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Abstract
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1 Introduction

In contests, players expend effort or other resources to win a valuable prize. Examples

range from rent seeking (Congleton, Hillman and Konrad, 2008) and sports (Szyman-

ski, 2003) to competition for promotion and bonuses in firms (Lazear, 1995; Prendergast,

1999; Connelly et al., 2014). The key element of a simple contest game is the winner

determination process that can be characterized, in a reduced form, by a contest success

function (CSF) mapping a vector of players’ efforts into the winning probability for each

player. A contest is procedurally fair, or unbiased, if its CSF has the anonymity prop-

erty (Skaperdas, 1996): If the efforts of any two players are swapped, so will be their

probabilities of winning.

It is generally understood that unbiased contests are most effective, from the orga-

nizer’s perspective, when players are homogeneous in their ability. Thus, the literature

on biased contests, or contests with handicaps, studies how to bias a contest optimally

when the players are heterogeneous (e.g., Dukerich, Weigelt and Schotter, 1990; Schotter

and Weigelt, 1992; Fain, 2009; Epstein, Mealem and Nitzan, 2011; Franke, 2012; Franke

et al., 2013; Lee, 2013).1,2 In these and other papers on biased contests, specific tractable

contest models have been used and biases have been introduced in a number of ad hoc

ways.

In this paper, we systematically explore biased contests in a very general setting and

provide general results in the case of symmetric players. We introduce a class of biased

CSFs that includes as special cases the commonly used additive and multiplicative biases

but also allows for other types of biases. Our first contribution is to show that zero bias

is a critical point of a general objective function of the contest designer if and only if the

CSF belongs to this class. The general objective function includes as special cases the

aggregate effort, the winner’s effort, the winner’s ability and predictive power, i.e., the

probability that the highest ability player wins. In other words, the first derivative of

almost any objective function used in the literature with respect to the bias is zero at

zero bias under very general conditions.

The second contribution of the paper is to study whether a biased or an unbiased

1The idea of using handicaps to restore efficiency in tournaments of heterogeneous agents goes back
to Lazear and Rosen (1981) and O’Keeffe, Viscusi and Zeckhauser (1984); see also Tsoulouhas, Knoeber
and Agrawal (2007).

2In this paper, we focus on imperfectly discriminating contests with smooth contest success functions.
There is also a parallel literature using the all-pay auction model of contests, e.g., Lien (1990), Clark
and Riis (2000), Konrad (2002), Fu (2006), Feess, Muehlheusser and Walzl (2008), Li and Yu (2012),
Kirkegaard (2012, 2013).
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contest is optimal when players are symmetric and to show that biased contests are often

optimal.3 As an example, consider a Lazear and Rosen (1981) type tournament model

with two risk-neutral players i ∈ {1, 2} in which player i’s output (yi) is her effort (ei)

distorted by a zero-mean additive shock (ui): yi = ei + ui. Player i’s cost of effort is
2
3
e

3

2

i . The player with the highest output wins and receives the prize equal to 1, while the

other player receives zero. Similar to Meyer (1991), Konrad (2009), Ederer (2010) and

Brown and Minor (2014), assume that u1 − u2 is uniformly distributed on the interval

[−1
2
, 1
2
]. Bias β ≥ 0 favors player 1 by increasing her effort (at no cost) to (1 + β)e1 and

simultaneously decreasing player 2’s effort to (1− β)e2;
4 the unbiased contest is obtained

at β = 0. Assuming an interior equilibrium (e∗1, e
∗
2), the first-order conditions for expected

payoff maximization for each player are 1+β =
√
e1 and 1−β =

√
e2. It is easy to see that

in this model the aggregate equilibrium effort is e∗1 + e∗2 = 2(β2 + 1). While its derivative

with respect to β is zero at zero bias, the aggregate effort increases with the bias. The

intuition (confirmed formally in Section 4.1) is that the bias creates a mean-preserving

variation in the marginal benefit of effort across the players. Such variation then increases

(respectively, decreases) total effort if the marginal cost function is concave (respectively,

convex). As discussed below, this intuition is similar to the one arising in the literature

on dynamic contests.

Contests may also be used as selection mechanisms that are characterized by predictive

power, i.e., the probability to reveal the best player as the winner (Hvide and Kristiansen,

2003; Ryvkin and Ortmann, 2008). Continuing with the example from the previous

paragraph, suppose now that player i’s cost of effort is 2
3
tie

3

2

i , where ti > 0 is player i’s type.

Assume that the two players are symmetric ex ante but may be heterogeneous ex post,

with ti drawn independently for each player to be equal to tL or tH > tL with probabilities
1
2
. It is straightforward to show that in the interior equilibrium the predictive power of this

contest, defined as the probability that a player with type tL wins against a player with

type tH conditional on the players being heterogeneous ex post, is 1
2
+ (3β2 + 1)

t2
H
−t2

L

t2
H
t2
L

.5

Again, while its derivative is zero at zero bias, the predictive power increases with the

bias.

3A biased contest is automatically optimal for symmetric players whenever the CSF does not belong
to the class mentioned above. However, biased contests are also optimal for many CSFs in the class. In
this paper, we focus mainly on the CSFs in this class because it is for these CSFs that the zero bias is a
critical point for many objectives, and hence the optimality of biased contests for symmetric players is the
most counterintuitive. The class also happens to include the most popular CSFs used in the literature.

4Thus, the probability of player 1 winning is p(e1, e2;β) =
1

2
+ (1 + β)e1 − (1− β)e2 for e1, e2 and β

such that this expression is between zero and one.
5As long as this expression is less than one.
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The second contribution of this paper is thus to show that the above examples are by

no means exceptional. We provide some general results and many examples showing that

it might be optimal to bias a contest in favor of one of the two symmetric players. Results

and examples include Tullock (1980) type contests and Lazear and Rosen (1981) type

tournaments; contests with players who are symmetric ex post or only ex ante; contests

in which players’ types are public or private information for the players. While in the

examples we focus on the two most popular objectives of the principal discussed in the

literature, maximization of aggregate effort and predictive power, some of our results

apply to other objectives such as maximization of the winner’s effort or of the winner’s

ability. In the model used in the examples above, both the winner’s ability and the

winner’s effort are also increasing with the bias. Our examples show that at least for

some parameterizations optimal biases in contests of symmetric players can be large and

lead to substantial improvements in the principal’s objectives.

The results of our paper are relevant in situations when one would like, or is insti-

tutionally obligated, to use biased contests but is concerned about their costs. Suppose

there is positive discrimination and hence, the contest designer has to favor some par-

ticipants over others. Our results can help the designer to turn this obligation to his or

her advantage and reach a better outcome in terms of essentially any possible objective.

Another application, as discussed below in more detail, is that of dynamic contests in

which it may seem fair, or is indeed customary, to favor those who had early success at

later stages. Our results can guide the contest designer to create a contest in which there

would be no trade-off between rewarding early success and generating subsequent perfor-

mance. In both cases, the contest designer effectively uses the institutional constraints

for introducing a bias that is hard to justify otherwise. Finally, our paper is important

from a methodological perspective in showing the limits of the “leveling the playing field”

and “competitive balance” ideas in the design of contests with asymmetric players.

The “common wisdom” prevailing in the literature that it is optimal not to bias the

contest when players are symmetric (and thus it is optimal to “level the playing field”

when players are different) has an obvious intuitive appeal. However, we believe that

it is based on a coincidence that this is true in the two specifications of biased contests

used most commonly in the literature: multiplicative bias in the Tullock contest (see

Epstein, Mealem and Nitzan, 2011; Franke, 2012; Franke et al., 2013) and additive bias

in the Lazear-Rosen tournament (see Dukerich, Weigelt and Schotter, 1990; Schotter and

Weigelt, 1992; Fain, 2009; Lee, 2013).6 We provide a general condition that gives these

6In the latter case it has been noted that zero bias is optimal only under the (most natural) assumption
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two results as special cases for any effort cost functions. However, as soon as the bias is

introduced differently, for example, additively in the Tullock contest or multiplicatively

in the Lazear-Rosen tournament, the unbiased contest may no longer be optimal.

The two papers closest to ours are by Kawamura and Moreno de Barreda (2014) and

Pérez-Castrillo and Wettstein (2015) who provide examples of optimal biased contests

when players are symmetric ex ante, both in the all-pay auction setting. Specifically,

Kawamura and Moreno de Barreda (2014) show that an additive bias may be optimal

when there are two types, public information and the principal’s objective is predictive

power. Pérez-Castrillo and Wettstein (2015) also show that a bias in the form of player-

dependent prizes may be optimal in a setting with private information, continuum of types

and with the principal maximizing the sum of the winner’s type and effort. Our results

are much more general in that we allow for arbitrary (smooth) CSFs and ways the bias

is introduced. We also show that biased contests may be optimal even when players are

symmetric ex post, as in the example above. The rest of the literature on biased contests

(and all-pay auctions) studies how to bias contests when players are not symmetric ex

post and, when there are types, not symmetric ex ante.7

Our results are also related to models of dynamic contests (see Meyer, 1991, 1992;

Lizzeri, Meyer and Persico, 1999, 2002; Höffler and Sliwka, 2003; Aoyagi, 2010; Ederer,

2010).8 These models typically use a two-period tournament setting where the first-

period contest is unbiased. One major question is whether the first-period winner should

be favored in the second-period contest (see Meyer (1991, 1992) and, to some extent,

Höffler and Sliwka (2003)). A crucial observation there is that a small bias in the second

period leads to a second-order loss in the second period and to a first-order gain in the

first period and hence, is optimal. Our result that zero bias is a critical point in a very

general setting thus generalizes these papers to many CSFs, ways to introduce the bias

and objective functions. Our results on the optimality of biased contests imply that in

some cases there is no trade-off: Favoring the first-period winner in the second period

generates higher efforts in both the first and the second periods.

Another major question in the literature on dynamic contests is whether information

that the distribution of the difference of the noise terms is unimodal (see Lizzeri, Meyer and Persico, 1999;
Aoyagi, 2010).

7 Moroni (2015) shows that identical agents might not be treated in the same way. However, her setting
is very different from ours as she considers a dynamic contest with externalities and several “milestones.”
If one agent reaches a milestone, all other agents can work towards the next one. Then, at any moment,
each agent might prefer to wait until some other agent reaches the current milestone. Ex ante asymmetric
contracts reduce these free-riding incentives and might be optimal.

8We are grateful to Margaret Meyer for pointing to these connections.
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about who won the first-period contest (and by how much) should be disclosed, as in

Lizzeri, Meyer and Persico (1999, 2002), Aoyagi (2010) and Ederer (2010). These models

use the Lazear-Rosen tournament in which the performance of each player is the sum

of her efforts and noise terms over two periods. Therefore, if the players know their

first-period performance, the contest in the second period has effectively an additive bias

since one player has (generically) a higher performance in the first period. This creates a

variability of the second-period marginal benefit of efforts but does not change its average

by the law of iterated expectations. Thus, providing information increases total effort

if and only if the marginal cost is concave which is exactly the same result and a very

similar intuition as in our example above.

The rest of the paper is organized as follows. In Section 2, we introduce a general

model of a biased two-player contest and discuss properties of biased CSFs. In Section 3,

we show when zero bias is a critical point of an objective function of the contest designer.

In Section 4 we provide general conditions for when a biased contest is optimal. In Section

5, we provide examples of models and parameterizations for which unbiased contests of

symmetric players are not optimal. Section 6 provides an extension to the general case of

n ≥ 2 players. Section 7 concludes. All proofs are contained in Appendix A. Appendix B

contains the most general form of second-order conditions for two objectives – aggregate

effort and predictive power – and provides sufficient conditions for each to have a local

maximum or minimum when the contest is unbiased.

2 Biased contests

2.1 Model setup

There are two risk-neutral players and a risk-neutral principal. The players indexed

by i = 1, 2 compete in a contest by simultaneously exerting efforts ei ≥ 0. Player i’s

cost of effort is C(ei, ti), where ti > 0 is player i’s type; C(·, ·) is a thrice continuously

differentiable function with C1 ≥ 0, C11 ≥ 0 and C2 ≥ 0. The types are drawn from a

commonly known joint distribution F (t1, t2), which is symmetric, with F (t1, t2) = F (t2, t1)

for all (t1, t2) in its support.

The probability of player 1 winning the contest is given by a smooth contest success

function (CSF) p(e1, e2; β) with 0 ≤ p ≤ 1, p1 ≥ 0, p2 ≤ 0. Parameter β characterizes the

bias in the contest.9 The winner of the contest receives a fixed prize normalized to one,

9We introduce players’ types through the effort cost function. Alternatively, types can be introduced
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while the other player receives zero prize. Each player’s payoff is her prize less her cost

of effort.

Definition 1 The contest is unbiased at β = β̄ if for all e1, e2 ≥ 0

p(e1, e2; β̄) = 1− p
(
e2, e1; β̄

)
. (1)

When the contest is unbiased, we obtain a standard symmetric CSF. Property (1) has

been called “perfect symmetry” by Dixit (1987) and “anonymity” by Skaperdas (1996).

In order to ensure that β is indeed a bias parameter and not just some parameter

the CSF depends on, we assume that there exists an open interval B such that β̄ ∈ B is

unique, and restrict attention to the values of β in this interval.10 Further, we assume that

for all admissible effort combinations (e1, e2) the derivative pβ(e1, e2; β) does not change

sign in B, i.e., an increase in the bias always benefits one of the players.11 Without loss

of generality, we can assume it benefits player 1, i.e., pβ(e1, e2; β) ≥ 0. This inequality

must be strict for at least some values of the arguments because otherwise β̄ would not

be unique.

In what follows, we consider two versions of the contest model that differ by the

structure of information about the players’ types (t1, t2). In the public information version,

types t1 and t2 are observable by both players, while in the private information version

each player i only observes her own type ti. In both cases, we assume that the principal

does not observe (t1, t2).

The principal’s choice variable is the bias parameter β, and her goal is maximization

of the objective

Q(β) =

∫
q(e1, t1; e2, t2; β)dF (t1, t2). (2)

Objective (2) is the expectation, over types, of a function q that may depend on the

equilibrium effort levels ei, types ti and bias parameter β. For example, q = e1 + e2 for a

directly into the CSF, which then becomes p(e1, t1; e2, t2;β), keeping the effort cost function the same for
all types (see, e.g., Meyer, 1991; Höffler and Sliwka, 2003; Ederer, 2010, in a Lazear-Rosen tournament
framework). All of our results can be reproduced in such a setting as well.

10This assumption excludes from consideration CSFs such as p(e1, e2;β) =
e1+β

e1+e2+2β
, which is unbiased

at any β. In this example, β is not a bias parameter. At the same time, CSFs such as p(e1, e2;β) =
e1+β−β3

e1+e2
are admissible even though it is unbiased for β̄ = −1, 0 and 1. Around each of these values of

β̄ there is an interval in which β̄ is unique.
11This assumption is not critical for the theory developed below; it is reasonable, however, because it

makes the interpretation of the bias more natural in applications. It excludes CSFs such as p(e1, e2;β) =
e1+β2

e1+e2
, which is unbiased at β̄ = 0 but nonmonotonic in β in any interval around β̄.
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principal maximizing aggregate effort; q = p(e1, e2, β)I(t1 < t2)+[1−p(e1, e2, β)]I(t1 > t2)

for a principal maximizing the probability of the best player winning. Note that the

equilibrium effort levels ei may themselves be functions of ti and β, but we also allow for

explicit dependence on ti and β in q. For convenience, we assume that q is differentiable in

ei and β (see, however, the discussion after Example 3 in Section 3.3). Below, we impose

additional symmetry restrictions on q that ensure that objective (2) has a critical point

at β = β̄.

In the analysis below we rely heavily on the systems of first-order conditions for

equilibrium effort levels. Thus, we essentially restrict attention to interior pure strategy

equilibria. In general, multiple such equilibria can exist in the contest game, and in that

case the results apply to any such equilibrium. The results do not apply to mixed-strategy

equilibria and to equilibria with effort levels at the boundary of the domain of CSF p where

first-order conditions are not satisfied.

2.2 Properties of biased CSFs

Biased CSF p(e1, e2; β) represents an extended class of CSFs. Bias can be introduced

into a CSF in a variety of ways. Suppose p0(e1, e2) is an unbiased CSF satisfying the

anonymity property p0(e1, e2) = 1−p0(e2, e1). A biased CSF can be defined, for example,

with an additive bias as p(e1, e2; β) = p0(e1 + β, e2), with β̄ = 0; or with a multiplicative

bias as p(e1, e2; β) = p0(e1β, e2), with β ≥ 0 and β̄ = 1; or with a different form of

additive bias as p(e1, e2; β) = p0(e1 + β, e2 − β), with β̄ = 0. In this section, we introduce

a property of biased CSFs that we call locally symmetric bias. As we show below, this

property leads to a certain permutational symmetry in the dependence of equilibrium

efforts on the bias, which makes it equivalent, under additional symmetry restrictions on

the principal’s objective (2), to the point β = β̄ being a critical point of Q(β).

Definition 2 (Locally symmetric bias) Contest success function p(e1, e2; β) has a lo-

cally symmetric bias at β = β̄ if for all e1, e2 ≥ 0

p1β(e1, e2; β̄)− p2β(e2, e1; β̄) = 0. (3)

This condition can be interpreted as follows: p1β(e1, e2; β̄) is the marginal effect of

the bias on the marginal benefit of player 1’s effort. Similarly, −p2β(e2, e1; β̄) is the

marginal effect of the bias on the marginal benefit of player 2’s effort with the players’

efforts swapped. Thus, the locally symmetric bias condition (3) states that the total
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“symmetrized” marginal effect of the bias on the marginal benefit of the two players is

zero.12

It is straightforward to show via integration that the locally symmetric bias condition

(3) is equivalent to the condition,

pβ(e1, e2; β̄) = pβ(e2, e1; β̄), (4)

which is easier to check. However, for n > 2 players it is impossible to express (the

generalization of) (3) in a form similar to (4), see Section 6.

The locally symmetric bias condition (3) is ordinal, in the sense that it is invariant to

smooth monotonic transformations of the bias, as stated in the following straightforward

lemma.

Lemma 1 Suppose p(e1, e2; β) is a biased CSF that is unbiased at β = β̄ ∈ B, τ : B → R
is a continuously differentiable strictly monotonic function, and β̃ = τ−1(β̄). Then,

(i) CSF p(e1, e2; τ(β)) is unbiased at β = β̃;

(ii) p(e1, e2; β) satisfies condition (3) at β = β̄ if and only if p(e1, e2; τ(β)) satisfies con-

dition (3) at β = β̃.

We conclude this Section by providing several examples of biased CSFs that have

the locally symmetric bias and those that do not. Checking condition (4) in each case is

straightforward.

Example 1 The following CSFs satisfy locally symmetric bias:

(i) Multiplicative bias in the Tullock contest: p (e1, e2; β) =
βer

1

βer
1
+er

2

, r > 0;

(ii) Additive bias in the Tullock contest: p (e1, e2; β) =
er
1
+β

er
1
+er

2

;

(iii) Additive bias in the Lazear-Rosen tournament: p (e1, e2; β) = Pr{e1 + u1 + β ≥
e2 + u2}, where u1, u2 are zero-mean i.i.d. shocks;

(iv) Multiplicative bias in the Lazear-Rosen tournament: p (e1, e2; β) = Pr{(1 + β) e1+

u1 ≥ (1− β) e2 + u2}.
(v) The Tullock contest with a combination of biases: p(e1, e2; β) =

(1+β)er
1
+β3

(1+β)er
1
+er

2

.

Example 2 The following CSFs do not satisfy locally symmetric bias:

(i) Another form of additive bias in the Tullock contest: p (e1, e2; β) =
er
1
+β

er
1
+β+er

2

;

12The swapping of efforts in the marginal effect for player 2 is a special case of cyclical permutation of
efforts that is part of the corresponding condition in the general case of n ≥ 2 players, see Section 6.
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(ii) Another form of multiplicative bias in the Lazear-Rosen tournament: p (e1, e2; β) =

Pr{βe1 + u1 ≥ e2 + u2};
(iii) A contest in which with probability β player 1 wins for sure and with probability

1 − β there is an unbiased contest: p (e1, e2; β) = β + (1− β) p0 (e1, e2), where p0 (e1, e2)

is symmetric, i.e., p0 (e1, e2) + p0 (e2, e1) = 1.

3 Properties of unbiased contests

3.1 Public information contests

We start the analysis with the public information case where the players observe each

others’ types. The expected payoffs of players 1 and 2 are

π1 = p (e1, e2; β)− C (e1, t1) , π2 = 1− p (e1, e2; β)− C (e2, t2) .

In what follows, we assume that for all (t1, t2) in the support of F and for all β in some

open neighborhood of β̄ the contest has an equilibrium in pure strategies, e∗i (t1, t2; β),

i = 1, 2, that is characterized by the system of first-order conditions13

p1 (e1, e2; β) = C1 (e1, t1) , −p2 (e1, e2; β) = C1 (e2, t2) . (5)

When the contest is unbiased, swapping the players’ identities correspondingly swaps

the equilibrium effort levels, i.e., e∗1(t1, t2; β̄) = e∗2(t2, t1; β̄). The following lemma shows

that the local symmetry property of the CSF is necessary and sufficient for a zero total

change in the effort levels with respect to β.

Lemma 2 (i) Suppose contest success function p(e1, e2; β) has the locally symmetric bias.

Then in any equilibrium characterized above we have

e∗1β(t1, t2; β̄) = −e∗2β(t2, t1; β̄). (6)

13Thus, we require that the CSF p be “sufficiently concave” in e1. For example, for a Lazear and
Rosen (1981) type tournament model, this would imply a sufficiently large variance of additive noise;
for a Tullock (1980) type contest model, this would imply a sufficiently low discriminatory power of the
contest. An additional, complementary, requirement is that the effort cost function C be “sufficiently
convex” in effort.
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(ii) Suppose in any equilibrium characterized above we have

e∗1β(t1, t2; β̄) + e∗1β(t2, t1; β̄) = −e∗2β(t1, t2; β̄)− e∗2β(t2, t1; β̄). (7)

Then contest success function p has the locally symmetric bias.

Proof. See Appendix A.

Lemma 2 plays a key role in the proof of the equivalence of the locally symmetric bias

condition (3) and β = β̄ being the critical point of Q(β) in the case of public information

in Proposition 1 below. Indeed, it is seen immediately from (6) that, due to the symmetry

of the distribution of types F (t1, t2), β = β̄ is a critical point of the expected aggregate

effort QE(β) =
∫
[e∗1(t1, t2; β) + e∗2(t1, t2; β)]dF (t1, t2). For a general objective Q(β), cf.

(2), we have

Q′(β̄) =

∫
[qe1e

∗
1β(t1, t2, β̄) + qe2e

∗
2β(t1, t2, β̄) + qβ]dF (t1, t2),

and the result then follows provided function q(e1, t1; e2, t2; β) satisfies appropriate symme-

try restrictions that ensure that its derivatives qei are symmetric, and qβ is anti-symmetric,

with respect to a permutation of players (see Definition 3 below).

3.2 Private information contests

In this environment, each player i only observes her own type ti, and an equilibrium in

pure strategies has the form of bidding functions bi(t; β), i = 1, 2. Such an equilibrium

with non-increasing bidding functions exists under a wide range of conditions (Wasser,

2013; Ewerhart, 2014; Brookins and Ryvkin, 2015; He and Yannelis, 2015). As above, we

will assume that the equilibrium is characterized by the first-order conditions that in this

case take the form of a system of integral equations:

∫
p1(b1(t; β), b2(t

′; β); β)dF (t′|t) = C1(b1(t; β), t), (8)

−
∫

p2(b1(t
′; β), b2(t; β); β)dF (t′|t) = C1(b2(t; β), t).

Here, F (t′|t) is the conditional distribution of cost parameters. At β = β̄ we have a

symmetric equilibrium with b1(t; β̄) = b2(t; β̄). The following lemma is the analog of

Lemma 2 for the case of private information.
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Lemma 3 Contest success function p(e1, e2; β) has the locally symmetric bias if and only

if in any equilibrium in pure strategies characterized above

b1β(t; β̄) = −b2β(t; β̄). (9)

Proof. See Appendix A.

Lemma 3 plays a key role in the proof of the equivalence of the locally symmetric

bias condition (3) and β = β̄ being the critical point of Q(β) in the case of private

information in Proposition 1 below. Similar to the case of public information, it is seen

immediately from (9) that β = β̄ is a critical point of the expected aggregate effort

QE(β) =
∫
[b1(t; β)+ b2(t; β)]dF (t).14 For a general objective Q(β) the result then follows

similarly to the case of public information as discussed after Lemma 2.

3.3 First-order conditions for maximization of principal’s objec-

tives

We now turn to analyzing the principal’s objective function Q defined by (2). The follow-

ing definition ensures that the objective is symmetric when the contest is unbiased and, if

it depends explicitly on β, the bias in the objective is locally symmetric in a way similar

to the local symmetry property of the CSF.

Definition 3 Objective Q(β) =
∫
q(e1, t1; e2, t2; β)dF is

(i) symmetric if q(e1, t1; e2, t2; β̄) = q(e2, t2; e1, t1; β̄);

(ii) locally symmetrically biased if qβ(e1, t1; e2, t2; β̄) = −qβ(e2, t2; e1, t1; β̄),

for all effort pairs e1, e2 ≥ 0 and types (t1, t2) in the support of F .

In what follows, for the sake of style and brevity, we will sometimes refer to β = β̄ as

“zero bias.”

Proposition 1 In both cases of public and private information, zero bias β = β̄ is a

critical point of any symmetric and locally symmetrically biased objective Q, i.e., Q′(β̄) =

0, if and only if the CSF p has a locally symmetric bias.

Proof. See Appendix A.

Proposition 1 is the central result of this section. It shows that for a large class of

objectives the first-order condition with respect to bias is satisfied by the unbiased contest.

The next obvious Corollary shows a simple way to find when a biased contest is optimal.

14Here, with a slight abuse of notation, F (t) denotes the marginal of F (t1, t2).
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Corollary 1 In both cases of public and private information, if the CSF p does not have

a locally symmetric bias, a biased contest is optimal for any symmetric and locally sym-

metrically biased objective Q.

Examples of principal’s objectives that satisfy the conditions of Proposition 1 and

Corollary 1 include the following.

Example 3 The following objectives satisfy Definition 3 when the CSF has a locally

symmetric bias:

(i) Aggregate effort: q = e1 + e2;

(ii) Predictive power: q = p(e1, e2; β)I(t1 < t2) + [1− p(e1, e2; β)]I(t1 > t2);

(iii) Expected ability of the winner: q = p(e1, e2; β)a(t1)+ [1− p(e1, e2; β)]a(t2), where

ability a(·) decreases with the type, a′ < 0.

(iv) Winner’s expected effort: q = p(e1, e2; β)e1 + [1− p(e1, e2; β)]e2.

Aggregate effort is one of the most commonly studied objectives in the literature

on contests. Predictive power, or selection efficiency of a contest, is defined here as the

probability of the best player winning (Hvide and Kristiansen, 2003; Ryvkin and Ortmann,

2008). It is relevant in environments such as recruitment and promotion tournaments in

organizations or lobbying for public procurement. The expected ability of the winner

is relevant in similar environments (e.g., Höffler and Sliwka, 2003; Ryvkin, 2010). The

expected winner’s effort can emerge as an objective in R&D competition where the value

of the innovation that ends up being patented depends positively on the winner’s R&D

investment (Baye and Hoppe, 2003; Serena, 2015).

As mentioned in Section 2.1, we assume that q is differentiable in ei and β at β = β̄,

which is the case for most objectives typically used, cf. Example 3. If q is not differentiable

at β = β̄, then the notion of “critical point” has to be extended to situations when the

derivative Q′(β) is not defined. For example, consider a Tullock contest with an additive

bias, p(e1, e2; β) = e1+β

e1+e2
, as in Example 1(ii), and suppose the principal’s objective is

maximal effort, q = max{e1, e2} (Denter and Sisak, 2015). When both players have effort

cost function c(e) = 1
2
e2, the equilibrium efforts are e∗1 =

1−β

2
and e∗2 =

1+β

2
, and q = 1+|β|

2

is not differentiable at β = 0, although Q(β) reaches the minimum there. In general,

however, our analysis does not apply to such cases.

Note that condition (ii) of Definition 3 and the requirement that the bias in CSF p

is locally symmetric are two independent conditions. In cases when objective Q does not

include p explicitly, such as in Example 3(i), locally symmetric bias is still necessary for

13



Q to have a critical point at β̄. At the same time, when Q includes p condition (ii) of

Definition 3 is still necessary even if p has a locally symmetric bias. In Examples 3(ii)-(iv),

it is satisfied automatically provided p is locally symmetric, but this does not have to be

the case in general. An alternative, albeit less general approach, is to impose a structural

restriction on Q. The following definitions and corollary cover Examples 3(i)-(iv) and

provide a more intuitive alternative to Definition 3 and Proposition 1 in terms of the

primitives of Q.

Definition 4 Objective Q(β) =
∫
q(e1, t1; e2, t2; β)dF has the expectation form if there

are functions v and w such that

q(e1, t1; e2, t2; β) = p(e1, e2; β)v(e1, t1; e2, t2) + [1− p(e1, e2; β)]w(e1, t1; e2, t2).

Definition 5 Objective Q(β) =
∫
q(e1, t1; e2, t2; β)dF of the expectation form is symmet-

ric if for all e1, e2 ≥ 0 and for all (t1, t2) in the support of F

v(e1, t1; e2, t2) = w(e2, t2; e1, t1).

Corollary 2 In both cases of public and private information, zero bias β = β̄ is a critical

point of any symmetric objective Q of the expectation form, i.e., Q′(β̄) = 0, if and only if

the CSF p has a locally symmetric bias.

4 Optimality of biased contests

Proposition 1 establishes that zero bias β = β̄ is a critical point of essentially any reason-

able objective function. However, checking the second-order conditions is crucial since, as

this section shows, they are not satisfied in many cases. Hence, this section provides some

general results on when biased or unbiased contests are optimal. In particular, Section

4.1 considers the case when players are identical ex post and the contest designer max-

imizes the aggregate effort. Section 4.2 considers maximization of the aggregate effort

when players are identical ex ante and there are two possible types. Finally, Section 4.3

analyzes maximization of predictive power when CSF is linear in efforts.

In Appendix B we provide general conditions for when biased contests are optimal

for aggregate effort and predictive power, both under private and public information

(Propositions B1-B4). However, if no additional assumptions are made, they are very

complicated and hard to verify and interpret.

14



4.1 Aggregate effort for ex post symmetric types

Here we consider the simplest case of ex post symmetric players, t1 = t2, and public

information. Note that, in general, the players’ types may still be random (i.e., not

observable by the principal), but it is assumed here that they are perfectly positively

correlated. Let c(ei) denote each player’s effort cost function, in which the identical cost

parameter argument is suppressed. The first-order conditions for equilibrium efforts (5)

take the form

p1(e1, e2; β) = c′(e1), −p2(e1, e2; β) = c′(e2). (10)

The second-order conditions p11 − c′′(e1) < 0 and −p22 − c′′(e2) < 0 are assumed to

be satisfied in equilibrium. Let e∗ = e∗1 = e∗2 denote the symmetric solution of (10) for

β = β̄. Checking the sign of e∗1ββ + e∗2ββ at (e1, e2; β) = (e∗, e∗, β̄) leads to the following

result.

Proposition 2 Consider the case of ex post symmetric players and public information.

Suppose p has the locally symmetric bias property. Aggregate effort is maximized in a

biased contest if

p1ββ − p2ββ > 2(e∗1β)
2(c′′′ − p111 + 3p112) + 4e∗1β(p12β − p11β), (11)

where e∗1β =
p1β

c′′−p11
and all the functions are evaluated at (e1, e2; β) = (e∗, e∗, β̄). If the

sign in (11) is reversed, then aggregate effort reaches a local maximum in the unbiased

contest.

Proof. See Appendix A.

While the exact interpretation of (11) is difficult, two points can be made. First, the

left-hand side of (11) is the rate of change in aggregate marginal benefits of efforts (see

(3) and its interpretation). When it is higher, it is more likely that (11) is satisfied and,

hence, a biased contest is optimal. Second, the right-hand side of (11) contains the third

derivative of the cost function. If it is positive, that is, the marginal costs are convex,

a spread in the marginal benefits of efforts decreases the total effort, other things being

equal. Then it is more likely that (11) is not satisfied and the unbiased contest is (locally)

optimal. Overall, however, since the bias affects the effort of each player directly and

through the change in the effort of the other player, all kinds of third derivatives of the

CSF enter condition (11).

In some examples, condition (11) is easy to check. There are two types of such

examples. First, when the CSF is linear or quadratic in efforts so that all or most of its
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third derivatives are zero. Consider the example from the Introduction where p(e1, e2; β) =
1
2
+(1+β)e1−(1−β)e2. All third derivatives are zero and (11) reduces to c′′′ < 0. Thus, as

we mentioned in the Introduction, the mean-preserving variation in the marginal benefit

of effort across the players created by the bias increases (respectively, decreases) total

effort if the marginal cost function is concave (respectively, convex).

A related (and even more striking) example is obtained if the bias is introduced as

p(e1, e2; β) =
1
2
+ βe1 − 1

β
e2. Since efforts enter linearly, all third derivatives of p on the

right-hand side of (11) are zero. Condition (11) then reduces to 1 > (e∗1β)
2c′′′. Concavity

of marginal costs is now sufficient but not necessary for the optimality of the biased

contest. Intuitively, the aggregate marginal benefit of effort, β + 1
β
, increases as the bias

moves further away from β̄ = 1 and hence, even if marginal costs of effort are slightly

convex, aggregate effort increases with the bias. Using explicit expressions for equilibrium

efforts it is easy to check that condition (11) is satisfied for any convex cost function of

the form c(e) = ez, z > 1. In other words, increasing aggregate marginal benefit of effort

dominates increasing marginal costs of effort and the optimal contest is always biased.15

The second type of examples in which condition (11) is easy to check is when e∗1β =

p1β = 0 at the equilibrium of the unbiased contest. Then, condition (11) reduces to

p1ββ − p2ββ > 0. Intuitively, e∗1β = 0 means that the bias has only a second-order effect on

equilibrium efforts and hence the equilibrium interdependence of efforts and a change in

the costs are negligible. The effect of the bias is then determined only by its effect on the

aggregate marginal benefits of efforts. In particular, the cost function has no influence on

the optimality of the (un)biased contest.

As a first example of this type, take the Tullock contest with the multiplicative bias

considered in Example 1(i).16 Then, p1β = rer−1
1 er2

er
2
−βer

1

(er2+βer
1)

3 which is zero at β̄ = 1 and

equal efforts. The aggregate marginal benefit of effort, p1 − p2 = 2r
e∗

β

(1+β)2
, is concave in

the bias and p1ββ − p2ββ = −1
4

r
e∗

< 0 at β̄ = 1. The unbiased contest is (locally) optimal

for any cost function.

Another example of this type is a Lazear-Rosen tournament with additive bias con-

15Note that when efforts enter additively into the CSF, the optimal effort of each player does not depend
on the effort of the other player. Then, when there are types, optimal effort of each player depends only
on his or her type but not on the type of the other player. The cases of ex post identical players (or
equivalently, perfectly correlated types), ex ante identical players under public information, and ex ante

identical players under private information are all equivalent. In the simplest case of a CSF linear in
efforts, p(e1, e2;β) = γ1(β)e1 + γ2(β)e2 + γ(β), it is easy to see that Propositions 2, B1 and B2 all lead
to the condition p1ββ − p2ββ > 2(e∗

1β)
2C111 for the optimality of a biased contest.

16See also Section 5.1 for the analysis of this example when there are two types.
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sidered in Example 1(iii). Let G denote the cdf of the difference of the noise terms,

u2 − u1, and suppose the corresponding pdf g is differentiable. The CSF of this con-

test is p(e1, e2; β) = G(e1 − e2 + β), and the two first-order conditions (10) become

g(e1−e2+β) = c′(ei), i = 1, 2. Since g is symmetric around zero, g′(0) = 0, which implies

that at β̄ = 0 we have e∗1β =
p1β

c′′−p11
= 0 and condition (11) reduces to g′′(0) > 0. Thus,

the optimal contest is biased for any cost function if g has an even number of peaks. If

g has an odd number of peaks, the (locally) optimal contest is always unbiased. If g is

unimodal, it is maximized at 0 and hence, the globally optimal contest is unbiased as has

been noted by Lizzeri, Meyer and Persico (1999) and Aoyagi (2010).

Finally, in some cases condition (11) just happens to be very simple. Take the Tullock

contest with the additive bias considered in Example 1(ii) with r = 1.17 It is easy to check

that p1ββ = p2ββ = 0, p11β = p12β and, at β = 0 and equal efforts, 3p112 − p111 = 0. Then,

condition (11) reduces to c′′′ < 0. As in the example in the Introduction (see above), the

optimality of an (un)biased contest is determined by the convexity or concavity of the

marginal cost function.

Effect of the bias on individual efforts

It may seem intuitive that the bias “encourages” player 1 and hence, increases his or her

effort, and “discourages” player 2 whose effort then decreases. However, this intuition may

be misleading for two reasons. First, the marginal benefit of each player’s effort depends,

in general, on the other player’s effort. A change in the bias changes both players’ efforts,

and the effect on their marginal benefits is ambiguous. The second reason is that, even

holding the other player’s effort fixed, the effect of the bias depends on how the bias is

introduced. For example, a multiplicative bias does increase the marginal benefit of player

1’s effort but an additive bias may decrease it.

To illustrate the ambiguous effect of the bias on individual efforts, we consider now

the three CSFs that we use in Section 5 below. In Section 5.1 we consider a Tullock

contest with a multiplicative bias, p (e1, e2; β) =
βe1

βe1+e2
, as in Example 1(i). When both

players have cost function c(e) = 1
2
e2, the equilibrium efforts are the same, e∗1 = e∗2 =

√
β

β+1
,

and decrease with the bias.

In Section 5.2 we consider a Tullock contest with an additive bias, p (e1, e2; β) =
e1+β

e1+e2
,

as in Example 1(ii). When both players have cost function c(e) = 1
2
e2, the equilibrium

efforts are e∗1 = 1−β

2
and e∗2 = 1+β

2
. Thus, player 1 exerts a lower effort than player 2,

17See also Section 5.2 for the analysis of this example when there are two types.
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and the difference increases with the bias. Note that the marginal benefits of efforts are

p1 =
e2−β

(e1+e2)2
and −p2 =

e1+β

(e1+e2)2
for players 1 and 2, respectively. Keeping the effort of the

other player constant, a higher bias decreases (increases) the marginal benefit of effort for

player 1 (player 2).

Finally, in Section 5.3 we consider a Lazear-Rosen tournament with a multiplicative

bias as in Example 1(iv). Denote by g the pdf of the difference in the noise terms, u1−u2.

The first-order conditions for the players’ equilibrium efforts are

(1 + β)g((1 + β)e1 − (1− β)e2) = c′(e1), (1− β)g((1 + β)e1 − (1− β)e2) = c′(e2),

which gives
c′(e∗

1
)

1+β
=

c′(e∗
2
)

1−β
, and hence for β > 0 we have e∗1 > e∗2 in equilibrium.18

4.2 Aggregate effort for two correlated types

In this section we suppose that players are symmetric ex ante but may be asymmetric ex

post. As we will see, there is more scope for a biased contest to be optimal. Indeed, with

some probability players are different ex post. Then, with probability 1
2
the bias will favor

the stronger player and lead to a more lopsided competition than the unbiased contest,

while with probability 1
2
the bias will favor the weaker player and lead to a more leveled

contest than the unbiased one. It might be that the expected gain in the principal’s

objective from the latter will exceed the expected loss from the former. Thus, even if the

unbiased contest is optimal when the players are symmetric ex post, a biased contest may

be optimal when the types of players are not too positively correlated.

Consider the case of public information with two player types, tL < tH , such that

Pr(ti = tL) = 1−Pr(ti = tH) = λ, i = 1, 2, and Corr(t1, t2) = ρ. Let qij = Pr(t1 = ti, t2 =

tj), i, j ∈ {L,H}. Then

qLL = λ (1− (1− λ) (1− ρ)) , qHH = (1− λ) (1− λ (1− ρ)) ,

qLH = qHL = λ (1− λ) (1− ρ) .

Note that the restriction ρ ≥ max{− λ
1−λ

,−1−λ
λ
} has to be satisfied in order for qLL and

qHH to be non-negative. Let QE(β;λ, ρ) denote the expected aggregate effort in the

18Note that if the bias is additive as in Example 1(iii), then the two players exert the same effort
characterized by the first-order condition g(β) = c′(e∗i ), i = 1, 2.
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equilibrium for given values of parameters λ and ρ:

QE(β;λ, ρ) = qLL[e
∗
1(tL, tL; β) + e∗2(tL, tL; β)] + qHH [e

∗
1(tH , tH ; β) + e∗2(tH , tH ; β)]

+ qHL[e
∗
1(tH , tL; β) + e∗2(tH , tL; β) + e∗1(tL, tH ; β) + e∗2(tL, tH ; β)]. (12)

Differentiating (12) twice with respect to β and using the expressions for qij above,

we arrive at the following lemma.

Lemma 4 In a contest with public information and two correlated types, the second

derivative of aggregate effort at β = β̄ can be written in the form

QE
ββ(β̄;λ, ρ) = QE

ββ(β̄;λ, 1)− 2λ(1− λ)(1− ρ)

[
QE

ββ

(
β̄;

1

2
, 1

)
−QE

ββ

(
β̄;

1

2
,−1

)]
.

(13)

Proof. See Appendix A.

As seen from (13), QE
ββ(β̄;λ, ρ) is linear in ρ, which is expected since all probabilities qij

are linear in ρ. The interesting result of Lemma 4 is that the dependence of QE
ββ(β̄;λ, ρ)

on ρ is determined entirely by the two extreme cases – with perfectly positively and

negatively correlated types. When λ = 1
2
, (13) simplifies to

QE
ββ

(
β̄;

1

2
, ρ

)
=

1 + ρ

2
QE

ββ

(
β̄;

1

2
, 1

)
+

1− ρ

2
QE

ββ

(
β̄;

1

2
,−1

)
. (14)

When players have different types, the optimal contest is often biased andQE
ββ

(
β̄; 1

2
,−1

)
>

0. Then, by continuity (14) implies that the optimal contest is biased for ex ante sym-

metric players when ρ is negative enough. In other words, there exists a critical ρ̂ such

that QE
ββ(β̄;

1
2
, ρ) > 0 for ρ ∈ [−1, ρ̂). By continuity, the same happens for values of λ

that are different but close enough to 1
2
.

Thus, even if under positive correlation between types the unbiased contest is optimal,

but under perfect negative correlation it is not then there is a range of negative correlations

for which a biased contest will be optimal. This is exactly what happens in the Tullock

contest with a multiplicative bias. As we know from Section 4.1, the unbiased contest

is optimal when players have the same types. However, as we will see in Section 5.1,

introducing a bias is optimal when the types are sufficiently negatively correlated.
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4.3 Predictive power for a CSF linear in efforts

Consider the case of a CSF linear in efforts, p(e1, e2; β) = γ1(β)e1 + γ2(β)e2 + γ(β).

The unbiasedness condition (1) implies that γ1(β̄) = −γ2(β̄), and locally symmetric bias

condition (3) implies that γ′
1(β̄) = γ′

2(β̄). We will explore the contest’s predictive power,

i.e., the probability that the winner is a player with a lower type, that we denote by

QS(β). Propositions B3 and B4 in Appendix B provide general expressions for the second

derivative QS
ββ(β̄) for the cases of public and private information, respectively. For the

CSF linear in effort they lead to the following Corollary.

Corollary 3 Suppose p(e1, e2; β) = γ1(β)e1 + γ2(β)e2 + γ(β) and p has the locally sym-

metric bias property. Predictive power is maximized in a biased contest under both public

and private information if for all t1 < t2 in the support of F

[4γ′
1(β̄)

2 + γ1(β̄)(γ
′′
1 (β̄)− γ′′

2 (β̄))]

[
1

C11(e∗1, t1)
− 1

C11(e∗2, t2)

]
(15)

+ 2γ1(β̄)γ
′
1(β̄)

2

[
C111(e

∗
2, t2)

C11(e∗2, t2)
3
− C111(e

∗
1, t1)

C11(e∗1, t1)
3

]
+ [γ′′

1 (β̄)− γ′′
2 (β̄)](e

∗
1 − e∗2) > 0.

If the sign in (15) is reversed, then predictive power reaches a local maximum in the

unbiased contest.

Proof. See Appendix B.

This condition is quite involved despite the CSF being linear in efforts. Indeed, a

higher bias increases the probability that player 1 wins for any configuration of types.

Take a pair of types (t1, t2), t1 < t2. Predictive power is proportional to the difference

between the probabilities of player 1 winning when the types are (t1, t2) and when they

are (t2, t1). Since both probabilities increase, the overall effect is ambiguous. The linearity

of the CSF in efforts implies that a higher bias increases player 1’s effort and decreases

player 2’s effort for any configuration of types. While this is a significant simplification,

the second-order condition still must involve the second derivatives of bias functions γi(β)

and equilibrium efforts leading to the second and third derivatives of the cost function

evaluated at two different points.19

An immediate observation from inspecting (15) is that the additive bias γ(β) does

not enter the expression. Indeed, an additive bias increases the probability that the first

19Another simplification brought about by the linearity in efforts, as we mentioned in fn. 15, is that
the effort of each player depends only on his or her type. Thus, whether the player knows the type of the
other player is irrelevant and the cases of public and private information coincide.
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player wins by the same amount whether he has a higher or a lower type and hence, does

not affect predictive power.

The first two terms in (15) come from the effect of the bias through changes in efforts

while the last term is the direct effect of the bias keeping the efforts fixed. Note that

e∗1 > e∗2 since t1 < t2 and γ′′
1 (β̄) − γ′′

2 (β̄) = p1ββ − p2ββ. Thus, the direct effect of convex

aggregate marginal benefit of efforts is to make it more likely that a biased contest is

optimal. For the case of multiplicative types, C(e, t) = tc(e), it can be easily shown that
1

C11(e∗1,t1)
− 1

C11(e∗2,t2)
> 0 if and only if c(e) exhibits increasing absolute risk aversion (IARA).

If this is the case, increasing the aggregate marginal benefit of efforts unambiguously helps

a biased contest to be optimal.

For some cost functions, condition (15) simplifies significantly. The simplest case is

when the cost function is exponential, C(e, t) = t(exp(e)−1). Then, C1(e, t) = C11(e, t) =

C111(e, t) and in the equilibrium C1(e
∗
1, t1) = C1(e

∗
2, t2) = γ1(β̄) at β = β̄. Condition (15)

reduces to γ′′
1 (β̄)− γ′′

2 (β̄) > 0.

Another simple case is that of the power cost function C(e, t) = 1
z
tez with z > 1.

Condition (15) becomes

2

z − 1

γ′
1(β̄)

2

γ1
(
β̄
) + γ′′

1 (β̄)− γ′′
2 (β̄) > 0 (16)

The first term in (16) is positive since z > 1 and γ1(β) > 0, while the sign of

γ′′
1 (β̄) − γ′′

2 (β̄)) is ambiguous. For the example in the Introduction where p(e1, e2; β) =
1
2
+(1+β)e1− (1−β)e2 and hence, γ′′

1 (β) = γ′′
2 (β) = 0 this implies that predictive power

has a local minimum at zero bias for any z > 1. Take another example considered in

Section 4.1 in which p(e1, e2; β) = 1
2
+ βe1 − 1

β
e2. Then, γ′′

1 (β) − γ′′
2 (β) = 1

β2 > 0 and

hence, predictive power is maximized in a biased contest for any z > 1 for this CSF as

well.

5 Examples

5.1 Example: Tullock contest, multiplicative bias

Consider the Tullock (1980) contest success function, p0(e1, e2) = e1
e1+e2

, and introduce

the multiplicative bias as in Example 1(i): p (e1, e2; β) =
βe1

βe1+e2
. This CSF is unbiased at

β̄ = 1.

We already know from Section 4.1 that when the types are identical the optimal
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contest in this case is unbiased for any cost function. We will now find the conditions

under which the optimal contest is biased when there are two correlated types distributed

as in Section 4.2. Indeed, from previous work (see Franke et al. (2013) for the most

general treatment) we know that the optimal contest is biased when players are different

and have linear costs. Lemma 4 then implies that the optimal contest is biased when the

correlation between the two types is negative and sufficiently strong.

Consider the case of public information. The first-order conditions (5) write as

βe2

(βe1 + e2)
2 = t1,

βe1

(βe1 + e2)
2 = t2,

where t1 and t2 are the constant marginal costs of player 1 and 2, respectively. Thus,
e2
e1

= t1
t2

and the equilibrium effort levels are

e∗1 =
βt2

(t1 + βt2)
2 , e∗2 =

βt1

(t1 + βt2)
2 . (17)

When the two players have the same marginal costs t, e∗1 = e∗2 =
β

(1+β)2t
.

The expected aggregate effort is

QE (β) =
2β

(1 + β)2

(
qLL

tL
+

qHH

tH

)
+ β (tH + tL)

(
qHL

(tH + βtL)
2 +

qLH

(tL + βtH)
2

)

Then,

QE
β (β) = 2

1− β

(1 + β)3

(
qLL

tL
+

qHH

tH

)
+ (tH + tL)

(
qHL

tH − βtL

(tH + βtL)
3 + qLH

tL − βtH

(tL + βtH)
3

)

Note as an illustration of Proposition 1 that QE
β

(
β̄
)
= 0. Indeed, the first term is zero

and, given qLH = qHL, the second term is also zero.

The second derivative of QE(β) is

QE
ββ (β) = −4

2− β

(1 + β)4

(
qLL

tL
+

qHH

tH

)
+2 (tH + tL)

(
qHLtL

βtL − 2tH

(tH + βtL)
4 + qLHtH

βtH − 2tL

(tL + βtH)
4

)
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and at β = β̄, using qLH = qHL, it becomes

QE
ββ

(
β̄
)
= −1

4

(
qLL

tL
+

qHH

tH

)
+ 2qHL

t2H + t2L − 4tHtL

(tH + tL)
3

=
1

tL

(
−1

4

(
qLL +

qHH

h

)
+ 2qHL

h2 − 4h+ 1

(h+ 1)3

)
, (18)

where h = tH
tL
, a measure of heterogeneity between the two players. If (18) is positive, the

optimal contest is biased. Thus, h2 − 4h+ 1 > 0, that is, h > 2 +
√
3 is necessary for the

optimal contest to be biased. In Figure 1 we plot the region where (18) is positive and,

therefore, the optimal contest is biased.20

Figure 1: The region where the aggregate effort QE in a Tullock contest with a multiplicative
bias is not maximized at no bias. The cost function is C(e, t) = te; in the left figure ρ =
max{− λ

1−λ
,−1−λ

λ
} and in the right figure λ = 1

2 .

When the types are perfectly negatively correlated, there is a closed-form solution for

the optimal bias, as described in the following Proposition.

Proposition 3 In the Tullock contest with multiplicative bias and perfectly negatively

correlated types, the optimal bias is β̄ = 1 (no bias) if h ≤ 2 +
√
3 and otherwise it is

20 When the information is private, there is no closed-form solution for equilibrium efforts and, thus,
the region where unbiased contest is not optimal cannot be determined analytically. However, numerical
examples are easily found with the same cost parameters and negative correlation strong enough.
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equal to

β̂ =
1

2h (h2 + 1)

((
h2 − 1

)√
(h2 + 4h+ 1) (h2 − 4h+ 1) + h4 − 6h2 + 1

)
.

Moreover, β̂ is strictly increasing in the heterogeneity between the players h.

In Figure 2 we plot the optimal bias and also the ratio of the total efforts in an

optimally biased contest and in an unbiased contest.

Figure 2: The optimal bias (left) and the ratio of the total efforts in an optimally biased contest
and in an unbiased contest (right).

5.2 Example: Tullock contest, additive bias

Consider the Tullock (1980) contest success function, p0(e1, e2) =
e1

e1+e2
and introduce the

additive bias as in Example 1(ii): p (e1, e2; β) =
e1+β

e1+e2
. This CSF is unbiased at β̄ = 0.

We already know from Section 4.1 that when the types are identical the optimal

contest is biased (unbiased) if C ′′′ < (>)0. Since, in general, there is no closed-form

solution for the equilibrium efforts unless C(e, t) is linear in e, we will now consider two

numerical examples with two uncorrelated types. In Figure 3, we plot the aggregate effort,

the winner’s effort (see Example 3(iv)) and predictive power (see Example 3(ii)), which
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becomes, in the case of public information with two types,

QS(β) =
1

2
[p (e∗1(tL, tH ; β), e

∗
2(tL, tH ; β); β) + 1− p (e∗1(tH , tL; β), e

∗
2(tH , tL; β))] . (19)

Figure 3: The expected aggregate effort (solid line) and the winner’s effort (dotted line) (left
scale) and the predictive power (dashed line, right scale) of a Tullock contest with an additive
bias and public information as a function of bias β. The parameters are tL = 2, tH = 4, λ = 1

2 ,

ρ = 0 and C (e, t) = 2
3 te

3

2 (left figure) and C (e, t) = 1
3 te

3 (right figure).

Under private information, predictive power takes the form

QS(β) =
1

2
[p (b1(tL; β), b2(tH ; β), β) + 1− p (b1(tH ; β), b2(tL; β))] , (20)

and the graphs are qualitatively similar. If the types are the same, the graphs for aggregate

and winner’s efforts are also qualitatively similar.
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5.3 Example: Lazear-Rosen tournament, multiplicative bias,

normally distributed noise difference

Take Lazear-Rosen tournament with multiplicative bias as in the example in the Intro-

duction and Example 1(iv) and suppose that u1 − u2 is distributed normally.21 There

is no closed-form solution for the equilibrium efforts. In Figure 4, we plot the aggregate

effort, the winner’s effort and predictive power (19) as functions of β for two different cost

functions.

Figure 4: The aggregate effort (solid line) and the winner’s effort (dotted line) (left scale) and
the predictive power (dashed line, right scale) of a Lazear-Rosen tournament with multiplicative
bias, u1−u2 ∼ Normal(0, 2) and public information as a function of bias β. The parameters are

tL = 1, tH = 2, λ = 1
2 , ρ = 0 and C(e, t) = 2

3 te
3

2 (left figure) and C(e, t) = 1
2 te

2 (right figure).
Note that for β ≥ 1 the second player does not exert any effort.

Under private information the graphs are qualitatively similar. If the types are the

same, the graphs for aggregate and winner’s efforts are also qualitatively similar.

21For the purposes of this example, we extend the definition of the CSF to allow for β > 1 (the case of
β < −1 is symmetric and can be treated similarly):

p (e1, e2;β) =

{
Pr{(1 + β)e1 + u1 ≥ (1− β)e2 + u2}, if |β| ≤ 1
Pr{(1 + β)e1 + u1 ≥ u2}, if β > 1

Clearly, for β ≥ 1 the equilibrium effort of player 2 is zero.
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5.4 Expected ability of the winner

To conclude this section, note that we have not said anything about the expected ability

of the winner, another possible goal of the contest organizer (see Example 3(iii)). The

reason is that when there are two types, tL < tH , it is an affine transformation of predictive

power. Indeed, let aL = a(tL), aH = a(tH), and rewrite the expected ability of the winner

in the case of private information as (the case of public information is similar)

p (b1 (tL; β) , b2 (tH ; β) ; β) aL + [1− p (b1 (tL; β) , b2 (tH ; β) ; β)] aH

+ p (b1 (tH ; β) , b2 (tL; β) ; β) aH + [1− p (b1 (tH ; β) , b2 (tL; β) ; β)] aL

= aL + aH + (aL − aH) [p (b1 (tL; β) , b2 (tH ; β) ; β)− p (b1 (tH ; β) , b2 (tL; β) ; β)] .

The last line is an affine transformation of predictive power, cf. (20). Thus, the effects

of the bias on predictive power and the expected ability of the winner are qualitatively

the same. In particular, as can be seen from Figures 3 and 4, in some cases bias increases

predictive power and, hence, the expected ability of the winner.

6 The general case of n ≥ 2 players

Most of our results readily extend to the case of an arbitrary number of players n ≥ 2.

Consider a contest defined by a family of biased CSFs pi(e1, . . . , en; β), i = 1, . . . , n, such

that
∑n

i=1 p
i = 1. Here, pi is the probability of player i winning the contest given the

vector of effort levels e = (e1, . . . , en) of all players, and β is the bias parameter. As before,

player i’s cost of effort is C(ei, ti), where ti is the player’s type. The joint distribution of

types F (t1, . . . , tn) is symmetric.

Let σij : Rn → Rn denote the swap operator such that if x′ = σij(x) then x′
i = xj,

x′
j = xi and x′

k = xk for k 6= i, j.

Definition 6 (Generalized unbiased contest) The contest of n players is unbiased

at β = β̄ if

(i) for any i, j, pi(e; β̄) = pj(σij(e); β̄);

(ii) for any k 6= i, j, pk(e; β̄) = pk(σij(e); β̄).

The following definition provides a general form of the locally symmetric bias condition

(3).
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Definition 7 (Generalized locally symmetric bias) Contest success functions pi(e; β)

have locally symmetric bias at β = β̄ if for all admissible effort levels (e1, . . . , en)

p11β(e1, e2, . . . , en−1, en; β̄) + p22β(en, e1, . . . , en−2, en−1; β̄)

+ p33β(en−1, en, e1, . . . , en−3, en−2; β̄) + . . .+ pnnβ(e2, e3, . . . , en, e1; β̄) = 0. (21)

Definition 7 states that the sum of the marginal effects of the bias on the marginal

benefits of players with cyclically permuted efforts must be zero.

Note that here and in the previous sections restricting the analysis to one bias pa-

rameter is without loss of generality. All the results also apply to CSFs with multiple

bias parameters (β1, . . . ; βm). Definition 6 would then be formulated for a vector of bias

parameters (β̄1, . . . , β̄m), and Definition 7 would be replaced by m equations for each bias

parameter.

Continue with our example from the Introduction. Suppose there are n ex post sym-

metric players, each with the same cost function 2
3
e

3

2

i . The CSF is biased in favor of the

first player. The bias increases the effort of the first player to (1 + β)e1 and reduces the

efforts of all other players to (1− β

n−1
)ej, j ≥ 2, that is,

p1 (e1, . . . , en; β) =
1

n
+ (1 + β) e1 −

1

n− 1

(
1− β

n− 1

) n∑

i=2

ei,

pj (e1, . . . , en; β) =
1

n
+

(
1− β

n− 1

)
ej −

1 + β

n− 1
e1 −

1

n− 1

(
1− β

n− 1

) n∑

i=2,i 6=j

ei, j ≥ 2,

provided all these expressions are between zero and one. It is easy to see that this CSF

has the generalized locally symmetric bias (21).

The equilibrium efforts are e∗1 = (1 + β)2 and e∗j =
(
1− β

n−1

)2
, j ≥ 2. Hence, the

aggregate effort is

QE (β) = (1 + β)2 + (n− 1)

(
1− β

n− 1

)2

= n

(
1 +

β2

n− 1

)
,

which increases with β. At β = β̄ = 0 the first-order condition is satisfied and the

aggregate effort reaches its minimum.

We will now show how the generalized locally symmetric bias condition (21) is related

to the aggregate effort having a critical point at β = β̄.22 In this section, we restrict

22As shown in the proof of Proposition 1, it is then straightforward to extend the results to arbitrary
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attention to the case of public information. It is instructive to start with the simple case

of ex post symmetric types. As before, let e∗ denote the symmetric equilibrium effort at

β = β̄ and let c(ei) denote the cost function of effort.

Lemma 5 When players are ex post symmetric, the marginal effect of the bias on aggre-

gate equilibrium effort takes the form

n∑

i=1

e∗iβ =

∑n

i=1 p
i
iβ

(
e∗, ...e∗; β̄

)

c′′(e∗)− p111(e
∗, . . . , e∗; β̄)− (n− 1)p112(e

∗, . . . , e∗; β̄)
.

Proof. See Appendix A.

Lemma 5 shows that for ex post symmetric players the marginal effect of the bias

on aggregate effort is proportional to the sum of the marginal effects of the bias on the

marginal benefits of players, and hence the generalized local symmetry condition (21) is

equivalent to β = β̄ being a critical point of aggregate effort.

Consider now the general case of n ex post asymmetric players. Let e∗i (t; β) denote the

equilibrium effort of player i in the contest given the vector of player types t = (t1, . . . , tn)

and the bias parameter β. The expected aggregate effort in the contest is QE(β) =∫ ∑
i e

∗(t, β)dF (t).

Proposition 4 In a biased contest of n players CSFs pi(e1, . . . ; β) satisfy the generalized

locally symmetric bias condition (21) if and only if QE
β (β̄) = 0.

Proof. See Appendix A.

7 Conclusion

In this paper we have provided arguably the first systematic study of biased contests.

The first contribution of the paper is to introduce and characterize a class of biased CSFs

that includes as special cases the commonly used additive and multiplicative biases but

also allows for other types of biases. We show that exactly how a bias is introduced into

a CSF is crucial for zero bias to be a critical point of various principal’s objectives, i.e.,

for whether or not a small bias will have a first-order effect on each of the objectives.

Specifically, we identify necessary and sufficient conditions on the shape of a biased CSF

for a general class of symmetric objectives (that includes, but is not limited to, aggregate

symmetric objectives; see also the discussion after Lemma 2.

29



effort, predictive power, expected effort of the winner or expected ability of the winner)

to have a zero first derivative with respect to the bias at zero bias. The conditions are

very general and are satisfied by most biased CSFs used in the literature.

The second contribution of the paper is to provide some general results and numerous

examples when biased contests are optimal when players are symmetric. Examples include

Tullock (1980) type contests and Lazear and Rosen (1981) type tournaments; contests

with players identical ex post or only ex ante; contests with public information and private

information; and the principal’s objective functions mentioned in the paragraph above.

One important type of contest models not covered by our analysis is all-pay auctions,

in which the CSF is not smooth. Such games have equilibria in mixed strategies under

complete information which are not linked directly to the pure strategy equilibria we

exploit in this paper. However, the pure strategy equilibria of all-pay auctions under

incomplete information are smooth bidding functions that can be viewed as the zero-

noise limit of equilibrium bidding functions from private information contests. Thus, our

analysis informs on the effect of biases in all-pay auctions of incomplete information with

arbitrarily small but nonzero noise. To what extent the results also apply to the limit of

zero-noise all-pay auctions is still an open question.
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Appendix A. Proofs

Proof of Lemma 2. Differentiate (5) with respect to β to obtain (omit arguments of

e∗iβ (t1, t2; β) and pij (e
∗
1(t1, t2; β), e

∗
2(t1, t2; β); β) for brevity)

p11e
∗
1β + p12e

∗
2β + p1β = C11 (e

∗
1, t1) e

∗
1β, (22)

−p12e
∗
1β − p22e

∗
2β − p2β = C11 (e

∗
2, t2) e

∗
2β.

Rewrite it as

[p11 − C11 (e
∗
1, t1)] e

∗
1β + p12e

∗
2β = −p1β,

p12e
∗
1β + [p22 + C11 (e

∗
2, t2)] e

∗
2β = −p2β.

Then,

e∗1β(t1, t2; β) = − p1β [p22 + C11 (e
∗
2, t2)]− p2βp12

[p11 − C11 (e∗1, t1)] [p22 + C11 (e∗2, t2)]− p212
(23)

e∗2β(t1, t2; β) = − p2β [p11 − C11 (e
∗
1, t1)]− p1βp12

[p11 − C11 (e∗1, t1)] [p22 + C11 (e∗2, t2)]− p212
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From now on, set β = β̄. Consider the symmetric cost pair, (t2, t1). At β = β̄, using (1),

rewrite (5) as

p1
(
e1, e2; β̄

)
= C1 (e1, t2) , p1

(
e2, e1; β̄

)
= C1 (e2, t1) . (24)

Note that the first of equations in (24) can be transformed into the second one by replacing

t1 with t2 and e1 with e2. This implies that equilibrium effort levels e∗1 and e∗2 have the

following symmetry:

e∗1
(
t1, t2; β̄

)
= e∗2

(
t2, t1; β̄

)
. (25)

We can derive e∗iβ (t2, t1; β) analogous to (23). Then, using (25), replace e∗1
(
t2, t1; β̄

)

and e∗2
(
t2, t1; β̄

)
with e∗2

(
t1, t2; β̄

)
and e∗1

(
t1, t2; β̄

)
, respectively, in the arguments of

pij. The resulting expressions are as in (23) but with all pij evaluated at the point(
e∗2(t1, t2; β̄), e

∗
1(t1, t2; β̄); β̄

)
, that is, with the reversed order of equilibrium efforts:

e∗1β
(
t2, t1, β̄

)
= − p̃1β [p̃22 + C11 (e

∗
1, t1)]− p̃2β p̃12

[p̃11 − C11 (e∗2, t2)] [p̃22 + C11 (e∗1, t1)]− p̃212
(26)

e∗2β
(
t2, t1; β̄

)
= − p̃2β [p̃11 − C11 (e

∗
2, t2)]− p̃1β p̃12

[p̃11 − C11 (e∗2, t2)] [p̃22 + C11 (e∗1, t1)]− p̃212

Here, p̃ij denotes pij(e
∗
2, e

∗
1; β̄), and the arguments of e∗i (t1, t2; β̄) are suppressed for brevity.

Differentiating (1) with respect to e1 twice and with respect to e1 and e2 obtain the

relationships

p11
(
e1, e2; β̄

)
= −p22

(
e2, e1; β̄

)
, p12

(
e1, e2; β̄

)
= −p12

(
e2, e1; β̄

)
, (27)

which imply, in particular, that in equilibrium

p11 = −p̃22, p22 = −p̃11, p12 = −p̃12. (28)

(i) Comparing the expressions for e∗1β(t1, t2; β̄) and e∗2β(t2, t1; β̄) in (23) and (26), re-

spectively, note that, due to conditions (27), the denominators are the same. Suppose

that p has a locally symmetric bias, i.e., pβ(e1, e2; β̄) = pβ(e2, e1; β̄), cf. (4). Differen-

tiating both sides with respect to e1 and setting e1 and e2 to the equilibrium efforts,

obtain p1β = p̃2β. Similarly, p2β = p̃1β. Comparing the numerators of e∗1β(t1, t2; β̄) and

e∗2β(t2, t1; β̄), note that they only differ by sign, which proves (6).

(ii) Suppose now that (7) is true. As shown above, the denominators of all four terms

35



are equal, therefore the numerators should sum up to zero. The sum of the numerators

in (7) is (without the minus sign)

p1β [p22 + C11 (e
∗
2, t2)− p12] + p2β [p11 − C11 (e

∗
1, t1)− p12] (29)

+ p̃1β [p̃22 + C11 (e
∗
1, t1)− p̃12] + p̃2β [p̃11 − C11 (e

∗
2, t2)− p̃12] = 0.

Using (28) rewrite the last line of (29) as

p̃1β [−p11 + C11 (e
∗
1, t1) + p12] + p̃2β [−p22 − C11 (e

∗
2, t2) + p12] .

Finally, rewrite (29) as

(p1β − p̃2β) [p22 + C11 (e
∗
2, t2)− p12] + (p2β − p̃1β) [p11 − C11 (e

∗
1, t1)− p12] = 0. (30)

Note that (30) must be equal to zero for any (t1, t2) and an arbitrary function C

(provided that the equilibrium in pure strategies exists). Suppose C is quadratic in effort,

then C11 is a constant, and the only way for (30) to be zero for any (t1, t2) is to have

p1β = p̃2β and p2β = p̃1β for any (t1, t2). Thus, it must be that p1β(e1, e2; β̄) = p2β(e2, e1; β̄)

for any (e1, e2), i.e., (3) holds. Writing this expression as p1β(t, e2; β̄) = p2β(e2, t; β̄) and

integrating both parts over t from e2 to e1, obtain

pβ(e1, e2; β̄)− pβ(e2, e2; β̄) = pβ(e2, e1; β̄)− pβ(e2, e2; β̄),

which leads to (4).

Proof of Lemma 3. Differentiate both sides of equations (8) over β:

∫
[p11(b1(t; β), b2(t

′; β); β)b1β(t; β) + p12(b1(t; β), b2(t
′; β); β)b2β(t

′; β)

+ p1β(b1(t; β), b2(t
′; β); β)]dF (t′|t) = C11(b1(t; β), t)b1β(t; β), (31)

−
∫

[p12(b1(t
′; β), b2(t; β); β)b1β(t

′; β) + p22(b1(t
′; β), b2(t; β); β)b2β(t; β)

+ p2β(b1(t
′; β), b2(t; β); β)]dF (t′|t) = C11(b2(t; β), t)b2β(t; β).

From this point on, set β = β̄. Recall that b1(t; β̄) = b2(t; β̄), p11(e1, e2; β̄) = −p22(e2, e1; β̄)
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and p12(e1, e2; β̄) = −p12(e2, e1; β̄). The system of equations (31) then gives

∫
[p11(b1(t; β̄), b1(t

′; β̄); β̄)b1β(t; β̄) + p12(b1(t; β̄), b1(t
′; β̄); β̄)b2β(t

′; β̄)

+ p1β(b1(t; β̄), b1(t
′; β̄); β̄)]dF (t′|t) = C11(b1(t; β̄), t)b1β(t; β̄), (32)

∫
[p12(b1(t; β̄), b1(t

′; β̄); β̄)b1β(t
′; β̄) + p11(b1(t; β̄), b1(t

′; β̄); β̄)b2β(t; β̄)

− p2β(b1(t
′; β̄), b1(t; β̄); β̄)]dF (t′|t) = C11(b1(t; β̄), t)b2β(t; β̄).

Let y(t) ≡ b1β(t; β̄) + b2β(t; β̄). Adding the two equations (32), obtain the following

Fredholm integral equation of the second kind for function y(t):

[
C11(b1(t; β̄), t)−

∫
p11(b1(t; β̄), b1(t

′; β̄); β̄)dF (t′|t)
]
y(t) (33)

=

∫
p12(b1(t; β̄), b1(t

′; β̄); β̄)y(t′)dF (t′|t)

+

∫
[p1β(b1(t; β̄), b1(t

′; β̄); β̄)− p2β(b1(t
′; β̄), b1(t; β̄); β̄)]dF (t′|t).

(i) Suppose that p has locally symmetric bias, i.e., p1β(e1, e2; β̄) = p2β(e2, e1; β̄). Then

the last integral in (33) is zero, and y(t) = 0 is a solution of the resulting homogeneous

Fredholm equation. Although it is possible for the equation to have other solutions, those

would have to be eigenfunctions of the corresponding integral operator, which only exist

for very special configurations of parameters. The trivial solution y(t) = 0 is the only

“generic” solution that exists for arbitrary functions F and p. We conclude that if a pure

strategy equilibrium in the contest with private information exists for a measurable set

of parameterizations, it has to satisfy y(t) = 0.

(ii) Suppose now that y(t) = 0. This implies that the last integral in (33) has to be

zero for all distributions F . This is only possible if the integrand is identically zero for all

t and t′, i.e., p1β(e1, e2; β̄) = p2β(e2, e1; β̄) for all admissible effort levels e1 and e2, i.e., p

has a locally symmetric bias.

Proof of Proposition 1. Start with the case of public information. Differentiating

Q(β) over β and setting β = β̄, obtain

Q′(β̄) =

∫
[qe1(e

∗
1, t1; e

∗
2, t2; β̄)e

∗
1β(t1, t2; β̄) + qe2(e

∗
1, t1; e

∗
2, t2; β̄)e

∗
2β(t1, t2; β̄)

+ qβ(e
∗
1, t1; e

∗
2, t2; β̄)]dF (t1, t2).
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Function qβ is antisymmetric in (e1, t1; e2, t2) at β̄, and hence in equilibrium it is

also antisymmetric in (t1, t2); therefore, the last term integrates to zero. Swapping the

variables of integration in the second term and using the symmetry of q in (e1, t1; e2, t2),

obtain

Q′(β̄) =

∫
qe1(e

∗
1, t1; e

∗
2, t2; β̄)[e

∗
1β(t1, t2; β̄) + e∗2β(t2, t1; β̄)]dF (t1, t2).

Suppose p has a locally symmetric bias; then the expression in square brackets is equal

to zero due to part (i) of Lemma 2. Conversely, consider q = e1 + e2, which gives qe1 = 1

and

Q′(β̄) =

∫
[e∗1β(t1, t2; β̄) + e∗2β(t2, t1; β̄)]dF (t1, t2) = 0.

This implies that function e∗1β(t1, t2; β̄) + e∗2β(t2, t1; β̄) is antisymmetric in (t1, t2), i.e.,

condition (7) is satisfied, and part (ii) of Lemma 2 implies that p has a locally symmetric

bias.

Consider now the case of private information. The objective function is written as

Q(β) =

∫
q(b1(t1; β), b2(t2; β); β)dF (t1, t2).

Differentiating with respect to β and setting β = β̄, obtain

Q′(β̄) =

∫
[qe1(b1, t1; b2, t2; β̄)b1β(t1; β̄) + qe2(b1, e1; b2, t2; β̄)b2β(t2; β̄)

+ qβ(b1, t1; b2, t2; β̄)]dF (t1, t2).

Recall that b1(t; β̄) = b2(t; β̄). Due to property (ii) of Definition 3, function qβ at

β̄ is antisymmetric in (b1, t1; b2, t2); therefore, in equilibrium it is also antisymmetric

in (t1, t2), and the last term integrates to zero. Property (i) of Definition 3 implies

qe1(b1, t1; b2, t2; β̄) = qe2(b2, t2; b1, t1; β̄). Swapping the variables of integration in the sec-

ond term and using the symmetry of F obtain, similar to the case of public information,

Q′(β̄) =

∫
qe1(b1(t1; β̄), t1; b1(t2; β̄), t2; β̄)[b1β(t1; β̄) + b2β(t1; β̄)]dF (t1, t2).

Suppose p has a locally symmetric bias. Then the expression in square brackets is equal

to zero, due to Lemma 3. Conversely, suppose Q′(β̄) = 0 for any symmetric and locally

symmetrically biased objective Q. Consider the objective with q = e1 + e2, i.e., with

qe1 = 1. In this case, the integrand in the expression for Q′(β̄) depends on t1 only, i.e., the
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whole integral is equal to an integral of b1β(t; β̄)+ b2β(t; β̄) over a positive measure, which

implies that (9) is satisfied and, by Lemma 3, the CSF has a locally symmetric bias.

Proof of Proposition 2. Differentiating both sides of each of the equations in (10)

with respect to β, obtain

p11e
∗
1β + p12e

∗
2β + p1β = c′′(e∗1)e

∗
1β, −p12e

∗
1β − p22e

∗
2β − p2β = c′′(e∗2)e

∗
1β. (34)

At β = β̄ we have e∗1 = e∗2 and

p1 = −p2, p11 = −p22, p12 = 0, p111 = −p222, p112 = −p122. (35)

The first of the equations (34) then gives

e∗1β = −e∗2β =
p1β

c′′ − p11
. (36)

Since we assume that c′′ − p11 > 0, the sign of e∗iβ is determined by the sign of p1β.

Differentiating (34) with respect to β one more time, obtain

(p111e
∗
1β + p112e

∗
2β + p11β)e

∗
1β + p11e

∗
1ββ + (p112e

∗
1β + p122e

∗
2β + p12β)e

∗
2β + p12e

∗
2ββ

+ p11βe
∗
1β + p12βe

∗
2β + p1ββ = c′′′(e∗1)(e

∗
1β)

2 + c′′(e∗1)e
∗
1ββ,

− (p112e
∗
1β + p122e

∗
2β + p12β)e

∗
1β − p12e

∗
1ββ − (p122e

∗
1β + p222e

∗
2β + p22β)e

∗
2β − p22e

∗
2ββ

− p12βe
∗
1β − p22βe

∗
2β − p2ββ = c′′′(e∗2)(e

∗
2β)

2 + c′′(e∗2)e
∗
2ββ.

Now let β = β̄ (and, consequently, e∗1 = e∗2) and use the relations (35):

(p111e
∗
1β − p112e

∗
1β + 2p11β)e

∗
1β + p11e

∗
1ββ − (p112e

∗
1β + p112e

∗
1β + 2p12β)e

∗
1β + p1ββ

= c′′′(e∗1β)
2 + c′′e∗1ββ,

− (p112e
∗
1β + p112e

∗
1β + 2p12β)e

∗
1β + (−p112e

∗
1β + p111e

∗
1β + 2p22β)e

∗
1β + p11e

∗
2ββ − p2ββ

= c′′′(e∗1β)
2 + c′′e∗2ββ.

Adding the two equations, obtain

2(e∗1β)
2(p111 − 3p112 − c′′′) + 4e∗1β(p11β − p12β) + p1ββ − p2ββ = (e∗1ββ + e∗2ββ)(c

′′ − p11).

Here, we used the fact that p11β = p22β due to the locally symmetric bias. Finally, using
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the expression (36) for e∗1β, obtain the result.

Proof of Lemma 4. The second derivative of QE(β;λ, ρ) at β = β̄ is

QE
ββ(β̄;λ, ρ) = qLL[e

∗
1ββ(tL, tL; β̄) + e∗2ββ(tL, tL; β̄)]

+ qHH [e
∗
1ββ(tH , tH ; β̄) + e∗2ββ(tH , tH ; β̄)]

+ qHL[e
∗
1ββ(tH , tL; β̄) + e∗2ββ(tH , tL; β̄) + e∗1ββ(tL, tH ; β̄) + e∗2ββ(tL, tH ; β̄)].

Using the expressions for qij, this can be written as

QE
ββ(β̄;λ, ρ) = λ[e∗1ββ(tL, tL; β̄) + e∗2ββ(tL, tL; β̄)]

+ (1− λ)[e∗1ββ(tH , tH ; β̄) + e∗2ββ(tH , tH ; β̄)]

− λ(1− λ)(1− ρ)[e∗1ββ(tL, tL; β̄) + e∗2ββ(tL, tL; β̄) + e∗1ββ(tH , tH ; β̄)

+ e∗2ββ(tH , tH ; β̄)− e∗1ββ(tH , tL; β̄)− e∗2ββ(tH , tL; β̄)− e∗1ββ(tL, tH ; β̄)

− e∗2ββ(tL, tH ; β̄)].

Note that only the last term depends on ρ. The first two terms combined represent

QE
ββ(β̄;λ, 1), whereas the expression in the square brackets in the last term can be rewrit-

ten in the form 2[QE
ββ

(
β̄; 1

2
, 1
)
−QE

ββ

(
β̄; 1

2
,−1

)
].

Proof of Lemma 5. The FOC for player i is

pii (e1, . . . , en; β) = c′(ei).

Let e∗ denote the symmetric equilibrium effort at β = β̄. Differentiating the FOC with

respect to β and setting e1 = . . . = en = e∗ and β = β̄, obtain (suppressing the arguments

for brevity)
n∑

j=1

piije
∗
jβ + piiβ = c′′(e∗)e∗iβ.

Summing these up for all the players get

n∑

i=1

n∑

j=1

piije
∗
jβ +

n∑

i=1

piiβ = c′′(e∗)
n∑

i=1

e∗iβ.

Rewrite the first term as
∑n

j=1 e
∗
jβ

∑n

i=1 p
i
ij and note that

∑n

i=1 p
i
ij is the same for all j.
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Indeed, in the symmetric equilibrium we have

n∑

i=1

piij = piii +
∑

i 6=j

piij = p111 + (n− 1)p112.

Then, expressing the sum
∑n

i=1 e
∗
iβ leads to the result.

Proof of Proposition 4. For the ease of exposition, we first prove the sufficiency result

for n = 3, then generalize it to an arbitrary n, and conclude with a proof of the necessity

result. For n = 3, the equilibrium we consider solves the system of FOCs

pii(e1, e2, e3; β) = C1(ei, ti), i = 1, 2, 3.

Let e∗i (t; β) denote the solution of this system of equations. The expected aggregate effort

is

QE(β) =

∫ ∑

i

e∗i (t; β)dF (t).

Differentiating the FOCs with respect to β and setting β = β̄ obtain the system of

equations

pii1e
∗
1β + pii2e

∗
2β + pii3e

∗
3β + piiβ = C11(e

∗
i , ti), i = 1, 2, 3.

Let C i
11 ≡ C11(e

∗
i , ti). The system of equations above has the determinant

M =

∣∣∣∣∣∣∣

p111 − C1
11 p112 p113

p212 p222 − C2
11 p223

p313 p323 p333 − C3
11

∣∣∣∣∣∣∣
.

Let us first show that M is the same for all permutations of types t = (t1, t2, t3). It

is sufficient to show that it is the same for t and σ12(t). Note that at β = β̄ we

have e∗i (t; β̄) = e∗j(σij(t); β̄) and e∗k(t; β̄) = e∗k(σij(t); β̄) for k 6= i, j, which implies

e∗1(t1, t2, t3; β̄) = e∗2(t2, t1, t3; β̄) and e∗3(t1, t2, t3; β̄) = e∗3(t2, t1, t3; β̄). Abusing notation,

let e∗ = (e∗1, e
∗
2, e

∗
3) denote the vector of equilibrium efforts. Thus, a permutation of types

is equivalent to the corresponding permutation of efforts e∗ in the arguments of pi. For

the types (t2, t1, t3) this gives the determinant

M̃ =

∣∣∣∣∣∣∣

p111(σ12(e
∗); β̄)− C2

11 p112(σ12(e
∗); β̄) p113(σ12(e

∗); β̄)

p212(σ12(e
∗); β̄) p222(σ12(e

∗); β̄)− C1
11 p223(σ12(e

∗); β̄)

p313(σ12(e
∗); β̄) p323(σ12(e

∗); β̄) p333(σ12(e
∗); β̄)− C3

11

∣∣∣∣∣∣∣
.
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From the unbiasedness condition, we have p111(e2, e1, e3; β̄) = p122(e1, e2, e3; β̄), p
1
12(e2, e1, e3; β̄) =

p212(e1, e2, e3; β̄), p
1
13(e2, e1, e3; β̄) = p223(e1, e2, e3; β̄), p

3
13(e2, e1, e3; β̄) = p323(e1, e2, e3; β̄) and

p333(e2, e1, e3; β̄) = p333(e1, e2, e3; β̄). This gives

M̃ =

∣∣∣∣∣∣∣

p222(e
∗; β̄)− C2

11 p212(e
∗; β̄) p223(e

∗; β̄)

p112(e
∗; β̄) p111(e

∗; β̄)− C1
11 p113(e

∗; β̄)

p323(e
∗; β̄) p313(e

∗; β̄) p333(e
∗; β̄)− C3

11

∣∣∣∣∣∣∣
.

By swapping the first two rows and then the first two columns, determinant M̃ is trans-

formed into M , which implies that M̃ = M . More generally, this implies that the deter-

minant of the system of equations for e∗iβ is invariant to a permutation of types.

For brevity, let gi ≡ piii(e
∗; β̄)− C i

11. Using Kramer’s rule, we can write

e∗iβ = −M i

M
, M1 =

∣∣∣∣∣∣∣

p11β p112 p113

p22β g2 p223

p33β p323 g3

∣∣∣∣∣∣∣
,

M2 =

∣∣∣∣∣∣∣

g1 p11β p113

p212 p22β p223

p313 p33β g3

∣∣∣∣∣∣∣
, M3 =

∣∣∣∣∣∣∣

g1 p112 p11β

p212 g2 p22β

p313 p323 p33β

∣∣∣∣∣∣∣
.

Further, using the symmetry of distribution F we can write

QE
β (β̄) = − 1

n!

∫
1

M

∑

s

[M1(s) +M2(s) +M3(s)]dF (s),

where the summation goes over all permutations s = (s1, s2, s3) of vector t and M i(s)

denotes the determinant M i evaluated for the corresponding permutation.

Consider the sum over permutations in the equation above:

P = M1(t1, t2, t3) +M2(t1, t2, t3) +M3(t1, t2, t3)

+M1(t1, t3, t2) +M2(t1, t3, t2) +M3(t1, t3, t2)

+M1(t2, t1, t3) +M2(t2, t1, t3) +M3(t2, t1, t3)

+M1(t2, t3, t1) +M2(t2, t3, t1) +M3(t2, t3, t1)

+M1(t3, t1, t2) +M2(t3, t1, t2) +M3(t3, t1, t2)

+M1(t3, t2, t1) +M2(t3, t2, t1) +M3(t3, t2, t1).
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Note that M1(t1, t2, t3) = M1(t1, t3, t2), M
2(t1, t2, t3) = M1(t3, t2, t1) and M3(t1, t2, t3) =

M3(t2, t1, t3). This gives

P = 2[M1(t1, t2, t3) +M1(t2, t3, t1) +M1(t3, t1, t2)

+M2(t1, t2, t3) +M2(t2, t3, t1) +M2(t3, t1, t2)

+M3(t1, t2, t3) +M3(t2, t3, t1) +M3(t3, t1, t2)].

We will find conditions for this sum to be equal to zero for any configuration of types.

This is equivalent to the requirement that the corresponding sum of determinants be equal

to zero for any admissible vector of efforts (e1, e2, e3). Consider the first three terms in

the sum above:

∣∣∣∣∣∣∣

p11β(e1, e2, e3; β̄) p112(e1, e2, e3; β̄) p113(e1, e2, e3; β̄)

p22β(e1, e2, e3; β̄) g2(e1, e2, e3; β̄) p223(e1, e2, e3; β̄)

p33β(e1, e2, e3; β̄) p323(e1, e2, e3; β̄) g3(e1, e2, e3; β̄)

∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣

p11β(e2, e3, e1; β̄) p112(e2, e3, e1; β̄) p113(e2, e3, e1; β̄)

p22β(e2, e3, e1; β̄) g2(e2, e3, e1; β̄) p223(e2, e3, e1; β̄)

p33β(e2, e3, e1; β̄) p323(e2, e3, e1; β̄) g3(e2, e3, e1; β̄)

∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣

p11β(e3, e1, e2; β̄) p112(e3, e1, e2; β̄) p113(e3, e1, e2; β̄)

p22β(e3, e1, e2; β̄) g2(e3, e1, e2; β̄) p223(e3, e1, e2; β̄)

p33β(e3, e1, e2; β̄) p323(e3, e1, e2; β̄) g3(e3, e1, e2; β̄)

∣∣∣∣∣∣∣
.

Using the unbiasedness condition, the second and third determinants can be written with

gi and pijk as functions of (e1, e2, e3). Leaving out the arguments, obtain

∣∣∣∣∣∣∣

p11β(e1, e2, e3; β̄) p112 p113

p22β(e1, e2, e3; β̄) g2 p223

p33β(e1, e2, e3; β̄) p323 g3

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣

p11β(e2, e3, e1; β̄) p223 p212

p22β(e2, e3, e1; β̄) g3 p313

p33β(e2, e3, e1; β̄) p113 g1

∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣

p11β(e3, e1, e2; β̄) p313 p323

p22β(e3, e1, e2; β̄) g1 p112

p33β(e3, e1, e2; β̄) p212 g2

∣∣∣∣∣∣∣
.
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Using symmetry, obtain for the whole sum:

∣∣∣∣∣∣∣

p11β(e1, e2, e3; β̄) p112 p113

p22β(e1, e2, e3; β̄) g2 p223

p33β(e1, e2, e3; β̄) p323 g3

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣

p11β(e2, e3, e1; β̄) p223 p212

p22β(e2, e3, e1; β̄) g3 p313

p33β(e2, e3, e1; β̄) p113 g1

∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣

p11β(e3, e1, e2; β̄) p313 p323

p22β(e3, e1, e2; β̄) g1 p112

p33β(e3, e1, e2; β̄) p212 g2

∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣

g1 p11β(e1, e2, e3; β̄) p113

p212 p22β(e1, e2, e3; β̄) p223

p313 p33β(e1, e2, e3; β̄) g3

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣

g2 p11β(e2, e3, e1; β̄) p212

p323 p22β(e2, e3, e1; β̄) p313

p112 p33β(e2, e3, e1; β̄) g1

∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣

g3 p11β(e3, e1, e2; β̄) p323

p113 p22β(e3, e1, e2; β̄) p112

p223 p33β(e3, e1, e2; β̄) g2

∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣

g1 p112 p11β(e1, e2, e3; β̄)

p212 g2 p22β(e1, e2, e3; β̄)

p313 p323 p33β(e1, e2, e3; β̄)

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣

g2 p223 p11β(e2, e3, e1; β̄)

p323 g3 p22β(e2, e3, e1; β̄)

p112 p113 p33β(e2, e3, e1; β̄)

∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣

g3 p313 p11β(e3, e1, e2; β̄)

p113 g1 p22β(e3, e1, e2; β̄)

p123 p223 p33β(e3, e1, e2; β̄)

∣∣∣∣∣∣∣
.

We will now group the terms in the following way: 1+6+8, 2+4+9, 3+5+7. Terms

1, 6 and 8 combined produce

∣∣∣∣∣∣∣

p11β(e1, e2, e3; β̄) p112 p113

p22β(e1, e2, e3; β̄) g2 p223

p33β(e1, e2, e3; β̄) p323 g3

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣

g3 p11β(e3, e1, e2; β̄) p323

p113 p22β(e3, e1, e2; β̄) p112

p223 p33β(e3, e1, e2; β̄) g2

∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣

g2 p223 p11β(e2, e3, e1; β̄)

p323 g3 p22β(e2, e3, e1; β̄)

p112 p113 p33β(e2, e3, e1; β̄)

∣∣∣∣∣∣∣

= (g2g3 − p223p
3
23)[p

1
1β(e1, e2, e3; β̄) + p22β(e3, e1, e2; β̄) + p33β(e2, e3, e1; β̄)] (37)

− (p112g
3 − p113p

3
23)[p

2
2β(e1, e2, e3; β̄) + p33β(e3, e1, e2; β̄) + p11β(e2, e3, e1; β̄)]

+ (p112p
2
23 − g2p113)[p

3
3β(e1, e2, e3; β̄) + p11β(e3, e1, e2; β̄) + p22β(e2, e3, e1; β̄)].
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Each of the expressions in square brackets is zero due to the locally symmetric bias

condition (21).

Consider now the case of arbitrary n ≥ 2. Similar to the special case above, write

e∗iβ = −M i

M
, where M is a determinant with elements mij = piij − δijC

i
11, which is invariant

to permutations of types, and M i is the determinant M with the i-th column replaced by

vector (p11β, . . . , p
n
nβ)

T .

The derivative of expected aggregate effort can be written as a sum over all permu-

tations of types s:

QE
β (β̄) = − 1

n!

∫
1

M

∑

s

∑

i

M i(s)dF (s).

Notice that M i(t) does not change with permutations of t as long as the i-th component

of t stays fixed. Thus, for each i there are (n − 1)! identical terms in the sum that have

si = t1, (n− 1)! identical terms that have si = t2, etc. We can, therefore, use the cyclical

permutations of types to write the sum in the form

(n− 1)!
∑

i

[M i(t1, t2, . . . , tn) +M i(tn, t1, . . . , tn−1) + . . .+M i(t2, . . . , tn, t1)].

The sum in the expression above contains n2 terms and can be divided into n groups of

n terms each, where the first group is

M1(t1, t2, . . . , tn) +M2(tn, t1, . . . , tn−1) + . . .+Mn(t2, . . . , tn, t1),

the second group is

M1(tn, t1, . . . , tn−1) +M2(tn−1, tn, t1, . . . , tn−2) + . . .+Mn(t1, . . . , tn),

and the remaining groups are obtained by shifting the cyclical permutation one step

forward in each term of the previous group.

We will now show that each of these groups of terms is equal to zero under the locally

symmetric bias condition. Of course, it is sufficient to only prove this for one of the

groups; therefore, we will focus on the first group. Thus, we will show that condition (21)

implies

M1(t1, t2, . . . , tn) +M2(tn, t1, . . . , tn−1) + . . .+Mn(t2, . . . , tn, t1) = 0. (38)

Notice that the minor of element p11β from M1(t1, t2, . . . , tn) is the same as the minor
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of element p22β from M2(tn, t1, . . . , tn−1). Indeed, element p11β is in the 11 position in

M1(t1, t2, . . . , tn), therefore its minor is the same as the 11 minor of M . Element p22β is in

the 22 position inM2(tn, t1, . . . , tn−1), therefore its minor is the same as the 22 minor ofM

evaluated at the permutation of types (tn, t1, . . . , tn−1). Recall that M is invariant under

permutations of types, and therefore so are the minors of its diagonal elements as long as

the permutation does not change the type corresponding to that element. Thus, the 22

minor of M evaluated at (tn, t1, . . . , tn−1) is the same as the 22 minor of M evaluated at

σ12(t), which is the same as the 11 minor of M evaluated at t.

Thus, we have shown that if we expand each determinant M i in (38) in the elements

of its i-th column, the coefficients on p11β in M1, p22β in M2, ..., on pnnβ in Mn are the same.

Similarly, it follows that the coefficients on p22β in M1, p33β in M2, ..., on p11β in Mn are

also the same, and so on. This implies that if condition (21) is satisfied then (38) is true.

In order to prove necessity, assume that QE
β (β̄) = 0 for all symmetric distributions of

types F . This implies that the symmetrized marginal effect of β on total effort is zero,

i.e.,
1

n!

∑

s

∑

i

e∗iβ(s; β̄) = 0,

where the summation goes over all permutations of the vector of types t. Recall that

e∗iβ(s; β̄) = −M i(s)
M

, whereM is the same for all permutations of type, therefore
∑

s

∑
i M

i(s) =

0. As shown above, this implies that

∑

i

[M i(t1, t2, . . . , tn) +M i(tn, t1, . . . , tn−1) + . . .+M i(t2, . . . , tn, t1)]

= M1(t1, t2, . . . , tn) +M2(tn, t1, . . . , tn−1) + . . .+Mn(t2, . . . , tn, t1)

+M1(tn, t1, . . . , tn−1) +M2(tn−1, tn, t1, . . . , tn−2) + . . .+Mn(t1, . . . , tn)

+ . . .

+M1(t2, . . . , tn, t1) +M2(t1, t2, . . . , tn) + . . .+Mn(t3, . . . , tn, t1, t2) = 0.

Here, we split the sum into the same n groups following cyclical permutations of types as

described above. Each of these groups is a sum of terms like Ks

∑
i p

i
iβ where each piiβ is

evaluated at one of the cyclical permutations of types, and coefficients Ks are determined

by the second derivatives piij and C i
11 (through gi), cf. Eq. (37). The whole sum must

equal zero for all configurations of types t, which are equivalent to arbitrary configurations

of efforts in the arguments of piij and C i
11. Note that the terms with C i

11 are only present

in the coefficients Ks. Thus, for the sum to be identically zero, a restriction would have
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to be imposed involving the cost function of effort. Without imposing such restrictions,

each of the coefficients Ks cannot be identically equal zero. Thus, the only way for the

sum to be equal to zero without imposing restrictions on the cost function is to require

that
∑

i p
i
iβ = 0 for all cyclical permutations of efforts.

Appendix B. Second-order conditions

In this section, we derive general second-order conditions for maximization of two most

popular objectives, expected aggregate effort and predictive power, under both public and

private information. In doing so, we do not impose any assumptions on the CSF (except

for locally symmetric bias) and distribution of types (except for its symmetry).

B1. Aggregate effort under public information

In the case of public information, define expected aggregate effort in the contest as

QE(β) =

∫
[e∗1(t1, t2; β) + e∗2(t1, t2; β)]dF (t1, t2),

where e∗i (t1, t2; β) are the equilibrium effort levels satisfying the system of equations (5).

The following proposition provides conditions under which expected aggregate effort

QE(β) has a local maximum or a local minimum at β = β̄.

Proposition B1 Suppose p has locally symmetric bias and the following condition is

satisfied for all types (t1, t2) in the support of F at β = β̄:

[C11(e
∗
2, t2) + p22 − p12](2A1 + p1ββ − p̃2ββ) < 0. (39)

Here, p̃2ββ ≡ p2ββ(e
∗
2, e

∗
1; β̄) and all other functions are evaluated at (e∗1, e

∗
2; β̄);

A1 = [p111e
∗
1β + p112e

∗
2β + 2p11β]e

∗
1β + [p112e

∗
1β + p122e

∗
2β + 2p12β]e

∗
2β − C111(e

∗
1, t1)(e

∗
1β)

2,

e∗1β = D−1[p1β(C11(e
∗
2, t2) + p22)− p12p2β],

e∗2β = −D−1[p2β(C11(e
∗
1, t1)− p11) + p12p1β],

D = [C11(e
∗
1, t1)− p11][C11(e

∗
2, t2) + p22] + p212. (40)

Then QE(β) has a local maximum at β = β̄. If the inequality in (39) is reversed, QE(β)

has a local minimum at β = β̄.
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Proof. The system of first-order conditions for equilibrium efforts is

p1(e1, e2; β) = C1(e1, t1), −p2(e1, e2; β) = C1(e2, t2).

Differentiating with respect to β, obtain

p11e
∗
1β + p12e

∗
2β + p1β = C11(e

∗
1, t1)e

∗
1β, −p12e

∗
1β − p22e

∗
2β − p2β = C11(e

∗
2, t2)e

′
2.

Rewriting the system of equations above as

[C11(e
∗
1, t1)− p11]e

∗
1β − p12e

∗
2β = p1β, p12e

∗
1β + [C11(e

∗
2, t2) + p22]e

∗
2β = −p2β,

and solving it for e∗1β and e∗1β, obtain the expressions given in the Proposition.

Differentiating with respect to β once more, and setting β = β̄, obtain

[p111e
∗
1β + p112e

∗
2β + p11β]e

∗
1β + p11e

∗
1ββ + [p112e

∗
1β + p122e

∗
2β + p12β]e

∗
2β + p12e

∗
2ββ

+p11βe
∗
1β + p12βe

∗
2β + p1ββ = C111(e

∗
1, t1)(e

∗
1β)

2 + C11(e
∗
1, t1)e

∗
1ββ,

−[p112e
∗
1β + p122e

∗
2β + p12β]e

∗
1β − p12e

∗
1ββ − [p122e

∗
1β + p222e

∗
2β + p22β]e

∗
2β − p22e

∗
2ββ

−p12βe
∗
1β − p22βe

∗
2β − p2ββ = C111(e

∗
2, t2)(e

∗
2β)

2 + C11(e
∗
2, t2)e

∗
2ββ,

which can be rewritten as

[C11(e
∗
1, t1)− p11]e

∗
1ββ − p12e

∗
2ββ = A1 + p1ββ,

p12e
∗
1ββ + [C11(e

∗
2, t2) + p22]e

∗
2ββ = A2 − p2ββ,

where A1 is given in (40) and

A2 = −[p112e
∗
1β+p122e

∗
2β+2p12β]e

∗
1β−[p122e

∗
1β+p222e

∗
2β+2p22β]e

∗
2β−C111(e

∗
2, t2)(e

∗
2β)

2. (41)

The determinant of the system of equations for e∗1ββ and e∗2ββ is D, the same as the

determinant of the system for e∗1β and e∗2β. Solving the system gives

e∗1ββ = D−1[(C11(e
∗
2, t2) + p22)(A1 + p1ββ) + p12(A2 − p2ββ)], (42)

e∗2ββ = D−1[(C11(e
∗
1, t1)− p11)(A2 − p2ββ)− p12(A1 + p1ββ)],
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and

D(e∗1ββ + e∗2ββ) = [C11(e
∗
2, t2) + p22 − p12](A1 + p1ββ) + [C11(e

∗
1, t1)− p11 + p12](A2 − p2ββ).

Thus,

QE
ββ(β̄) =

∫
(e∗1ββ + e∗2ββ)dF (t1, t2) =

∫
D−1[C11(e

∗
2, t2) + p22 − p12](A1 + p1ββ)dF (t1, t2)

+

∫
D−1[C11(e

∗
1, t1)− p11 + p12](A2 − p2ββ)dF (t1, t2).

Using the symmetry of distribution F , we now swap the variables of integration (t1, t2)

in the second integral, which is equivalent to swapping equilibrium efforts e∗1 and e∗2 in

the arguments of all functions. Note that D is invariant under such a swap, whereas the

expression in the square brackets becomes the same as in the first integral and, due to

the locally symmetric bias condition, A2 becomes A1. This gives

QE
ββ(β̄) =

∫
D−1[C11(e

∗
2, t2) + p22 − p12](A1 + p1ββ)dF (t1, t2)

+

∫
D−1[C11(e

∗
2, t2) + p22 − p12](A1 − p̃2ββ)dF (t1, t2)

=

∫
D−1[C11(e

∗
2, t2) + p22 − p12](2A1 + p1ββ − p̃2ββ)dF (t1, t2).

Because D > 0 due to the second-order conditions for the equilibrium, the result follows.

B2. Aggregate effort under private information

In the case of private information, expected aggregate effort is defined as

QE(β) =

∫
[b1(t; β) + b2(t; β)]dF (t),

where bi(t; β) are the equilibrium bidding functions satisfying the system of integral equa-

tions (8).

The following proposition provides conditions under which expected aggregate effort

QE(β) has a local maximum or a local minimum at β = β̄.

Proposition B2 Suppose p has locally symmetric bias and z(t) is a solution of the fol-
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lowing integral equation:

[
C11(b1(t; β̄), t)−

∫
p11(b1(t; β̄), b1(t

′; β̄); β̄)dF (t′|t)
]
z(t) (43)

=

∫
p12(b1(t; β̄), b1(t

′; β̄); β̄)z(t′)dF (t′|t) + B(t),

where

B(t) = −2C111(b1(t; β̄), t)b
2
1β(t; β̄) +

∫
[2(p111b1β(t; β̄) + p112b2β(t

′; β̄) + 2p11β)b1β(t; β̄)

+ 2(p112b1β(t; β̄) + p122b2β(t
′; β̄) + 2p12β)b2β(t

′; β̄) + p1ββ − p̃2ββ]dF (t′|t),

with p̃2ββ ≡ p2ββ(b1(t
′; β̄), b1(t; β̄); β̄) and all other derivatives of p evaluated at (b1(t; β̄), b1(t

′; β̄); β̄).

Then QE(β) has a local maximum (respectively, local minimum) at β = β̄ if z(t) is

negative (respectively, positive) for all t.

Proof. Differentiating (8) over β twice and setting β = β̄ obtain

∫
[(p111b1β + p112b

′
2β + p11β)b1β + p11b1ββ + (p112b1β + p122b

′
2β + p12β)b

′
2β + p12b

′
2ββ

+ p11βb1β + p12βb
′
2β + p1ββ]dF (t′|t) = C111(b1, t)b

2
1β + C11(b1, t)b1ββ,

−
∫

[(p′112b
′
1β + p′122b2β + p′12β)b

′
1β + p′12b

′
1ββ + (p′122b

′
1β + p′222b2β + p′22β)b2β + p′22b2ββ

+ p′12βb
′
1β + p′22βb2β + p′2ββ]dF (t′|t) = C111(b2, t)b

2
2β + C11(b2, t)b2ββ.

Here, pij and pijk are evaluated at (b1(t; β̄), b2(t
′; β̄); β̄) whereas p′ij and p′ijk are evaluated

at (b1(t
′; β̄), b2(t; β̄); β̄). Similarly, biβ and biββ are evaluated at (t; β̄) while b′iβ and b′iββ

are evaluated at (t′; β̄).

Introduce z(t) = b1ββ(t; β̄)+b2ββ(t; β̄). Recall that when p has a locally symmetric bias

we have b1(t; β̄) = b2(t; β̄), b1β(t; β̄) = −b2β(t; β̄). This implies p′12 = −p12, p
′
22 = −p11,

p′112 = −p122, etc. Transforming the second equation, and summing up the two equations,

obtain the integral equation (43).
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B3. Predictive power under public information

The predictive power, i.e., the probability that the best player wins the contest (cf. Ex-

ample 3(ii)), is equal to

QS(β) =

∫

t1<t2

p(e∗1, e
∗
2; β)dF (t1, t2) +

∫

t1>t2

[1− p(e∗1, e
∗
2; β)]dF (t1, t2). (44)

Here, integration in the first (respectively, second) term is over the set of types (t1, t2)

such that t1 < t2 (respectively, t1 > t2) and e∗i ≡ e∗i (t1, t2; β) are the equilibrium effort

levels.

The following proposition provides conditions for β̄ to be a local maximum or mini-

mum of predictive power QS(β).

Proposition B3 Suppose p has locally symmetric bias and the following condition holds

for all t1 < t2 in the support of F :

2(p11e
∗
1β + p12e

∗
2β + 2p1β)e

∗
1β + 2(p12e

∗
1β + p22e

∗
2β + 2p2β)e

∗
2β

+ p1(e
∗
1ββ + ẽ∗2ββ) + p2(ẽ

∗
1ββ + e∗2ββ) + pββ − p̃ββ < 0,

where e∗1β and e∗2β are as in Proposition B1, e∗1ββ and e∗2ββ are given by (42), ẽ∗iββ and p̃ββ

are evaluated at (e∗2, e
∗
1; β̄), and all other functions are evaluated at (e∗1, e

∗
2; β̄).

Then QS(β) has a local maximum at β = β̄. If the inequality is reversed, QS(β) has

a local minimum at β = β̄.

Proof. Differentiating (44) over β and omitting the arguments of all functions for brevity,

obtain

QS
β(β) =

∫

t1<t2

(p1e
∗
1β + p2e

∗
2β + pβ)dF −

∫

t1>t2

(p1e
∗
1β + p2e

∗
2β + pβ)dF.
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Differentiating over β once more and setting β = β̄, obtain

QSββ(β̄) =

∫

t1<t2

[(p11e
∗
1β + p12e

∗
2β + p1β)e

∗
1β + p1e

∗
1ββ + (p12e

∗
1β + p22e

∗
2β + p2β)e

∗
2β

+ p2e
∗
2ββ + p1βe

∗
1β + p2βe

∗
2β + pββ]dF −

∫

t1>t2

[same expression]dF

=

∫

t1<t2

[(p11e
∗
1β + p12e

∗
2β + 2p1β)e

∗
1β + (p12e

∗
1β + p22e

∗
2β + 2p2β)e

∗
2β

+ p1e
∗
1ββ + p2e

∗
1ββ + pββ]dF −

∫

t1>t2

[same expression]dF.

Now, using the symmetry of F , swap the variables of integration in the second integral.

Recall that p11 = −p̃22, p1 = −p̃2, p12 = −p̃12, and locally symmetric bias implies

e∗1β = −ẽ∗2β and p1β = p̃2β. This gives

QSββ(β̄) =

∫

t1<t2

[2(p11e
∗
1β + p12e

∗
2β + 2p1β)e

∗
1β + 2(p12e

∗
1β + p22e

∗
2β + 2p2β)e

∗
2β

+ p1(e
∗
1ββ + ẽ∗2ββ) + p2(ẽ

∗
1ββ + e∗2ββ) + pββ − p̃ββ]dF,

and the result follows.

The conditions of Proposition B3 simplify substantially when p is linear in effort, i.e.,

it takes the form p(e1, e2; β) = γ1(β)e1 + γ2(β)e2 + γ(β). The results are summarized in

Corollary 3.

Proof of Corollary 3. Here we prove the case of public information. For the case of

private information see Corollary 4.

When p is linear in e1 and e2, all second- and third-order partial derivatives of p with

respect to effort are zero. The unbiasedness condition (1) implies that γ1(β̄) = −γ2(β̄),

and locally symmetric bias condition (3) implies that γ′
1(β̄) = γ′

2(β̄). The expressions for

A1, A2, D, e∗iβ and e∗iββ from Propositions B1 and B3 are now simplified as follows:

D = C11(e
∗
1, t1)C11(e

∗
2, t2), e∗1β =

γ′
1(β̄)

C11(e∗1, t1)
, e∗2β = − γ′

1(β̄)

C11(e∗2, t2)
,

A1 = −C111(e
∗
1, t1)γ

′
1(β̄)

2

C11(e∗1, t1)
2

, A2 = −C111(e
∗
2, t2)γ

′
1(β̄)

2

C11(e∗2, t2)
2

,
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e∗1ββ =
A1 + p1ββ

C11(e∗1, t1)
=

1

C11(e∗1, t1)

[
γ′′
1 (β̄)−

C111(e
∗
1, t1)γ

′
1(β̄)

2

C11(e∗1, t1)
2

]
,

e∗2ββ =
A2 − p2ββ

C11(e∗2, t2)
= − 1

C11(e∗2, t2)

[
γ′′
2 (β̄) +

C111(e
∗
2, t2)γ

′
1(β̄)

2

C11(e∗2, t2)
2

]
.

The criterion from Proposition B3 then becomes

4p1βe
∗
1β + 4p2βe

∗
2β + p1(e

∗
1ββ + ẽ∗2ββ) + p2(ẽ

∗
1ββ + e∗2ββ) + pββ − p̃ββ

= 4γ′
1(β̄)

2

[
1

C11(e∗1, t1)
− 1

C11(e∗2, t2)

]

+ γ1(β̄)

[
γ′′
1 (β̄)

C11(e∗1, t1)
− C111(e

∗
1, t1)γ

′
1(β̄)

2

C11(e∗1, t1)
3

− γ′′
1 (β̄)

C11(e∗2, t2)
+

C111(e
∗
2, t2)γ

′
1(β̄)

2

C11(e∗2, t2)
3

− γ′′
2 (β̄)

C11(e∗1, t1)
− C111(e

∗
1, t1)γ

′
1(β̄)

2

C11(e∗1, t1)
3

+
γ′′
2 (β̄)

C11(e∗2, t2)
+

C111(e
∗
2, t2)γ

′
1(β̄)

2

C11(e∗2, t2)
3

]

+ γ′′
1 (β̄)e

∗
1 + γ′′

2 (β̄)e
∗
2 − γ′′

1 (β̄)e
∗
2 − γ′′

2 (β̄)e
∗
1,

and the result follows.

B4. Predictive power under private information

In the case of private information, define the predictive power of the contest as

QS(β) =

∫

t1<t2

p(b1(t1; β), b2(t2; β); β)dF (t1, t2) (45)

+

∫

t1>t2

[1− p(b1(t1; β), b2(t2; β); β)]dF (t1, t2).

Here, bi(t; β) are the equilibrium bidding functions satisfying the system of integral equa-

tions (8).

The following proposition provides conditions under which predictive power QE(β)

has a local maximum or a local minimum at β = β̄.

Proposition B4 Suppose p has locally symmetric bias and the following condition holds

for all t1 < t2 in the support of F :

2
(
p11b

2
1(t1; β̄) + 2p12b1(t1; β̄)b1(t2; β̄) + p22b

2
1(t2; β̄) (46)

+2p1βb1β(t1; β̄) + 2p2βb2β(t2; β̄)
)
+ p1z(t1) + p2z(t2) + pββ − p̃ββ < 0.
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Here, all the derivatives of p are evaluated at (b1(t1; β̄), b1(t2; β̄); β̄); z(t) is the solution

of integral equation (43) in Proposition B2; and p̃ββ ≡ pββ(b1(t2; β̄), b1(t1; β̄); β̄).

Then QS(β) has a local maximum at β = β̄. If the inequality is reversed, S(β) has a

local minimum at β = β̄.

Proof. Differentiating the expression for QS(β) with respect to β twice and setting β = β̄,

obtain

QSββ(β̄) =

∫

t1<t2

[(p11b1β(t1; β̄) + p12b2β(t2; β̄) + 2p1β)b1β(t1; β̄) + p1b1ββ(t1; β̄)

+ (p12b1β(t1; β̄) + p22b2β(t2; β̄) + 2p2β)b2β(t2; β̄) + p2b2ββ(t2; β̄) + pββ]dF (t1, t2)

−
∫

t1>t2

[same expression]dF (t1, t2).

Recall that in equilibrium at β = β̄, with a locally symmetrically biased CSF, we have

b1(t; β̄) = b2(t; β̄), b1β(t; β̄) = −b2β(t; β̄), p11 = −p̃22, p12 = −p̃12, and p1β = p̃2β.

Swapping the variables of integration in the second integral and using the definition

z(t) = b1ββ(t; β̄) + b2ββ(t; β̄), obtain the result.

For a CSF that is linear in effort, (46) takes a simpler form, and the result is similar

to the case of public information.

Corollary 4 Corollary 3 holds in the case of private information, with e∗1 = b1(t1; β̄) and

e∗2 = b1(t2; β̄).

Proof. For a linear CSF p(e1, e2; β) = γ1(β)e1 + γ2(β)e2 + γ(β), Eqs. (32) become

γ′
1(β)

∫
dF (t′|t) = C11(b1(t; β̄), t)b1β(t; β̄), −γ′

2(β)

∫
dF (t′|t) = C11(b1(t; β̄), t)b2β(t; β̄),

which gives, assuming γ′
1(β̄) = γ′

2(β̄) due to the locally symmetric bias condition,

b1β(t; β̄) = −b2β(t; β̄) =
γ′
1(β̄)

C11(b1(t; β̄), t)
.

Furthermore, (43) gives

C11(b1(t; β̄), t)z(t) = −2C111(b1(t; β̄), t)b
2
1β(t; β̄) + γ′′

1 (β̄)− γ′′
2 (β̄),

z(t) = −2C111(b1(t; β̄), t)γ
′
1(β̄)

2

C11(b1(t; β̄), t)3
+

γ′′
1 (β̄)− γ′′

2 (β̄)

C11(b1(t; β̄), t)
.
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The criterion from Proposition 46 is, in this case,

4γ′
1(β̄)[b1β(t1; β̄) + b2β(t2; β̄)] + γ′

1(β̄)[z(t1) + z(t2)] + [γ′′
1 (β̄)− γ′′

2 (β̄)][b1(t1; β̄)− b1(t2; β̄)].

Plugging in the expressions for biβ and z(·), obtain the same result as in Corollary 3.

The fact that Corollary 3 holds for both public and private information, with equilib-

rium efforts appropriately redefined, is not unexpected. When the CSF is linear in effort,

a player’s equilibrium effort depends only on her own type, and hence information about

the other player’s type is irrelevant.
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