Testing the Ricardian equivalence theorem in the framework of the permanent income hypothesis

Faik Bilgili

Erciyes University, Faculty of Economics and Administrative Sciences

19 September 1997

Online at https://mpra.ub.uni-muenchen.de/75542/
MPRA Paper No. 75542, posted 14 December 2016 16:34 UTC
TESTING THE RICARDIAN EQUIVALENCE THEOREM IN THE FRAMEWORK OF THE PERMANENT INCOME HYPOTHESIS*

Faik Bilgili **

Abstract

According to Ricardian Equivalence Theorem (RET), today's consumption decisions would be independent of some fiscal variables such as lump sum taxes, government debt outstanding or the budget deficit given that government expenditures are fixed. The Permanent Income Hypothesis (PIH) consumption function also implies that change in consumption cannot be forecast by the change in lag(s) of any variable including the change in those fiscal variables. Thus, the test of RET is a nested test of the PIH. After unit root tests and cointegration tests were conducted, the test of the RET were run by using a system in which coefficients of consumption, income, taxes and debt variables were determined in two steps. Among twenty countries that were chosen based on data availability, the result of this paper is that the RET holds in all countries and that the PIH holds in majority of the countries. The failure of the PIH occurs in developing countries.

Keywords: Ricardian Equivalence, Permanent Income Hypothesis, Rational Expectations, Intertemporal Utility Function, Sensitivity, Unit Root, Cointegration,

I. INTRODUCTION

The Ricardian Equivalence Theorem (RET) states that the shifts between bond financing and taxation have no effect on the allocation of resources between private consumption and investment, given that government expenditures and population growth are fixed.

The purpose of this study is to test the RET using the Permanent Income Hypothesis (PIH) consumption function that allows us to measure the effect, if any, of income, taxes,

** Assistant Professor, Erciyes University Faculty of Economics and Administrative Sciences, Department of Economics, 38039 Kayseri/Turkey. e-mail: fbilgili@erciyes.edu.tr.
debt (or deficit) on the level of private consumption. According to the PIH, lagged and currently predicted values of income, tax and debt with zero innovations do not jointly have any effect on consumption behavior with given government expenditures.

The plan of this study is as follows. Section II derives a consumption function consistent with the Permanent Income Hypothesis (PIH) and explains the implications of the PIH for RET. The PIH states that consumption should not respond to predicted values of income, taxes and debt but should respond only to the innovations of current values of these variables. If, however, consumption responds to the predictable movements in variables in which innovations are zero, this would represent excess sensitivity of consumption. The excess sensitivity of consumption to taxes, government debt outstanding or deficit would be a measure of the failure of the RET as well as of the PIH. Section III presents an econometric method of testing the excess sensitivity of consumption to income, tax and debt. In section IV, before the testing of excess sensitivity of consumption to income, tax and debt, in order to avoid biased estimation results, unit root and cointegration tests are presented for the variables of twenty countries. The variables were found nonstationary but cointegrated; therefore, it sufficed to regress the variables in their levels rather than in differences in the VAR system.

Empirical evidence on the excess sensitivity of consumption to income, tax and debt for twenty countries gives the conclusion that income, tax and debt jointly have some effect on consumption mostly in developing countries, whereas tax and debt jointly do not have an effect in all countries.

II. THE PERMANENT INCOME HYPOTHESIS CONSUMPTION FUNCTION WITH RATIONAL EXPECTATIONS.

Intertemporal utility function of an infinitely-lived consumer with rational expectations is

\[U(t) = E \sum_{i=0}^{\infty} u(C_{t+i})(1 + \rho)^{-i} \]

(1)
where $U(t)$ is total utility and C_i is per capita consumption, $i = 0, 1, 2, \ldots \infty$. E_t denotes the expectations operator conditional on information available at time t.

The utility function, u, satisfies the usual concavity conditions, with $u' > 0$, $u'' < 0$ and ρ is the discount rate; $0 < \rho < \infty$. The right hand side of the eq. (1) is the expectation of the discounted value of total consumption, conditional on information available at time t. The budget constraint is,

$$W_{t+1} = (1 + r) (W_t + Y_t - T_t - C_t)$$ \hspace{1cm} (2)$$

$$W_t = K_t + B_t$$ \hspace{1cm} (3)

where r is real interest rate, W is wealth, Y is labor income, T is taxes, K is capital and B is bonds. The transversality conditions for the optimization problem are

$$\lim_{i \to \infty} E_t [K_{t+i}(1 + r)^{-i}] = 0$$ \hspace{1cm} (4)$$

$$\lim_{i \to \infty} E_t [B_{t+i}(1 + r)^{-i}] = 0$$ \hspace{1cm} (5)

Taking into account these conditions, wealth evaluation becomes,

$$W_t = \sum_{i=0}^{\infty} (1 + r)^{-i} E_t [C_{t+i} + T_{t+i} - Y_{t+i}]$$ \hspace{1cm} (6)$$

The consumer budget constraint then becomes

$$\sum_{i=0}^{\infty} R^{-i} E_t (C_{t+i}) = K_t + B_t + \sum_{i=0}^{\infty} R^{-i} E_t (Y_{t+i}) - \sum_{i=0}^{\infty} R^{-i} E_t (T_{t+i})$$ \hspace{1cm} (7)$$

where $R = 1 + r$ is the gross interest rate. Maximization of eq.(1) subject to eq.(7) by lagrangian gives the Euler equation;

$$L = U(t) + \lambda \left[K_t + B_t + E_t \left(\sum_{i=0}^{\infty} R^{-i} (Y_{t+i} - T_{t+i}) \right) - E_t \left(\sum_{i=0}^{\infty} R^{-i} C_{t+i} \right) \right]$$ \hspace{1cm} (8)$$

$$E_t [u'(C_{t+i})] = \lambda \left(\frac{R}{\delta} \right)^{-i}$$ \hspace{1cm} (9)$$

where $\delta = (1 + \rho)$ is the discount rate. Therefore, the time path or change in consumption depends on r and ρ. Eq. (9) implies that expected marginal utility of consumption at any time is constant. And if $r = \rho$, then

$$u'(C_t) = E_t [u'(C_{t+i})]$$ \hspace{1cm} (10)$$
Inserting certainty equivalence behavior, \(^1\) \(C_t = E_t[C_{t+1}] \), from eq.(10) into budget constraint in eq.(7), one can obtain the consumption function given in eq.(11)

\[
C_t = \frac{r}{R} \left[K_t + \sum_{i=0}^{\infty} R^{-i} E_t\left(Y_{t+i} \right) \right] + \frac{r}{R} \left[B_t - \sum_{i=0}^{\infty} R^{-i} E_t\left(T_{t+i} \right) \right] + u_t ,
\]

(11)

where \(rR^{-1} \) is the annuity value. Therefore \(C_t \) is proportional to permanent income that is equal to annuity values of the capital stock at time \(t \) and expected discounted present value of future labor income, plus annuity value of the bond stock at time \(t \), less the annuity value of expected discounted present value of taxes. If there is no transitory consumption, the disturbance term \(u_t \) will be zero. The first term on the right hand side of eq. (11) is Flavin’s definition of permanent income that is equal to the annuity value of net worth. Net worth is equal to the sum of real wealth and the present discounted value of current and future labor income. \(^2\) In eq.(11) the permanent income is equal to the sum of the first term explained above, plus the annuity value of bonds at time \(t \) and the expected present discounted values of current and future taxes. Eq. (11) can be used to evaluate the RET within the PIH.

The consumption function in eq.(11) at \(t+1 \) is

\[
C_{t+1} = rR^{-1} \left[R(K_t + B_t + Y_t - T_t - C_t) + \sum_{i=0}^{\infty} R^{-i} E_{t+1}\left(Y_{t+i+1} \right) \right]
\]

\[
- \sum_{i=0}^{\infty} R^{-i} E_{t+1}\left(T_{t+i+1} \right) + u_{t+1}
\]

(12)

Multiplying consumption at time \(t \) by \(R \), and rearranging this, yields

\[
RC_t = r(K_t + B_t) + r(Y_t - T_t) + r \left[\sum_{i=0}^{\infty} R^{-i} E_t\left(Y_{t+i+1} \right) \right]
\]

\[
- \sum_{i=0}^{\infty} R^{-i} E_t\left(T_{t+i+1} \right) + Ru_t ,
\]

(13)

Subtraction of (13) from (12) yields

\[
\Delta C_{t+1} = rR^{-1} \sum_{i=0}^{\infty} R^{-i} \left(E_{t+i} - E_t\right)\left(Y_{t+i+1} - T_{t+i+1} \right) + \eta_{t+1} ,
\]

(14)

where the error term \(\eta_{t+1} = u_{t+1} - Ru_t \). If expectations are rational (meaning that \((E_{t+i} - E_t)\left(Y_{t+i+1} - T_{t+i+1} \right) = 0 \)), then as the PIH implies, changes in income, taxes,
capital stock and holdings of government bonds will not affect the changes in consumption given that government expenditures are fixed. In eq. (14) consumption responds to the revisions in future income and taxes. If consumption changes by more than revisions in permanent income caused by innovations in current income and taxes, this amount will stand for the "excess sensitivity" of consumption to changes in income and taxes. Excess sensitivity can be tested by seeing whether consumption responds to even predictable changes in income and taxes.

III. THE ECONOMETRIC METHOD

Considering the VAR system below, we can define the effects of innovations on future values of these variables as impulse response functions or dynamic multipliers. For simplicity, assuming it is a first order VAR system,

\[x_t = k + \Phi_1 x_{t-1} + e_t \]

where \(x_t \) is an \(n \times 1 \) vector containing each of \(n \) variables included in the system.

\(k \) is an \(n \times 1 \) vector of intercept terms.

\(\Phi_1 \) are \(n \times n \) matrices of coefficients, \(i = 1,2\ldots p \); and

\(e_t \) is an \(n \times 1 \) vector of error terms (unanticipated component of the series).

By iterating eq.(19) backward to obtain

\[x_0 = k + \Phi_1 x_{-1} + e_0 \]
\[x_1 = k + \Phi_1 x_0 + e_1 \]
\[x_2 = k + \Phi_1 x_1 + e_2 \]

..............

\[x_t = k + \Phi_1 x_{t-1} + e_t. \]

We can calculate the \(x_t \) recursively as follows,

\[x_t = k + \Phi_1 (k + \Phi_1 x_{t-2} + e_{t-1}) + e_t. \]
\[x_t = (I + \Phi_1) k + \Phi_1^2 x_{t-2} + \Phi_1 e_{t-1} + e_t. \]

And after \(n \) iterations,

\[x_t = (I + \Phi_1 + \ldots + \Phi_1^n) k + \sum_{i=0}^{n} \Phi_1^i e_{t-i} + \Phi_1^{n+1} x_{t-n-1} \] (16)
Convergence requires that as n goes to infinity \(\Phi_n \) will vanish. Stationarity requires that the characteristic roots, or eigenvalues of \(\Phi \) lie within the unit circle. Assuming the stationarity condition is met, the solution for \(x_t \) is,

\[
x_t = \mu + \sum_{i=0}^{n} \Phi_i e_{t-i}
\]

Eq.(17) is moving average representation of eq.(15). Writing eq.(15) and eq.(17) in matrix form, we obtain (15)' and (17)'.

\[
\begin{bmatrix}
Y_t \\
T_t \\
B_t
\end{bmatrix} = \begin{bmatrix}
k_1 \\
k_2 \\
k_3
\end{bmatrix} + \begin{bmatrix}
p_{11} & p_{12} & p_{13} \\
p_{21} & p_{22} & p_{23} \\
p_{31} & p_{32} & p_{33}
\end{bmatrix} \begin{bmatrix}
Y_{t-1} \\
T_{t-1} \\
B_{t-1}
\end{bmatrix}+ \begin{bmatrix}
\varepsilon_{1,t} \\
\varepsilon_{2,t} \\
\varepsilon_{3,t}
\end{bmatrix}
\]

\[
\begin{bmatrix}
Y_t \\
T_t \\
B_t
\end{bmatrix} = \begin{bmatrix}
\bar{Y} \\
\bar{T} \\
\bar{B}
\end{bmatrix} + \sum_{i=0}^{\infty} \begin{bmatrix}
p_{11} & p_{12} & p_{13} \\
p_{21} & p_{22} & p_{23} \\
p_{31} & p_{32} & p_{33}
\end{bmatrix} \begin{bmatrix}
\varepsilon_{1,t-i} \\
\varepsilon_{2,t-i} \\
\varepsilon_{3,t-i}
\end{bmatrix}
\]

where \(Y_t \) is income, \(T_t \) is tax revenue and \(B_t \) is the bonds held by the individual at time \(t \). \(\bar{Y}, \bar{T}, \bar{B} \) stand for the means of \(Y_t, T_t \) and \(B_t \), respectively. \(p_{ij}^{l} \) is the coefficient of \(k \) th equation, \(j \) th variable at time \(i \) in the VAR system. The coefficients \(p_{ij}^{l} \) can be used to generate the effects of \(\varepsilon_{1,t-i}^{l}, \varepsilon_{2,t-i}^{l}, \varepsilon_{3,t-i}^{l} \) on \(\{ Y_t \}, \{ T_t \} \) and \(\{ B_t \} \) sequences.

\[
\frac{\partial Y_t}{\partial \varepsilon_{1,t}^{1}} = p_{11}^{1} \text{ is the instantaneous effect of one unit change in } \varepsilon_{1,t} \text{ on } Y_t.
\]

\[
\frac{\partial Y_{t+i}}{\partial \varepsilon_{1,t}^{1}} = p_{11}^{1} \text{ is the effect of one unit change in } \varepsilon_{1,t} \text{ on } Y_{t+i}. \text{ It is also referred to as the impulse-response function or dynamic multiplier. The cumulative effect of one unit change in } \varepsilon_{1,t} \text{ on } Y_t \text{ through time is given by,}
\]

\[
\sum_{i=0}^{\infty} \frac{\partial Y_{t+i}}{\partial \varepsilon_{1,t}^{1}} = \sum_{i=0}^{\infty} p_{11}^{i}.
\]

And the present value of this cumulative effect is

\[
\sum_{i=0}^{\infty} R^{-i} [p_{11}^{i}] = \frac{1}{1 - R^{-1} p_{11}^{1}}, \text{ provided that } |R^{-1} p_{11}^{1}| < 1.
\]

where, $R^{-1} = \frac{1}{1 + R}$ = discount factor. Finally the sum of cumulative effects of $\varepsilon_{1,t}, \varepsilon_{2,t}, \varepsilon_{3,t}$ on \{Y\} is given by,

$$\sum_{i=0}^{\infty} \left[\frac{\partial Y_{t+i}}{\partial \varepsilon_{1,t}} + \frac{\partial Y_{t+i}}{\partial \varepsilon_{2,t}} + \frac{\partial Y_{t+i}}{\partial \varepsilon_{3,t}} \right] = \sum_{i=0}^{\infty} p_{11}^i + \sum_{i=0}^{\infty} p_{12}^i + \sum_{i=0}^{\infty} p_{13}^i .$$

(19)

The present value of these cumulative effects on \{Y\} is

$$\sum_{i=0}^{\infty} R^{-i} \left[p_{11}^i + p_{12}^i + p_{13}^i \right] ,$$

(20)

The present value of the sum of cumulative effects of $\varepsilon_{1,t}, \varepsilon_{2,t}, \varepsilon_{3,t}$ on \{T\} is given by

$$\sum_{i=0}^{\infty} R^{-i} \left[p_{21}^i + p_{22}^i + p_{23}^i \right] .$$

(21)

And present value of sum of cumulative effects of $\varepsilon_{1,t}, \varepsilon_{2,t}, \varepsilon_{3,t}$ on \{B\} is

$$\sum_{i=0}^{\infty} R^{-i} \left[p_{31}^i + p_{32}^i + p_{33}^i \right] .$$

(22)

Let eq.(20), eq.(21) and eq.(22) be Ω_1, Ω_2 and Ω_3 respectively. Note that Ω_i is the present value of the sum of the cumulative effects of $\varepsilon_{1,t}, \varepsilon_{2,t}, \varepsilon_{3,t}$. When the current forecast errors are realized, the sum of the present value of revisions in future income, taxes and bonds is

$$\Omega_1 \varepsilon_t + \Omega_2 \varepsilon_t + \Omega_3 \varepsilon_t$$

(23)

where $\varepsilon_t = \begin{bmatrix} \varepsilon_{1,t} \\ \varepsilon_{2,t} \\ \varepsilon_{3,t} \end{bmatrix}$.

And the revision in permanent income is

$$rR^{-1} \left[\Omega_1 + \Omega_2 + \Omega_3 \right]$$

(24)

If there is excess sensitivity of consumption to variables in the VAR, it implies that consumption responds even to predictable changes in income, taxes and bonds whose innovations are zero. If there is no excess sensitivity of consumption to the variables, it means that consumption changes only by the revision in permanent income given by
eq.(24). By the introduction of the actual changes in income, taxes and bonds that represent predictable changes in the VAR system, the "excess sensitivity" can be tested with the following equation,

$$\Delta C_{t+1} = k + r R^{-1} \left[\Omega_1 + \Omega_2 + \Omega_3 \right] e_t + \alpha_1 \Delta Y_{t+1} + \alpha_2 \Delta T_{t+1} + \alpha_3 \Delta B_{t+1} + \eta_{t+1}$$

(25)

Eq. (25) is the unrestricted version of the model. The coefficients α_1, α_2 and α_3 are the excess sensitivity parameters. The PIH states that α_1, α_2 and α_3 are jointly equal to zero. The RET implies that α_2 and α_3 are jointly equal to zero.

IV. TESTING THE EXCESS SENSITIVITY ACROSS COUNTRIES

In this section, excess sensitivity test will be performed for twenty countries; Belgium, Canada, Chile, France, Egypt, El Salvador, Finland, Germany, India, Italy, Japan, Malaysia, Pakistan, South Africa, Singapore, Sweden, UK, USA, Turkey and Venezuela. The countries were chosen based on availability of data.

Annual Private Consumption and GDP data were drawn from World Bank Data CD-ROM 1995 for the period 1960 to 1993. The Tax Revenues, Government Debt Outstanding data were drawn from World Bank Data CD-ROM 1995 and IFS CD-ROM 1995 for the period 1970 to 1993. Nominal annual values were divided by the GDP deflator and population to derive real per capita values. C_t, Y_t, T_t and B_t stand for real per capita private consumption, real per capita GDP, real per capita tax and real per capita debt, respectively.

The lag number = 4 was determined for Belgium, Chile, France, El Salvador, Italy, Japan, Malaysia, South Africa, Singapore, Sweden, UK, USA, Turkey and Venezuela.

The lag number = 3 was determined for Canada, Egypt, Finland, Germany, India and the Pakistan by the results obtained from Akaike Information Criterion (AIC), and Schwartz Bayesian Criterion (SBC). In the VAR of order 4, the variables are estimated as follows:

$$Y_t = m_1 + \left(a_{11} L + a_{12} L^2 + a_{13} L^3 + a_{14} L^4 \right) Y_t + \left(b_{11} L + b_{12} L^2 + b_{13} L^3 + b_{14} L^4 \right) T_t + \left(c_{11} L + c_{12} L^2 + c_{13} L^3 + c_{14} L^4 \right) B_t + u_{1t}$$

$$T_t = m_2 + \left(a_{21} L + a_{22} L^2 + a_{23} L^3 + a_{24} L^4 \right) Y_t$$
where L is lag operator. From eqs.(25) and (26), excess sensitivity tests were conducted by the equation below:

\[\Delta C_t = k + rR^{-1} \left[\Omega_1 + \Omega_2 + \Omega_3 \right] e_t \]

\[+ \alpha_{11} \Delta Y_t + \alpha_{12} L \Delta Y_t + \alpha_{13} L^2 \Delta Y_t + \alpha_{14} L^3 \Delta Y_t \]

\[+ \alpha_{21} \Delta T_t + \alpha_{22} L \Delta T_t + \alpha_{23} L^2 \Delta T_t + \alpha_{24} L^3 \Delta T_t \]

\[+ \alpha_{31} \Delta B_t + \alpha_{32} L \Delta B_t + \alpha_{33} L^2 \Delta B_t + \alpha_{34} L^3 \Delta B_t + n_t \]

(27)

The problem with this test in eq.(27) is that \(\Delta C_t \) might respond to innovations rather than the predicted parts in \(\Delta Y_t, \Delta T_t, \Delta B_t \). Then such a response could be interpreted as excess sensitivity. This, however, would be wrong interpretation. Therefore, we will first decompose \(\Delta Y_t, \Delta T_t \) and \(\Delta B_t \) into innovations and predicted parts by using the system given in eq.(26) and then use only predicted parts in which innovations are zero in eq.(28) below. Lagged values are the predicted values. In eq.(28) below there is no any current variable (the variable at time \(t \)), hence all values in the system are the predicted values. If change in consumption responds to these values, it would be excess sensitivity of consumption to variables given in the system.

\[\Delta C_t = b + \alpha_{11} \left[\left(a_{11} L + a_{12} L^2 + a_{13} L^3 + a_{14} L^4 \right) Y_t + \left(b_{11} L + b_{12} L^2 + b_{13} L^3 + b_{14} L^4 \right) T_t \right] \]

\[+ (c_{11} L + c_{12} L^2 + c_{13} L^3 + c_{14} L^4) B_t \]

\[+ \alpha_{12} L \Delta Y_t + \alpha_{13} L^2 \Delta Y_t + \alpha_{14} L^3 \Delta Y_t \]

\[+ \alpha_{21} \Delta T_t + \alpha_{22} L \Delta T_t + \alpha_{23} L^2 \Delta T_t + \alpha_{24} L^3 \Delta T_t \]

\[+ \alpha_{31} \Delta B_t + \alpha_{32} L \Delta B_t + \alpha_{33} L^2 \Delta B_t + \alpha_{34} L^3 \Delta B_t + n_t \]

(28)

where \(b = k + \alpha_{11} m_1 + \alpha_{21} m_2 + \alpha_{31} m_3 \)
and \(v_t = rR^{-1}[\Omega_1 + \Omega_2 + \Omega_3]e_t + n_t + \alpha_{11}u_{1t} + \alpha_{21}u_{2t} + \alpha_{31}u_{3t} \)

Considering eq.(28) as an unrestricted system, we then run excess sensitivity test as follows:

\[
\Delta C_t = b + v_t \\
\Delta C_t = b + \alpha_{11}[(a_{11}-1)L + a_{12}L^2 + a_{13}L^3 + a_{14}L^4)]Y_t \\
\text{ } + (b_{11}L + b_{12}L^2 + b_{13}L^3 + b_{14}L^4)T_t \\
\text{ } + (c_{11}L + c_{12}L^2 + c_{13}L^3 + c_{14}L^4)B_t \\
\text{ } + \alpha_{12}L\Delta Y_t + \alpha_{13}L^2\Delta Y_t + \alpha_{14}L^3\Delta Y_t + v_t
\] (30)

Before estimating eq.(26) and conducting the sensitivity tests by eqs.(29) and (30), to avoid biased results, we will run unit root tests and, if necessary, cointegration tests. Unit root tests will be conducted to see if variables are stationary. If they are not stationary, cointegration tests will be performed to see if one or more linear combinations of these variables are stationary. If there exists such a stable linear combination, estimation of VAR based on level of the variables would suffice. The statistical implication of this is that one can first run a VAR given by eq.(26) to obtain the parameters and then use these parameters in eq.(28). If the variables in the VAR system are not cointegrated, the excess sensitivity parameters would be biased.

In Table 1, all Dickey-Fuller test results indicate that all variables for each country are nonstationary except, \(C_t \) and \(Y_t \) (by DF test without trend) and \(T_t \) and \(B_t \) (by DF test with and without trend) of Chile, \(C_t \) (by DF test without trend) of Finland, \(Y_t \) and \(B_t \) (by DF test without trend) of Japan, \(B_t \) (by DF test without trend) of Turkey and \(C_t \) and \(Y_t \) (by DF test with and without trend) of UK. Table 2 shows that all nonstationary variables are I(1).\(^3\) Table 3 gives the results of cointegration tests by Johansen methodology that determines the number of non-zero eigenvalues by the maximum likelihood method.\(^4\)

The estimated eigenvalues are given in the first column of Table 3-B.\(^5\) \(\lambda \)Trace and \(\lambda \)Max test the number of eigenvalues, \(r \), that are statistically different from zero. In the three variable case, \(n = 3 \), \(\lambda \)Trace tests the hypothesis that there is no cointegration, against alternative that there are 1, 2, or 3 cointegration vectors. If \(H_0: r = 0 \) is rejected
against $H_1: r > 0$, then H_0 is $r \leq 1$ is tested against hypothesis $r = 2$ or 3. The λ_{Max} is more specific than the λ_{Trace} test, whose null hypothesis is that there are no cointegrating vectors against the hypothesis that there is one cointegrating vector.

Since calculated values of λ_{Trace} exceed the tabled critical value of 35.06 at the 0.05 level, the test statistics for each country result in rejection of no cointegration among variables and accept one of the alternative hypothesis that there are one or more cointegrating vectors. Furthermore, the same test statistics indicate that the alternative hypothesis that there are two or three cointegrating vectors should be accepted at the 0.05 level for Chile, Finland, Italy, Malaysia, Singapore, South Africa, Sweden, Turkey and the USA. Finally the λ_{Trace} test statistic indicates that $H_1: r = 3$ is accepted at the 0.05 level for Malaysia and the USA.

The λ_{Max} test shows that the $H_0: r = 0$ (against $H_1: r = 1$) is rejected at the 0.05 and 0.01 levels for each country except Germany and India. The $H_0: r = 1$ (vs. $H_1: r = 2$) is rejected at 0.05 for Chile, Finland, Italy, Malaysia, Singapore, South Africa, Sweden, Turkey and the USA. The $H_0: r = 2$ (vs. $H_1: r = 3$) is rejected at 0.05 for Malaysia and the USA.

In conclusion, Table 3-A and Table 3-B show that there is at least one cointegrating vector among the variables for each country. Since variables are cointegrated, they should be estimated in levels. Hence, when variables are cointegrated, the parameters that were obtained from the VAR estimation based on levels can be used to measure the excess sensitivity parameters.

The results of the F statistics tests for eqs. (29) and (30) are shown in columns 1 and 2 of Table 4, respectively. The results given by Table 4 were obtained from the restrictions on the coefficients that were estimated in two steps. First, parameters in system given by eq.(26) were estimated by a VAR system and at the second step, the coefficients α_{11}, α_{21} and α_{31} in eq.(28) were estimated using the coefficients obtained at the first step. In the first column, the null hypothesis is that all coefficients are jointly zero, whereas alternative hypothesis is that at least one of these coefficients is not equal to zero. The null hypothesis is rejected in six countries: Chile, El Salvador, India, Pakistan, Singapore and Turkey. The second column shows that the null hypothesis indicated by the eqs.(30) is accepted in all
countries at the 0.05 level. In summary, the PIH holds in fourteen countries, whereas the RET holds in twenty cases. The failure of the PIH occurs in developing countries.

V. CONCLUSION

We tested the RET for twenty countries by using an "excess sensitivity test notion" and a VAR forecast method. Before testing RET, we conducted DF unit root tests, and the cointegration tests by Johansen procedure and concluded that the variables are nonstationary but cointegrated.

Although the basic purpose was to test the RET, we tested both the PIH and the RET separately. We conducted these tests by using income, tax and debt as explanatory variables. We estimated the coefficients of the regression equations in two steps. The result is that the PIH holds in a majority of the countries whereas the RET holds in all twenty cases. The failure of the PIH occurs in developing countries in all regressions.

The excess sensitivity test for RET used in this study is relatively more efficient than other test procedures that use only the contemporaneous values of variables as explanatory variables. In this study, in order for the consumption function equation to be exactly identified, consumption is regressed on both current (obtained from reduced form parameters) and lagged changes in variables.

The RET and the PIH held in the majority of the countries. The different test results for the PIH and the RET in some developing countries may arise simply from the fact that the PIH test and the RET test employ different variables. The failure of PIH might also be attributed to some factors such as the type of data or sample period used in the model. The data or sample period by itself may cause statistical rejection at a certain level of significance although the theory is correct. Or the failure may originate in structure of the economies under study, i.e., imperfect credit markets. If some individuals are unable to borrow, their consumption might be excessively sensitive to income, tax, and government borrowing (or deficit), with government expenditures are given. Even if individuals revise upward their permanent income due to new information and hence plan to increase their current consumption, they may not be able to fund this increase in consumption at time t.
When they reach to an increased income or a credit at time $t+1$, they will increase their consumption due to upward revision in their permanent income at time t. Then this result would be an excess sensitivity of consumption to previously predicted income (lagged income). The failure of the PIH, on the other hand, seems not to be explained by liquidity constraints given the supportive evidence for the RET. These constraints, if present, should have produced rejection of RET as well.
ENDNOTES

1 Certainty equivalence behavior can be obtained from a quadratic utility function whose third derivative is zero.

2 Flavin (1981). Flavin, however, formulates PIH as \(C_t = r \left[W_t + \sum_{i=0}^{\infty} r^{-(i+1)} E_{t} Y_{t+i} \right]. \) This difference comes from her wealth evaluation formula of \(W_{t+1} = (1+r) W_t + Y_{t} - C_t. \) In other words in her formula saving \((Y_t - C_t)\) does not earn interest (pp. 977-978), since \(Y_t \) is paid at the end of period. Besides this, We define explicitly as the sum of K and B and add present value of future taxes into the equation.

3 Significance levels for Tables 1 and 2 are given by Enders (1995, p.419).

5 Significance levels for Table 3 are given by Enders (1995, p.420).

Table 1: The Stationarity Tests

<table>
<thead>
<tr>
<th>Countries</th>
<th>C_t</th>
<th>Y_t</th>
<th>T_t</th>
<th>B_t</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Belgium</td>
<td>-1.51</td>
<td>-3.04</td>
<td>-1.48</td>
<td>-2.84</td>
</tr>
<tr>
<td>Canada</td>
<td>-1.89</td>
<td>-2.52</td>
<td>-1.98</td>
<td>-1.06</td>
</tr>
<tr>
<td>Chile</td>
<td>-4.48</td>
<td>-2.36</td>
<td>-4.52</td>
<td>-2.31</td>
</tr>
<tr>
<td>Egypt</td>
<td>0.75</td>
<td>-0.38</td>
<td>0.72</td>
<td>-0.49</td>
</tr>
<tr>
<td>El Salvador</td>
<td>0.22</td>
<td>-1.47</td>
<td>-0.77</td>
<td>-1.95</td>
</tr>
<tr>
<td>Finland</td>
<td>-3.00</td>
<td>-3.46</td>
<td>-2.76</td>
<td>-3.54</td>
</tr>
<tr>
<td>France</td>
<td>-1.46</td>
<td>-1.83</td>
<td>-1.55</td>
<td>-1.77</td>
</tr>
<tr>
<td>Germany</td>
<td>0.65</td>
<td>-1.45</td>
<td>0.41</td>
<td>-1.64</td>
</tr>
<tr>
<td>India</td>
<td>-0.79</td>
<td>-2.27</td>
<td>-0.55</td>
<td>-2.01</td>
</tr>
<tr>
<td>Italy</td>
<td>-1.21</td>
<td>-2.50</td>
<td>-1.23</td>
<td>-2.57</td>
</tr>
<tr>
<td>Japan</td>
<td>-2.84</td>
<td>-3.05</td>
<td>-3.54</td>
<td>-3.48</td>
</tr>
<tr>
<td>Malaysia</td>
<td>-0.04</td>
<td>-3.57</td>
<td>0.20</td>
<td>-2.62</td>
</tr>
<tr>
<td>Pakistan</td>
<td>-0.67</td>
<td>-3.27</td>
<td>-0.64</td>
<td>-3.20</td>
</tr>
<tr>
<td>S. Africa</td>
<td>0.63</td>
<td>-1.72</td>
<td>0.44</td>
<td>-1.65</td>
</tr>
<tr>
<td>Singapore</td>
<td>5.84</td>
<td>1.88</td>
<td>2.27</td>
<td>0.50</td>
</tr>
<tr>
<td>Sweden</td>
<td>-1.74</td>
<td>-1.34</td>
<td>-1.81</td>
<td>-1.23</td>
</tr>
<tr>
<td>Turkey</td>
<td>-2.21</td>
<td>-3.21</td>
<td>-2.02</td>
<td>-2.76</td>
</tr>
<tr>
<td>UK</td>
<td>-3.68</td>
<td>-3.84</td>
<td>-3.85</td>
<td>-3.93</td>
</tr>
<tr>
<td>USA</td>
<td>0.67</td>
<td>-1.57</td>
<td>-0.78</td>
<td>-2.67</td>
</tr>
<tr>
<td>Venezuela</td>
<td>-0.03</td>
<td>-1.40</td>
<td>0.62</td>
<td>-1.04</td>
</tr>
</tbody>
</table>

Significance

<table>
<thead>
<tr>
<th></th>
<th>0.01</th>
<th>0.05</th>
<th>0.10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 [\Delta Y_t = \alpha_0 + \delta Y_{t-1} + \epsilon_t]</td>
<td>-3.75</td>
<td>-3.00</td>
<td>-2.62</td>
</tr>
<tr>
<td>2 [\Delta Y_t = \alpha_0 + \delta Y_{t-1} + b_t + \epsilon_t]</td>
<td>-4.38</td>
<td>-3.60</td>
<td>-3.24</td>
</tr>
</tbody>
</table>
Table 2: Test of Integration

<table>
<thead>
<tr>
<th>Country</th>
<th>C_t</th>
<th>Y_t</th>
<th>T_t</th>
<th>B_t</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Canada</td>
<td>-3.12</td>
<td>-7.51</td>
<td>-3.61</td>
<td>-3.76</td>
</tr>
<tr>
<td>Chile</td>
<td>-4.48*</td>
<td>-4.52</td>
<td>-4.52*</td>
<td>-4.66</td>
</tr>
<tr>
<td>Egypt</td>
<td>-4.20</td>
<td>-5.29</td>
<td>-4.05</td>
<td>-5.27</td>
</tr>
<tr>
<td>El Salvador</td>
<td>-4.45</td>
<td>-5.41</td>
<td>-6.89</td>
<td>-6.88</td>
</tr>
<tr>
<td>Finland</td>
<td>-3.00*</td>
<td>-6.55</td>
<td>-6.60</td>
<td>-6.62</td>
</tr>
<tr>
<td>France</td>
<td>-4.24</td>
<td>-4.16</td>
<td>-4.14</td>
<td>-4.07</td>
</tr>
<tr>
<td>India</td>
<td>-5.54</td>
<td>-5.44</td>
<td>-4.94</td>
<td>-4.87</td>
</tr>
<tr>
<td>Italy</td>
<td>-6.39</td>
<td>-6.33</td>
<td>-7.01</td>
<td>-6.91</td>
</tr>
<tr>
<td>Japan</td>
<td>-6.76</td>
<td>-6.67</td>
<td>-3.54*</td>
<td>-6.89</td>
</tr>
<tr>
<td>Malaysia</td>
<td>-5.66</td>
<td>-5.54</td>
<td>-3.62</td>
<td>-3.69</td>
</tr>
<tr>
<td>Pakistan</td>
<td>-3.84</td>
<td>-3.84</td>
<td>-3.67</td>
<td>-3.66</td>
</tr>
<tr>
<td>S. Africa</td>
<td>-3.88</td>
<td>-4.23</td>
<td>-3.72</td>
<td>-4.04</td>
</tr>
<tr>
<td>Sweden</td>
<td>-4.59</td>
<td>-4.54</td>
<td>-5.78</td>
<td>-5.74</td>
</tr>
<tr>
<td>Turkey</td>
<td>-10.04</td>
<td>-9.64</td>
<td>-9.08</td>
<td>-8.76</td>
</tr>
<tr>
<td>UK</td>
<td>-3.68*</td>
<td>-3.84*</td>
<td>-3.85*</td>
<td>-3.93*</td>
</tr>
<tr>
<td>USA</td>
<td>-3.77</td>
<td>-3.75</td>
<td>-4.50</td>
<td>-4.47</td>
</tr>
<tr>
<td>Venezuela</td>
<td>-6.25</td>
<td>-6.36</td>
<td>-5.31</td>
<td>-5.56</td>
</tr>
</tbody>
</table>

* indicates I(0) variables. All other variables are I(1).

\[
\Delta^2 Y_t = \alpha_0 + \delta \Delta Y_{t-1} + \epsilon_t
\]

<table>
<thead>
<tr>
<th>significance</th>
<th>0.01</th>
<th>0.05</th>
<th>0.10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-3.75</td>
<td>-3.00</td>
<td>-2.62</td>
</tr>
<tr>
<td>2</td>
<td>-4.38</td>
<td>-3.60</td>
<td>-3.24</td>
</tr>
</tbody>
</table>

\[
\Delta^2 Y_t = \alpha_0 + \delta \Delta Y_{t-1} + b_t t + \epsilon_t
\]
Table 3-A: The Null and Alternative Hypothesis by Johansen Methodology

<table>
<thead>
<tr>
<th>Countries</th>
<th>λ_1</th>
<th>λ_{Max}</th>
<th>λ_{Trace}</th>
<th>Countries</th>
<th>λ_1</th>
<th>λ_{Max}</th>
<th>λ_{Trace}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belgium</td>
<td>$\lambda_2=0.4465$</td>
<td>11.24</td>
<td>11.75</td>
<td>Japan</td>
<td>$\lambda_2=0.4322$</td>
<td>9.62</td>
<td>12.16</td>
</tr>
<tr>
<td></td>
<td>$\lambda_3=0.0265$</td>
<td>0.51</td>
<td>0.51</td>
<td>Malaysia</td>
<td>$\lambda_2=0.7111$</td>
<td>19.87</td>
<td>30.54</td>
</tr>
<tr>
<td></td>
<td>$\lambda_1=0.8242$</td>
<td>27.82</td>
<td>38.64</td>
<td></td>
<td>$\lambda_1=0.9622$</td>
<td>52.43</td>
<td>82.97</td>
</tr>
<tr>
<td>Canada</td>
<td>$\lambda_2=0.4903$</td>
<td>10.78</td>
<td>10.82</td>
<td></td>
<td>$\lambda_1=0.9166$</td>
<td>34.77</td>
<td>47.66</td>
</tr>
<tr>
<td></td>
<td>$\lambda_3=0.0025$</td>
<td>0.04</td>
<td>0.04</td>
<td></td>
<td>$\lambda_1=0.1737$</td>
<td>2.67</td>
<td>2.67</td>
</tr>
<tr>
<td></td>
<td>$\lambda_1=0.9751$</td>
<td>62.81</td>
<td>96.31</td>
<td></td>
<td>$\lambda_1=0.9559$</td>
<td>59.29</td>
<td>87.31</td>
</tr>
<tr>
<td>Chile</td>
<td>$\lambda_2=0.7951$</td>
<td>29.95</td>
<td>33.50</td>
<td>Pakistan</td>
<td>$\lambda_1=0.5179$</td>
<td>10.21</td>
<td>12.89</td>
</tr>
<tr>
<td></td>
<td>$\lambda_3=0.3200$</td>
<td>6.56</td>
<td>6.56</td>
<td></td>
<td>$\lambda_1=0.1737$</td>
<td>2.67</td>
<td>2.67</td>
</tr>
<tr>
<td></td>
<td>$\lambda_1=0.8067$</td>
<td>24.65</td>
<td>37.98</td>
<td></td>
<td>$\lambda_1=0.9559$</td>
<td>59.29</td>
<td>87.31</td>
</tr>
<tr>
<td>Egypt</td>
<td>$\lambda_2=0.5869$</td>
<td>13.26</td>
<td>13.33</td>
<td></td>
<td>$\lambda_1=0.2342$</td>
<td>5.03</td>
<td>5.07</td>
</tr>
<tr>
<td></td>
<td>$\lambda_3=0.0049$</td>
<td>0.07</td>
<td>0.07</td>
<td></td>
<td>$\lambda_1=0.9964$</td>
<td>90.07</td>
<td>122.13</td>
</tr>
<tr>
<td></td>
<td>$\lambda_1=0.8825$</td>
<td>40.69</td>
<td>56.24</td>
<td></td>
<td>$\lambda_1=0.9964$</td>
<td>90.07</td>
<td>122.13</td>
</tr>
<tr>
<td>El Salvador</td>
<td>$\lambda_2=0.5260$</td>
<td>14.18</td>
<td>15.55</td>
<td>South</td>
<td>$\lambda_2=0.7657$</td>
<td>23.21</td>
<td>32.10</td>
</tr>
<tr>
<td></td>
<td>$\lambda_3=0.0695$</td>
<td>1.37</td>
<td>1.37</td>
<td></td>
<td>$\lambda_1=0.4260$</td>
<td>8.88</td>
<td>8.88</td>
</tr>
<tr>
<td></td>
<td>$\lambda_1=0.8911$</td>
<td>31.04</td>
<td>56.03</td>
<td></td>
<td>$\lambda_1=0.7731$</td>
<td>28.18</td>
<td>52.61</td>
</tr>
<tr>
<td>Finland</td>
<td>$\lambda_2=0.7024$</td>
<td>16.97</td>
<td>24.98</td>
<td></td>
<td>$\lambda_1=0.6411$</td>
<td>19.47</td>
<td>24.43</td>
</tr>
<tr>
<td></td>
<td>$\lambda_3=0.4360$</td>
<td>8.02</td>
<td>8.02</td>
<td></td>
<td>$\lambda_1=0.2219$</td>
<td>4.96</td>
<td>4.96</td>
</tr>
<tr>
<td></td>
<td>$\lambda_1=0.8526$</td>
<td>32.55</td>
<td>47.55</td>
<td></td>
<td>$\lambda_1=0.8785$</td>
<td>40.05</td>
<td>61.99</td>
</tr>
<tr>
<td>France</td>
<td>$\lambda_2=0.5484$</td>
<td>13.51</td>
<td>15.00</td>
<td>Turkey</td>
<td>$\lambda_2=0.5680$</td>
<td>15.95</td>
<td>21.94</td>
</tr>
<tr>
<td></td>
<td>$\lambda_3=0.0836$</td>
<td>1.48</td>
<td>1.48</td>
<td></td>
<td>$\lambda_1=0.2707$</td>
<td>6.00</td>
<td>6.00</td>
</tr>
<tr>
<td></td>
<td>$\lambda_1=0.7281$</td>
<td>19.54</td>
<td>35.72</td>
<td></td>
<td>$\lambda_1=0.8593$</td>
<td>37.26</td>
<td>46.46</td>
</tr>
<tr>
<td>Germany</td>
<td>$\lambda_2=0.6459$</td>
<td>15.57</td>
<td>16.19</td>
<td>UK</td>
<td>$\lambda_2=0.3820$</td>
<td>9.14</td>
<td>9.20</td>
</tr>
<tr>
<td></td>
<td>$\lambda_3=0.0401$</td>
<td>0.61</td>
<td>0.61</td>
<td></td>
<td>$\lambda_1=0.0028$</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>$\lambda_1=0.7096$</td>
<td>19.78</td>
<td>37.27</td>
<td></td>
<td>$\lambda_1=0.9943$</td>
<td>87.97</td>
<td>129.38</td>
</tr>
<tr>
<td>India</td>
<td>$\lambda_2=0.5785$</td>
<td>13.82</td>
<td>17.49</td>
<td>USA</td>
<td>$\lambda_2=0.7802$</td>
<td>25.75</td>
<td>41.40</td>
</tr>
<tr>
<td></td>
<td>$\lambda_3=0.2048$</td>
<td>3.67</td>
<td>3.67</td>
<td></td>
<td>$\lambda_1=0.6017$</td>
<td>15.65</td>
<td>15.65</td>
</tr>
<tr>
<td></td>
<td>$\lambda_1=1.0000$</td>
<td>227.03</td>
<td>255.84</td>
<td></td>
<td>$\lambda_1=0.8798$</td>
<td>40.25</td>
<td>49.88</td>
</tr>
<tr>
<td>Italy</td>
<td>$\lambda_2=0.8331$</td>
<td>28.65</td>
<td>28.82</td>
<td>Venezuela</td>
<td>$\lambda_2=0.2808$</td>
<td>6.26</td>
<td>9.63</td>
</tr>
<tr>
<td></td>
<td>$\lambda_3=0.0104$</td>
<td>0.17</td>
<td>0.17</td>
<td></td>
<td>$\lambda_1=0.1624$</td>
<td>3.37</td>
<td>3.37</td>
</tr>
</tbody>
</table>
Table 4: Excess Sensitivity Test Results from eqs. (29) and (30)

<table>
<thead>
<tr>
<th>Countries</th>
<th>Column 1</th>
<th>Column 2</th>
<th>Countries</th>
<th>Column 1</th>
<th>Column 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belgium</td>
<td>F(12,7) 1.09 (0.471)</td>
<td>F(8,7) 0.235 (0.970)</td>
<td>Japan</td>
<td>F(12,5) 0.329 (0.946)</td>
<td>F(8,5) 0.381 (0.891)</td>
</tr>
<tr>
<td>Canada</td>
<td>F(9,7) 2.527 (0.117)</td>
<td>F(6,7) 0.123 (0.989)</td>
<td>Malaysia</td>
<td>F(12,4) 3.12 (0.140)</td>
<td>F(8,4) 1.07 (0.506)</td>
</tr>
<tr>
<td>Chile</td>
<td>F(12,5) 5.479 (0.000)</td>
<td>F(8,5) 1.42 (0.361)</td>
<td>Pakistan</td>
<td>F(9,5) 6.50 (0.026)</td>
<td>F(6,5) 1.27 (0.404)</td>
</tr>
<tr>
<td>Egypt</td>
<td>F(9,6) 0.779 (0.646)</td>
<td>F(6,6) 0.210 (0.960)</td>
<td>South Africa</td>
<td>F(12,4) 3.33 (0.127)</td>
<td>F(8,4) 0.430 (0.855)</td>
</tr>
<tr>
<td>El Salvador</td>
<td>F(12,7) 4.32 (0.030)</td>
<td>F(8,7) 1.52 (0.296)</td>
<td>Singapore</td>
<td>F(12,7) 4.82 (0.022)</td>
<td>F(8,7) 0.829 (0.604)</td>
</tr>
<tr>
<td>Finland</td>
<td>F(9,5) 3.23 (0.104)</td>
<td>F(6,5) 2.53 (0.163)</td>
<td>Sweden</td>
<td>F(12,7) 2.57 (0.107)</td>
<td>F(8,7) 0.050 (0.999)</td>
</tr>
<tr>
<td>France</td>
<td>F(12,5) 0.824 (0.639)</td>
<td>F(8,5) 0.005 (0.999)</td>
<td>Turkey</td>
<td>F(12,7) 13.62 (0.001)</td>
<td>F(8,7) 0.575 (0.772)</td>
</tr>
<tr>
<td>Germany</td>
<td>F(9,6) 1.43 (0.338)</td>
<td>F(6,6) 0.040 (0.999)</td>
<td>UK</td>
<td>F(12,7) 2.43 (0.121)</td>
<td>F(8,7) 0.428 (0.870)</td>
</tr>
<tr>
<td>India</td>
<td>F(9,7) 4.95 (0.023)</td>
<td>F(6,7) 0.066 (0.997)</td>
<td>USA</td>
<td>F(12,5) 2.38 (0.173)</td>
<td>F(8,5) 0.488 (0.824)</td>
</tr>
<tr>
<td>Italy</td>
<td>F(12,4) 1.53 (0.363)</td>
<td>F(8,4) 0.669 (0.708)</td>
<td>Venezuela</td>
<td>F(12,7) 0.677 (0.736)</td>
<td>F(4,7) 0.228 (0.972)</td>
</tr>
</tbody>
</table>

*the degrees of freedom and the levels of significance are in parenthesis.
Column 1: H₀: All variables are jointly equal to zero, eq. (29).
Column 2: H₀: \(\alpha_{21} = \alpha_{22} = \alpha_{23} = \alpha_{24} = \alpha_{31} = \alpha_{32} = \alpha_{33} = \alpha_{34} = 0 \), eq.(30)

Thurston, Thom B. "Two Strong but Dubious Restrictions and Their Role in Rejecting the Permanent Income Hypothesis," 1993, Queens College, The City University of New York, unpublished paper.