonomy of six kinds of group Bayesianism, as just

indicated. The mathematical contribution is to determine those credence pooling

rules which guarantee group Bayesianism of each given sort. This is done in six

theorems, one for each kind of group Bayesianism. These theorems respond to the

first challenge, and do so for different types of group Bayesianism, i.e., different

positions one might take relative to the second and third challenges.

Although the Bayesian paradigm has been applied to groups in the literature

on probabilistic opinion pooling (e.g., Madansky 1964, Morris 1974, Dietrich 2010),

Russell et al.’s (2015) prize-winning contribution3 seems to be the first to put on the

agenda the most basic Bayesian principle, i.e., standard conditionalization, open-

ing up a new research programme. They however take for granted that informa-

tion is public and representable, thereby restricting attention to one type of group

Bayesianism. The present theorem for this type of group Bayesianism is essentially

their central result, except from minor variations and corrections. Another type

of group Bayesianism – that for public non-representable information – already ap-

peared much earlier in the statistics literature under the label “external Bayesianity”

(Madansky 1964). The theorem for this type of group Bayesianism seems to be new.

All this calls for an explicit theory of group Bayesianism(s), which this paper hopes

to deliver. A very different, so-called ‘supra-Bayesian’ approach to group beliefs

goes back to Morris (1974).4 Probabilistic opinion pooling is reviewed in Genest and

Zidek (1986) and Dietrich and List (2016).

Also in theory group beliefs are defined for fewer events than individual beliefs. Indeed, since group

credences are obtained by aggregating individual credences, group credences can only exist where

individual credences exist, so that the domain of group beliefs must be at most as large as the

intersection of the (often different) individual domains of beliefs. That intersection might be very

small.
3It was selected by The Philosopher’s Annual as one of the ten best philosophy papers in 2015.
4Supra-Bayesianism reduces group beliefs to the posterior beliefs of an external social planner

who treats the group members’ credences as evidence on which he conditionalizes his own beliefs.

I would argue that this reduction violates the very notion of group beliefs, which is not supposed

to depend on any external observer. Supra-Bayesianism is not a theory of Bayesian groups.
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2 The formal machinery of credence pooling

Consider a group of n individuals. We label them i = 1, 2, ..., n. The group size

n is any finite number greater than one. The individuals hold probabilistic beliefs

(credences) relative to certain events. As usual, the set of these events forms an

algebra, so that we can negate and conjoin events. To model this, I introduce a set

W of worlds, and define events as arbitrary sets of worlds A ⊆ W . The number of

worlds in W is finite and exceeds two; the infinite case is addressed in Appendix A.5

A credence function is a probability function C on the set of events.6 The proba-

bility C(A) of an event A is called the credence in A. The credence in a world a ∈ W

is of course defined as the credence in the corresponding event: C(a) := C({a}). Note
that

∑

a∈W C(a) = 1 and that the probabilities of worlds fully determine those of all

events.

The beliefs of the various group members are summarized in the ‘credence profile’.

Formally, a (credence) profile is a listC = (C1, ..., Cn) of credence functions, where Ci

represents the credences of member i. I use bold-face symbols (C, C′, ...) to denote

credence profiles as opposed to single credence functions. For any so-denoted profile

I denote its members by ‘un-bolding’ the symbol and adding individual indices. So

the profile C is made up of C1, ..., Cn, the profile C′ of C ′

1, ...., C
′

n, and so on. A

credence profile C is coherent if at least one world has non-zero probability under

each individual credence function inC; otherwise the profile is incoherent. Coherence

is a plausible feature. For one would expect that at least the true world – whichever

world it is – receives non-zero probability by everyone. After all no-one should have

any (evidential or theoretical) grounds for totally excluding the true world.

Given a credence profile, what should the group as a whole believe? An answer

to this question can be formally captured by a a pooling rule, i.e., a function which

aggregates the credence profile into group credences. Formally, a pooling rule is a

function ag mapping any credence profile C (from the rule’s domain of applicability)

to a ‘group’ credence function ag(C), denoted agC for short. I now give four exam-

ples, representing different approaches or theories of how group credences depend on

individual credences:

• The averaging rule defines the group credence in an event A as the average of

individual credences: agC(A) = 1
n
C1(A) + · · ·+ 1

n
Cn(A). The rule’s domain of

applicability is universal, i.e., consists of all credence profiles, since averages of

probability functions are always well-defined probability functions.

• More generally, the weighted averaging rule with weights w1, ..., wn ≥ 0 of sum

5Some readers might prefer the objects of beliefs to be propositions; they should simply rein-

terpret events as propositions. Others might not like modelling events (or propositions) as sets of

worlds; I work with sets of worlds following common practice, but nothing hinges on this.
6Technically, it is a function C mapping events to numbers in [0, 1] such that C is additive (i.e.

C(A ∪B) = C(A) + C(B) whenever A ∩B = ∅) and C(W ) = 1.
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one is the rule which defines the group credence in an event A as the weighted

average of individual credences: agC(A) = w1C1(A) + · · · + wnCn(A). The

rule again applies to all credence profiles. Setting all weights to 1
n
yields the

ordinary averaging rule.

• The geometric rule defines the group credence in a world a as the (re-scaled)

geometric average of individual credences: agC(a) = k[C1(a)]
1/n · · · [Cn(a)]

1/n,

where k is a profile-dependent scaling factor determined such that the total

probability of worlds is one (so k = 1/{∑b∈W [C1(b)]1/n···[Cn(b)]1/n}). The rule’s do-

main of applicability is not universal. It includes only the coherent credence

profiles, because for incoherent profilesC the geometric average [C1(a)]
1/n · · · [Cn(a)]

1/n

is zero at all worlds a and so cannot be re-scaled to a probability function. The

definition focuses on group credences in worlds, but group credences in events

follow automatically by summing across corresponding worlds.

• More generally, the weighted geometric rule with weights w1, ..., wn ≥ 0 defines

the group credence in a world a by a (re-scaled) weighted geometric expression:

agC(a) = k[C1(a)]
w1 · · · [Cn(a)]

wn , where k is again a scaling factor ensuring a

total probability of one (so k = 1/{∑b∈W [C1(b)]w1 ···[C(b)]wn}). The rule applies only
to coherent credence profiles to ensure well-definedness. The weights w1, ..., wn

might or might not sum to one. Setting all weights to 1
n
yields the ordinary

geometric rule.

3 Bayesian conditionalization for groups

Bayesianism requires that an agent who learns an event E revises his credence func-

tion C by adopting the (conditional) credence function C ′ = C(·|E) which to any

event A assigns the conditional probability C(A|E) = C(A∩E)
C(E)

. This assumes that

C(E) 6= 0 to ensure that conditionalization is defined. Henceforth, expressions like

‘conditionalizing the credence function C on E’ and ‘conditionalization of C on E’

will denote that the conditional credence function C(·|E) is being formed, and a

fortiori that C(E) 6= 0.

Like Russell et al. (2015), I apply the requirement of Bayesian conditionaliza-

tion to groups: group credences should change by conditionalization whenever a new

event E is learnt. So the group’s new credences which aggregate the post-information

profile C′ must be obtainable by conditionalizing the group’s old credences which ag-

gregate the pre-information profile C. Formally: agC′ = agC(·|E). In other words,

Bayesian revision and aggregation commute, as illustrated in Figure 1. However,

what does it mean that E is learnt? Russell et al. take it for granted that infor-

mation is public: all group members learn E, so that the new credence profile is

C′ = (C1(·|E), ..., Cn(·|E)). Alternatively, E might be learnt just by individual 1,
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Figure 1: Revising aggregate credences versus aggregating revised credences

so that the new credence profile is C′ = (C1(·|E), C2, ..., Cn) in which individuals

2, ..., n have kept their old credences. In full generality, E might be learnt by some

arbitrary subgroup of one or more individuals, so that only the credences of these

individuals change.

These considerations suggest the following group Bayesianism axiom:

Conditionalization on information (Bay): If a credence profile C changes to

another one C′ by conditionalization of one or more individual credence functions

on an event E (and if the rule applies to C and C′), then the new group credence

function agC′ is the conditionalization of agC on E.

This axiom strengthens a group Bayesianism axiom restricted to public informa-

tion and introduced by Russell et al.:

Conditionalization on public information (BayPub): If a credence profile C

changes to another one C′ by conditionalization of all individual credence functions

on an event E (and if the rule applies to C and C′), then the new group credence

function agC′ is the conditionalization of agC on E.

A third group Bayesianism axiom focuses on private information:

Conditionalization on private information (BayPri): If a credence profile C

changes to another one C′ by conditionalization of exactly one individual credence

function on an event E (and if the rule applies to C and C′), then the new group

credence function agC′ is the conditionalization of agC on E.

All three incarnations of group Bayesianism are prima facie of interest and have

their privileged contexts of application, as argued in Section 8. Before exploring each

axiom formally, let me give five arguments for why non-public information matters.

First, the Bayesian paradigm requires conditionalization as the universal belief

revision policy. There is no principled Bayesian reason for suddenly lifting the re-

quirement if information is not public. Any failure to conditionalize on information

is un-Bayesian, regardless of how many or few people have access to the information.
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The question of how widely information spreads is epistemically irrelevant, at least

to Bayesians. Information matters not in virtue of being widely accessible, but in

virtue of being true, where truth is ascertained as soon as one individual fully ac-

quires the information. Repeated observation of the exactly same information (by

different people) is no better than one-time observation, in vague analogy to the old

evidence problem (e.g., Glymour l980, Hartmann and Fitelson forth.)

Second, let us see where radical Bayesianism takes us (without necessarily com-

mitting to it). A full-fledged Bayesian has a highly subjective notion of information.

He will submit that information is almost never public and hence that the axiom

BayPub neglects most instances of information learning in groups. This is because

two individuals almost never learn precisely the same event: even when Anne and

Peter both see the car arriving, they will have seen the car from slightly different

angles and will thus have observed (and conditionalized on) slightly different events.

This of course assumes that information is described in full detail, which renders the

algebra of events and thus the set of possible worlds W very rich and complex – an

unrealistic but standard Bayesian assumption.

Third, groups which fail to conditionalize on information are Dutch-bookable

regardless of whether the information is public. Russell et al. put forward the Dutch

book argument to defend conditionalization on public information. The argument is

easily adapted to non-public information: it suffices to choose the bookie as someone

who learns the (non-public) information, possibly even a group member.

Fourth, differences in information across a group constitute a salient real-life phe-

nomenon which is at the heart of theories of group agency, multi-agent systems and

distributive cognition. Groups are often said to know more than each of their mem-

bers. In our framework, this means that group credences incorporate all information

held by at least one member, which immediately suggests the axiom Bay. By con-

trast, the weaker axiom BayPub reflects the different idea that a group knows only

what all (not some) members know, so that the group typically knows much less

than each of its members.

Fifth, it seems ad hoc to exclude learning of non-public information, i.e., asym-

metries in learning across individuals, because on the other hand we do allow asym-

metries in status-quo knowledge. Status-quo knowledge can differ across individu-

als since in a credence profile C different individuals can be certain of (i.e., assign

probability one to) different events. So the framework is geared towards knowledge

asymmetries at any given point of time, i.e., within any given profile. If individu-

als always learned the same things, one wonders how they could end up knowing

different things.
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4 The implication of Bayesian conditionalization

for groups

What does group Bayesianism in each of the above versions Bay, BayPub or BayPri

imply for how group beliefs must be formed, i.e., how the pooling rule must look like?

To see how severely group Bayesianism constrains the pooling rule, note that once

we have fixed how a given profile C is aggregated, we are no longer free in how to

aggregate any other profile C′ which can arise from C through information learning:

agC′ must notoriously be given by conditionalization of agC on the information.

Before establishing the precise implication of each axiom, I clarify the logical

relation between the three axioms. Surprisingly, BayPri is only apparently weaker

than Bay: groups which conditionalize on private information must also condition-

alize on non-private information (this will no longer be true for non-representable

information, as seen later). By contrast, BayPub is a genuinely weaker axiom. The

logical gap between BayPub and Bay is filled by a crisp axiom:

Certainty adoption (Cert): Events which are certain to some group member are

certain to the group, i.e., for all credence profiles profiles C (in the rule’s domain)

and events E, if Ci(E) = 1 for some individuals i, then agC(E) = 1.

Cert is a plausible axiom in groups of rational agents, because if some group

member is fully certain of E, then he presumably has definitive evidence or arguments

for E, so that the group has reason to adopt that certainty. The following result

summarizes the mentioned logical relationships:

Proposition 1. A rule for pooling coherent credence profiles satisfies Bay if and

only if it satisfies BayPri, and if and only if it satisfies both BayPub and Cert.

I now consider each of the three Bayesian axioms in turn and study its implication.

I shall use two auxiliary axioms which, broadly speaking, force the pooling rule to

be non-degenerate or well-behaved. The first auxiliary axiom requires that if every

group member is utterly ignorant, i.e., holds the uniform credence function (which

deems each world equally likely), then also the group as a whole is utterly ignorant:

Indifference preservation (Indiff): If C is the credence profile in which the

individuals unanimously hold the uniform credence function (and if the rule applies

to C), then the group credence function agC is also uniform.

The second well-behavedness axiom requires group credences to depend contin-

uously on individual credences: small changes in individual credences should never

lead to jumps in group credences. Formally, an infinite sequence of credence func-

tions C1, C2, ... converges to a credence function C if for every event A the sequence

of probabilities C1(A), C2(A), ... converges to C(A).
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Continuity (Contin): If a sequence of credence profiles C1,C2, ... converges in each

individual component to a credence profile C (and if the rule applies to all these

profiles), then the sequence of group credence functions agC1, agC2, ... converges to

agC.

By the first theorem, the full-blown Bayesian axiom Bay (along with the two

well-behavedness axioms) forces the pooling rule to be a weighted geometric rule in

which every individual has non-zero weight, i.e., ‘has a say’:

Theorem 1. The only rules for pooling coherent credence profiles satisfying Bay,

Indiff and Contin are the weighted geometric rules giving non-zero weight to each

individual.

So all pooling rules except weighted geometric rules with non-zero weights are

un-Bayesian (by violating Bay) or degenerate (by violating Indiff or Contin). For

instance, all weighted or unweighted averaging rules and all weighted geometric rules

giving zero weight to someone violate Bay; but they satisfy Indiff and Contin. What

is the intuition behind the fact that the three axioms are jointly necessary and

sufficient for the rule to be of this special geometric sort? Sufficiency is hard to prove.

As for necessity, one easily checks that a weighted geometric rule is continuous and

preserves indifference. Why does it also satisfy Bay, assuming no individual has zero

weight? Suppose certain individuals learn an event E, so that the profile changes.

For every individual i who has learnt E, his credences in worlds change to zero

for worlds outside E and change proportionally for worlds inside E – this is how

conditionalization works. As a result, the expression [C1(a)]
w1 · · · [Cn(a)]

wn changes

to zero for worlds a outside E and changes proportionally for worlds a inside E.

This implies that group credences change via conditionalization on E, as required by

Bay. It is crucial in this argument that every weight wi is non-zero: otherwise it can

happen that everyone i who learns E has weight wi = 0, so that his belief revision

leaves the wi-th power of his credences in worlds unchanged. For p0 is always defined

as 1, even for p = 0.

Next we turn to the weaker group Bayesianism axiom BayPub which allows non-

Bayesian revision in the face of non-public information. Being weaker, this require-

ment opens the door to a larger class of pooling rules, namely by allowing geometric

rules with some zero weighs:

Theorem 2. The only rules for pooling coherent credence profiles satisfying BayPub,

Indiff and Contin are the weighted geometric rules giving non-zero weight to at least

one individual.

Why does a weighted geometric rule meet BayPub as soon as one individual i gets

non-zero weight? In short, public information E is then guaranteed to be observed

by someone with non-zero weight, which suffices to push the group’s credence in

worlds outside E to zero.
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Theorem 2 is essentially Russell et al.’s central theorem (their ‘Fact 4’), to which

it however adds three necessary qualifications and one optional amendment. The

optional amendment is that I impose indifference preservation instead of Russell et

al.’s neutrality axiom, since indifference preservation is less demanding and achieves

the same.7 As for the three qualifications, firstly I assume the number of worlds to

be finite rather than possibly countably infinite, to ensure that weighted geometric

rules are well-defined for any non-negative weights; in Appendix A I show how the

countably infinite case can be handled.8 Secondly, I do not permit all weighted ge-

ometric rules, but only those with at least one non-zero weight.9 Thirdly, I allow

only coherent credence profiles. The third qualification is already introduced retro-

spectively by Russell et al. in their proof appendix where they restate their result

differently. Some of their readers might come to think that the result is essentially

true even without excluding incoherent profiles, i.e., that the result is true without

domain restriction provided one suitably extends weighted geometric rules to inco-

herent profiles. This is not the case. Without domain restriction the axioms are

inconsistent with all weighted geometric rules (however extended) except from the

dictatorship-like rules assigning zero weight to all but one individual. I return to the

aggregation of possibly incoherent credence profiles in Section 7, where I show that

group Bayesianism is essentially impossible in ‘incoherent groups’.

Finally, what is the implication of requiring group Bayesianism relative to private

information? Since BayPri is equivalent to Bay (by Proposition 1), the implication

of BayPri is precisely that of Bay. So we can restate Theorem 1 using BayPri instead

of Bay:

7Indifference preservation is a particularly weak sort of unanimity axiom, since it requires pre-

serving not all unanimously held credence functions, but only the uniform one. The neutrality ax-

iom requires treating all worlds equally. Formally, whenever π is a permutation of the set of worlds

(which allows us to transform any credence function C into a new one Cπ given by Cπ(a) = C(π(a))

for all worlds a), then transforming the aggregate credence function agC is equivalent to aggregating

the profile C
π of transformed credence functions: (agC)π = agCπ. Neutrality implies indifference

preservation because transforming the uniform credence function under a permutation yields the

same uniform credence function.
8The problem with applying the notion of geometric rules naively to a countably infinite set of

worlds is that if the weights w1, ..., wn sum to a value below one, then for certain coherent credence

profiles C the geometric average [C1(a)]
w1 · · · [Cn(a)]

wn has an infinite sum across worlds a and

thus fails to be rescalable such that the sum across worlds is one (defining the scaling factor as

k = 1

∞
= 0 does not do). See Appendix A for details.

9The statement of Russell et al.’s Fact 4 (“The only rules which obey [the axioms] are Weighted

Geometric Rules”) allows for two readings: either the rules obeying the axioms are claimed to be

all the Weighted Geometric Rules (as suggested by the authors’ claim to characterize weighted geo-

metric pooling), or the rules obeying the axioms are claimed to be among the Weighted Geometric

Rules (as suggested by the authors’ restatement of their Fact 4 in their appendix). Under the first

reading Theorem 2 corrects their Fact 4. Under the second reading Theorem 2 strengthens their

Fact 4 by turning an implication into an equivalence, i.e., into a characterization result.
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Theorem 3. The only rules for pooling coherent credence profiles satisfying BayPri,

Indiff and Contin are the weighted geometric rules giving non-zero weight to each

individual.

5 Bayesian conditionalization for groups facing non-

representable information

A key idealization often made by Bayesians is that any information an agent might

ever learn is representable as an event within the domain (algebra) where the agent

assigns probabilities. This ensures that Bayes’ rule in its ordinary form applies. Real-

life information need not be representable in this way, in particular in the context of

group agents which tend to hold beliefs relative to a small event algebra that excludes

much of what can be learnt. Taking up an introductory example, the group might

hold credences only relative to weather events; so worlds in W describe the weather,

nothing else. The information that the radio forecasts rain is not representable as

an event E ⊆ W since worlds in W do not describe weather forecasts. Yet credences

should clearly be revised, presumably by raising the probability of the (representable)

event of rain.

How should credences be revised based on non-representable information? There

is a well-known Bayesian answer: model such information as a likelihood function

rather than an event and apply Bayes’ rule in its generalized form. Although all this

is known to Bayesian statisticians, a short introduction is due. A likelihood function

is an arbitrary function L from worlds to numbers in [0, 1]. One interprets L as

modelling some information and L(a) as being the probability of that information

given that the world is a. In the weather example, L(a) is the probability that

the radio forecasts rain (the information) given that the world is a. Since weather

forecasts are usually right, L(a) is near 1 for rainy worlds a and near 0 for non-rainy

worlds a.

Given how likelihood functions are interpreted, it is clear how one should condi-

tionalize on them, i.e., how Bayes’ rule in its generalized version works. An agent

who learns a likelihood function L should revise his credence function C by adopt-

ing the (conditional) credence function C(·|L) which to every world a assigns the

probability C(a|L) = C(a)L(a)∑
b∈W C(b)L(b)

. One immediately recognizes Bayes’ rule, given

that L(a) stands for the probability of information conditional on a. The conditional

credence function C(·|L) is only defined if the likelihood function L is coherent with

C, i.e., if there is at least one world where both L and C are non-zero, ensuring that
∑

b∈W C(b)L(b) 6= 0. Intuitively, coherence of L with C means that the information

is not ruled out by the initial credences. Hereafter, expressions like ‘conditionalizing

C on L’ and ‘conditionalization of C on L’ will denote that the conditional credence

function C(·|L) is being formed, and a fortiori that L is coherent with C.
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Likelihood functions generalize events as a model of information, and Bayes’

rule for likelihood functions generalizes Bayes’ rule for events. Indeed, to any event

E corresponds a simple likelihood function L for which L(a) can only be 1 or 0,

depending on whether a is in E or outside E; and conditionalizing on E is equivalent

to conditionalizing on the corresponding likelihood function L, as one easily checks.

It is natural to require groups to follow Bayes’ rule not just if an event is learnt,

but more generally if a likelihood function is learnt. This requirement can once again

be fleshed out in three different ways, depending on whether the likelihood function

is learnt by any subgroup of individuals, or by all individuals (public information),

or by just one individual (private information). The three resulting axioms are

counterparts of the earlier axioms Bay, BayPub and BayPri. They differ from their

counterparts only in that the learnt information is given by a likelihood function L

rather than an event E. Being based on a more general notion of information to

be called L-information, each new axiom is strictly stronger than its counterpart, as

indicated by the ‘+’ in the label of each new axiom.

Conditionalization on L-information (Bay+): If a credence profile C changes

to another one C′ by conditionalization of one or more individual credence functions

on a likelihood function L (and if the rule applies to C and C′), then the new group

credence function agC′ is the conditionalization of agC on L.

Conditionalization on public L-information (BayPub+): If a credence profile

C changes to another oneC′ by conditionalization of all individual credence functions

on a likelihood function L (and if the rule applies to C and C′), then the new group

credence function agC′ is the conditionalization of agC on L.

Conditionalization on private L-information (BayPri+): If a credence profile

C changes to another one C′ by conditionalization of exactly one individual credence

function on a likelihood function L (and if the rule applies to C and C′), then the

new group credence function agC′ is the conditionalization of agC on L.

6 The implication of Bayesian conditionalization

for groups facing non-representable information

We have seen in Section 5 that a group which obeys ordinary Bayesian condition-

alization – Bayesian conditionalization on events – must form its credences in a

particular way that depends on the chosen group Bayesian axiom (Bay, BayPub or

BayPri). What happens to the pooling rule if we impose Bayesian revision even for

non-representable information, i.e., if we require Bay+, BayPub+ or BayPri+?

As in Section 5, I start the analysis by clarifying the logical relationship between

the three axioms at stake. The situation changes dramatically compared to the earlier
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axioms Bay, BayPub and BayPri. While the earlier axioms are highly compatible

with each other (by Proposition 1), the new axioms are mutually incompatible:

Proposition 2. No rule for pooling coherent credence profiles satisfies both BayPub+

and BayPri+.

So, in short, group credences cannot incorporate both public and private L-

information in a proper Bayesian way. As an immediate consequence, the full-blown

axiom Bay+, which simultaneously strengthens BayPub+ and BayPri+, is internally

inconsistent:

Theorem 4. No rule for pooling coherent credence profiles satisfies Bay+.

This striking impossibility does not require imposing any of the well-behavedness

axioms Indiff and Contin: Bay+ is by itself inconsistent, hence untenable as a norma-

tive principle for group beliefs. How should we interpret this? On one interpretation,

groups simply cannot be ‘fully Bayesian’: their belief revision policy cannot be as ide-

ally rational as that of single individuals. But there is a more nuanced interpretation.

Recall that the need to conditionalize on non-representable information came from

a lack of Bayesian rationality in the first place: an inability to assign probabilities

to ‘everything’, so that the set of events under consideration – the credence domain

– fails to encompass all relevant information. I gave an example where the credence

domain fails to contain an event representing the information of a rainy weather fore-

cast. If by contrast the credence domain is universal, as many Bayesians routinely

assume, then all relevant information is by definition representable by an event in

the credence domain, and we lose the justification for introducing L-information and

imposing Bay+ because the initial axiom Bay already covers all relevant informa-

tion. In sum, Bay+ becomes normatively mandatory only when and because another

Bayesian requirement – that of a universal credence domain – is violated. Accord-

ingly, Theorem 4 does not tell us that groups cannot be fully Bayesian, but that they

cannot be ‘semi-Bayesian’ by failing to entertain a universal credence domain while

properly conditionalizing on information outside the credence domain.

The impossibility disappears once we restrict attention to public or to private

L-information. Indeed groups can follow Bayesian conditionalization on such in-

formation, by using a pooling rule of a quite particular kind. I begin with public

L-information:

Theorem 5. The only rules for pooling coherent credence profiles satisfying Bay-

Pub+, Indiff and Contin are the geometric rules whose individual weights sum to

one.

The comparison to Theorem 2 shows that BayPub+ constrains the pooling rule

much more than BayPub does: the individual weights must now sum to one. Surpris-

ingly, this result seems to be new, although its central axiom BayPub+ has already
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been studied under the label “external Bayesianity”, though in a different framework

(Madansky 1964).10

Finally, how can groups follow Bayesian conditionalization on private generalized

information? They can do so in precisely one way, namely by using the multiplicative

pooling rule (Dietrich 2010, Dietrich and List 2016). It determines the group credence

in each world as the (re-scaled) product of the members’ credences in that world. This

is a special case of weighted geometric pooling in which each individual gets weight

one.

Theorem 6. The only rule for pooling coherent credence profiles satisfying BayPri+

and Indiff is the multiplicative rule, i.e., the geometric rule giving weight one to each

individual.

The comparison of Theorems 5 and 6 shows that it makes a considerable difference

whether the group wishes to properly incorporate public or private L-information.

In the former case the weights must sum to one, in the latter they must all equal one.

This gives an idea of why the two axioms are mutually inconsistent (see Proposition

2). Theorem 6 does not involve the axiom Contin. It is a version of a result by

Dietrich and List (2016) in a different framework.11

7 The impossibility of group Bayesianism for in-

coherent groups

Our analysis has so far been limited to rules that pool coherent credence profiles,

in which at least one world is assigned non-zero probability by everyone. In short,

we have excluded radical disagreement. Incoherent profiles are peculiar in that they

violate the idea that some world is ‘true’ and receives non-zero subjective probability

from everyone. Can one design pooling rules that are Bayesian and apply also to

incoherent credence profiles? The answer is negative: if we permit incoherent profiles,

there do no longer exist any non-degenerate Bayesian rules – regardless of which of

our six Bayesian axioms is taken to define group Bayesianism.

10How could it have escaped the statistics literature that this axiom (jointly with well-behavedness

axioms) forces to certain geometric pooling rules? Presumably the reason is that the axiom is usually

stated and analysed in a different framework in which credence functions and likelihood functions

must take non-zero values at all worlds. This excludes representable information, since a likelihood

function corresponding to representable information, i.e., to an event E, takes the value 0 outside

E and is thus excluded (unless E = W ). So the classic axiom of external Bayesianity actually

differs from BayPub+ in that it covers only non-representable rather than also non-representable

information. The analogue of Theorem 5 in that classic framework is false, because the (restated)

axioms can be met by generalized versions of weighted geometric rules whose weights can depend

on the profile in certain systematic ways.
11Their framework takes all credence functions and likelihood functions to have non-zero values

at all worlds. This difference in framework has no consequence for the result.
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To state the result formally, I first define two kinds of degenerate rules for pooling

arbitrary credence profiles. A dictatorship is a rule such that the group always

adopts the credences of a fixed group member. Formally, there is an individual i

(the dictator) such that agC = Ci for all credence profiles C. A power dictatorship

is a rule which, like an ordinary dictatorship, makes group credences depend solely

on a fixed individual. But the group might not adopt that individual’s credences as

such: it might adopt a transformed version of his credences, obtained by raising the

probabilities of worlds to some power. Formally, a power dictatorship is a rule for

which there exists an individual i (the power dictator) and a number w > 0 such

that for any credence profile C the group credences in worlds a ∈ W are given by

agC(a) = k[Ci(a)]
w, where k > 0 is a scaling factor ensuring that probabilities of

worlds sum to one (i.e., k =
∑

b∈W [Ci(b)]
w). In case w = 1 we obtain a regular

dictatorship.

Theorem 7. Among all rules for pooling arbitrary (possibly incoherent) credence

profiles,

(a) no rules satisfy the axioms stated in Theorem 1, 3, 4, or 6, respectively,

(b) only the power dictatorships satisfy the axioms stated in Theorem 2,

(c) only the dictatorships satisfy the axioms stated in Theorem 5.

Let me paraphrase this result. If we seek to aggregate arbitrary credence pro-

files, then only power dictatorships can properly handle public information, only

dictatorships can properly handle public L-information, and no rules whatsoever can

properly handle the other four types of information.

8 Conclusion: each group Bayesianism matters

I have argued that there are different types of group Bayesianism, depending on the

kind of information on which one requires groups to conditionalize. Each form of

group Bayesianism is compatible with certain credence pooling rules, determined in

Theorems 1–6. Specifically, group beliefs must be formed via a weighted geomet-

ric rule, where the weights must obey certain conditions depending on the type of

group Bayesianism in question. Group Bayesianism however becomes impossible if

the members can disagree radically, i.e., if the credence profile can be incoherent

(Theorem 7).

Which of the six group Bayesian axioms is the right rendition of group Bayesian-

ism? The answer depends on the group or application in question. I propose the

following stylized classification. The first dimension of classification concerns how

widely information can spread in the group in question:
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• Fully symmetrically informed groups are idealized groups whose members have

exactly the same access to new information (perhaps due to perfect deliberation

and information sharing). New information is then by definition public, and

the Bayesian axiom need only quantify over public information. This leads to

BayPub or BayPub+.

• Fully asymmetrically informed groups are idealized groups whose members

never learn the same information. New information is then by definition pri-

vate, and the Bayesian axiom need only quantify over private information. This

leads to BayPri or BayPri+.

• Groups with arbitrary information spread are groups without any restriction

on how widely new information is accessible. New information may thus be

acquired by any subgroup, and the Bayesian axiom should quantify over infor-

mation acquired by any subgroup. This leads to Bay or Bay+.

The second dimension of classification concerns the size of the domain (algebra) of

events on which the group in question holds credences:

• Groups with universal credence domain are idealized groups in which the do-

main of credences comprises everything relevant to the group in question, in-

cluding any information that can be acquired. New information is thus always

representable, and the Bayesian axiom need only quantify over representable

information. This leads to Bay, BayPub or BayPri.

• Groups with limited credence domain are groups in which the credence domain

fails to encompass certain information that can be acquired in the group in

question. New information can thus be non-representable, and the Bayesian

axiom should quantify over generalized information. This leads to Bay+, Bay-

Pub+ or BayPri+.
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Figure 2: Contexts of application and their corresponding group Bayesianism axioms

and pooling rules
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Figure 2 summarizes the stylized classification of groups or applications, in each

case displaying the relevant group Bayesianism axiom and the corresponding pooling

rule(s) according to Theorems 1–6. This shows how strongly the axiomatic rendition

of group Bayesianism and the pooling rule should depend on the application.

A Generalization to infinitely many worlds

The main text took the number of worlds (hence, of events) to be finite. This calls

for a generalization. In both appendices let the set of worlds be countable, i.e., finite

or countably infinite. To extend our formal results to that case, we must do two

things: generalize the notion of weighted geometric pooling, and adapt the axiom of

Indifference Preservation. I shall do both things in turn. But first let me anticipate

what is thereby achieved:

Remark 1. All formal results of the main text (the ‘theorems’ and ‘propositions’) hold

more generally for countably many worlds if weighted geometric rules are generalized

as below and Indifference Preservation is replaced by Weak Indifference Preservation

defined below.

Generalizing geometric rules: What can happens if we naively apply our

earlier definition of the weighted geometric rule to infinitely many worlds? Given

weights w1, ..., wn ≥ 0 and a (coherent) credence profile C = (C1, ..., Cn), we first

form for each world a the weighted geometric average [C1(a)]
w1 · · · [Cn(a)]

wn . The

trouble arises as we attempt to normalize this expression to a probability mass func-

tion: normalization fails when the sum
∑

a∈W [C1(a)]
w1 · · · [C(a)]wn is infinite. To see

that the sum can be infinite, let the set of worlds be W = {1, 2, 3, ...}, let the sum

of weights be w1 + · · · + wn = 1
2
, and let each individual i have the same credence

function assigning probability ca−2 to each world a, where c is a positive constant

which ensures that the probabilities of worlds sum to one. The weighted geometric

average then takes the form [C1(a)]
w1 · · · [Cn(a)]

wn = (ca−2)
w1+···+wn =

√
ca−1, so

that
∑

a∈W [C1(a)]
w1 · · · [Cn(a)]

wn =
√
c
∑

∞

a=1 a
−1 =

√
c∞ = ∞. Normalization is

thus impossible here. However normalization is guaranteed to be possible for certain

choices of the weights:

Proposition 3. If the number of worlds is (countably) infinite, the following two

conditions on weights w1, ..., wn ≥ 0 are equivalent:

• The weighted geometric average [C1(a)]
w1 · · · [Cn(a)]

wn is normalizable (i.e., has

finite sum over worlds a) for each coherent credence profiles (C1, ..., Cn).

• The sum of weights satisfies w1 + · · ·+ wn ≥ 1.

This tells us that for infinitely many worlds weighted geometric pooling is mean-

ingful if and only if the sum of weights is at least one. I therefore generalize the
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notion of geometric rules as follows to the countable case: a weighted geometric rule

is defined

• for arbitrary weights w1, ..., wn ≥ 0 if the number of worlds is finite,

• for weights w1, ..., wn ≥ 0 of sum at least one if the number of worlds is count-

ably infinite,

where for each coherent credence profile the group credence in a world a is determined

in the usual way, i.e., as the normalized weighted geometric average credence in a.

We can now talk meaningfully about weighted geometric rules for countable W ,

bearing in mind that the weights by definition have sum at least one if W is infinite.

Note that if we were to require (rather than permit) W to be countably infinite,

then we could simplify Theorem 2: we would no longer need to require that at least

one individual gets non-zero weight, as this already follows from the sum of weights

being at least one.

Adapting Indifference Preservation: The axiom of Indifference Preservation

(Indiff) is meaningless for infinitely many worlds, because the uniform distribution

does then not exist. Indeed, one cannot assign the same probability x to infinitely

many worlds, as the sum of probabilities would not be one, but infinite (if x > 0) or

zero (if x = 0). We can instead use this axiom:

Weak indifference preservation (Indiff*): For all worlds a and b, unanimous

indifference between a and b is at least sometimes preserved, i.e., there is at least

one credence profile C (in the rule’s domain) such that every individual i satisfies

Ci(a) = Ci(b) 6= 0 and the group satisfies agC(a) = agC(b).

This axiom has a double advantage over ordinary Indifference Preservation: (i) it

stays meaningful for infinitely many worlds, and (ii) it is weaker for finitely many

worlds since the credence profile where everyone holds uniform beliefs automatically

has the property required in Indiff*.12 Our results could use Russell et al.’s ‘neutral-

ity’ axiom instead of Indiff*; that axiom is however much stronger.

B Proofs

I now prove all results from the main text and Appendix A. The results from the

main text will be proved in their generalized version defined in Appendix A. So

throughout the set of worlds W is countable (finite or countably infinite), Indiff* is

used instead of Indiff, and the notion of weighted geometric rules is extended to the

12Strictly speaking, Indiff* is weaker under the minimal assumption that the profile of uniform

credence functions belongs to the rule’s domain.
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infinite case in the above-defined way (so that weights must sum to at least one in

the infinite case).

Conventions: The conditionalization of a credence function C on an event E or a

likelihood function L will (when existent) be denoted by C|E and C|L, respectively.
As usual, the support of a credence function C is supp(C) := {a ∈ W : C(a) 6= 0}.

B.1 The propositions

Proof of Proposition 1. Consider a rule ag for pooling coherent profiles. Axiom

Bay obviously implies BayPub and BayPri. The proof is completed by showing three

claims.

Claim 1: BayPri implies Bay.

Assume BayPri and consider coherent profiles C and C′ such that C′ arises

from C by conditionalization of the credence functions of m individuals on an event

E, where 1 ≤ m ≤ n. Without loss of generality, suppose these m individuals

are the individuals 1, ...,m. Note that for all j ∈ {0, 1, ...,m} the credence profile

Cj := (C1|E, ..., Cj|E,Cj+1, ..., Cn) is coherent. Moreover, each profile Cj with j 6= 0

arises from Cj−1 by conditionalization of exactly one individual credence function

on E. So we can apply BayPri repeatedly:

agCm = (agCm−1)|E
= ((agCm−2)|E)|E = (agCm−2)|E
= ...

= ((agC0)|E)|E = (agC0)|E.

Since C0 = C and Cm = C′, we have shown that agC′ = (agC)|E. This proves Bay.

Claim 2: BayPri implies Cert.

Assume BayPri. Let C be a coherent profile, E an event and i an individual such

that Ci(E) = 1. So the profile arising from C by conditionalization of i’s credence

function on E is C itself. Hence by BayPri agC = (agC)|E. So agC(E) = 1, proving

Cert.

Claim 3: BayPub and Cert together imply BayPri.

Assume BayPub and Cert. Let a coherent profile C′ arise from another one C

by conditionalization of an individual i’s credence function an event E. Let C′′ be

the profile obtained from C or equivalently from C′ by conditionalization of every

credence function on E. Note that C′′ is coherent given the way it is obtained from

the coherent profile C′ in which an individual assigns probability one to E. Since in

C′ individual i assigns probability one to E, by Cert agC′(E) = 1. Now

agC′ = (agC′)|E = agC′′ = (agC)|E,
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where the first equation holds as agC′(E) = 1, and the second and third because of

BayPub. We have shown that agC′ = (agC)|E, proving BayPri. �

Proof of Proposition 2. For a contradiction, let some rule ag for pooling co-

herent profiles satisfy BayPub+ and BayPri+. Consider a coherent profile C in

which every credence function has full support, and let L be a non-constant like-

lihood function with full support. For all j ∈ {0, 1, ..., n} define the credence pro-

files Cj := (C1|L, ..., Cj|L,Cj+1, ..., Cn). Note that all Cj are coherent. By Bay-

Pub+, agCn = (agC)|L. On the other hand, repeated application of BayPri+ yields

agCn = (agC)|Ln, because

agCn = (agCn−1)|L
= ((agCn−2)|L)|L = (agCn−2)|L2

= ...

= ((agC0)|Ln−1)|L = (agC0)|Ln = (agC)|Ln.

As agCn = (agC)|L and agCn = (agC)|Ln, we have (agC)|L = (agC)|Ln. It

follows that L is proportional to Ln, by definition of conditionalization on a likelihood

function (and by the fact that agC has full support, which holds via Lemma 3 below

as all Ci have full support). So L must be a constant function, in contradiction to

our assumption. �

Proof of Proposition 3. Let W be countably infinite, and consider weights

w1, ..., wn ≥ 0 whose sum is denoted w.

1. First assume w < 1. If w = 0, so that w1 = · · · = wn = 0, then normalization

fails for all profiles C since
∑

a∈W [C1(a)]
w1 · · · [Cn(a)]

wn =
∑

a∈W 1 = ∞. Now let

w > 0. To show that normalizability can fail, I give a counterexample generalizing

that stated in Appendix A. Without loss of generality let worlds be natural num-

bers: W = {1, 2, 3, ...}. Consider the credence profile C in which each Ci assigns

probability ca−1/w to world a, where c is a normalization constant ensuring that

probabilities of worlds sum to one: c = 1/∑∞

a=1
a−1/w. This uses the well-known fact

that
∑

∞

a=1 a
−1/w < ∞ as 1/w > 1. So

∑

a∈W

[C1(a)]
w1 · · · [Cn(a)]

wn =
∞
∑

a=1

(

ca−1/w
)w

= cw
∞
∑

a=1

a−1 = cw∞ = ∞.

Here
∑

∞

a=1 a
−1 is the so-called harmonic series, which is well-known to have infinite

limit.

2. Now assume w ≥ 1, and consider any coherent profileC. I show normalisability

by distinguishing between two cases.
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Case 1 : w = 1. For any world a, we have [C1(a)]
w1 · · · [Cn(a)]

wn ≤ w1C1(a) +

· · ·+ wnCn(a) by the inequality between (weighted) geometric and arithmetic means

(e.g., Steele 2004). So
∑

a∈W

[C1(a)]
w1 · · · [Cn(a)]

wn ≤
∑

a∈W

[w1C1(a) + · · ·+ wnCn(a)]

= w1

∑

a∈W

C1(a) + · · ·+ wn

∑

a∈W

Cn(a)

= w1 + · · ·+ wn = w = 1 < ∞.

Case 2: w > 1. I reduce this case to Case 1. For all worlds a and individuals i

we have [Ci(a)]
wi ≤ [Ci(a)]

wi
w (as Ci(a) ≤ 1 and wi >

wi

w
). So

∑

a∈W

[C1(a)]
w1 · · · [Cn(a)]

wn ≤
∑

a∈W

[C1(a)]
w1
w · · · [Cn(a)]

wn
w < ∞,

where the last inequality holds by Case 1 applied to the new weights w1

w
, ..., wn

w
of

sum one. �

B.2 Preparing the theorems’ necessity proofs

The following two lemmas will later allow us to prove that the axioms in our theorems

are necessary : each axiom in a theorem is satisfied by each particular (weighted

geometric) rule specified in that theorem.

Lemma 1. A weighted geometric rule satisfies

(a) Bay (or equivalently BayPri) if and only if all weights are non-zero,

(b) BayPub if and only if at least one weight is non-zero,

(c) BayPub+ if and only if the weights sum to one,

(d) BayPri+ if and only if all weights are one, i.e., the rule is multiplicative.

Proof. Consider a weighted geometric rule with weights w1, ..., wn. The proof

will be sketched informally.

(a) The proof that Bay holds if all wi are non-zero was already given (informally)

after Theorem 1. Conversely, if some individual’s weight is zero, then conditionalizing

his credence function on an event E never affects group credences, so that Bay is

violated.

(b) The proof that BayPub holds if some wi is non-zero was again given informally

after Theorem 2. Conversely, if all wi are zero, which by the way implies that W is

finite, then group credences are uniform regardless of the profile, violating BayPub.

(c) Whenever one coherent credence profile C′ arises from another C by condi-

tionalization of all credence functions on a given likelihood function L, we have (*)
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agC′ = (agC)|Lw1+···+wn , i.e., agC′ is the conditionalization of agC on the likeli-

hood function Lw1+···+wn . This is because, for appropriate normalization constants

k, k′, k′′ > 0, we have at all worlds a

agC′(a) = k[(C1|L)(a)]w1 · · · [(Cn|L)(a)]w1

= k′[C1(a)L(a)]
w1 · · · [Cn(a)L(a)]

wn

= k′[C1(a)]
w1 · · · [Cn(a)]

wn [L(a)]w1+···+wn

= k′′[(agC)|Lw1+···+wn ](a).

Clearly, if w1 + · · ·wn = 1, then BayPub+ holds, as (*) reduces to agC′ = (agC)|L.
Conversely, assume BayPub+. Then, with C,C′, L as before, we have agC′ =

(agC)|L, and hence by (*) (agC)|L = (agC)|Lw1+···+wn . So L must be propor-

tional to Lw1+···+wn (assuming agC has full support, which we can ensure by letting

all credence functions in C have full support and applying Lemma 3 below). It fol-

lows that w1 + · · ·+ wn = 1 (assuming without loss of generality that L was chosen

to be non-constant).

(d) For any given individual i, whenever one coherent credence profile C′ arises

from another C by conditionalization of i’s credence function on a likelihood function

L, we have (**) agC′ = (agC)|Lwi . The reason is analogous to that for (*) in the

proof of (c).

Now, if w1 = · · · = wn = 1, then BayPri+ holds, as (**) reduces to agC′ =

(agC)|L. Conversely, suppose BayPri+. With C,C′, L as before, agC′ = (agC)|L
by BayPri+. So, for all individuals i, we have (agC)|L = (agC)|Lwi by (**), implying

that wi = 1 by an argument parallel to that in the proof of (c).�

Lemma 2. Every weighted geometric rule satisfies Contin, Indiff (ifW is finite),

and Indiff*.

Proof. The elementary argument is left to the reader. �

B.3 Preparing the theorems’ sufficiency proofs

The next lemmas will help us show that the axioms in any of our theorems are suf-

ficient : they require the particular type of pooling rule claimed in each theorem,

respectively. Central steps of the argument, including the use of Cauchy’s func-

tional equation, correspond directly to steps in Russell et al.’s proof of their “Claim

4”. Each lemma of this subsection assumes a rule ag for pooling coherent credence

profiles.

Lemma 3. For all coherent credence profiles C,

(a) under Bay, supp(agC) = ∩isupp(Ci),

(b) under any of the six Bayesian axioms, ∩isupp(Ci) ⊆ supp(agC) ⊆ ∪isupp(Ci).
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Proof. Let C be a coherent credence profile. It suffices to prove three claims.

Claim 1: Under Bay, supp(agC) ⊆ ∩isupp(Ci).

Suppose Bay. Let a be a world not in ∩isupp(Ci). Pick an individual i such

that a 6∈ supp(Ci). Since Ci(W\{a}) = 1 and since pooling is certainty adopting by

Proposition 1, we have agC(W\{a}) = 1. So a 6∈ supp(agC).

Claim 2: Under BayPub (the weakest Bayesian axiom), ∩isupp(Ci) ⊆ supp(agC).

Assume BayPub and let a ∈ ∩isupp(Ci). Since the profile C′ in which every

individual assigns probability one to a is coherent and arises from C by conditional-

ization of everyone’s credence function on the singleton event {a}, BayPub tells us

that agC′ arises by conditionalization of agC on {a}. In particular, a ∈ supp(agC).

Claim 3: Under BayPub, supp(agC) ⊆ ∪isupp(Ci).

Under BayPub, since C is unchanged if all credence functions are conditionalized

on E = ∪isupp(Ci), we have agC = (agC)|E, and thus agC ⊆ E.�

Lemma 4. Under any of the six Bayesian axioms and Indiff*, for all coherent cre-

dence profiles C and worlds a, b ∈ W , if Ci(a) = Ci(b) 6= 0 for each individual i,

then agC(a) = agC(b) 6= 0.

Proof. Assume Indiff* and BayPub, the weakest Bayesian axiom by Proposition

1. Consider a coherent profileC and a, b ∈ W such that Ci(a) = Ci(b) 6= 0 for all indi-

viduals i. By Indiff* there is another coherent profile C′ such that C ′

i(a) = C ′

i(b) 6= 0

for all individuals i and agC′(a) = agC′(b). Conditionalizing all members of C on

E = {a, b} yields the same (coherent) profile, denoted C′′, as conditionalizing all

members of C′ on E. So, applying BayPub twice, (agC)|E = agC′′ = (agC′)|E.

Hence, as ((agC′)|E)(a) = ((agC′)|E)(b), we have ((agC)|E)(a) = ((agC)|E)(b),

and thus agC(a) = agC(b). Finally, this value is non-zero, since otherwise agC would assign zero probabili

and could thus not be conditionalized on E. �

Lemma 5. Under any of the six Bayesian axioms and Indiff*,

(a) group probability ratios are a function of individual probability ratios, i.e.,

there exists a unique function f from (0,∞)n to (0,∞) such that agC(a)
agC(b)

=

f
(

C1(a)
C1(b)

, ..., Cn(a)
Cn(b)

)

for all worlds a, b ∈ W and all coherent credence profiles C

in which everyone gives non-zero probability to a and to b,

(b) this function satisfies f(1) = 1 and f(xy) = f(x)f(y) for all x,y ∈ (0,∞)n

(where ‘1′ stands for ‘(1, ..., 1)’ and ‘xy’ stands for ‘(x1y1, ..., xnyn)’).

Proof. Assume Indiff* and the by Proposition 1 weakest Bayesian axiom, Bay-

Pub. I proceed in several claims (the first two of which do not require Indiff*).

Claim 1: For all a 6= b in W there is a unique function fa,b from (0,∞)n to (0,∞)

such that agC(a)
agC(b)

= fa,b

(

C1(a)
C1(b)

, ..., Cn(a)
Cn(b)

)

for all coherent profiles C in which every

individual assigns non-zero probability to a and to b.

23



Consider a 6= b in W . Uniqueness of such a function fa,b follows from the fact that

any x ∈ (0,∞)n can be written as x =
(

C1(a)
C1(b)

, ..., Cn(a)
Cn(b)

)

for some coherent profile C.

As for existence of the function, consider coherent profiles C and C′ in which a and

b receive non-zero probabilities from everyone and Ci(a)
Ci(b)

=
C′

i(a)

C′

i(b)
for all i. We have

to show that agC(a)
agC(b)

= agC′(a)
agC′(b)

. Conditionalizing everyone’s credence function on E =

{a, b} transforms C and C′ into the same (coherent) profile C′′, which by BayPub

implies that (agC)|E and (agC′)|E each equal agC′′. So agC(a)
agC(b)

= agC′(a)
agC′(b)

, where these

two ratios are well-defined and non-zero because agC(a), agC(b), agC′(a), agC′(b) 6=
0 by Lemma 3.

Claim 2: fa,c(xy) = fa,b(x)fb,c(y) for all x,y ∈ (0,∞)n and all pairwise distinct

a, b, c ∈ W .

Consider x,y ∈ (0,∞)n and pairwise distinct a, b, c ∈ W . The claimed relation

follows from the definition of the functions fa,b, fb,c, fa,c, because one can construct a

(coherent) profile C for which x =
(

C1(a)
C1(b)

, ..., Cn(a)
Cn(b)

)

, y =
(

C1(b)
C1(c)

, ..., Cn(b)
Cn(c)

)

, and thus

xy =
(

C1(a)
C1(c)

, ..., Cn(a)
Cn(c)

)

.

Claim 3: All fa,b for a 6= b are the same function, to be denoted f . (This shows

part (a) restricted to the case a 6= b).

Consider worlds a, a′, b, b′ with a 6= b and a′ 6= b′, and let x ∈ (0,∞)n. I need to

show that fa,b(x) = fa′,b′(x). I distinguish between three cases.

Case 1 : a = a′. Here I need to show that fa,b(x) = fa,b′(x). We may pick a

coherent profile C such that Ci(b) = Ci(b
′) 6= 0 for all i and x =

(

C1(a)
C1(b)

, ..., Cn(a)
Cn(b)

)

=
(

C1(a)
C1(b′)

, ..., Cn(a)
Cn(b′)

)

. By Lemma 4, agC(b) = agC(b′), and so agC(a)
agC(b)

= agC(a)
agC(b′)

. Hence,

fa,b(x) = fa,b′(x).

Case 2: b = b′. By an argument analogous to that in Case 1, fa,b(x) = fa′,b(x).

Case 3 : a 6= a′ and b 6= b′. I show that fa,b(x) = fa′,b′(x) by distinguishing

between three subcases and drawing on Cases 1 and 2:

• If a 6= b′, then fa,b(x) = fa,b′(x) = fa′,b′(x).

• If a′ 6= b, then fa,b(x) = fa′,b(x) = fa′,b′(x).

• If a = b′ and a′ = b, then, choosing any c ∈ W\{a, b} (by using that |W | ≥ 3),

fa,b(x) = fa,c(x) = fb,c(x) = fb,a(x).

Claim 4: f(1) = 1.

By applying Claims 2–3 with x = y = 1, one obtains that f(11) = f(1)f(1).

Since 11 = 1 it follows that f(1) = 1.

Claim 5: For any possibly identical a, b ∈ W , fa,b

(

C1(a)
C1(b)

, ..., Cn(a)
Cn(b)

)

= f
(

C1(a)
C1(b)

, ..., Cn(a)
Cn(b)

)

for all coherent credence profiles C in which all Ci assign non-zero probabilities to a

and b. (This essentially extends Claim 3 to the case that a = b.)
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Consider any such a, b,C. By definition of fa,b we have to show that agC(a)
agC(b)

=

f
(

C1(a)
C1(b)

, ..., Cn(a)
Cn(b)

)

. In case a 6= b this holds already by Claim 3. In case a = b it

holds by Claim 4 and the fact that agC(a)
agC(b)

= 1 and
(

C1(a)
C1(b)

, ..., Cn(a)
Cn(b)

)

= 1. �

Lemma 6. Given the assumptions and notation of Lemma 5,

(a) under BayPri+, f(x1, ..., xn) = x1 · · · xn for all (x1, ..., xn) ∈ (0,∞)n and the

pooling rule is multiplicative pooling,

(b) under Contin, there are w1, ..., wn ≥ 0 such that f(x1, ..., xn) = xw1

1 · · · xwn
n for

all (x1, ..., xn) ∈ (0,∞)n and the pooling rule is the weighted geometric rule

with weights w1, ..., wn (in particular, w1 + · · ·+ wn ≥ 1 if W is infinite).

Proof. We use the assumptions and notation of Lemma 5.

Claim 1: Under BayPri+, f(x1, ..., xn) = x1 · · · xn for all (x1, ..., xn) ∈ (0,∞)n.

Assume BayPri+ and let (x1, ..., xn) ∈ (0,∞)n. I prove by induction that

f(x1, ..., xi, 1, ..., 1) = x1 · · · xi for all i = 0, 1, ..., n. The initial step where i =

0 is obvious: f(1, ..., 1) = 1 by Lemma 5. Now assume the claim holds for a

given i ∈ {0, ..., n − 1}, i.e., f(x1, ..., xi, 1, ..., 1) = x1 · · · xi. I have to show that

f(x1, ..., xi+1, 1, ..., 1) = x1 · · · xi+1.. Pick worlds a 6= b and a coherent credence pro-

file C such that everyone assigns non-zero probabilities to a and b and such that
(

C1(a)
C1(b)

, ..., Cn(a)
Cn(b)

)

= (x1, ...xi, 1..., 1). Let C
′ be the coherent profile arising from C by

conditionalizing the credence function of individual i+1 on a likelihood function L for

which L(a), L(b) 6= 0 and L(a)
L(b)

= xi+1. Note that
C′

i+1
(a)

C′

i+1
(b)

= Ci+1(a)L(a)
Ci+1(b)L(b)

= 1·xi+1 = xi+1.

So
(

C′

1
(a)

C′

1
(b)
, ..., C

′
n(a)

C′
n(b)

)

= (x1, ...xi+1, 1..., 1). Now

f(x1, ..., xi+1, 1, ..., 1) = f

(

C ′

1(a)

C ′

1(b)
, ...,

C ′

n(a)

C ′
n(b)

)

=
agC′(a)

agC′(b)

=
((agC)|L)(a)
((agC)|L)(b) =

agC(a)L(a)

agC(b)L(b)

= f

(

C1(a)

C1(b)
, ...,

Cn(a)

Cn(b)

)

L(a)

L(b)
= f(x1, ...xi, 1..., 1)xi+1

= (x1 · · · xi)xi+1 = x1 · · · xi+1,

where the first equation on the second line applies BayPri+.

Claim 2: Under BayPri+, the pooling rule is the multiplicative rule.

Assume BayPri+. Let ag∗ be the multiplicative rule. I show that ag = ag∗.

Consider a coherent profile C. Since BayPri+ implies BayPri and thus Bay (see

Proposition 1), the group credence function agC assigns zero probability to worlds

outside ∩isupp(Ci) by Lemma 3(a). So does clearly the multiplicative group credence

function ag∗C. It thus remains to show that agC and ag∗C coincide on words in

∩isupp(Ci), i.e., worlds to which everyone assigns non-zero probability. It suffices
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to show that for any two such worlds a and b the probability ratio is the same both

times: agC(a)
agC(b)

= ag∗C(a)
ag∗C(b)

. This equation holds because each side equals C1(a)
C1(b)

· · · Cn(a)
Cn(b)

.

Indeed, agC(a)
agC(b)

= C1(a)
C1(b)

· · · Cn(a)
Cn(b)

by Claim 1, and ag∗C(a)
ag∗C(b)

= C1(a)
C1(b)

· · · Cn(a)
Cn(b)

by definition

of the multiplicative rule.

Claim 3: Under Contin, there are n numbers, henceforth denoted w1, ..., wn ∈ R,

such that f(x1, ..., xn) = xw1

1 · · · xwn
n for all (x1, ..., xn) ∈ (0,∞)n.

Assume Contin. Define the function g : Rn → R by g(x) = log(f(ex1 , ..., exn)) for

all x ∈ R
n. By Lemma 5(b) and the properties of the logarithm and the exponential

function, it follows that g(x+ y) = g(x)+g(y) for all x,y ∈ R
n. So g obeys Cauchy’s

functional equation. Further, g is continuous, since f is continuous by Contin. So g

is linear, i.e., there are weights w1, ..., wn ∈ R such that

g(x) = w1x1 + · · ·+ wnxn for all x ∈ R
n

by a fundamental theorem on functional equations (see Aczél 1966). It follows that

f(x) = eg(logx1,...,logxn) = elog(x
w1
1

···xwn
n ) = xw1

1 · · · xwn
n for all x ∈ (0,∞)n.

Claim 4: Under Contin, for each full-support profile C (i.e., each profile in which

everyone assigns non-zero probability to all worlds) there is a constant k > 0 such

that agC(a) = k[C1(a)]
w1 · · · [Cn(a)]

wn for all worlds a. (This ‘almost’ shows that ag

is a weighted geometric rule, except that we only quantify over full-support profiles

and have not proved that w1, ..., wn are non-negative.)

Assume Contin. Consider a full-support profile C. Fix a world b ∈ W . Define

the constants k′ = agC(b) and k′′ = [C1(b)]
w1 · · · [Cn(b)]

wn . Note that k′, k′′ > 0

(using that agC has full support by Lemma 3(b)). For all worlds a,

agC(a) = k′
agC(a)

agC(b)
= k′f

(

C1(a)

C1(b)
, ...,

Cn(a)

Cn(b)

)

= k′

(

C1(a)

C1(b)

)w1

· · ·
(

Cn(a)

Cn(b)

)wn

=
k′

k′′
[C1(a)]

w1 · · · [Cn(a)]
wn ,

where the first equation on the second line holds by Claim 3. This show Claim 4

with k = k′

k′′
.

Claim 5: Under Contin, w1, ..., wn ≥ 0.

Assume Contin. Suppose for a contradiction that i is an individual such that

wi < 0. Consider a world a ∈ W , and a sequence of full-support profiles Ck (k =

1, 2, ...) converging to a credence profile C in which Ci has support W\{a} and each

Cj with j 6= i has full support W . By the fact that wi < 0 and Claim 4, agCk

converges to the probability measure assigning probability one to a. This is because

[Ck
1 (a)]

w1 · · · [Ck
n(a)]

wn tends to infinity (the term [Ci(a)]
wi tends to infinity) while

for all other worlds b 6= a [Ck
1 (b)]

w1 · · · [Ck
n(b)]

wn tends to a finite value. Meanwhile

by Contin agCk also converges to agC. It follows that agC(a) = 1. So the support
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of agC is {a}. This contradicts the fact that the support of agC must include the

intersection of supports ∩msupp(Cm) = W\{a} by Lemma 3.

Claim 6: Under Contin, ag is the weighted geometric rule with weights w1, ..., wn.

Assume Contin. By Claim 4, ag coincides with this weighted geometric rule on

the subdomain of full-support profiles. This subdomain is dense in the full domain of

coherent profiles: every coherent profile is the limit of some sequence of full-support

profiles, as readers can easily check. Since ag and the weighted geometric rule with

weights w1, ..., wn are two continuous rules on the domain of coherent profiles which

coincide on a dense subdomain, the two rules coincide globally. �

B.4 Completing the theorems’ proofs

Proof of Theorem 1. First, any weighted geometric rule whose weights are all

positive satisfies Bay by Lemma 1(a) and satisfies Contin and Indiff* (and under

finite W Indiff) by Lemma 2. Conversely, if a rule for aggregating coherent profiles

satisfies Bay, Contin and Indiff*, then by Lemma 6(b) it is a weighted geometric

rule, where by Lemma 1(a) the weights are all positive. �

Proof of Theorem 2. First, any weighted geometric rule with at least one positive

weight satisfies BayPub by Lemma 1(b), as well as Contin and Indiff* (and under

finite W Indiff) by Lemma 2. Conversely, if a rule for aggregating coherent profiles

satisfies BayPub, Contin and Indiff*, then by Lemma 6(b) it is a weighted geometric

rule, where by Lemma 1(b) some weight is positive. �

Proof of Theorem 3. This result follows from Theorem 1 via Proposition 1. �

Proof of Theorem 4. This result follows from Proposition 2, as Bay+ implies

BayPub+ and BayPri+. �

Proof of Theorem 5. First, each weighted geometric rule whose weights sum to

one satisfies BayPub+ by Lemma 1(c), and also Contin and Indiff* (and under finite

W Indiff) by Lemma 2. Conversely, if a rule for aggregating coherent profiles satisfies

BayPub+, Contin and Indiff*, then by Lemma 6(b) it is a weighted geometric rule,

where by Lemma 1(c) the weights sum to one. �

Proof of Theorem 6. First, the multiplicative rule satisfies BayPri+ by Lemma

1(d), and satisfies Indiff* (and under finite W Indiff) by Lemma 2. Conversely, if a

rule for pooling coherent profiles satisfies BayPri+ and Indiff*, then by Lemma 6(a)

it is the multiplicative rule. �

Proof of Theorem 7. Let D be the domain of all coherence profiles, and D′ the

subdomain of all coherent credence profiles. I prove the three claims in a different

order.
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(b) First, any power dictatorship satisfies BayPub, Contin and Indiff* (and Indiff

if W is finite). The argument is similar to that given for weighted geometric rules; it

suffices to adapt Lemmas 1 and 2. Conversely, consider a rule ag defined on D and

satisfying BayPub, Contin and Indiff*. Let ag′ be its restriction to D′. Check that

ag′ still satisfies the three axioms. So it must by Theorem 2 be a weighted geometric

rule whose weights w1, ..., wn are not all zero. I consider two cases.

Case 1: only one individual, say individuals i, has non-zero weight wi. Then ag is

the power dictatorship with power dictator i and power wi, because (i) ag coincides

with this power dictatorship on the subdomain D′ which (as one may check) is dense

in D, and (ii) ag and the power dictatorship are continuous rules.

Case 2: at least two individuals, say individuals i and j, have non-zero weights. I

derive a contradiction. Fix two worlds a 6= b, and consider profiles Ck (k = 1, 2, ...) in

which i’s credences are given by Ck
i (a) = 2−k and Ck

i (b) = 1− 2−k, j’s credences are

given by Ck
j (a) = 1 − 2−k2 and Ck

j (b) = 2−k2 , and any other member m’s credences

are given by Ck
m(a) = Ck

m(b) = 1
2
. As Ck is coherent, agCk is given by weighted

geometric pooling, so that agCk(c) = 0 for worlds c 6= a, b and

agCk(a)

agCk(b)
=

[Ck
i (a)]

wi [Ck
j (a)]

wj

[Ck
i (b)]

wi [Ck
j (b)]

wj
=

2−kwi(1− 2−k2)wj

(1− 2−k)wi2−k2wj
= 2k

2wj−kwi
(1− 2−k2)wj

(1− 2−k)wi
,

which converges to ∞. So agCk converges to the credence function assigning prob-

ability one to a.

Now construct another sequence of profiles Dk (k = 1, 2, ...), in which Dk is

defined like Ck except that the roles of k and k2 are interchanged: so Dk
i (a) = 2−k2 ,

Dk
i (b) = 1 − 2−k2 , Dk

j (a) = 1 − 2−k, Dk
j (b) = 2−k, and Dk

m(a) = Dk
m(b) =

1
2
for all

members m 6= i, j. Applying the weighted geometric formula again, we find that

agDk(c) = 0 for worlds c 6= a, b and that agDk(a)
agDk(b)

converges to 0 rather than ∞. So

agDk converges to the credence function assigning probability one to b rather than

a.

Meanwhile, as one easily checks, the profiles Ck and Dk both converge to a same

limiting profile C (in which Ci(b) = 1, Cj(a) = 1, and Cm(a) = Cm(b) = 1
2
for

members m 6= i, j). So agCk and agDk both converge to agC by Contin. This

contradicts the fact that agCk and agDk converge to different credence functions.

(c) First, any dictatorship satisfies BayPub+, Contin and Indiff* (and Indiff if

W is finite). The argument is again similar to that for weighted geometric rules.

Conversely, consider a rule ag on D satisfying BayPub+, Contin and Indiff*. Its

restriction to D′, denoted ag′, still satisfies these axioms. So it must by Theorem 5

be a weighted geometric rule whose weights w1, ..., wn sum to one. There are two

cases.

Case 1: only one individual i has non-zero weight, hence weight one. Then ag is

the dictatorship by individual i, by the same continuity argument as under Case 1
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above.

Case 2: more than one individual has non-zero weight. Then a contradiction can

be derived by an argument parallel to that under Case 2 above.

(a) Consider a rule ag on D satisfying the axioms in Theorem 1, 3, 4 or 6. Its

restriction to D′, denoted ag′, still satisfies these axioms. In the case of the axioms

of Theorem 4 this already is a contradiction. In the case of the axioms of Theorem 1,

3 or 6, it follows by the theorem that ag′ is a weighted geometric rule whose weights

w1, ..., wn are all non-zero. This implies a contradiction, just as under Case 2 in the

proofs of (b) and (c). �
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