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Abstract

This paper studies the BEKK model with exogenous variables (BEKK-X), which
intends to take into account the influence of explanatory variables on the conditional
covariance of the asset returns. Strong consistency and asymptotic normality of a
variance targeting estimator (VTE) is proved. Monte Carlo experiments and an

application to financial series illustrate the asymptotic results.

Keywords: BEKK model augmented with exogenous variables, BEKK-X model, Variance

targeting estimation (VTE),

1 Introduction

Analysing asset return covariances is important since it is a crucial input, in particular,
for portfolio selection, asset management and risk assessment. Forecasting sequences
of covariance matrices can be done by using multivariate conditional heteroskedastic
(GARCH) models, see Bauwens and Rombouts (2006) and Silvennoinen and Terasvirta
(2009) for extensive surveys. The first generation of models, for example the VEC model
of Bollerslev and Wooldridge (1988) and the BEKK model of Engle and Kroner (1995), are
direct extensions of the univariate GARCH model of Bollerslev (1986). These models take

into account the information contained in the past of the individual asset returns, but can
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not exploit external information. In practice, the relations between the volatilities and co-
volatilities of several markets can be affected by external influences that we call exogenous
variables. In this paper, we employ this term in a wide sens for any external explanatory
variable (see Koopmans and Reiersol (1950), Engle et al. (1983), Florens and Mouchart
(1982) and Bouissou and Vuong (1986) for other concepts of exogeneity). Engle (2009)
provide evidence that economic fundamentals such as inflation and industrial production
growth drive stock market volatility. Cakmakli and Dijk (2010) demonstrate that a
number of macroeconomic variables can help predicting US stocks volatility between 1980
and 2005. Christiansen and Schrimpf (2012) get similar results for the foreign exchange,
the commodity, and the bond market.

Despite the fact that such additional information in financial and macroeconomic
variables are widely used to explain and forecast volatility in financial markets, there are,
however, relatively few results on the asymptotic behavior of the estimation in presence
of exogenous variables. In the univariate case, Han and Kristensen (2014) give conditions
for the Consistency and Asymptotic Normality (CAN) of the Gaussian QMLE for the
standard GARCH(1,1) augmented by a single covariate. Francq and Thieu (2015) study
the asymptotic distribution of the QMLE for a versatile class of model: The Asymmetric
Power ARCH(p, ¢)-X model with an unrestrictive number of the exogenous variables. In
the multivariate case, Francq and Sucarrat (2015) provide the proof of the CAN of an
estimator of the volatilites for the components of a vectorial log-GARCH model with co-
variates. Their framework does not directly specify the conditional covariance. Engle and
Kroner (1995) suggest the BEKK model augmented by exogenous variables (BEKK-X).
In their model, the covariates can affect all the volatilies and co-volatilities of the returns.
However, they only provide the estimation of the model without exogenous influences.
Moreover, the CAN of their estimator is not proved. In this paper, the estimation of the
BEKK-X model will be presented and its CAN will be established. There are several
advantages with the BEKK model. First, although the asymptotic theory for multivari-
ate GARCH has been less investigated than the asymptotic theory for univariate models,
several papers have established asymptotic results for different methods of estimation of
the BEKK model without covariates. Comte and Lieberman (2003) show the CAN of

the QMLE. However, the BEKK model contains a large number of parameters, even for



moderate dimensions. This implies that it is difficult to estimate the model by the clas-
sical QMLE. Pedersen and Rahbek (2014) consider a simplified estimation method, the
variance targeting estimation (VTE), and provide its CAN. The VTE method has been
proposed by Engle and Mezrich (1996) to alleviate the numerical difficulties encountered
in the maximization of the quasi likelihood. The VTE is numerically more efficient than
the QMLE, in particular, in the presence of exogenous variables, because it requires an
optimization of lower dimension. This estimator has also the advantage of being rela-
tively robust for long term predictions (see Francq and Zakoian (2011)). In the present
paper, we establish the CAN of the VTE for the BEKK-X model.

The paper is organized as follows. Section 2 introduces the BEKK model augmented
with explanatory variables and presents the VITE method. The consistency and asymp-
totic distribution of the VTE are investigated in Section 3. Numerical illustrations are
presented in Section 4. Section 5 concludes the paper. All the proofs are collected in

Section 6.

2 The model and variance targeting estimation

2.1 The model

Let {e; = (€14, -+ ,&me)'} be a m—dimensional process and x; = (14, -+ ,24) € R” be
a vector of r exogenous variables. Denote F;_; the o—field generated by the past of &,

and x; i.e. Fy_1 = o{ey, y;u < t,v < t}. Assume that
E(eFi-1) =0, Var(e;|Fi—1) = H, exists and is positive definite. (1)

The m x m matrix H, is specified as a function of the past values of €; and x;.

We consider the following BEKK-X(1,1) model

€t = Ht1/277t

(2)
Ht = Q —|— Aet—leg—lAl + B.Ht_]_B/ + th_lm;_lc,,

where 2, A, B are m x m parameter matrices and C is m X r parameter matrix. To
ensure the positivity of the conditional covariance H,;, we assume that the coefficient

matrix €2 > 0, where the symbol > denotes the positive definiteness of a matrix.
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The attractive property of the BEKK model is that the conditional covariance matrices
are positive definite by construction. Introducing the explanatory variables under the
form Cx, 1z, |C' still guarantees the positive definiteness of H,. Furthermore, they
are not restricted to a single variable.

Let ||A|| = /Tr(A’A) be the Euclidean norm of a vector or a matrix A , where T7(-)

is the trace of a square matrix. The following assumptions are made throughout the

paper.
Al: E(n,|Fi-1) =0and E(nm,|Fi1) = Ln.
A2: (g4, ;) is a strictly stationary and ergodic process.

A4: E|z]|? < oo and Elj&]]* < oo.

Remark 1 Boussama and Stelzer (2011) provide sufficient conditions for the existence of
a unique stationary and ergodic solution to BEKK multivariate GARCH models. For the
model (2) without covariate, for example, this solution exists if the following assumptions

are satisfied

i) The innovation n, admits a density absolutely continuous with respect to the Lebesque

measure on R™ and positive in a neighborhood of the point zero
it) p(Ag® Ag+ By ® By) <1

where the symbol @ stands for the Kronecker product and p(-) denotes the spectral radius of
a matriz which is the mazximum among the absolute values of the eigenvalues of a matriz.

Furthermore, under these conditions, the existence E|g;||* < oo in A4 is satisfied.

Remark 2 Under Assumptions A2, A4, the intercept matriz in the volatility of (2)
can be represented as a function of the unconditional covariance of the observations and
of the unconditional second moment of covariates. That allows us to apply the variance

targeting estimation method.



2.2 Variance targeting estimation

The VTE is a two-step estimation technique whose advantages are to reduce the compu-
tational complexity of the optimization produce (see Pedersen and Rahbek (2014), Francq
and Zakoian (2011) and Francq and Zakoian (2014)) and to guarantee that the implied
variance is equal to the sample variance. This method is based on a reparamerization of
the volatility equation, in which the intercept is replaced by the returns unconditional
variance in case that there is no covariates.

Denote by X, := Var(e;) = E(ee;) = E(H}) the variance matrix of the observations
and ¥, := E(x;x)) the second-order moment of the vector of exogenous variables. These
matrices are well defined under Assumption A4. By taking the expectation of the two

hand sides of (2), we get
. =Q0+AX A+ BY.B +Cx,.C". (3)

Then (2) can be reparameterized by

€ = H;/an
H,=(X.-AX. A - BX.B' - C%,C')+ A¢, 1, \A'+BH, B (4
+Cx;_ 1z, C'.

Note that in this reparametrization, the constraint of the positive definiteness of the

intercept € > 0 in (2) becomes
3. - AS.A' — BS.B' — CX,C' > 0. (5)

The generic parameter of the model (4) consists of the elements of the matrices 3,
Y. and the ones of the matrices A, B and C. As mentioned, the parameters of the
model will be estimated in the two steps VTE. In the first step, the matrices 3. and
3, will be empirically estimated . In the second step, the other parameters will be
estimated by QML optimization. The vector of unknown parameters is thus decomposed
by 90 = (74, 0;)" € R? with

+1 +1
70 = (’7;:07’7/50)/ = (UeCh/(Ew)vveCh/(Ee>)/ S Rdl; dl = T(TQ ) + m(m2 )7

0o = (ved (Ay),ved (By),ved (Cy)) € R, dy = 2m* +mr




and d = di + dy is the total number of unknown parameter of (4), where vec denotes
the operator that stacks all columns of a matrix into a column vector, and vech denotes
the one that stacks only the lower triangular part including the diagonal of a symmetric

matrix into a vector. Likewise, we define the parameter space
© =0, x Oy C R" x R®,
whose a generic parameter vector is denoted by
9=(v,0) = (v,,7.,0) = (vech'(E,), vech' (), ved (A),ved (B), ved (C))'.

To emphasize that the conditional covariance matrix in (4) depends on the parameters
~ and 0 and that they are independently estimated, we write H(~, 0).

Let (e1,---,€,) be a realization of length n of the stationary ergodic process (e;)
and (z1,---,x,) be n observations of the exogenous variables (x;). Conditionally on the
initial values g, oy and ﬁg, the conditional covariance matrix can be recursively defined,

for t > 1, as follows
H,(v,0) =(Z. — AS.A' - BE.B — CX,C') + Ae,_1e,_A'+ BH, ,(v,0) B’
+ Cxy_ 1z, ,C'. (6)
Let us define the functions

= S 00),  L(v,6) = <H, (7,6 .+ logdet (H, (.0)) . (7

As mentioned, in the first stage of VT estimation method, the parameter v = (v, %)’

is pre-estimated directly from the sample by the method of moments:
~ ~ /
5, = (B o) = (k! (S,). veck'(Ser)) . (8

~ n ~ n
where 3, = — > ge} and X, = — > x,@, are the empirical estimators of the covari-
n n =1

ance matrix of &; and the second-order moment of x;, respectively. Once 7,, is obtained,
the parameter 0 is estimated by using the quasi likelihood, conditioning on the parameters

estimated in the first stage

Q 7n7 Z Et 7n7 Z Et t ’Yn’ ) €t + log det <ﬁt (:)\/rw 0)) ’ (9)



where the covariance process ﬁt (4,,,0) can be recursively calculated by replacing X
and X, in (6) by f}m and imn respectively. The estimator of the parameter @ is thus

defined as any measurable solution @n of

-~

0, = argminQ,, (7,.6). (10)
0c®g

n

~ o~ /
The VTE of ¥ is then given by 9, = (%, 0 ) .
The estimation of € in the original BEKK-X model (2) can be obtained by

-~/ ~ -~/ -~/

ﬁn - isn - ﬁnisnAn - BnierLB - animncna (]-1)

n

where Zln,ﬁn and CAZ’n are the QML estimators of A, B and C respectively. Then the
estimator of original parameter vector, denoted by &, = (vech(Q)’, 0;)’, of (2) can be

—~ —~ N/
given by &, = <vech’(ﬂn), 9n> .

3 VTE inference

In this section, the asymptotic properties of the VTE will be established. The computa-

tion of the asymptotic covariance matrix will be aslo given.

3.1 Consistency and asymptotic normality

For the strong consistency of the VTE, the following assumptions are required
Ab5: The true parameter ¥y € © and O is compact.

A6: p(B)<land p(A® A+ B® B) <1foral ¥ c 0.

AT: If for any 0 € Og, H(7,,60) = H(7,,00) a.s., then 6 = 6,.

AS8: If 7t is a non zero vector of R” then 7t’x; is non-degenerate.

Remark 3 Assumption AT is a condition for the identifiability of the model. Note that,
Comte and Lieberman (2003), Hafner and Preminger (2009) and Pedersen and Rahbek
(2014) give an identification condition equivalent to Assumption AT for BEKK models

without covariates.



Remark 4 Assumption A8 is an identifiability condition which is obviously necessary

to avoid multicollinearity of the exogenous variables.
Theorem 1 Under Assumptions A1 - A8,
Y, — ¥, a.s. asn — oo. (12)

To establish the asymptotic normality of VTE the following additional assumptions

are needed.

A9: The true parameter 8y belongs to the interior of Gg.

A10: F||g/|° < 0o and E ||z° < co.
We denote by ax(h) the strong mixing coefficient of a stationary process X = (X3)

ax(h) = sup |P(AN B) — P(A)P(B)].

A€o (Xy,u<t),Beo(Xy,u>t+h)

Al1l: z; = (z},€,,m}) is a a—mixing process such that, for some v > 0 and § > 0,
E||€t||(4+2u)(1+1/5) < 00, El|mt||(4+2u)(1+1/6) < 00, EHnt”(4+2u)(1+5) < 00
and Y3 {az(h) /) < oo,

Let H, (¥9) be such that, for s > 0,

s

Wc(ﬂt,s(ﬁ)) = Z(B®2)k (UGC(Q) + A®2U€C(€t7k71€27k71) + C®2U€C(wtfkflx;—kfl)) )
k=0

where A®2 denotes the Kronecker product of a matrix A and itself. Let also S be a

subspace such that for all 9 € ©, Hy(9) € S and for all s >0, H, ,(9) € S.

A12: There exists X > 0 such that

|H29) — HP9)|| < K HL(0) ~ Hi@)]] for all HL(9), H(9) €.

Remark 5 The condition that the observations €, admit finite moment of order 6 is also
found in the existing body of literature on asymptotic normality of the QMLE (see Hafner
and Preminger (2009)) or the one of the VTE (see Pedersen and Rahbek (2014)) of the
models without covariates. Assumption A10 is needed to show the existence of moment
of second-order derivatives of the log-likelihood function and its uniform convergence on

the parameter space.



Remark 6 Under Assumption A1, (n,,F:) is a conditionally homoscedastic martingale
difference and (2) becomes a semi-strong model. The exogenous variables need not to be
independent on the innovations 1n,. The mizing assumption in A1l is used to apply the
central limit theorem (CLT) of Herrndorf (1984) to specify the limiting distribution in
Theorem 2. When (2) is a strong model, i.e. when n, is iid, the moment conditions in

A11 can be weakened as follows

|4+21/

A11*: z, = (x}, €}, m}) is a a—mizing process such that, for some v > 0, E||z;| < 00

and >0 ez (h)}/*) < oo.

Remark 7 In univariate case, Assumption A12 is always satisfied. Indeed, for sim-

plicity, we consider the univariate GARCH(1,1) model e, = o2(0)n;, where o2(0) =

w+ ag? | + Bo? ((0), with w > w > 0. For any 02(0) and o;*(0), we have

|0:(6) — 07 ()] = i 073(0) + (a7(0) —0§2(9))#2(9> —\/o?(0)] < Ko} (0) — o7*(0)]

where 62(0) is between o2(0) and ;?(0) and the inequality follows from 62(0) > w for all

6.

Let @, (7, 80) and /¢, (v, 0) be obtained by replacing H, (v,0) by H,(~,0) in Q, (v, 6)
and (, (7, 0). We define the following matrices.

J:E<§%ﬁﬁﬁ) K;:EGWKQ@Q,IQ:E(Q@EEQ> (13)

0000 000, 000,
and
¥, = Z cov (vech(mtmg),vech(:vt_hmg_h)) , (14)
h=—o00
Yoy = Z cov (TOtvec (mm), Yo r—nvec ("h—hn:t—h)) ) (15)
h=—00
Sy = Z cov (vech(wtwi), Yo, _nvec (m_mifh)) g (16)
h=—00
where
Yo
Yo = _ Oved(Hy) (17)

!
0 (H&l/z ® H&lﬂ)



Denote by D,, and L,, the duplication matrix and elimination matrix defined such that,
for any symmetric (m x m) matrix A, vec(A) = D,vech(A) and vech(A) = Lyvec(A).

The following theorem gives the asymptotic distribution of VTE estimators.

Theorem 2 Under Assumptions A1 - A12, as n — oo,

%mn — Y0
Vil A, —v. | SN0, TESST), (18)
6, — 6,
where
Ir(r+1)/2 0 0
Y Yo
- . T= 0 Luominz O (19)
/ (m+1)/
Xy X -1 -1 -1
-J 'K, -J K. —J
and
[r('r+1)/2 0 0
= | L,(I2— A —B*)'CY’D, L, (L2 — A — BY?) " (1,2 — BE?) 0
0 0 _12m2+m7"

(20)

The asymptotic normality of the estimation of the original parameters is given in the

following corollary.

Corollary 1 Under the assumptions of Theorem 2, the VTE of &, satisfies

NG (En . 50> 4 N (0, ATESPT'A), (21)
where
A A
A= : ’ (22)
O(2m2+m7")><(m2+r2) I(2m2+m7‘)><(2m2+mr)
with

Alz < —Lm(CO®CO)Dd Lm(ImQ_‘40(8140_B0(®BO)1)m>7

By = =Ln(Ly + M) ( (400 © 1)) (BoBe0® 1)) (CoZn © L) )

and M,, denotes the commutation matriz such that, for any (pxq) matriz A, Myvec(A) =

vec(A").
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3.2 Estimating the asymptotic covariance matrix

In the econometric literature the nonparametric kernel estimator, also called heteroscekas-
tic autocorrelation consistent (HAC) estimator (see Newey and West (1987), Andrews
(1991) and Phillips and Jin (2003)) is widely used to estimate covariance matrix of the
form ¥;;. The consistent estimators i\:lln; 5\32% and ilgn of 311, Y99 and Xy, respec-

tively, can thus be given by

n

a 1
Y1, = - Z wy—svech(x @y )vech' (x,xl,),

t,s=1

A~ 1 n ~ -~/
Yoom = o Z w\tfs|‘rtvec (771577;) vecd ("’75"7;) T,

t,s=1
~ 1 n ~/
Bian = 3 3w uech(aiajoee () T,
where wy, ..., w,_1 is a sequence of weights (see Newey and West (1987), Andrews (1991)

and Phillips and Jin (2003) for the problem of the choice of weights) and

7,0, o H,"®,)
T, = oved (ﬁt(’??n)> ,I\{,,l/g 5 ﬁfl/Z 3 !
g (H @) eH D)
Let
S QAN 920,(9 1 o 0204(9,)
= — —_— == .r-:n = - “ana-s - 2
Tn = 2 0000 Z 808% nim 9997 .

Then under the assumptions of Theorem 2, strongly consistent estimators of I' and X

are given by

Ir11y)2 0 0 ~ -

~ = Yiin Xion

r, = 0 Im(m+1)/2 0 and X, = ~7 ~ (24)
~—ls ~—1l— ~—1 21277, Yoon

Note that, the computation of the matrices fn and f]n requires the evaluation of compli-
cated first and second-order derivatives. More precisely, for 22% and f)lgn one needs to
compute dvec’ (Ht( ))/80 Francq and Zakoian (2014) show that these n vectors of
derivatives cannot be numerically calculated within a reasonable amount of time. They

provide thus recursive formulas for a rapid computation of these derivatives.
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4 Numerical illustration

In this section, we illustrate our asymptotic results of Section 3 on Monte Carlo simula-

tions and on US stock series.

4.1 A Monte Carlo experiment

This subsection presents the results from a series of Monte Carlo experiments that allow
us to evaluate the performance of the BEKK framework when the exogenous variables
are introduced.

In order to reduce the computation burden of the simulations, we consider a simplified
version of the bivariate BEKK-X(1,1) model (2) with B a diagonal matrix. The vector
of the exogenous variables is @; = (@14, o)’ where @1, and xy; are two lagged values of

an APARCH(1,1)

Z¢ = 0yey, (25)
oy = 0.046 + 0.027z} | + 0.092z, | + 0.8430;_1,

where \/§et is i.i.d and follows a Student distribution with 4 degrees of freedom. Two

components of 7, are independent and normally distributed N'(0,1). The true the pa-

rameter matrix are taken as follows

0.3 0.2 0.15 0.1 0.8 0.0 0.15 0.05
A B Cy=

0.2 0.4 0.1 0.2 0.0 0.9 \o1 o2
(26)

We investigate samples with n = 1000 and n = 5000 observations. All simulations are
repeated 500 times. For each data series, we simulated (n + 500) observations of €; and
then the first 500 observations are discarded in each simulation to minimize the effect
of the initial values. In order to assess the statistical properties of the estimates we
have computed the bias, the root mean squared error (RMSE) and the quartiles of the

estimated parameters En

500

(€)= g 3 (€ )

) | i5:010 Y 1/2
RMSE (5n) - (EZI (én —5) )

12



where ES) is the estimator at the i** replication and & is their empirical mean. The
results of the simulation study are presented in Table 1. They are in accordance with the
consistency of the VTE, in particular the medians of the estimated parameters are close
to the true values. As expected, the accuracy of the estimation increases as the sample

size increases from n = 1000 to n = 5000.

4.2 An application to stocks US

Is the intraday realized volatility useful for predicting the the volatility of the financial
returns? In the univariate case, Francq and Thieu (2015) demonstrate that, for the cap-
italization stocks of American stock exchanges, yesterday’s realized volatility often helps
in predicting today’s squared returns. Another question that we would like to investi-
gate is whether the realized volatilities of some series returns affect their co-volatilities.
The aim of this subsection is to apply the BEKK-X model in order to answer this ques-
tion. For illustration purposes we restrict our attention to only 3 indices, the MSFT
(Microsoft Corporation), the AAPL (Apple) and the DELL, and initially we only include
one exogenous variable that is the yesterday’s realized volatility of the MSFT.

The data come from Section 4.2 of Laurent et al. (2014), covering the period from
January 4, 1999 to December 31, 2008 (2,489 trading days). In the end of each trading
day t, the log-return in percentage e, and the realized volatility rvy; (computed as the
sum of intraday squared 5-minute log-returns) are available.

With obvious notations (in particular the estimated standard deviations, obtained
from the empirical estimator (24) in Section 3, are into brackets), the estimated param-

eters can be written as

0.0218 0.1888 —0.0032 —0.0015
(0.0418) (0.0320) (0.0113) (0.0184)
QVTE = 0.0118 0.0257 , A\VTE = 0.0062 0.1378 —0.0157
n (0.0186) (0.0218) n (0.0673) (0.0457) (0.0143)
0.0041 —-0.0070 0.0052 —0.0049 0.0455 0.2014
(0.0065) (0.0047) (0.0070) (0.0330) (0.0138) (0.0204)
0.9721 0 0 0.0390
(0.0142) (0.0523)
BYTE — 0 0988 0 , CVTE = | 0.0181
(0.0006) (0.0126)
0 0 0.9731 0.0167
(0.0056) (0.0264)

13



Table 1: Sampling distribution of the VTE of ¥ over 500 replications for the BEKK-X(1,1)

model
parameter true val. bias RMSE min Q1 Q2 Q3 max
n = 1,000
vec(§2) 0.30 -0.0024 0.0942 0.0376 0.2411 0.2952 0.3544 0.6045

0.20 0.0047  0.1053 -0.0810 0.1409 0.1998 0.2692 0.5817
0.40 0.0101  0.2037 0.0005 0.2842 0.4037 0.5079 2.2127
A 0.15 -0.0101  0.0790 0.0000 0.0841 0.1420 0.1960 0.3428
0.10 -0.0124 0.1404 -0.3823 0.0185 0.1094 0.2027 0.5215
0.10 -0.0004 0.0404 -0.0447 0.0734 0.1000 0.1261 0.2087
0.20 -0.0138 0.0770  0.0000 0.1400 0.1908 0.2394 0.4012

diag(B) 0.80 -0.0011 0.0353 0.6854 0.7801 0.7984 0.8224 0.9135
0.90 -0.0030 0.0227 0.6665 0.8857 0.8998 0.9112 0.9519
C 0.15 -0.0010 0.0154 0.1033 0.1390 0.1492 0.1600 0.2123

0.10 -0.0001  0.0265 0.0079 0.0813 0.1005 0.1174 0.1814
0.05 0.0007  0.0164 0.0014 0.0405 0.0510 0.0616 0.1082
0.20 -0.0006 0.0251 0.1275 0.1834 0.1990 0.2147 0.2854

n = 5,000

vec(Q) 0.30 0.0015 0.0385 0.0777 0.2752 0.3008 0.3270 0.4342
0.20 0.0028  0.0393 -0.0660 0.1770 0.2012 0.2284 0.3717
0.40 0.0046  0.0687 0.0560 0.3600 0.4010 0.4469 0.6909
A 0.15 -0.0027 0.0324 0.0392 0.1295 0.1481 0.1683 0.2403
0.10 0.0013  0.0543 -0.0714 0.0651 0.0999 0.1352 0.2885
0.10 0.0011  0.0168 0.0377 0.0905 0.1011 0.1118 0.1557
0.20 -0.0019 0.0307 0.0871 0.1799 0.1992 0.2172 0.4138

diag(B) 0.80 -0.0013 0.0146 0.7575 0.7898 0.8000 0.8084 0.8487
0.90 -0.0008 0.0075 0.8785 0.8943 0.8996 0.9044 0.9309
C 0.15 0.0001  0.0071 0.1305 0.1456 0.1498 0.1547 0.1752

0.10 0.0003  0.0118 0.0684 0.0927 0.0998 0.1086 0.1404
0.05 0.0002  0.0072 0.0254 0.0457 0.0504 0.0547 0.0721
0.20 0.0002  0.0112 0.1561 0.1928 0.2004 0.2075 0.2563

RMSE is the Root Mean Square Error, Q;, ¢ = 1,3, denote the quartiles.

14



5 Conclusion

In this paper we establish the asymptotic behavior of the variance-targeting estimator
of the parameters for the multivariate BEKK augmented by exogenous variables. We
do not restrict the number of covariates that we want to investigate. They are intro-
duced in the conditional covariance equation such that the positivity of the conditional
covariance matrix is still assured. The model BEKK-X is reparameterized such that the
unconditional covariane matrix of the observed process and the second moment matrix
of the explanatory variables appear explicitly in the model equation. We demonstrate
the strong consistency of the VTE under the existence of the second-order moments of
the observations and the covariates. We also establish the asymptotic normality under
the conditions that the process and the exogenous variables have finite sixth-order mo-
ments and that the exogenous variables follow an a-mixing process. We also provide the
asymptotic distribution of the original parameters. One Monte-Carlo simulation and one

empirical application illustrate the usefulness of the results.

6 Proofs

6.1 Proof of the consistency of VTE in Theorem 1

Proof of Theorem 1. The strong convergence of 4,, to 7, is a direct consequence of the
ergodic theorem and Assumption A4. To show the strong consistency of ﬁn, it suffices

to establish the following results:

i) lim sup |Qn (70,0) — Qn (7,,0)| =0 as.

n—oo 96@0

ii) B (SUP 2 (’)’70)|) < oo and if § # 6o, £ ({: (79,0)) > E (¢: (7, 00))-

IcO

iii) For any @ # 0y, there exists a neighborhood V() such that

liminf inf Q,(F,,0) > El (v,,00) as.

n—00 9ev(o)

For notation simplicity, we denote f; := fi(v,0) for any function f; depending on
parameters (v, 0) and denote fo; when (v,0) = (7., 0p). In the sequel, K and ¢ denote

generic constants such that K > 0 and g € (0, 1) whose exact values are unimportant.
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Assumption A6 implies that p(B®?) < 1 for all ¥ € ©. By the compactness of ©,

we even have

sup p(B®?) < 1. (27)
9e®

Using the relation vec(ABC) = (C' ® A)vec(B), the vec representation of (4) is given by
vec (H,) =12 — A®? — B®?)vec(Z,) — C%%vec(E,) + A%%vec(e,_1€) )
+ B®?vec(H;_ 1) + C®vec(zi 1) _,). (28)
[teratively using equation (28), we deduce that almost surely

sup Hﬁt - H,| < K/, Vt. (29)

vecO

Observe that K is a random variable that depends on the past values {&s, ;s < 0} but
does not depend on t. It can thus be considered as a constant, such as p. Applying the
inequality det(A + B) > det(A), for A > 0 and B > 0, where > denotes that the matrix
is positive semi definite, we have det (H;) > 0, for all £ and for all ¢ € ©. It implies that
H, is invertible. Moreover, by using the equality 0 < ¢r ((A+ B)™') < tr (B™!), we have

IH; | < |H; )2 =tr (H;') < tr (2. — AS.A' — BE.B' - C%,C) ' < K.

Hence, it yields
sup [|[H, || < K. (30)
9eO®

By the same arguments, Et is also invertible and, for some constant K

—~1
sup |H, || < K. (31)
9e®
We thus have almost surely,
supHHt_l—ﬁt_ ’ﬁt—Ht |H | < Ko (32)
) 9O

Now

wup |02(7.0) ~ Gut,0)

ved

1 < —1 1 < det (H
< — g sup tr(etsg (Ht_l—Ht ))‘—l—— E sup logLAf)
N veo N =] 9O det (Ht>
1 & I det (H,)
< =) sup ( €€, HH ' H H> sup |log ———%1|. 33
£ sup (levlt o =7 )+ 5 s fos 2 @) >

16



The first sum converges to zero almost surely by using Assumption A4, (32) and the same
arguments to show Theorem 11.7(a) in Francq and Zakoian (2010). The convergence to
zero of the second sum is also showed as on page 297 — 298 of the previous reference.

Therefore we obtain

lim sup ‘Qn ~,0 —Qn (v,0)| =0 a.s. (34)

n—oo 9O

Now we have

Sup (Qn (70,6) = Qn (3,,,0)

0cB®g
< ;EUP |Qn (Yo ) —Qn (;)\’na 9)| + Oseu®p @n (;Y\n’ 0) - @n (;Y\nv 0)‘
< D [Qu (%0,0) = @ (3, 0)| + 500 [ (7.0) = Qu (.0 . (39)

To show point 7), it thus remains to show that the first term in (35) also almost surely
converges to zero. For m large enough, let V,,(v,) be the open ball of center =, and
radius 1/m. Because of the consistency of 4, , for n large enough, we have

n

~ 1
sUp [Qn (3,,,0) = Qu (%0,0)] < sup — > sup |6 (7,0) = £ (70,6)|-
CECh 00 TV =7 vEVin (7o)

Then

n

. ~ . 1
lim sup [Qn (3,,,0) = Qn (70,0)| < lim =) " sup  sup |6 (,60) = 4 (7o, 0)|

n—0o0 0cOg n—oo n t=1 (SO ’Yevm(’YO)

=Esup sup |l (v,0)—C:(7,,0)
0€O®g vEVin (7o)

where the last equality follows by the ergodicity and the existence of the expectation of the
term under the summation symbol. By Lebesgue’s dominated convergence theorem, the
latter expectation tends to zero when the neighborhood V,,(7,) shrinks to the singleton
~o- The point 7) is proved.

We turn now to prove ii). Iteratively using equation (28) and then using (27) and

Assumption A4, we easily get

E (sup |vec(Hy) ||> ZKQ 1+ E|le—p1|® + El|l@i—i-1]*) < <. (36)

17



Then using the inequalities |tr(AB)| < ||All||B]| and log|A| < Tr(A), for matrix A > 0,

we have
E <Sup 2 (%9)!) <E (Sup HethHH{lH) + B (Sup |tr (Ht)\>
IO YO IO
<FE (sup HeteQHHHt_lH) +vVmE (Sup HHtH)
V€O V€O
< 00.

Let A\, k = 1,...,m be the eigenvalues of matrix H(v,, 80)H; " (7,,0). Using the same
arguments used to show the point (¢) in the proof of Theorem 11.7 in Francq and Zakoian
(2010), we can obtain
E (4, (7,0)) — E (£ (79, 60)) = > E(\k — 1 = log(Ar)) > 0.
k=0

The inequality is strict unless if, for all k, A\y; = 1 a.s., that is, if H(vy,,00) = H(7,,0)
a.s. which implies that ¥ = 19y. The second inequality of the point ii) is thus obtained.

It now remains to show the point iii). For any 0 + 0, let Vk(é) be the open ball with
center 0 and radius 1 /k. By properties of the supremum and infimum of a function and
using successively i), the ergodic theorem, the monotone convergence theorem and i),

we obtain almost surely

lim inf inf @n (Vs 0)

n—0o0  QeVy, (é)ﬂ@g

> liminf  inf @, (v,,0) — limsup sup @n (N, @) — Qn (70, 0)

n—0o0  6cVy(0)NOg n—oo 0By
n
o] .
> lim inf — inf 4 (7v,,0)
n—oo 1 —1 0V, (0)NOyg

=F inf l (7,,0)
0cV;,(0)NOg
> Eél (’707 00)

for k£ large enough. O

6.2 Proof of the asymptotic normality in Theorem 2

For the proof of the asymptotic distribution we need a few elementary results on the

differentiation of expressions involving matrices.

18



If X € M, (R) is a symmetric matrix then

Ovec(AX B)

oech (X)) (B'® A)D,,. (37)

If X € Myxn(R) and A € M, (R) is a symmetric matrix then

Ovec(X AX')

= (I,2+ M, XA®IL,).
Let x be a vector .
81}60 Y’l‘C y-ic1 Jvec(Y)
- V& )
§ ©Y') — (39)

The proof is based on several techmcal lemmas.

Lemma 1 Under Assumptions A1-A11,

= (sl Toaiar 1) < R
foralli,j=1,...,d.
Proof of Lemma 1. We have
g’i =Tr ((H;l — H;'e,e}H; ") %—I;) , (41)
o, =~ T (B G A Gt ) + (A7 555
+ 2T (H;lstsgﬂglaa?tﬂ 1%? ) —Tr (H le,el H 8?91;:; ) (42)

The triangle inequality and |Tr(AB)| < || A||||B]| give

0%/ 8H OH _ 0*H

sup aﬁia}}j gggHH : H || sup [ H Haﬁi&;j
8H OH _ 0*H
+SUP2HH 1” ”et t|| ‘ 14 H t +1S91€1gHHt1H2’|Et€;“ ’W&’l;j

Note that sup HHt_lH3 < K follows from (30). Then by Hoélder’s inequality and as-
9O

sumption A10, the existence of the second-order moment of the score will be proved by

3
> =F (sup
9O

19

showing
OH,
o,

8@(;61(9510 ‘ ) <o (43)

E | sup
EC)



and
0°H,
09,00,

Dvec(H,)||?
99,09,

2
) =F (sup
9€O

Denote a = vec(A),b = vec(B) and ¢ = vec(C). Using (37), we can calculate the

E (sup > < 00, (44)
9eO

forany i,7=1,...,d.

components of the first derivation of vec(H;) as the following

Ovec(H,) =
- 7 B®2 m2 _ A®?2 _ B®2 D, A5
e ZO ( ) (45)
Ovec(H ) > .
N 7 — B®2 C®2Dm, 46
Ovec(H / dvec(H,,)
% = (L2 + M) (A(et_lst_l —-3)® [m) + B®2%’
— (B®2)k (ImQ + Mmm) (A(€t7k71€;_k_1 — 2€> ® [m) (47)
k=0
Ovec(H / duec(H,_)
82, t) = (L2 + M) (C(xt_lagtil -3 ® _]m) + B(z@z%7
Z <B®2) ([m2 + Mmm) (C(mt_k_lmg_k_l — E:I:) ® ]m) , (48)
k=0
and
Ovec(H > /

, ) 8vec((B®2)k)

+C®2U€C(wt_k_1$£7k71 — Em)) & ]m2 8()/ ) (49)

where, using (39),
k k )
MB@)) — Z <<B®2’>k_’_1 2 (B®2)i> dvec(B%?) (50)
H H
To show (43), it suffices to prove that E <sup OH, duec(H)

/ /
b 2 ob
3 3
9k
vco || Od > (Sgg od’ ) =

where d = v,,7v,,a,b,c. We immediately see from (45) and (46) that the derivatives

with respect to the elements of v are obviously bounded. Using the inequalities |A ®
3
1/3
Bl = 1Ayl Bl 114l < 4] < V| Ally, B(Sa)’ < (S (Bat)”), (27) and

20



assumption A10, we get

00 1/3 3
E(g \) (Z(EsupnB@?n%nvec(etk1etk1 =) )
€

k=0

00 3
(Z 0 (Bler-i1lois — el >”3> <o ()
k=0

Ovec(Hy)
oa’

Similary we also obtain

dvec(H,) |
E _— < 0. 02
(sl ) <= 52)
From (27)
N ki1 ik—i—1 ;
<B®2> B®2 Z sup HB®2 sup H (B®?) H < Kko".
9e® * o 9O 9O

Using the same arguments to show (51) and (52), the following result is also obtained

3
E | sup < 0.
OIS

(43) is thus shown. The second moment condition (44) is obtained by doing similar

Ovec(H )
ob’

developments for the second order derivatives. O

Lemma 2 Under Assumptions A1-A11, J is non-singular.

Proof of Lemma 2. We apply the approach of Comte and Lieberman (2003) to prove
the invertibility of the matrix J. Starting by writing J as a function of H; and of its
derivatives. From (42), we have

0%l;(~y,, 00) 4 OHy . 0H
p(Ledel e ) =1 (H H
( 0:00, 7 1) 7”( o "5, o aej>

— ((H&1/2>®2 vec (8£jt)>/ ((H&m)@z vec (8£;t)> .

19\ ©2 oOH
Let wy = <H0t1/2> Vi, Vi = vec( 800t) and the matrices u; = (wy| - - - |u,) and

%

®2
vy = (vy] - |Vtg,). Then u, = (H;ﬂ) vy and J = E(uju;). If J is singular, there

exists ¢ = (¢, ...,cq,) € R%® such that ¢ # 0 and
cJec = cdE(uu)c=E ((we) (ue)) =0 as.
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Due to the positivity of (u;c) (u;c), then almost surely
®2\’ ®2
(ue) (ue) = dujue = vy ((H(;m) ) <Hat1/2> vic =0 as.

—1/2)®? / —1/2\%2 . . o : . . :
Because <H ot ) (H ot ) is strictly positive definite with probability one, it
follows that

da
H
viC = Zcivec (aaeét) =0 a.s

i—1
Let Qf = (L2 — AS? — B§*)vec(Ze) — C§?vec(B,). Then we have
0= Qo + Agvec(e;_1€, ;) + Bovec(Ho_1) + Covec(zy 1)),

_ 0% 4 A7 5 9B & 0Cy*

Then vec(HOt) can be represented by

vec(H ) = (QS — ﬁg) + (A%Z)2 - Zo) vec(er_1€,_ 1) + (B%a2 — Eo) vec(H 1)
+ (C§? = Cy) vec(zi_1z,_,).

Because ¢ # 0, we have found another representation of vec(Hy;), which contradicts

Assumption A7. Hence, J must be non-singular. O

Lemma 3 Under Assumptions A1-A12,

Vn 9Qn gzoj %) — O gzo’ 6o) — 0 in probability when n — oo. (53)
2 2
\/ﬁzgg e gggz;/e) - 0 g:;gz;,e) ‘ — 0 in probability when n — oo. (54)

Proof of Lemma 3. This lemma means that the effect of the initial values on the
derivatives of the criterion vanishes asymptotically. By the definition of @, (v, 0) and
Qy (7,0), (53) and (54) are entailed by showing that

Z ot ’70’ 8o) _ 94 (gg’ i) — 0 in probability when n — oo, (55)
=0
1 - 8 gt (’7, 0) 82€t (’7, 9) . -
— — 1 h .
\/_Zﬂlelg 5999 5999 — 0 in probability when n — oo (56)
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For any i = 1,...,3m?, we have

1 0Ly (7o, 00) 9l (o, 600)
n =0 801 802
1 i —~—-—1 aﬁgt _1 aHgt
<— Tr |\ Hy ——— — Hy ——
—\/n —o " ( 0t 807, 0t 007, >'
—10H  vr1 OH
f Z Tr (HOt eie,H,, W?t — HOtlstetHOth?t> | . (57)

We will show that two terms in the right-hand side of the last inequality (57) tend to

zero as n — oo. For the first term, we have

— 1 0H _OH
< 0t 800t - I{Ot1 8alot)

~_1 8H OH OH
zwﬂm o xfzmHM| o e
& —1 OH, . OH, OH,
f:%%WtH %am'zggwwgamwm

The vec representation of H; is obtained by replacing H; in (28) with H,. By simple

differentiation and using Assumption A4 and (27), we can obtain

OH, OH, 8Ht
E | su < oo and E [ sup ||vec — 0") 58
<ﬂ68 99, ) <ﬂ€8 ( 99, (%)
Using Markov’s inequality, (32) and (58), we can show that, for any € > 0,
P ! Zn: sup Hﬁ_l H; ' sup aﬁt > — 0
— - €
Vi = gco ! "l yeo || 09;

and

09,

AC TP

For the second term, we have

Y

6Ht — OH, > 6) — 0.

00,

OH

—1 — 0
Tr ((HOt stsQH — H)'ee,H ) 26, t)‘

10H oH
Tr (HOt ststHOt 0t - H,, etetHOtl Ot)

n

1
S%Z

t=0
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Using the inequality |Tr(AB)| < ||A||||B|| and Tr(AB) = Tr(BA) for matrices of appro-

priate sizes, we have

1 n —~_1 ,/-\-/—1 aﬁ aH
% tz; Tr (HOt e, H, (th N WZOI‘/)) ‘
1 12 / aﬁm OH
1 _
<5 Z | Ho || 1ol 00, 06,
oH, OH
< KT Z sup 1 H || [|n:m:] sup aﬁt 819:

Then by Holdér’s inequality, we can get

P ( D3 Z sup || .l |[m.m; | sup

> e) — 0.
[t implies that almost surely, as n — oo

H H
\/_ Z Tr (HOt eie Hy, (aa 09t - 88 0?”)) ‘ — 0. (59)

Applying the same arguments to show (59), we also get

OH, _ 0H,
09; 09,

—~- OH
Tr ((Hm etstH — H,'e,elHy, ) 890t> ’ — 0 a.s.

It follows that the second term in the right-hand of (57) almost surely tends to zero. The

proof of i) is thus obtained. By the same arguments, (56) can be also showed. O

Lemma 4 Under Assumptions A1-A11,

02Qn(9,) 920,(9)
2009 F ( 06099’

) in probability when 9, — Jq in probability. (60)

Proof of Lemma 4. First note that

P( PQu(®.) (a%wm

)H > e) < p1+p2+ p3+ pa,

9009 9009’
where
n=r (o o 25).
= (o 25)
n=r (| -2 (Goow )| 25) remrioeevion)
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for any € > 0 and any neighborhood V(). By the assumption that 1,, — 9 in proba-
bility, we have p, — 0 as n — oco. By (54), for any € > 0 and when V() is sufficiently
2615(77 9) :

5099 is a function of (g4, &;_1,...) and (@, ®;_1,...), under

Assumption A2 it is strictly stationary and ergodic. The uniform law of large numbers

small, p; — 0. Because

for stationary ergodic processes and Lemma 1 thus imply that p3 — 0 for any € > 0. To

prove that ps — 0, it suffices to show that, for all € > 0, there exists V(1) satisfying

n

lim l Z sup

o0 N AT 9EV (99)NO

020,(9)  0%*4(90)

0909’ 9909’

‘ <€ a.s.

The result follows from the ergodic theorem, the dominated convergence theorem, the

uniform continuity of the second order derivatives of ¢;(1), and by Lemma 1. 0

Lemma 5 Under Assumptions A1 - A11,

\/ﬁ (’/Y\a:,n - ’Yw,0> . )
N 1 " wvech(x;x! — Fxix

\/ﬁ (7€,n - 75,0) ¢_ Ztnl ( o ' 1) + Op<1)7 (61)
(70, 00) VIS Yowee(nm), — 1)

ﬁ Zt:l o0

where Yo and ® are given in (17) and (20), respectively.
Proof of Lemma 5. Introduce the martingale difference
_ / _ 1/2) 2 /
v, = vec(eg,) —vec(Hy) = ( Hy, vee(nmy — In).

In the representation of vec(H o) obtained from (2), we replace vec(H ;) by vec(eie}) —vy.

Then, we get

vec (g} — E(gi€))) = (A%z)2 + B6®2) vec (er-18y_1 — E(gi-16;_1))

+ C§vec (x1zy_ — E(xix;_ ) + (ve — B§ vi) .

Note that under assumption A6, the matrix I,,» — A5? — B$? is inversible. Taking the

average of the two side of the equality for t = 1,... n gives
%s,n - ’75,0 :Lm([m2 - 14((2)2)2 - B%@?)— ( o B®2 Z Vi
+ Lm(ImQ - A(Q)@2 - B§2>7106®2D7‘ (ﬁm,n - ’Vm,O) + Op(1)7 a.s.
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Using the relation 7r(A'B) = ved (A)vec(B), we have, for i =1,...,dy

8€t(70,90) 8H0t

0H “12) _
= vecd ( 89?) vec (<H0t1/2> Loy — mym}) <H0t1/2)>
,(OH YA ,
= —vec ( 89?) ((H0t1/2> ) vee(nm; — In).

=Tr ((Hatl — Hgtl€t€;H&l)

It follows that

8&(70, 00) . Gvec’(HOt) -1/2 ®2\’ ’
50 - 00 (H()t ) Uec(ntnt - [m> (62)
and (61) is thus obtained. O

Lemma 6 Under Assumptions A1-A11,

1 " vech(x,x, — Ex,x ¥, X
L Zt_l ( [Aad 1 1) i>./\f 072 _ 11 12
v > iy Yowee(nm; — L) Ty o

where 2 1s given in Theorem 2.

Proof of Lemma 6. From (2), we write, for s > 0, Ho, = H, , + Ho,, such that

o0

vec(Hy ) = Z (B5?)" (vec(Q) + AFvec(erj18,_4_1) + C§ vec(@ip1x)_;_1)) -
k=s+1

Let Hy® = Hy> + Ry, Note that Hy” is invertible. Then Hy,"* = Hy'” + R;,
—1

where R}, = —ﬂ&?th’S (I+ﬂ&i2Rt7s> H&zz (see Miller (1981) for the inverse

of the sum of two matrices). Using the elementary relation (A + B) ® (C' + D) =

ARC+A® D+ B®C+ B® D, we can write Yovee(nn; — In) =Y, + Ry, where

1/2 1/2

Y EOI{,S ® EO){,S
Y, = dved (Hyy, ) _1/2 —1/2
—_— <ﬂ0t,s/ ® EOt,s/

| veetnmy — 1)
00 )

and Ry is the rest of the development. Note that the processes (Y, ,); and (R;), are
stationary and centered. Using the relations (A® B)(C ® D) = (AC ® BD), (A® B) =
A'®@ B and Tr(A® B) = Tr(A)Tr(B), we have

2
B||H2 @ Hil2|| = B (Tr (Hy, 0 Hy,)) = B (Tr(H,y,,))" < KE|Hy, |
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Then using the Holder inequality and Assumption A11, we have, for some v and § > 0

| (HS2 @ B2 veen,m)

1/2 1/2
HHOI{S®HO{S

[vec(nemy)| (24v) (1+6)

2+4v (24+v)(1+1/9)

< HEOt,sH(2+V)(1+1/5) ||U€C(77t"72)|’(2+y)(1+5) < 0.

Similarly,
ovecd (H ! ovecd (H
Qe Bos) (3007 0 E?) veetman)| < 1| EE ) ey <.
80 2+I/ 80 2+l/

It entails that || Y, [[24, < co. Therefore, under Assumption A11 and s fixed, the process
(Y, )¢ is strongly mixing, with mixing coefficients ay (h) < a,(max{0, h—s}). Applying
the CLT of Herrndorf (1984) for mixing processes, we directly obtain

\/‘ZY“—)NO Yo2s), Do = Z cov(Yy o, ¥ y4)-

Let x; = vech(zyxy — Exx)) and X5, = > 07 cov(x, Y, 1 ). As in Francq and
Zakoian (1998) Lemma 3, we can show that the matrices Xop = lim gy and ¥y =
§—00

lim 35 4 exist. Using Assumption A12 and the arguments given in the proof of Lemma

§—00
4 in the precedent reference , one can show that
n~1/? ZRt,s > e) =0
t=1
for any € > 0. Then using Assumption A11 and the CLT of Herrndorf (1984), we get

§70  noo

lim limsup P (

1 Sor vech(zix, — Exix)) 1 Yo Xy 1 0

\/ﬁ Z?Zl TOtvec(ntn; - Im) \/ﬁ Z?:l Xt,s \/ﬁ Z:LZ]. Rtvs
4 N(0,3).

Proof of Theorem 2.

By the strong consistency, assumption A5 and the definition of En, for n large enough,

0., is contained a.s. in an arbitrary small neighborhood of 8, that belongs to interior of

the parameter set ®4. The first-order condition

n_ 06, (3,0,
OZ%Z%

t=1

(63)
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is thus satisfied.

Let us define the following matrices

0? Qn 62€t
Ken(9) = aeays Z 808’75' (64)
s Qn 82&5
GQQn 82€t
Tul(B) = aeae’ B Z aeae" (66)

The mean-value theorem applied to each element of the right-hand side of the first-order

condition gives

1 G h(v0,00) | L OPL(9) 1~ 0P0(9%)
O_n; 00 n < 0600, Ben 760)—'—71 —~ 0007, Fan = Yan)
62&
n4= 0606 (0 _0°>

where ¥ is between 1A9n and Yy. By Lemma 2, Lemma 3, Lemma 4 and the consistency

of an, the matrix J,(9") is a.s. invertible for sufficiently large n. Hence multiplying by
v/n and solving for \/n (5n - 00> gives

Vi (8, —6,) —— g ﬁ*(V_E?%“mew>—JJWﬂKMWﬂ%N%W—%Q

— () Ko)W1 (Fan = Vao) -

Hence, notice that W = Zt 1 (‘%t(gg %) , we have the following representa-
tion
5 NI
Vil 3. =~ | =T Vit (Yen = Veo)
/én -6, % Zt:l 8@(’@)’3 00)
where
Irri1))2 0 0
Ly = 0 Lma1y/2 0

—J, () Kon(97) =T, (0)Ken(97) —J,1(97)
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By Lemma 4 and the consistency of @n, we get
I',—T in probability as n — oo

and by Lemma 3, Lemma 5 and Lemma 6,

V1 (VY = Ya0)

Vit (Ven = Yeo) LN (0, 22d) .
L 930,00
y/n —=t 00
The asymptotic normality of the VTE now follows the Slutzky theorem. O

Proof of Corollary 1. The proof of this corollary can be obtained by applying directly
the delta method (see Theorem 3.1 in van der Vaart, 1998). Indeed, let ¢ be the map
which transforms ¥ into &,. This linear map is differentiable at 1, and is described by

the Jacobian matrix

duec(Qy)  dvec(Sy) vec(Qy)  dvec(y)  dvec(Q)
w o M &
| e W (67
A R
0.0 L, day, ob, dc)

where ag = vec(Ay), by = vec(By) and ¢y = vec(C). Using (37) and (38), the compo-

¢
= A
09,

nents of the Jacobian matrix can be easily calculed and we get
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