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Abstract

We measure volatility spread among countries and summarize it into a volatility

spillover index to provide a measurement of such interdependence. Our spillover index

is based on the forecast error variance decomposition (FEVD) for a VAR model at h-

step ahead forecast, and we construct it using both the orthogonalized FEVD and the

generalized FEVD (GFEVD); both of them provide similar results, but the generalized

version is easier to handle when a data set with more than 6 variables is involved and

non theory in available to impose the restrictions needed by the orthogonal version; this

is true since the GFEVD does not depend on the restrictions imposed by the Choleski

decomposition. This fact makes it attractive when economic theory does not fit well

with variables relationship. An R package for reproducing this chapter estimations is

entirely developed.
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1 Introduction

In the last three decades, financial crises have been occurring with more regularity and

according to Reinhart and Rogoff (2008) and Corsetti et al. (2001) recent crises are not so

different from historical ones and they even show some similarities. One of the most important

facts when crises occur is that “financial market volatility generally increases and spills over

acros markets” (Diebold and Yilmaz, 2012), motivated by this consideration Diebold and

Yilmaz (2009, 2012) introduce a new measure based on the well-known forecast error variance

decomposition from vector autoregressions to summarize such a transmission of crisis in

a single number easy to interpret and also they provide several tools as spillovers tables,

directional spillovers and net spillover tables to track this measurement.

Diebold and Yilmaz (2009, 2012) methodology is not concerned about distinguishing

contagion from interdependence, but it is concerned about providing a toolkit to measure

the proportion of a crisis from one country that spills over another country or group of

countries, this feature makes it useful when a policy-maker is willing to know what country

(or group of countries) is more vulnerable when another country is hit by a crisis. One

outstanding fact of this method is that it does not require a formal test for contagion for

being able to provide a measurement of the spillover stemming from turmoil periods (it even

works for stable periods).

In spite of the fact that spillover indexes do not represent a hypothesis test for contagion,

there seems to be a pattern in the index that can be useful to anticipate a crisis, which can be

due to contagion or interdependence. Such a pattern consists of a deeply decay before rising,

this pattern is captured by the orthogonalized and the generalized index applied both for

returns and volatility, if this pattern persists in all type of crises, then the dynamic spillover

index could be helpful as a early-warning system to foresee a crisis as outlined in Diebold

and Yilmaz (2012)

This Chapter is organized as follows: The econometric methodology and the form of the

indexes are presented in section 2, empirical results such as orthogonalized and generalized

spillover indexes for both, daily returns and intraday volatilities are in section 3. This chapter
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concludes with some comments in section 4.

2 The base model and the Spillover Index

2.1 The VAR(p) model and its MA(∞) representation

This section is devoted to review some notation and features regarding to Sims (1980) K-

variables Vector Autoregressive model of order p generally referred to as VAR(p). As this

model is the workhorse for the subsequent analysis we present some definitions and prelimi-

naries concerning the VAR(p) which has the following matrix form:

yt = v +A1yt−1 +A2yt−2 + . . .+Apyt−p + εt, t = 0, 1, . . . , (1)

where yt = (y1t, . . . , yKt)
′ is a K × 1 random vector, the Ai are fixed K ×K coefficients ma-

trices, v = (v1, . . . , vK)
′ is a fixed K × 1 vector of intercept terms allowing for the possibility

of the non-zero mean. Finally, εt = (ε1t, . . . , εKt)
′ is a K -dimensional white noise or inno-

vation process. For the vector ε to be white noise the following conditions hold: E(εt) = 0,

E(εt, ε
′
t) = Σε <∞ and E(εt, ε

′
s) = 0, for t 6= s.

In order to simplify the notation and make it more tractable, let us consider the simplest

version of the VAR model by assuming p = 1 and K = 2, a bivariate VAR(1) model of the

form:

yt = v +A1yt−1 + εt, t = 0, 1, . . . (2)

The model in (2) is said to be stable if all eigenvalues of A1 have modulus less than 1,

which is equivalent to

det(IK −A1z) 6= 0 for |z| ≤ 1. (3)

Under the stability condition the process yt in (2) is said to be invertible and has a Moving

Average of infinity order (MA(∞)) representation1

1See Lutkepohl (1993) for further details on VAR models.
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yt = µ+
∞
∑

i=0

Ai
1εt−i. (4)

where µ := (IK − A1L)
−1v. Such a MA(∞) representation requires the VAR(1) to be

stable in order to turns out in a sequence of matrix coefficients being absolutely summable,

this ensures the MA(∞) process converges in quadratic mean and thus in probability to yt

(Lutkepohl, 1993). In the MA representation, the process yt is expressed in terms of the past

and present error vectors εt and the mean term µ which can be either zero or non-zero.

The MA representation in (4) can be re-written more compactly in terms of a polynomial

in the lag operator,

yt = Φ(L)εt, (5)

where µ is assumed to be zero, Φ(L) is a polynomial2 in the lag operator such that Φ(L) :=
∞
∑

i=0

AiL
i and L is the lag operator such that Ljyt = yt−j ∀j ∈ N.

The coefficients contained in Φ are the impulse responses of the system. In other words,

φjk,i, the jk-the element of Φi represents the reaction of the j-th variable of the system to a

unit shock (forecast error) of variable k, i periods ago, provided of course, the effect is not

contaminated by other shocks to the system (Lutkepohl, 1993).

In order to aviod such “contamination”, let Σε be the variance-covariance matrix of the re-

duced form residuals resulting from estimating a VAR(p) model with E(εt, ε
′
s) 6= 0, for t 6=

s, nevertheless as long as this matrix is positive definite symmetric matrix, it can be factor-

ized as Σε = PP′ where P is the lower triangular Choleski matrix3 and P′ is its correspond

transpose, this is the so-called Choleski orthogonalization which prevents the “contamina-

tion” of variables by shocks coming from other variables in the system and also guarantees

that P−1εt is now a vector of orthogonalized (independent under normality assumption) in-

novations, therefore E(P−1εt,P
−1ε′s) = 0, for t 6= s and in general E(P−1εt,P

−1ε′t) = IK

holds. The Choleski factorization allows to re-write the process (5) as:

2Alternatively Φ(L) := (IK −AL)−1

3This factorization is order-dependent, which means that there is not only a unique P associated to a Σε,

but also there are K! P’s associated to Σε each of them corresponding to each specific order of the variables.
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yt = Φ(L)PP−1εt (6)

= Θ(L)ut (7)

Where Θ(L) = Φ(L)P and ut = P−1εt, being P the unique lower-triangular Choleski

factor of the covariance matrix of εt for a given variable ordering. This transformation

ensures E(utu
′
t) = I as mentioned above by imposing a recursive causal structure from the

top variables to the bottom variables but not the other way around.

The advantage of represent a VAR(p) model as an MA(∞) model consists of its easiness

to determine autocovariances and forecast error variance decomposition which is the target

of the next section.

2.2 Orthogonalized Forecast Error Variance Decomposition

The MA(∞) representation (7) with orthogonal white noise is suitable to collect all the vari-

ances (for each variable k) when forecasting with the VAR and then properly account for by

its contribution to the total variance produced by the whole system, that is variance decom-

positions allow us to split the forecast error variances of each variable into parts attributable

to the various system shocks.

Relying on (7), the error of the optimal h-step ahead forecast is

yt+h − yt(h) =
h−1
∑

i=0

Θiut+h−i (8)

where yt+h is the realization of the random vector at time t+ h, whereas yt(h) is the expec-

tation of the process conditional on the information set available up to time t, denoted by

E(yt+h|ℑt) and also frequently denoted by yt+h,t which is a function of h.

Denoting the mn-element of Θi by θmn,i, the h-step forecast error of the j-th component

of yt is
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yj,t+h − yj,t(h) =
h−1
∑

i=0

(θj1,iu1,t+h−i + . . .+ θjK,iuK,t+h−i) (9)

=
K
∑

k=1

(θjk,0uk,t+h + . . .+ θjk,h−1uk,t+1). (10)

Thus, the forecast error of the j-th component potentially consists of innovations of all

other components of yt as well. Of course, some of the θmn,i may be zero, due to the

orthogonalization, so that the innovations of some components may not appear in (10). Note

that, due to the orthogonalization, uk,t are uncorrelated and have variance one, hence the

Mean Squared Error (MSE) associated to the prediction, yj,t(h) is

E(yj,t+h − yj,t(h))
2 =

K
∑

k=1

(θ2jk,0 + . . .+ θ2jk,h−1). (11)

Therefore

θ2jk,0 + θ2jk,1 + . . .+ θ2jk,h−1 =
h−1
∑

i=0

(e′jΘiek)
2, (12)

is sometimes interpreted as the contribution of innovations in variable k to the forecast error

variance or MSE of the h-step ahead forecast of variable j (Lutkepohl, 1993). Here ek is the

k-th column of IK. Dividing (12) by

MSE [(yj,t(h))] =
h−1
∑

i=0

K
∑

k=1

θ2jk,i,

gives the decomposition

α̃o
jk,h =

h−1
∑

i=0

(e′jΘiek)
2

MSE [(yj,t(h))]
=

h−1
∑

i=0

(e′jΘiek)
2

h−1
∑

i=0

K
∑

k=1

θ2jk,i

(13)

which is the proportion of the h-step ahead forecast error variance of variable j accounted

for by innovations in variable k. In this way the forecast error variance is decomposed into
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component accounted for by innovations in the different variables of the system. From (8)

the h-step ahead MSE matrix is

Σy(h) = MSE = [(yt(h))] =
h−1
∑

i=0

ΘiΘ
′
i = e′jΦiΣǫΦ

′
iej (14)

The diagonal elements of this matrix are the MSE of the yjt variables which may be used

in (13), consequently the full expression is

α̃o
jk,h =

h−1
∑

i=0

(e′jΘiek)
2

h−1
∑

i=0

e′jΦiΣǫΦ′
iej

(15)

So far, it is an easy matter to realize that forecast error variance decomposition answers

the questions: What fraction of the h-step ahead error variance in forecasting yj is due to

shocks to yk?

2.3 Generalized Forecast Error Variance Decomposition

As subsection 2.2 shows, the Orthogonalized Error Variance Decomposition (OFEVD) at

h-step ahead forecast horizon lies on the structure of the impulse-response of the system, the

Generalized Forecast Error Variance Decomposition (GFEVD), also lies on the same idea.

The former decomposition needs an ordering-based orthogonalization procedure to ensure

zero correlation between the errors and allows to claim “ceteris paribus” when analyzing eco-

nomics relationships, whereas, the latter does not need such procedure, instead of controlling

the impact of correlation among residuals, Generalized Impulse-Response Function (GIRF)

follows the idea of nonlinear impulse response function and compute the mean impulse re-

sponse function. When one variable is shocked, other variables also vary as is implied by the

covariance which is not diagonal. GIRF computes the mean of the responses by integrating

out all other shocks (Pesaran and Shin, 1998).

Using (5) and defining the GIRF as:
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GIy(h, δj,ℑt−1) = E(yt+h|εjt = δj,ℑt−1)− E(yt+h|ℑt−1), (16)

which means that instead of shocking all elements in ε, only the j-th element is shocked and

the effect of other shocks is integrated out assuming an observed distribution of the errors.

Assuming the errors follows a multivariate normal distribution, Koop et al. (1996) show

E(εt|εjt = δj) = (σ1j, σ2j, . . . , σKj)
′σ−1

jj δj = Σεejσ
−1

jj δj. (17)

Hence, the K×1 vector of the unscaled GIRF of the effect of a shock in the j-th equation

at time t on tt+h is given by

(

ΦhΣεej√
σjj

)(

δj√
σjj

)

, h = 0, 1, 2, . . . (18)

And the scaled GIRF is obtained by setting δj =
√
σjj

ψg
j (h) = σ

− 1

2

jj ΦhΣεej h = 0, 1, 2, . . . , (19)

which measures the effect of one standard error shock to the j-equation at time t on expected

values of y at time t+ h.

Finally, the GIRF can be used to define the GFEVD which has the same interpretation as

the OFEVD, namely, is the proportion of the h-step ahead forecast error variance of variable

j which is accounted for by the innovations in variable k in the VAR. Denoting the GFEVD

by αg
jk,h we have

αg
jk,h =

σ−1

jj

h−1
∑

i=0

(e′jΦiΣǫek)
2

e′jΦiΣǫΦ′
iej

(20)

Note that by construction
∑K

k=1
α̃o
jk,h = 1 in (15) . However, due to the non-zero covari-

ance between the original (non-orthogonalized) shocks, in general
∑K

k=1
αg
jk,h 6= 1 (Pesaran

and Shin, 1998), but we can normalize αg
jk,h by dividing it by the row sum and redefined as

α̃g
jk,h to be
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α̃g
jk,h

:=
αg
jk,h

K
∑

k=1

αg
jk,h

.

Note that, by construction, now
∑K

k=1
α̃g
jk,h = 1 and

∑K

j,k=1
α̃g
jk,h = K

2.4 Total Spillover Index

Diebold and Yilmaz (2009, 2012) introduced the spillover index or the cross-variance shares

index to be the fractions of the h-step ahead error variances in forecasting yj due to shocks

to yk for j, k = 1, 2, . . . , K and j 6= k and own variance shares to be the fractions of the

h-step ahead error variances in forecasting yj due to shocks to yk for j = k. To make this

idea clearer, let us allocate all the elements of α̃o
jk,h and α̃g

jk,h into a matrix structure and

denote them by Λo
h and Λg

h, respectively, where both matrices are of dimension K ×K,

Λi
h =

















α̃i
11,h α̃i

12,h . . . α̃i
1K,h

α̃i
21,h α̃i

22,h . . . α̃i
2K,h

...
...

. . .
...

α̃i
K1,h α̃i

K2,h . . . α̃i
KK,h

















, i = o, g. (21)

Thus, the spillover index is the cross-variance shares obtained from (21) and it is denoted

by Si
h, the superscript i denotes we are referring to whether the orthogonalized (i = o) or the

generalized (i = g) forecast error variance decomposition and h denotes the number of steps

ahead of the forecast.

Si
h =

K
∑

jk=1

j 6=k

α̃i
jk,h

K
× 100 i = o, g. (22)

In order to look for the idea behind (22), let us consider the simplest case where h = 1

and K = 2, this means a spillover index based on a bivariate VAR with 1 step ahead forecast,

furthermore, suppose we rely on the OFEVD (when i = o) and recall (13), therefore Λi
h boils

out to Λo
1 , we have
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Λo
1 =





α̃o
11,1 α̃o

12,1

α̃o
21,1 α̃o

22,1



 ,

there are two possible spillovers in this simple example: y1t shocks that affect the forecast

error variance of y2t with relative contribution α̃o
21,1 and y2t shocks that affect the forecast

error variance of y1t with relative contribution α̃o
12,1, therefore, the Spillover Index is

So
1 =

α̃o
12,1 + α̃o

21,1

2
× 100,

where α̃o
21,1 =

θ2
21,1

θ2
21,1+θ2

22,1

and α̃o
12,1 =

θ2
12,1

θ2
11,1+θ2

12,1

(see (13)) and 2 in the denominator follows

from the fact that
∑

2

k=1
α̃o
jk,h = 1 by construction, therefore

∑

2

j,k=1
α̃o
jk,h = 2.

For obtaining the spillover index based on the GFEVD, the steps are the same. Consider

we now have Λg
1 with α̃g

jk,1 as its typical element, then spillover index is

Sg
1 =

α̃g
12,1 + α̃g

21,1

K
× 100,

where α̃g
12,1 =

α
g
12,1

α
g
11,1+α

g
12,1

and α̃g
21,1 =

α
g
21,1

α
g
21,1+α

g
22,1

and α̃g
jk,1 is defined in (20).

It is worthy to highlight from (20), the spillover index has the same specification either for

the OFEVD or GFEVD, the only difference between them is the way how α̃jk,h is computed.

Furthermore, the total spillover index measures the contribution of spillovers of shocks across

financial markets to the total forecast error variance (Diebold and Yilmaz, 2012).

In spite of the fact that spillover index based either on the OFEVD or GFEVD has the

same form, it is clear that the orthogonalized spillover requires the Choleski factorization

which depends on the order of the variables in the VAR model, therefore, to make such a

factorization we need to impose a causality restriction to identify the directionality of the

shocks, this fact can be seen whether as an advantage or a disadvantage; it is an advantage

when we have an economic theoretical framework to impose restrictions on the directional-

ity of the shocks, if so, then Choleski factorization is the tool to handle and extract that

directionality, hence we can claim about directionality and causality in terms of shocks. On

the contrary, when such theoretical framework is absent, we are not able to claim neither
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directionality nor causality and identification through Choleski decomposition is not reach-

able anymore, nevertheless, the generalized spillover index overcome by providing the effects

of shocks to variable k that affect variable j by integrating out all the effects as described

above.

According to Diebold and Yilmaz (2012) the advantages of the GFEVD over the orthog-

onalized OFEVD are clear:

1. It allows to estimate a number of spillover alternatives at a lower computational cost,

because we do not need to estimate P any more.

2. We will not require any theoretical restrictions for identifying the forecast error variance

decomposition.

3. It enables us to provide a richer analysis due to the variety of volatility spillover indexes.

4. Directional spillovers and net spillovers are reachable now.

5. Volatility and return spillovers tables do make sense and are more informative than

those ones based on OFEVD4

All these assertions, mentioned above, are inconclusive since GFEVD does not allow to

identify directionality of the shocks; reduced form residuals are still correlated in the general

framework of Pesaran and Shin (1998) making impossible to disentangle the idiosyncratic

shock from common shocks in the system modeled by the VAR approach. A simple simulation

exercise shows that the directionality of the spillover from country j to country k with j 6= k

under the GFEVD is not identified.

One alternative strategy to use when no theory is available to impose the restrictions

in P is to compute all the K! possible P’s to cover all the possibilities and then take the

mean from all Λo
h generated by this highly cost computational procedure, which yiels ᾱo

jk,h

as the typical element of Λ̄o
h; the other alternative is just estimate a certain number out of

4 Those tables based on orthogonalized fevd do not provide information about directional patterns of

transmission among variables.
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the K!, instead of all K! and again take the mean from all the new Λo
h generated, however

this constitutes a methodological limitation (Diebold and Yilmaz, 2012).

It is worthy to point out that the so-called “directional spillovers” (Diebold and Yilmaz,

2012) are only attainable when the researcher have a theoretical framework for the Choleski

decomposition. Once the researcher identifies the directionality and proceeds to apply the

orthogonalization, then she already is able to claim directionality in the spillover spread, hence

directional spillovers make sense, otherwise, when directionality is not reachable, neither

directional spillovers are.

2.5 Directional and Net Spillovers

Directional spillovers measure the spillover received by country j from all other countries k,

So
j·,h =

K
∑

k=1
k 6=j

α̃o
jk,h

K
× 100

and the spillover transmitted by country j to all other countries k is

So
·j,h =

K
∑

k=1
k 6=j

α̃o
kj,h

K
× 100

One can think of the set of directional spillovers as providing a decomposition of the total

spillovers to those coming from (or to) a particular source (Diebold and Yilmaz, 2012).

Note that directional spillovers require the identification of P. Once the researcher is

able to estimate the directional spillovers, she is also able to account for the net spillovers,

namely the difference between the gross shocks transmitted to and those received from all

other markets, formally

So
j,h = So

·j − So
j· (23)

If we were to use either Λ̄o
h or Λg

h in (23), then the resulting value would not be a net

spillover index, since directionality is not identified, instead, we would replace the word net of
13



the resulting value by position of the k variable relative to the total mean spillover transmitted

and received, consequently, it will not be a net spillover anymore, it is a mean relative net

spillover instead.

2.6 Spillovers table

To summarize all the types of spillovers previously presented, we provide an extended version

of the matrix in (21) by appending directional spillovers and total spillovers, the new matrix

is now renamed and it is called Spillovers Table.

Variable 1 2 . . . K C. from others

1 α̃i
11,h

α̃i
12,h

. . . α̃i
1K,h

∑K
k=2

α̃i
1k,h

2 α̃i
21,h

α̃i
22,h

. . . α̃i
2K,h

∑K
k=1

k 6=2

α̃i
2k,h

...
...

...
...

...
...

K α̃i
K1,h

α̃i
K2,h

. . . α̃i
KK,h

Contribution to others

(Spillover)

∑K
j=2

α̃j1,h

∑K
j=1

j 6=2

α̃j2,h . . .
∑K−1

j=1
α̃jK,h

∑K
jk=1

j 6=k

α̃i
jk,h

K
×100

Contribution to others

including own

∑K
j=1

α̃i
j1,h

∑K
j=1

α̃i
j2,h

. . .
∑K

j=1
α̃i
jK,h

K × 100

Table 1: Spillover Table

The Spillovers Table has as its jkth entry the estimated contribution to the forecast error

variance of variable j coming from innovations to variable k. The off-diagonal column sums

are the Contributions to Others or Cross-variance shares or Spillovers, while the row sums

represent Contributions from Others, when these are totaled across variables then we have

the numerator of the Spillover Index. Similarly, the columns sums or rows sums (including

diagonal), when totaled across variables, give the denominator of the Spillover Index, which

is 100 fold the number of variables (100×K).

Our objective is estimating Table 1 and based our analysis on it. In following sections we

fill Table 1 with the estimated spillovers.
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3 Empirical Results

Following Forbes and Rigobon (2002), stock market returns are calculated as two days rolling-

average, this allows us to control for the fact that markets in different countries are not open

during this same trading hours. For volatility we assume that is fixed within periods (in this

case, days) but variable across periods, thus following Garman and Klass (1980) we use daily

high, low, opening and closing prices to estimate daily volatility using (??).

Stock markets and countries analyzed in this chapter are the ones shown in ??.

3.1 Static Spillovers

3.1.1 Returns

Here we provide a full-sample analysis of global stock market return spillovers based on

both OFEVD and GFEVD. As part of this analysis, firstly, we present a single characteri-

zation of the full-sample spillovers providing a description in Table 2 over the sample period

17/6/2003− 16/9/2009.

Table 2: Total spillover index at 10 step-ahead forecast horizon.

Index Statistic VAR(1) VAR(6) VAR(9) VAR(10)

Orthogonalized Min. 41.096 42.066 42.330 42.321

Max. 45.111 45.201 45.491 45.433

Range 4.016 3.135 3.161 3.112

Mean 43.363 43.834 44.124 44.117

Generalized 54.192 54.818 54.733 54.795

Table 2 provides some orthogonalized and generalized spillover index results based upon

different VAR specifications as far as the lag length is concerned and fixing h = 10. We

estimate different VAR models as suggested by the selection criteria in Table 3: VAR(6),

VAR(9) and VAR(10), additionally a VAR(1) is also estimated; under these circumstances

we have no more information for using just one out of them and leave out the other ones.
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Table 3: Lag length order selection criteria for returns.

Lag AIC(p) HQ(p) SC(p)

1 −60.890 −60.838 −60.750

2 −61.669 −61.572 −61.409

3 −62.028 −61.887 −61.649

4 −62.244 −62.059 −61.745

5 −62.392 −62.162 −61.774

6 −62.512 −62.238 −61.774

7 −62.598 −62.280 −61.741

8 −62.664 −62.301 −61.686

9 −62.721 −62.314 −61.624

10 −62.762 −62.311 −61.545

AIC(p): Akaike Information Criterion.

HQ(p): Hannan and Quinn Information Criterion.

SC(p): Schwarz Information Criterion.

Numbers in bold represents the minimum of each criteria.

The top panel of Table 2 contains a descriptive statistical summary about the orthogonal-

ized spillover, while the generalized index is placed in the bottom of the table. Independently

of the VAR model used, the orthogonalized spillover index is near 44% and the generalized

rounds 54%.

In spite of the fact that VAR(1) is not chosen by any selection criterion, its results shown

in Table 2 are slightly different from those provided by any other VAR suggested by the

criteria, therefore our estimations and hence the subsequent analysis are based on the first

order VAR, two main reasons support this selection:

1. VAR(1) results are not so different from other specifications, besides, a VAR(1) speci-

fication needs fewer parameters to be estimated than the other VAR models, hence it

provides us with more degrees of freedom. Recalling that a VAR model with intercept

requires the estimation of K(1 +Kp) parameters, where K is the number of variables
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and p is the lag length, we have 6 variables and for VAR(1) we need to estimate 42

parameters which is considerably less than 222 for a VAR(6) for example, not to say

for a higher order VAR.

2. Orthononalized Spillover index gets stable more quickly when using a VAR(1) as it

is shown in Figure 1. This aspect plays an important role when deciding how many

steps-ahead to use when computing the spillover index. Furthermore, when all VAR

get the stability, the difference between VAR(1) and other VARs is minimal.

As a simple empirical criterion for choosing how many steps-ahead (h) to use when esti-

mating the spillover index is needed, then the criterion we use in order to pursue a reasonable

h, consists of selecting an h at which the estimated spillover index experiments small varia-

tions, we refer to this situation as the “stability” of the index, so we are after an h such that

the spillover index gets stable.

Figure 1 shows the behavior of several spillover indexes throughout different forecast

horizons which spans from 1 up to and including 20 periods (days), we can note that all

indexes get stable at different values of h. VAR(1) gets stable from ahead 7, VAR(6) shows

an almost flat curve from ahead 8, both VAR(9) and VAR(10) are much slower to get stability.

In this context stability do not be confused with the stability condition (stationary con-

dition for a VAR process), here what we meant with “a VAR gets stable at h ahead" is

concerning with the limit of the index. When FEVD and hence the spillover index experi-

ments small changes after h aheads then this VAR estimation reached its ‘stability’ so the

index associated to this VAR “gets stable". Following this definition we will use that step-

ahead from which the spillover index does not change dramatically as a good choice for our

analysis, this means that we should choose 7 step-aheads for VAR(1) in order to estimate

the spillover index for returns when using the orthogonalized index and h = 7 when using

the generalized spillover index. If we were to use VAR(6) then we would choose at least 8

aheads. Figure 1 shows the idea of what ‘stability’ is in this context.

It is worthy to highlight the fact that when each VAR get stable, the value of the spillover

index slightly differ from each other, therefore choosing that model with less number of
17



parameters and which stability is not so different from the other ones is a good option.
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Figure 1: Spillover index for returns throughout different forecast horizons

Table 4: Mean spillover table based on OFEVD, 7 steps-ahead.

US UK EU BRA JPN AUS C. from others

US 9.7449 1.8137 2.1251 2.3436 0.4610 0.1784 6.9218

UK 4.1073 6.0702 3.7913 1.6531 0.8352 0.2096 10.5965

EU 4.2722 3.7571 6.0975 1.5667 0.8075 0.1656 10.5691

BRA 3.1451 1.2359 1.2225 10.5489 0.4172 0.0970 6.1178

JPN 3.7667 1.5100 1.8193 1.5940 7.7372 0.2395 8.9295

AUS 0.0650 0.0654 0.0352 0.0302 0.0314 16.4394 0.2273

C. to others (spillover) 15.3564 8.3823 8.9933 7.1877 2.5522 0.8901 43.3619

C. to others including own 25.1013 14.4524 15.0909 17.7365 10.2894 17.3295 100.0000

Following Diebold and Yilmaz (2009) we also provide a full sample analysis of global
18



stock market return spillovers by decomposing the Spillover index (Contribution to others in

Table 4 and Table 5) into all the forecast error variance components for country j coming

from country k, for all j and k. We report Spillover Indexes in the last column of the row

named C. to others (spillover). The jk-th entry in the table is the estimated contribution to

the forecast error variance of country j coming from innovations to country k.

Note that static spillover tables shown in this section are the estimation of Table 1, though

all spillover tables inhere are standardized by means of dividing all elements by K.

Paraphrasing Diebold and Yilmaz (2009), the Spillover table provides an ‘input-output’

decomposition of the Spillover Index. We can learn from Spillover Table 4 that innovations

to US are responsible, in mean, for 4.1073% of the error variance in forecasting 7-days-ahead

UK returns. We can also see that the total spillover from US to other countries account

for 15.3564%, meanwhile the spillover from other countries to US is 6.9218%, this evidences

that the recent Global Financial Crisis triggered in US and spilled over the rest of countries.

Results in Table 4 refer to the mean of the 720 orthogonalized spillover in returns.

One of the key results from Table 4 is the Total Spillover Index which accounts for the

portion of the forecast error variance error coming from spillovers in returns, is 43.3619% for

our full 2003− 2009 data sample.

Table 5: Spillover table based on GFEVD, 6 steps-ahead.

US UK EU BRA JPN AUS C. from others

US 5.9757 1.7631 2.4799 5.9427 0.4610 0.0442 10.6910

UK 3.6858 3.6547 3.7081 4.8574 0.6966 0.0641 13.0119

EU 3.8191 2.9132 4.5829 4.6205 0.6790 0.0520 12.0838

BRA 2.6853 1.0724 1.3911 11.1502 0.3512 0.0164 5.5165

JPN 3.5090 1.7129 2.4189 4.8180 4.1165 0.0913 12.5501

AUS 0.0569 0.0662 0.0688 0.0567 0.0879 16.3301 0.3366

C. to others (spillover) 13.7561 7.5278 10.0668 20.2954 2.2757 0.2681 54.1900

C. to others including own 19.7318 11.1826 14.6497 31.4456 6.3922 16.5981 100.0000

Table 5 shows slightly different situation as its results are based on the general forecast
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error variance decomposition. In this table, some relevant changes take place, for example,

US decreases its spillover from 15.3564% (according to Table 4) to 13.7561%, also UK suf-

fers a reduction in its spillover, while Europe and Brazil experienced an increase. In this

new scheme Brazil becomes the main contributor in terms of spillovers. We already ex-

pect these discrepancies on the indexes, because each of them is using a different structure

of residuals for estimating the corresponding forecast error variance decomposition, as we

mentioned before, the orthogonalized index is built upon uncorrelated errors since Choleski

decomposition makes them to be independent (under normality), however due to the lack

of theoretical background for imposing restrictions on the directionality of the shocks, we

construct the spillover index by taking the mean of all the indexes calculated for all possible

Choleski decomposition, which is not longer an index which directionality can be identified.

For the case where we have generalized spillover index, from subsection 2.3 we know that the

GFEVD is order invariant because it does not relies on any kind of orthogonalization, thus

the residuals remains correlated and also identification of directionality is not possible. As a

conclusion from this part we can say that using either the mean orthogonalized or the gener-

alized spillover index, directionality is not possible to be established and the quantities inside

the Spillover Tables should be used cautiously. Because directionality is not recognizable, we

base all the analysis on the total spillover.

Just to mention the inaccuracy stemming from the lack of identifiability of the direction-

ality in the spillover tables, the mean relative net spillover is presented in Table 6; when

using the average orthogonalized spillover index we have that US, Brazil and Australia are

net transmitters while the other countries are net receivers, in contrast, when using the gener-

alized index, Australia is not longer a net transmitter, instead it happens to be a net receiver,

while US and Brazil remain being net transmitters.

Net spillovers need one unique Choleski decomposition to be valid. When using taking

mean of all possible decompositions, the net spillover becomes into mean relative net spillover

as we pointed out in subsection 2.5.
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Table 6: Net spillovers, returns.

Orthogonalized Index Generalized Index

To From Net Net Transmiter? To From Net Net Transmiter?

US 15.3564 6.9218 8.4346 Yes 13.7561 10.6910 3.0651 Yes

UK 8.3823 10.5965 −2.2142 No 7.5278 13.0119 −5.4841 No

EU 8.9933 10.5691 −1.5758 No 10.0668 12.0838 −2.0170 No

BRA 7.1877 6.1178 1.0699 Yes 20.2954 5.5165 14.7789 Yes

JPN 2.5522 8.9295 −6.3773 No 2.2757 12.5501 −10.2744 No

AUS 0.8901 0.2273 0.6628 Yes 0.2681 0.3366 −0.0685 No

3.1.2 Volatility

In this section, the static volatility spillovers are analized, all the decision process about the

lag length and the selection of h is undertaken as in the previous section. Volatility in this

chapter is estimated using (??) which is found in Garman and Klass (1980).

For similar reasons as before, a VAR(1) is used to estimate the spillover for volatilities,

Other alternatives to VAR(1), suggested by the selection criteria, are VAR(3), VAR(9) and

VAR(10), see Table 7 and Figure 2. Here the difference between VAR(1) and VAR(3) are

negligible and at the limit there are not big differences with VAR(9) or VAR(10) in terms of

the value of the spillover index.

Using a VAR(1) and h = 70 as the best value for the forecasting horizon, Table 8 and

Table 9, are estimated.

We learn from Table 8 that total volatility spillovers from US to others accounts for

17.63% (C. to others (spillover)) which is twice as big as total volatility spillovers from others

to US (contributions from others) which only amounts about to 8.4966%. As intuitively was

expected, volatility transmissions from US to the rest of the countries are much bigger than

the transmissions from any other country to the rest of the stock markets, this result is

plausible since US is the country where the GFC took place before to be spilled over the

major stock markets.
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Table 7: Lag length order selection criteria for intraday volatility.

Lag AIC(p) HQ(p) SC(p)

1 −70.737 −70.685 −70.598

2 −70.802 −70.705 −70.542

3 −71.061 −70.920 -70.682

4 −71.095 −70.910 −70.596

5 −71.187 −70.957 −70.569

6 −71.219 −70.946 −70.482

7 −71.287 −70.969 −70.430

8 −71.343 −70.981 −70.367

9 −71.399 -70.992 −70.302

10 -71.400 −70.949 −70.184

AIC(p): Akaike Information Criterion.

HQ(p): Hannan and Quinn Information Criterion.

SC(p): Schwarz Information Criterion.

Numbers in bold represents the minimum of each criteria.

Table 8: Mean spillover table based on OFEVD, 70 steps-ahead.

US UK EU BRA JPN AUS C. from others

US 8.1701 2.2711 1.5784 1.7334 0.7509 2.1628 8.4966

UK 4.6543 5.0116 2.3485 1.4564 0.7246 2.4713 11.6550

EU 4.7382 3.3597 4.6830 1.2482 0.7313 1.9063 11.9836

BRA 3.3817 1.5489 1.0369 8.7603 0.5944 1.3445 7.9063

JPN 3.3543 1.6729 1.4531 1.0216 7.8508 1.3139 8.8159

AUS 1.4978 1.4262 0.4834 0.4974 0.1787 12.5830 4.0836

C. to others (spillover) 17.6263 10.2788 6.9003 5.9570 2.9800 9.1987 52.9411

C. to others including own 25.7964 15.2905 11.5834 14.7174 10.8307 21.7817 100.0000

Now consider the total volatility spillover, which indicates that on average, 52.9411%

percent of volatility forecast error variance in all 6 stock markets comes from spillovers in

volatility.
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Figure 2: Spillover index for volatility throughout different forecast horizons

Table 9: Spillover table based on GFEVD, 70 steps-ahead.

US UK EU BRA JPN AUS C. from others

US 5.7385 2.2865 2.1376 4.9569 0.7604 0.7868 10.9282

UK 3.9583 3.8317 2.8213 4.4119 0.7424 0.9011 12.8350

EU 4.0173 3.2173 4.0617 3.9409 0.7390 0.6905 12.6050

BRA 2.6178 1.3712 1.2441 10.5412 0.4959 0.3963 6.1254

JPN 3.4491 2.0636 2.1391 3.7252 4.7150 0.5747 11.9517

AUS 2.5025 1.9413 0.9690 2.7988 0.3958 8.0592 8.6075

C. to others (spillover) 16.5451 10.8800 9.3110 19.8338 3.1336 3.3493 63.0528

C. to others including own 22.2836 14.7116 13.3727 30.3750 7.8486 11.4085 100.0000

In Table 9, we see almost the same pattern exhibited in Table 8, nevertheless in the

generalized version of the spillover for volatility the main contributor is Brazil followed by
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Table 10: Net spillovers, volatility.

Orthogonalized Index Generalized Index

To From Net Net Transmiter? To From Net Net Transmiter?

US 17.6263 8.4966 9.1297 Yes 16.5451 10.9282 5.6169 Yes

UK 10.2788 11.6550 −1.3762 No 10.8800 12.8350 −1.9550 No

EU 6.9003 11.9836 −5.0833 No 9.3110 12.6050 −3.2940 No

BRA 5.9570 7.9063 −1.9493 No 19.8338 6.1254 13.7084 Yes

JPN 2.9800 8.8159 −5.8359 No 3.1336 11.9517 −8.8181 No

AUS 9.1987 4.0836 5.1151 Yes 3.3493 8.6075 −5.2582 No

US while in the orthogonalized case, the main contributor is US followed by UK.

Here again, we show the ‘net’ spillover table where volatility exhibits the same pattern

as returns. When using the orthogonalized spillover US and Australia are net transmitter

and this result changes when using the generalized because in this case US remains being a

net transmitter while Australia is not anymore and Brazil change position from being a net

receiver to be a net transmitter.

3.2 Rolling sample analysis: Studying the dynamics of the spillovers

We prepare this section because several events might have taken place within our series as

stock prices move from relative stable periods to turmoil ones, therefore with this financial

market evolution, it is unlikely that prices remain constant over time so that any single fixed-

parameter model would apply properly over the entire sample and gives rich information

about its evolution.

Hence the full-sample spillover tables constructed earlier, although providing a useful

summary of the average total spillover behavior, likely miss potentially important secular

and cyclical movements in spillovers. To address this potential lose of dynamics, we now

estimate spillover using 160-days5 rolling windows which we examine graphically in the co-

5The width of the rolling windows does not affects the main findings. Diebold and Yilmaz (2009) performs

an extensive set of robustness checking on this particular point showing that dynamic spillover index is
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Figure 3: Dynamic spillovers for returns.

called total spillover plots (Diebold and Yilmaz, 2009, 2012). We provide results from both

the orthogonalized and the generalized spillover index.

We can note, on October 2008, a increasing trend with a big jump capturing the Global

Financial Crisis (GFC) triggered on August 4, 2008. The jumps previous to the biggest one

clearly reflects how volatile the stock markets were during the Subprime Mortgage Crisis

(hereafter: SMC) and this fact triggered the GFC. See daily dynamic plot in Figure 3.

Figure 4 shows the dynamic spillover index for volatilities using 160-days rolling windows.

There are some common features between dynamic spillover in returns and dynamic spillover

in volatilities, we see that both captures quite well the turbulence in late 2008, both have

three main jumps corresponding to mid 2006, early 2007 and late 2008.

Figure 5 and Figure 6 shows the ‘net’ spillover dynamically. The dashed line at point

strongly robust to the size of the window.
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Figure 4: Dynamic spillovers for volatilities.

zero indicates that values above this line suggest the country is a net transmitter and values

below indicate the country is a net receptor of shocks.

Figure 5 shows the US as net transmitter of shocks over the entire sample period while

Brazil and Australia are net transmitters for most of the period, while UK and Europe are

most of the time net receptor. Japan is always a net receptor for all period. Figure 6 shows

very similar results except for US which behaves as a net receptor of shocks before 2008

and after the crisis in 2008 it becomes into a net transmitter and Brazil becomes into a

net transmitter for all the period, the rest of countries behave the same as in Figure 5. It

is important to note that the word net in this context should be use cautiously as neither

in the (mean) orthogonalized nor in the generalized version of this section, directionality is

identified.
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Figure 5: Dynamic orthogonalized ‘net’ spillovers for returns.

4 Conclusions

We utilize a spillover index to assess the proportion of variance that on average comes from

spillover in other countries. Two versions of this spillover index are used in this work: the

orthogonalized and the generalized version, where the former is based on the traditional

forecast error variance decomposition using the Choleski orthogonalization, hence the order-

dependence becomes a drawback; the latter is based on the generalized forecast error variance

decomposition, which not depends on the ordering. It is worthy to note that the ordering

dependence of the orthogonalized spillover index is a drawback when lack of a theoretical

framework for imposing restrictions is involved, if we had such a theoretical background, then

order dependence will not longer be a drawback, instead it would be an advantage since it
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Figure 6: Dynamic generalized ‘net’ spillovers for returns.

will provide us with directionality, the spillover table would be meaningful and net spillovers

indeed would account for net effects and the highly computational procedure will decreases

dramatically.

Our empirical results suggest that around one-half of the total variance comes from

spillovers in returns as well as in volatility.

Since the impossibility of identifying the shocks in the spillover tables, we consider that

this procedure is useful to obtain total spillovers but not directional spillovers, therefore net

spillovers are conclusive.
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