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Abstract

This paper establishes consistency and asymptotic normality of the generalized
quasi-maximum likelihood estimate (GQM LE) for a general class of periodic condi-
tionally heteroskedastic time series models (PCH). In this class of models, the volatil-
ity is expressed as a measurable function of the infinite past of the observed process
with periodically time-varying parameters, while the innovation of the model is an in-
dependent and periodically distributed sequence. In contrast with the aperiodic case,
the proposed GQM LFE is rather based on S instrumental density functions where S
is the period of the model while the corresponding asymptotic variance is in a "sand-
wich" form. Application to the periodic GARCH and the periodic asymmetric power
GARCH model is given. Moreover, we discuss how to apply the GQM LE to the pre-
diction of power problem in a one-step framework and to PC'H models with complex
periodic patterns such as high frequency seasonality and non-integer seasonality.
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1. Introduction

Since the introduction of the AutoRegressive Conditionally Heteroskedastic (ARC H) model
by Engle (1982) and its leading GARCH generalization by Bollerslev (1986), conditional
volatility models have continued to capture the interest of researchers in the statistical and
financial econometric literature (e.g. Francq and Zakoian, 2010). Among the numerous
extensions of the original ARCH formulation, which have been introduced, there is the
periodic GARCH (PGARCH) specification proposed by Bollerslev and Ghysels (1996).
This model whose coefficients are periodic over time, aims at modeling time series volatility
with periodic dynamic behavior (e.g. Franses and Paap, 2000-2004; Ghysels and Osborn,
2001; Taylor, 2006; Osborn et al, 2008; Regnard and Zakoian, 2011; Sigauke and Chikobvu,
2011; Rossi and Fantazani, 2015; Ziel et al, 2016). Typical examples of time series for which
periodic volatility models have proved useful are financial stock return series, which tend
to show seasonal volatility. In particular, it is well documented that daily return series are
characterized by the day-of-the-week effect (e.g. Franses and Paap, 2000; Balaban et al,
2001; Tsiakas, 2006; Berument et al, 2007; Osborn et al, 2008; Charles, 2010; Aknouche,
2016) while the month-of-the-year effect is present in monthly return series (e.g. Beller
and Nofsinger, 1998; Tsiakas, 2006; Aknouche, 2016). Moreover, various intraday high
frequency return series also exhibit periodicity in volatility (e.g. Andersen and Bollerslev,
1997; Bollerslev et al, 2000; Taylor, 2004; Taylor, 2006; Smith, 2010; Rossi and Fantazani,
2015). Other important examples of non-financial intraday series that may be affected by
periodicity in volatility are half-hourly Net Imbalance Volume (NIV) series (Taylor, 2006)
and hourly wind power and wind speed series (e.g. Ambach and Croonenbroeck, 2015;
Ambach and Schmid, 2015; Ziel et al, 2016).

Statistical inference for PGARCH models and their extensions has been mainly con-
ducted using the standard Gaussian quasi-maximum likelihood estimate (QM LE). This
estimate, which is calculated on the basis of the Gaussian likelihood, is consistent and as-
ymptotically Normal (C'AN) under quite mild assumptions (cf. Bollerslev and Ghysels, 1996;
Franses and Paap, 2000, Aknouche and Bibi, 2009; Aknouche and Al-Eid, 2012; Ziel, 2015).



In particular, no moment condition on the observed process is required (Aknouche and Bibi,
2009; Aknouche and Al-Eid, 2012). However, asymptotic normality of the Gaussian QM LE
requires a fourth moment condition on the model innovation, which constitutes a serious
limitation, especially for heavy-tailed innovations that are well-observed in practice (e.g.
Boynton et al, 2009; Bidarkota et al, 2009).

For non-periodic conditionally heteroskedastic (C'H) models, a large amount of research
has been executed in latter decades to study the so-called Generalized QM LE (GQMLE,
Newey and Steigerwald, 1997; Berkes and Horvath, 2004; Francq et al, 2011; Francq and
Zakoian, 2013; Fan et al, 2014; Zhu and Li, 2015). This estimate is calculated on the
basis of a given instrumental distribution and reduces to the Gaussian QM LE when the
instrumental function is Gaussian. In fact, the GQM LE has been partly introduced as a
flexible alternative to the Gaussian QM LFE in reducing the inherent moment condition on
innovation. An interesting application of the GQM LF is the prediction of powers of return
series in a fully parametric one-step framework (Francq and Zakoian, 2013). Furthermore,
the GQM LE may be seen as a useful and flexible alternative to the Gaussian QM LFE in
estimating some risk measures, like the Value at Risk (VaR), where the Gaussian QM LFE
fails in the presence of heavy tailed series (Francq and Zakoian, 2015-2016, El Ghourabi et
al, 2016).

This paper establishes consistency and asymptotic normality of the GQM LFE for a gen-
eral class of periodic conditionally heteroskedastic (PC H) models. In this class, the volatil-
ity is expressed as a measurable parametric function of the infinite past of the observed
process, whereas the innovation of the model is an independent and periodically distributed
sequence. Most earlier works on periodic conditionally heteroskedastic models assume in-
dependence and stationarity of the innovation of the model while the volatility coefficients
are periodic over time (Bollerslev and Ghysels, 1996; Franses and Paap, 2000, Osborn et
al, 2008; Aknouche and Bibi, 2009; Aknouche and Al-Eid, 2012; Rossi and Fantazani, 2015;
Ziel, 2015-2016). Here, periodicity of the model is manifested via the volatility coefficients

and also the distribution of the model innovation. This makes the model more flexible in



representing seasonality in volatility with possible various identifiability assumptions on the
marginal distributions of the periodic innovation. For example, it is well known that in daily
return series certain trading days of the week may have different distributions to those in
alternate trading days (Boynton et al, 2009; Bidarkota et al, 2009). These distributions may
be light-tailed or heavy-tailed with different orders of magnitude (e.g. different Kurtoses).
For certain trading days one even suspects that second moment do not exist. So, a PCH
model with periodic innovation would be better in representing such situations than a PCH
with stationary independent innovation.

In contrast with non-periodic C'H models for which the GQM LE only involves one
instrumental density, our GQM LE for PC'H models is calculated on the basis of S instru-
mental functions corresponding to the different seasons, where S is the period of the model.
This choice seems assorted with the independence and periodicity of the model innovation,
which implies at most S different marginal distributions. It allows the proposed GQM LE to
reduce to the Maximum Likelihood estimate (M LE) when the S chosen instrumental func-
tions coincide with the S marginal distributions of the innovation and hence to be asymp-
totically efficient. The assumptions of consistency and asymptotic normality of the proposed
GQMLE are quite mild. In addition, due to the periodicity of the model innovation, the
asymptotic variance has an unusual "sandwich" form compared to non-periodic C'H models
(Francq and Zakoian, 2013). As an application, we examine the asymptotic behavior of
the GQM LE for the particular periodic asymmetric power GARCH (PAP-GARCH (1,1))
process that we define below. This model generalizes the well-known asymmetric power
GARCH (AP-GARCH (1,1)) model proposed by Deng et al (1993) to the case where the
volatility coefficients, the power and the innovation of the model are periodic over time.
It retains the main features of the AP-GARCH model, which are asymmetry, correlation
power and persistence in volatility, and is expected to account for periodicity in volatility.
We also discuss application of the GQM LFE to the prediction of power problem as well as to
PC'H models with complex periodic patterns like high-frequency periodicity and non-integer

periodicity.



The rest of this paper is structured as follows. In Section 2, the general PC'H model is
briefly described and some results that are needed in the subsequent Sections are provided.
Then, the GQM LFE is defined in Section 3 and its consistency and asymptotic normality are
established under mild assumptions. To illustrate the results, Section 4 shows asymptotic
properties of the GQM LE on some specific instrumental densities and also on the periodic
asymmetric power GARCH (1,1) model, where the general assumptions are made more
explicit. Moreover, the applicability of the GQM LE to the prediction of power problem
and to PC'H models with large and/or non-integer periods is discussed. Section 5 concludes

while detailed proofs of the main results are left to Section 6.

2. A general class of periodic conditionally heteroskedas-
tic models

A sequence of real-valued random variables {n,,t € Z} is said to be independent and S-
periodically distributed (ipds in short) if {n,,t € Z} is independent and 7, has the same
distribution as 7,,q,, for all t,n € Z, where S, called the period, is the smallest positive
integer satisfying the latter property. For S = 1 an idp; sequence is clearly independent and
identically distributed (henceforth iid). Let {n,,t € Z} be an unobservable ipds sequence
defined on a probability space (2, F, P) with unknown probability densities { f,,1 < v < S},
ie. f, is the density of n,4,, (n € Z,1 < v < §). Consider a S-periodic sequence of
unknown parameters {fq;,t € Z} satisfying 0o,ns10 = 000 = (Oou1,--bovm,) € R™ with
m, € N* =N~ {0}, (n € Z,1 <v < S). A general periodic conditionally heteroskedastic

(PCH) time series model is a stochastic difference equation of the form

€ = 04y,
LT tez, (2.1a)

Ot = ¥y (Et—la €t—2, ---?90t) )

whose solution, {¢;,t € Z}, is an observable stochastic process on (2, F, P). It is assumed

that 7, is independent of {¢;,7 < t} and ¢,, which satisfies ¢, = ¢4, (1 <v < S,ne€Z),



is a positive real-valued measurable function: R* x R™ — (0,00). To emphasize model

periodicity, equation (2.1a) may be rewritten as follows

€EnS+v = OnS+oullnstvs
S+ S+ollns+ 1<v<S nel. (2.10)

OnS+v = Py (€n5+v717 EnS+v—25 «+e3 900) y

where for all 1 < v < S, the vth season (or channel) stands for the set {...,v — S,v,v + 5, ...}.
The true unknown parameter of the model, denoted by 6y = (6, ..., 65>/ € R™, belongs to
a compact parameter space @ = O X ... Xx Og C R™ with m = Zle m, and ©, C R™
(1<v<S). Thus in (2.1) various specifications are allowed along seasons with possibly
various parameter dimensions m, (1 <wv < S). In the periodic GARCH literature (e.g.
Bollerslev and Ghysels, 1996; Aknouche and Bibi, 2009; Ziel, 2015), it is generally assumed,
as in non-periodic C'H models, that {n,,t € Z} is iid so periodicity of the model appears
only through the sequence of parameters {0y, t € Z}. Here, {n,,t € Z} is rather ipds and in
a more general framework periodicity of the model is expressed via both inputs {0y, t € Z}
and {n,,t € Z} of (2.1). In fact, for model (2.1) to be identifiable, a scaling assumption on
{n;,t € Z} is needed. The standard identifiability assumption is the unit second moment
condition E (n?) = 1 (e.g. Bollerslev and Ghysels, 1996; Aknouche and Bibi, 2009; Ziel, 2015)
but we do not need to make it in this paper. Instead, we will assume S general conditions
on {n,,t € Z} ensuring consistency of the generalized QM LE we propose below. It turns
out that these conditions (see A4 below) also allow to identify the model and replace in
flexible manner the unit second moment assumption. Other identifiability assumptions on
the {n,,t € Z} may be induced by some objectives of the model posterior to its building
such as predicting the powers of {e;,t € Z} (Francq and Zakoian, 2013), estimating the
conditional value at risk of the model (Francq and Zakoian, 2015-2016), etc. We will see
that the GQM LE should be defined so that the implied sets of identifiability assumptions
on {n,,t € Z} would be compatible for all distributions of the innovation (cf. Section 4.2).
Model (2.1) is quite general and important examples thereof are: the stable periodic
GARCH (PGARCH) proposed by Bollerslev and Ghysels (1996), the infinite periodic
ARCH model (Ziel, 2015-2016), the stable long memory periodic EGARCH model (Rossi
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and Fantazani, 2015), and the stable periodic asymmetric power GARCH (PAP-GARCH)
model that we will define below (cf. Example 2.1-2.3 and Section 4.2). When S = 1, equa-
tion (2.1) reduces to the general conditionally heteroskedastic (C'H) model studied by Francq
and Zakoian (2013, 2015, 2016) and El Ghourabi et al (2016). It is also a particular case
of the general multivariate causal periodic time series model suggested by Ziel (2015). The
following examples illustrate the model (2.1) via some specific subclasses of it.

Example 2.1 (The infinite periodic ARC' H (c0) model)

An important example of (2.1) is the infinite periodic ARCH (PARCH (c0)) model,
which is defined by

« o tez, (2.2)
ol = Qo0 t+ 040t,1€?_1 + @0t,26,52_2 + ...
where {n,,t € Z} is ipds and the positive coefficients (o j,t € Z) are S-periodic over ¢ for
all j € N, ie. ag; = aprksj, k,t € Z, j € N. A number of S identifiability conditions on
{n,,t € Z} are required. They are induced by the instrumental functions used in calculating
the GQM LE we propose below and should also be compatible with other objectives of the
model such as the prediction of powers of the observed process (cf. Francq and Zakoian, 2013
in the CH case). For model (2.2), the function ¢, in (2.1) corresponds to ¢, (z1,%2,...) =
Qo0 + 52y Qor,jr; (t € Z) while the corresponding parameter vector 0 = (6py, -, 0s) €0
is obtained by parametrizing the coefficients (aq ;,t € Z,j € N). Specifically, for 1 <v < §
we assume that
Qoy,j = Aoy (fov) »

with known functions «,; (.) : ©, — [0,00), for some ©, C R™ . For instance, a simple
PARCH (c0) model is obtained for the functions

e ifj>1

Qy,j (001)) = / ’ 1 S v S Sa
1 .
with 0, = (b,,d,)' € 6, = [b,,b,] % [d,,d,] and © = ©; x ... x Og C (0,00)*", where
0<b,<b,and 0 <d, <d, (1 <v<5) (see Francq and Zakoian, 2010 in the ARC' H (c0)

case).



When {n,,t € Z} is iid, model (2.2) is a particular case of the periodic nonlinear AR (c0)-
ARCH (c0) model proposed by Ziel (2015-2016) where conditions on its existence are pro-
vided. It is a periodic version of the infinite ARC'H (o) introduced by Robinson (1991) and
is recommended for representing strong persistence and periodicity in volatility. It is also
a generalization of the most widely used periodic GARC H model (Bollerslev and Ghysels,
1996). Indeed, consider the following PGARCH (1,1) model given by

€n =0y nS+uvs
S+v S+ollns+ 1<v<Snez, (2.3)

Orsio = Wou + Q0u€rgyy 1 + BouOinsyoi
where {n,,t € Z} is ipds with sup,.,g E (log (12)) < oo and wq, > 0,0, > 0,0y, > 0.
Under the stability condition

S
[15. <1, (2.4)
v=1

which in turn is implied by the strict periodic stationarity condition

S

> E (log (aoumi—_y + Bo,)) <0,

v=1
(cf. Aknouche and Bibi, 2009, Corollary 1) we have

oo j—1

2 2
T = Z H Bos—i (Woug + aos—j€i 1) -

=0 i=0
So (2.3) is a particular case of (2.2). [

Example 2.2 (The periodic asymmetric power GARCH (1,1) model)

Let S = 5 and consider the specific 5-periodic Asymmetric Power GARCH (1,1) (PAP-
GARCH (1,1)) given by

€sn+v = Osn+ol5n40

)

s 1<v<5nez,
v — + (51;7 - 51,, v—1
O5ntv = Wov + a0U+(65n+v—1) '+ agy— (€5n+v—l> i ﬁOvafm—H}—l

(2.5)
where wg, > 0, agyr > 0, ag,— >0, 5y, > 0,0, >0 (1 <v<5), d:= 05, 27 = max(z,0)

and £~ = —min(z,0). Assuming §, known (1 < v < 5), the unknown parameter of the



model is denoted by 6y = (8, - ,0p5) € © C (0,00)% with 6}, = (Wou, Qour; Vv Boy) €
0, C (0,00)%, 1 < v <5, where © = ©; x - - - X O3 is a compact parameter space. Moreover,
parameter restriction on the model may be considered when having prior information on the
marginal distributions of the returns. For example, model (2.5) may be used to represent
daily stock returns where each trading day of the week v € {1,2,..,5} has a proper marginal
distribution. If for a given trading day w € {1,2,..,5} we admit that the asymmetry (or
leverage effect) of the model is insignificant then one may assume that ag,+ = Qouw— = Qow
so that the corresponding parameter reduces to 6o, = (Wow, Cow, Bo,) € (0,00)3. Tt is also
possible to consider the powers §, (1 < v < 5) as unknown parameters to be jointly estimated
with . In that case, the parameter vector of the model is denoted by 1, = (&', 6})" with
§ = (61,09,...,65) € (0,00)°. Note also that the powers may be considered constant, i.e.
d1 = ... = d5. On the other hand, the sequence {n,,t € Z} is assumed to be ipdg satisfying
S identifiability conditions depending on the chosen estimation method as well as on the
objective of the model (see Section 4.2).

For S = 1, model (2.5) reduces to the Asymmetric Power GARCH (AP-GARCH (1,1))
model proposed by Ding et al (1993). It also reduces to the periodic GARCH(1,1) when
dy = 2 and agyr = ag— (1 < v < 5), to the periodic power GARCH(1,1) corresponding
to agut = ap— (1 < v < S) and to the periodic threshold GARCH(1,1) when §, = 1 for
all 1 < v < 5. Beside the stylized facts captured by the AP-GARCH model such as the
so-called "leverage effect" and the " Taylor effect" (e.g. Aknouche and Touche, 2015), model
(2.5) might also account for periodicity, which is often observed in financial return data.
Note finally that under the stability condition (2.4), o; given by (2.5) can be written in the
form (2.1) and hence the PAP-GARCH (1, 1) model is a particular case of the PC'H model
(2.1). O

Example 2.3 (Mixed specifications)

The PCH model (2.1) also allows different specifications along seasons. For S = 5,



consider the following model
(

€sn+v = Osn+oull5n40s I1<v< 57 neN
Ugnﬂ = a1 (0o1) + 21 a5 (0o1) 5§n+1—j
J:
log (U§n+2) = W2 + a02€§n+1 + 602 log (0§n+1) , (26)

Tsn+3 = Wo3 + Qo3+ (€ansa) + €03—(€5,12) + BosOsnt2

04 _
Oghia = Wou + Qo4 |€5n43] + BosTsnts

ds + ) - s 04
[ T5nis = Wos + Qo5 (€5,4.4)"* + Q05— (€5,1.4)™ + L0505 44

where the parameter of the model is denoted by 0y = (0, -+ ,0h;) € © C (0,00)™

with 6p; € ©; C R™ for some m; € N*, gy = (wo2, apg, By) € Oz C (O,oo)?’, Oo3 =
(wo3, 03+, Y3, Boz) € O3 C (0,00)", Oos = (wou, os; Boy) € O4 C (0,00)° and b5 =
(wos, Qo545 X5—, Bos) € O5 C (0, 00)4. All parameter spaces O1,..,05 and © = ©; X - - - X Oj
are assumed compact while the powers 04 > 0 and 05 > 0 are known. Note that 6y; is
a parametrization of the coefficients oy ; (j € N) in (2.6). As in the previous examples,
the innovation sequence {n,,t € Z} satisfies certain identifiability assumptions depending on
the chosen instrumental functions used in computing the GQMLE. For v = 1, it is clear
that 5,41 has a similar form as (2.1). By successive replacement in (2.6), it can be seen
that 5,4, (2 < v < 5) may be cast in the form (2.1) with some conditions on the ay ; (6o1)
(7 € N) for the volatility to exist, but without any requirement on 3, (2 < v < 5). So (2.6)
is a particular case of (2.1). In fact, model (2.6) combines the infinite ARCH (c0) for v =1,
the Exponential GARCH (1,1) (EGARCH (1,1)) for v = 2, the threshold GARCH (1,1)
for v = 3, the power GARCH (1,1) for v = 4 and the asymmetric power GARCH(1,1) for
v = 9.

In this illustrative model, various specifications across seasons are permitted. In practice,
many seasonal volatility series may show certain stylized facts on a given season and not
on another. For example, in daily return series, which generally show the day-of-the-week
effect (Tsiakas, 2006; Berument et al, 2007; Osborn et al, 2008), the "Monday" series may
be characterized by a stronger persistence compared to other trading days. Also, a certain

trading day may have a distribution with tails heaver than those of the other trading days
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(e.g. Boynton et al, 2009; Bidarkota et al, 2009). And this may be true for the asymmetry
property (e.g. Balaban et al, 2001; Charles, 2010). Thus, one can consider a periodic
volatility model with different specifications each of which is adapted to the specific stylized
facts marking the season in question. Of course, this is only a schematic and hypothetical
example and other mixed specifications are conceivable. However, they should be preceded
by preliminary theories (financial for example) and confirmed and reinforced by applications.
O

Throughout this paper, we make on equation (2.1) a stability assumption, which implies
the properties of strict periodic stationarity and periodic ergodicity that we recall here for
convenience (see also Boyles and Gardener, 1983; Aknouche and Al-Eid, 2012). A real-valued
stochastic process {Y;, t € Z} defined on (92, F, P) is said to be strictly periodically stationary
with period S € N* (henceforth spsg) if its infinite-dimensional distribution is invariant
under a shift multiple of S for all season v (1 < v < 5), i.e. the probability distribution of
(..., Yo, Yoi1, Yoio, ...) is the same as that of (..., Y,1ns, Yor14ns, Yorotns,...) forall 1 <o < S
and h € Z. Here, S is the smallest positive integer verifying the latter property. Thus, a sps;
process with S = 1 is strictly stationary and the simplest spsg process is an ipdg sequence.
Strict periodic stationarity is intimately related to strict stationarity. Indeed, a process
{Y;, t € Z} is spsg if and only if all the S "sub-processes" {Y,s1v, n € Z} (1 < v < 9)
are strictly stationary. The periodic analog of the ergodic theorem for spsg processes is the
periodic ergodic theorem (e.g. Boyles and Gardener, 1983), which can be stated as follows.

If {Y;, t € Z} is spsg with E (Y,) < oo for all 1 < v < S then

IRF=R IR 27)

for some random variables Y;* (1 < v < S) on (Q, F, P) satisfying ;" = lim,, .o = S0t Yistos
a.s. Result (2.7) also extends to the case where E (Y,) € RU {+o0} for some v € {1,..., S}.
When for a given season vy € {1,..., 5} the corresponding strictly stationary sub-process

{Yos400, n € Z} is ergodic, then the limiting random variable Y is almost surely constant
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and then
Yy =E(Y,), as.

If all sub-processes {Y,s1v, n € Z} (v € {1,...,S}) are ergodic, then the whole process
{Y;, t € Z} is said to be periodically ergodic. In that case, the limiting variable in (2.7)
simplifies to %Zle E (Y,), the mean of the seasonal means. Periodic ergodicity may also
be defined more explicitly. Let 7" : R* — R% denote the shift transformation defined for any
Xy = (coy Ty T 1, Toy2, o) € REDY Ty = (o) Ty 1, T2, Toys, -..) (1 < v < S) and write T°
for the S-th power of T: T° = ToTo...oT, S times. A Borel set D, C R? of the form D, =
{XU ERZ:x, = (..., Ty, Tyrs, Toias, )} is called S-invariant along the season v (1 < v < )
if 7=%(D,) = D,, where T~% (D,)) = {x, € R* : T9x, € D,}. A spsg process {Y;, t € Z} is
said to be periodically ergodic if for any v € {1, ..., 5}, P((..., Yy, Y15, Yoios,...) € D,) =0
or 1, for all S-invariant Borel set D,, over the season v. Similarly to strict periodic stationarity,
the simplest periodically ergodic process is an ipds sequence. Like strict stationarity and
ergodicity (see e.g. Billingsley, 1995, Theorem 36.4), strict periodic stationarity and periodic
ergodicity are preserved under certain periodic transformations. Indeed, if {Y;, ¢t € Z} is spsg
and periodically ergodic and if {Z;,t € Z} is given by Z; = f; (..., Yi_1,Y:, Va1, ...), where f;
is a function from RZ into R, which is measurable, S-periodic over t (f; = fiins for all n
and t) and may depend on S-periodically time-varying parameters, then so is {Z;,t € Z}.

Now consider the following assumption on model (2.1).

Al: {¢,t € Z} is a strictly periodically stationary and periodically ergodic solution of
equation (2.1).

For specific cases of (2.1), assumption A1 may be expressed more explicitly in terms of

the inputs of (2.1). See Section 4.3 for the periodic asymmetric power GARCH (1,1).
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3. Generalized QMLE for periodic conditionally het-
eroskedastic models

Turn now to the statistical problem of estimating the parameter 6, using a series €y, €, ..., €r
generated from (2.1) with sample size T = NS (N > 1). For every generic parameter
0=(0),..,05 € 0O,if we set

OnS+v (9) = Py (enSJrvfla EnS+v—25 ++3 91}) s (30)

then clearly 0,5, (6p) = 0nsiy for all 1 < v < S and n € Z. Given any arbitrary fixed

initial values €y, €_1, ..., define

&/nS+v (9) = @y (EnSJrv,l, €EnS+v—2;5 ...,61,%/0,%/,1, ceey 9,0) s 1 S (% S S, n 2 0, (31)

as a proxy for 0,5, (6). For some chosen measurable positive real-valued functions hy, ..., hg
that we call instrumental functions, define the generalized quasi-likelihood criterion relatively

to h := (hy,...,hs)" and for any 6 € © to be

=2

-1

ZTh - NL EnS-i—va 5:715-1—1) (0)) (32)

n

.—H
o

M
ﬁ:&M“

with g, (z,¢) = ()) ¢>0,reR 1<v< S,

Then the generalized QM LE (henceforth GQM LE) 5T,ﬁ of 6y is a solution to the problem
Or) = arg max Ly, (0), (3.3)

for some compact space O.
Clearly, ET@ reduces to the Gaussian QM LE (cf. Aknouche and Bibi, 2009; Aknouche
and Al-Eid, 2012 in the PGARCH (p,q) case) when hy = hy = ... = hg = ¢, ¢ being the

standard Gaussian density. Moreover, ET@ is the maximum likelihood estimate (M LE) when

hi = fi1,he = fa, ..., hs = [s,
where f, is the density of n,,4,, (1 <v < S, neZ).
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As emphasized above, in calculating the GQM LE we have used S instrumental densities
(h1, ..., hs) rather than just one density like in C'H models (cf. Berkes and Horvath, 2004;
Francq and Zakoian, 2013). The main motivation behind this choice stems from the fact
that the innovation process {n,,t € Z} is assumed to be ipds rather than iid and hence it
has S marginal distributions (f1, ..., fs). Thus, our choice allows the GQM LE to reduce to
the M LE when the S chosen instrumental functions (hq, ..., hg) coincide (in the appropriate
order) with the S marginal densities (f1,..., fs) of {n,,t € Z}. On the other hand, if only
one instrumental density, say hi, is used then the corresponding GQM LE given by (3.3)
cannot reduce to the M LE even when the S marginal distributions of the ipds innovation
{n;,t € Z} are known. Therefore, it is likely that the GQM LE cannot be asymptotically
efficient.

Let C' > 0 and 0 < p < 1 be positive generic constants that are not necessarily the same
when appearing in different terms. To study strong consistency of the GQM LE consider
the following assumptions.

A2 For any 0 € O, 0,51, (0) > w, a.s. for some w, > 0 (1 < v < S). Moreover,
Onsiv (0) = Opsiv (60) a.s. if and only if 0 = 0.

A3 The functions hy, ..., hs are integrable and differentiable over R* = R\{0}. Moreover,
for all 1 < v < S, there exist constants K, > 0 and 6, > 0 such that: |zhl (z) /h, ()] <
K, (|x|6“ + 1) for all z € R* and E (|77U|6”> > 0.

A4 E (T2, 0,006)) € o0 00) and B (E 00 01)) < £ (L (ns)) for
all 6, >0,¢,#1 (1<v<8). = =

A5 i) For any (x1,x2,...) € R*® the functions 0 — ¢, (v1,x2,...;0) are a.s. continu-
ous for all 1 < v < S. i) For some 7, > 0, E(le)|™) < oo forall 1 < v < S. iii)
SUPgee [Tns+v () — Onsio (B)] < Cp" acs.

Assumptions A1-A5 are similar to those given for the non-periodic C'H model (see
Berkes and Horvath (2004) for the GARC H model and Francq and Zakoian (2013) for the
C'H model) with an appropriate adaptation to the periodic case. Indeed, A2 implies that

the volatility is bounded from below a.s. Further, A2 imposes an identifiability condition,
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which for the specific stable PGARC H case is given in terms of the PGARC' H polynomials
(cf. Aknouche and Bibi, 2009). On the other hand, the smoothness condition A3 on h,
(cf. Berkes and Horvath, 2004) is not so restrictive and is satisfied for a broad range of
standard instrumental functions h,. In addition, assumption A4 naturally implies S mo-
ment conditions on the ipdg sequence {n,,t € Z}. These assumptions allow to identify the
model and generalize the standard unit second moment assumption F (?) = 1. Finally,
A5 is a moment assumption on the observed process that may appear restrictive. However,
most Markovian-like specifications (PGARCH, PAP-GARCH) can be cast in a recurrence
equation of the form Y; = A;Y; 1 + B, with {(A;, By),t € Z} is ipds. For this equation the
stability condition A1 implies the finiteness of the moment FE (J¢,|”) < oo for some 7 > 0
(1 < v < S) and so part ii) of A5 vanishes (see Aknouche and Bibi, 2009 in the specific
PGARCH (p,q) model and Berkes et al, 2003 for the standard GARCH (p,q)). Strong
consistency of the GQM LE given by (3.3) is now established.
Theorem 3.1 Assume A1-A5 hold for K, >0 and 6, >0, (1 < v <S). Then,

Onsn = o (3.4)

—00

To study asymptotic normality of ET@ , let

[ (xug) :%‘3707 gUQ(x7g) - anaz)g(Q:E’C);xeR? §>07 1 SUSS,

and define the matrices

0'2 0'2
Ay (00) = D7 B (02 (0, 1)) B iy i 22500 ) (3.50)
v=1
5 2 2
Bus(60) = Y E(9u(n,1)°)E <a:s<190> e ‘9”55?0)) (3.5b)
v=1
Jng (0o) = Ag,} (00) Bh.s (6o) Ag,} (o) (3.5¢)

whose existence is guaranteed by A1-A5 and the following assumptions:

A6 0, belongs to the interior of ©.

AT All h, (1 <v <S) are twice differentiable at all x € R* with |$2 (W, () /hy ()] <
K, (|x\5“ + 1> for all x € R* and E (]17@]25“) <oo, 1 <v<S.
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A8 Foralll <v<S,0< E(gun(n,, 1)2) < 00, E (g2 (1,,1)) < 00 and E (gu2 (n,,1)) #

agns+v 00

0. Moreover, Ay s (6o) is nonsingular and for any x € R™, x ) — ¢ (i=1,...,m)
implies x =0 forall 1 <v < S.
A9 For any (x1,23,...) € R® the functions 0 — ¢, (x1,29,...;0) (1 < v < S) have

continuous second-order derivatives. In addition, there is a neighborhood V (6y) of 0y such

that
0(Cns+v(0)—0nstv(0 n
SUPgev (go) ’ (T (299 setul ))H < Cp™ a.s.
; 904 (0 920,(0) ||
A10 The expectations E( sup le(e) ae H ) (0:‘}1};) le(e) aeaf()') ‘ ) and
0

0V (6o)

E| sup |o;'(0) 0, (6))*" | are finite for all 1 < v < S.
0€V (6o)

Like consistency assumptions, A6-A10 are also similar to standard assumptions made for
the generalized QM LE in non-periodic C'H models (cf. Berkes and Horvath, 2004; Francq
and Zakoian, 2013). Some of these assumptions simplify or vanish for certain specific cases
(see Section 4.3 below). In particular, the last part of A8, which implies By, f (o) is non-
singular, vanishes for the stable PGARCH model with iid innovation. Now, we have the
following asymptotic normality result.

Theorem 3.2 Under A1-A10

VN (@NS,@ - 90> SN (0,4JM (90)) . (3.6)

Some remarks are in order:

i) When S = 1, result (3.6) reduces to Theorem 2 by Berkes and Horvath (2004) for the
GARCH (p,q) and to Theorem 1 by Francq and Zakoian (2013) in the CH case.

ii) When h; = ... = hg := h and {n,,t € Z} is iid so that f; = ... = fg := f, then

g1 = .- =9gs; 911 = ... = gs1, 12 = ... = gs2,
and Jy s (0o) given by (3.5¢) reduces to
Jng (o) = 75 pJ " with

o B(m 77012 1 902(00) 902 (0o)
Th = (B zandJ ZE( (00) 890 80’0>'
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In the latter case, the last part of A8 implies that J is nonsingular (see e.g. Francq and
Zakoian, 2010) and the nonsingularity assumption on Ay, i (0p) is unnecessary. In particular,
for the specific stable PGARC H (p, ¢) model with hy = ... = hg = ¢ we find the asymptotic
result by Aknouche and Bibi (2009, Theorem 4).

iii) When (hy,...,hs) = (f1,.... fs), where f, is the density of n, (1 < v < §), the
GQM LE reduces to the Maximum Likelihood Estimate (M LE), which is then asymptoti-

cally efficient. Furthermore,

E (gv2 (771)7 1)) = —F (gvl (771;7 1)2)
)

and Jy s (6o) given by (3.5) simplifies when h = f to

Jy.s (0o) =

v=1

S -1
2
F1m) | 902(60) 90 (60)
ZE<1+mZU>”v> E(UWO) £(00) 9020 )] .

0.2
iv) For some specific PC' H models in which 8%0”(%) does not depend on #y, for all

v # v, as it often happens for finite pure ARC H-like models, the matrix Jj, ; (6), which
is in a "sandwich" form, may have a simpler expression as the inverse of a block-diagonal

matrix (see (4.7) in Section 4.3 below).

4. Illustrations and applications

4.1. Examples of instrumental distributions
Example 4.1 (Gaussian QM LE)

For model (2.1), let S = 5 and consider the GQM LE with the same instrumental density

along seasons, which is the standard Gaussian distribution, i.e.

hi(x)=..=hs(x)=¢(x) = (2#)_% exp (—32%), z€R.
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The resulting GQMLE is called the Gaussian QM LE. The first derivatives of g, (z,¢)

(1 <wv <5) are given by
g (r,6) =< (1=2%7), (1<v<5),

and the unique solution to the equation

5
o (Zgi (m,gi)) —0,1<v<5,
=1

is
_ 1 _ 1 _ 1
S1 = E(n%>a§2 = E(n%)’“"g‘r’ E(n%)
5 /
Hence > ¢, (1,,<») admits a unique maximum at L ..., =% | so A4 is satisfied
o=t B(nt)’ " B(n)

if

E(m)=..=E(n) =1, (4.1)

which is the standard unit second moment condition (cf. Bollerslev and Ghysels, 1996;
Aknouche and Bibi, 2009; Ziel, 2015). On the other hand, A8 holds if £ (n!) < oo
(1 <wv<5)and
E (g1 (n,,1)%) = E(1 = 2)°
(E (920 (n,,1)))" =4
Now if {1,,t € Z} is iid with marginal distribution f then J s (o) given by (3.5¢) reduces
to

J@f (00) = T%yft]_l,

with

S
o B(1-n2)®  Var(n?) B 1 002(60) 902 (6o)
To.f = 1 =7 and J = ZE <ag(90) T )
v=1

If, however, {n,,t € Z} is not iid, but ipds with marginal distributions f = (f1, ..., fs), then
these distributions should be compatible with (4.1). Furthermore, J s (f) has the sandwich
form (3.5¢)

g (00) = Ay (00) Buy (60) Ay s (60)
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with

S
_ 2 1 803(80) 993 (o)
Aps(0)) = 2)°E (Ug(eo> b0 b0 ) )

S
902 (00) 02 (0
Buy(60) = &> Var (n2) B (i 22 0200) 0

Example 4.2 (A mixed QM LFE)

Let S = 3 and consider the GQM LE of model (2.1) with instrumental densities given by:

i) the standard Gaussian density h; (x) = ¢ (z) for season 1, ii) the Laplace density

ha (2) = Sexp (= Jo]), 2 € R,

for season 2 and iii) a particular case of the generalized Gaussian density
hs (r) = exp <—2 |:l:|1/2) , T €R,

for the third season. Then,

g1 (w1,61) = o (1 — 96%%) ,

go1 (T2,52) = —q5 (1 — || §_1) )
11

g1 (x3,63) = —Cgl (1 i ERS ;> .

so the unique solution to the equation

3
%E (Zgz (7717%)) =0, 1<v<3,
i=1

is

= gy 2= Elmal). s = /B (Il ).

3 /
Therefore, 21 9v (N,,») admits a unique maximum at <E(1ﬁ) CE (o)) 4/ E <|773|1/2>> and
A4 is satisfied if

E () =1, B(nal) =1, B (Ins"?) =1. (4:2)
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Moreover, A8 holds if all the following conditions are fulfilled:

Note that the assumption of iid innovation {n,,t € Z} is not compatible with (4.2). Of course,
this example is only illustrative and aims at showing that the GQM LFE may be given via
various instrumental functions. However, the choice of these instrumental functions should

be made carefully and depends on the adopted model and its objectives. [

Example 4.3 (Another mixed QM LE)

Let S = 5 and consider the GQM LE of model (2.1) with the following five instrumental

functions:
1 —

i) hy (z) = TQ(F © exp (=2 |z|"), r > 0 (Generalized Gaussian density, I being the Gamma

S
~—

function).
i) hy (z) =
111) hs () =

ha ()

“Lexp (—alz|), a > 0 (Double Gamma density).

g| | exp( 2| ) § > 0 (Double Weibull density).

= (5L L+ ]z, 0 > 0.

V) h5(:v):K(1+(%)) exp (—xtan™! (32)), K,b > 0, m > 1/2, A,k € R

(Pearson’s Type IV distribution, K being a normalizing constant (cf. Zhu et al, 2015)).
Then straightforward calculations similar to Example 4.1 and Example 4.2 show that A4
is satisfied if

r ) 1 2mn2+k
E(m[) =1 B (nal) = 1. B (Ingl') = 1. B () = 50 B (™) = 1

Moreover, A8 is satisfied if all the following conditions hold:

E (") < oo, E(n) < o0, B (Insl”) < oo,

E(ni‘s*) < oo for some §, >0 (4 <v <5).

20



4.2. Prediction of powers in PC'H models: The one-step parametric

approach

An important application of the GQM LE in C'H models is the prediction of the power of the
observed process {g;,t € Z} in a one-step setting (cf. Francq and Zakoian, 2013). Though in
C'H models one usually considers prediction of the squared process {¢?,t € Z}, Francq and
Zakoian (2013) pointed out the importance of predicting the powered term |e;|” when r € R
is rather a real number. This issue is particularly interesting i) for heavy-tailed distributions
with infinite second moment when 0 < r < 2, ii) for duration models when r < 0 and iii) for
calculating the conditional variance of the prediction errors of the squares when r > 2 (see
Francq and Zakotan, 2013). Since the best prediction in the mean square sense of |g,|" (# 0)
is o] (6p) under E (|n,|") = 1, Francq and Zakotan (2013) used the GQM LFE to estimate the
C'H model under the latter assumption, getting that prediction without extra-calculation.
They showed that their one-step approach has some advantages over the standard two-step
approach, which consists in estimating the volatility o} (6y) by the Gaussian QM LFE in a first
step, and then estimating E (|n;|") non-parametrically in a second step. Francq and Zakoian
(2013) also characterized a class of instrumental densities they called omnibus class, which
makes the consistency assumptions of the GQM LE compatible with the unit absolute power
moment condition F (|n,|") = 1.

In this subsection we show how the GQM LE for the PCH model (2.1) can be applied
to perform prediction of powers in a one-step parametric approach as in Francq and Zakoian
(2013). In contrast with non-periodic CH models, S different powers corresponding to
seasons are considered in our PC'H case.

For any non-null real numbers 74, ..., rg such that £ (|n,|"™) < oo (1 < v < S), the best

predictor in the mean square sense of |e,51,|" given its past history is
E(lenstol™ /Frsio-1) = UZUS—H;E (In,I"), 1<v<S. (4.3)

Similarly, the best mean square predictor of log e, 54| given Fp,g4.—1 islog o)’ +E (log (|n,]))

provided that F (log (|n,|)) < 0. The latter case may be seen as a limit of (4.3) when r, — 0
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for all 1 < v < S. Thus, the one-step fully parametric method for predicting the powers of
the PC'H process (2.1) is described as follows.
i) Given a series generated from (2.1), estimate 6y by the GQM LE @NS@ under A1-A10
and the following assumption:
All Forall1<v < S, E(|n,|™)=1ifr,# 0 and E (log|n,|) =0 if r, # 0.
ii) The best predictor in the mean square sense of |g,5.,|™ given F,s1,_1 is estimated
by
oo (Onsn)  ifry #0
log 540 @\N&b) ifr,=0

Now the following corollary of Theorem 3.1 and Theorem 3.2 gives asymptotic properties

1<v <8,

9 = =

of the GQMLE in the framework of prediction of powers using the one-step parametric
approach. It is a generalization of Theorem 1 by Francq and Zakoian (2013) to the PCH
case.

Corollary 4.1 Under A1-A11, results (3.4) and (3.6) remain true.

Note that A11 is considered only in the framework of prediction of power problem in
a one-step parametric approach. Apart from this problem, A1l is unnecessary for the
consistency and asymptotic normality of the GQM LE.

Note that depending on the choice of the instrumental densities hq, hs, .., hg, assumption
A4 induces S moment conditions on {n,,t € Z} (cf. Examples 4.1-4.2), which may be
inconsistent with A11. The functions hq, hs, .., hg are said to be omnibus for the prediction
of power problem if the implied assumption A4 is compatible with A11 for all distributions
of the innovations 7, ...,ng. For a given r, > 0 (1 < v < 5) let C(r,) be the class of
functions defined by (cf. Francq and Zakoian, 2013)

Ty

C(r,) = h:h(x) =14 c,lz| ™ Texp ()\\xr"v) if r, <0

Ty

¢ 2] exp (A%) ifr, =0

¢ |z exp (—)\mm) if r, >0

for some ¢,, A\, > 0 (1 < v < S). The following result, which is a trivial generalization of

Proposition 2 by Francq and Zakoian (2013), shows that the class Cg (71, ...,7s) defined by
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the following Cartesian product
Cs (r1,...,rs) = H C(ry),
1<v<S

is the class of omnibus functions for the prediction of power problem in PC'H models.

Proposition 4.1 Let hq, ..., hg be instrumental functions satisfying A3. Then, A4 holds
for all distributions of n,...,ng satisfying A11 if and only if hy € C(r1),...,hs € C(rg).

The proof of Proposition 4.1 is very similar to that of Proposition 2 in Francq and Zakoian
(2.13) and hence is omitted. Thus assumption A4 could be omitted in Corollary 4.1 if the

instrumental functions (h1, ..., hg)" belong to the class of omnibus functions Cs (71, ..., 7s).

4.3. GQMLE of the Periodic Asymmetric Power GARCH (1,1)
We illustrate the GQ M L E asymptotics given in Section 3 on the following PAP-GARCH (1,1)

model with a general period S € N*,

€& = O (4.4a)

— (St_
ot = wor + o (61)" 7+ ao(6.1)" " + Bpop, tEZ, (4.40)

where, as in Example 2.2, {n,,t € Z} is ipds and the volatility parameters wo; > 0, g >
0, age— > 0, By, > 0, 0y > 0 are S-periodic over ¢ with ¢; is assumed known for all ¢.
The parameter of the model is denoted by 6, = (8}, ....,00) € © C R* with 6, =

(Wow, Qouts You—, Bop)s 1 < v < S where © is a compact space. Letting

Y, = o',
Ay = oo ()" + ao- (0_1)" " + By

B, = wo,
model (4.4) may be written in the following stochastic recurrence equation

}/;g = At}/;g,1 -+ Bt, t S Z, (45)
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with ipdg input {(A, By) ,t € Z}. From Brandt (1986), if we assume that

S

Z E (log* (4,)) < oo,

v=1
then a sufficient condition for (4.4) to have a strictly periodically stationary and periodically

ergodic solution is that

S
NS = %ZE log (A,)) < 0. (4.6)

v=1

The latter condition may be interpreted as a stability condition in average among the different
seasons. Following the same lines of Bougerol and Picard (1992) and Aknouche and Bibi
(2009, Corollary 1), a necessary condition for (4.4) to have a strictly periodically stationary
solution is that ﬁ Bow < 1, which is the same condition as (2.4). Thus, concerning the
GQMLE for thevs:;eciﬁc model (4.4), several assumptions among A1-A10 stated above can
be made more explicit. Indeed, assumption A1 for model (4.4) is satisfied if we assume (4.6)
and the follovving condition:

B1Voc©O: Hﬁ <landforalll1<v < S, w, >w for some w > 0.

On the other hand from Berkes et al (2003), it is easy to show using equation (4.5)
that under condition (4.6) there is 7 > 0 such that F (|e,|") < oo for all 1 < v < S (see
also Aknouche and Bibi, (2009, Theorem 2) in the PGARCH (p, q) case). Hence, A5 holds
under (4.6) without any moment assumption on the process {¢;,t € Z}. Moreover, letting
Abg,, = Qovt2, Agy,. = aop—z and By, (2) = 1 — B,z (1 <v < S), the identifiability
assumption A2 can be replaced for model (4.4) by the following explicit condition:

B2 For all 1 < v < S : By, (2) has no common root with Ag,,, (2) and Ag,,_ (z),
Agy,, (1) + Agy,_ (1) # 0. In addition, coys + cgu— + Bg, 7# 0.

The latter condition also implies that By, ; (fp) given by (3.5) is nonsingular so the last
part of A8 holds. Finally, following Francq and Zakoian (2013) (see also Hamadeh and
Zakotan (2011) for the Gaussian QM LE with S = 1), we make on {n,,t € Z} the following
assumption, which entails A6-A10.

B3 Forall 1 <v<S,if P(n, € A,) =1 for a set A, then A, has a cardinal |A,| > 2.
Further, P (n, > 0) € (0,1).
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Consequently, we have the following asymptotic result for the GQMLFE of the PAP-
GARCH (1,1) model (4.4).

Corollary 4.2 Under (4.6), A4, A8 and B1-B3, results (3.4) and (3.6) hold for the
GQMLE of model (4.4).

It is worth noting that when the instrumental functions (hi, ..., hg)" belong to the class
of omnibus functions Cg (71, ...,7g), for some ry,...,7s > 0, then assumption A4 may be
replaced in Corollary 4.2 by the following more explicit moment condition on {n,,t € Z}:

B4vve {1,...S}, E|n,|” =1 and E|n,|*"" < co for some r1,...,75 > 0.

Now, consider the particular PAP-ARCH (1) model, which corresponds to (4.4) with

B,=0forall 1 <v<S5. Then 8y = (6),,....0,¢) € © C R with 6, = (woy, Covs, Uv_)-

Moreover, the asymptotic variance J, s (o) in (3.5¢) is block-diagonal and is explicitly given

by

Tzl,fljfl O3x3  O3zx3 0343
Osxs  Thypda' Osxs  Osus
In,g (00) = 0 , (4.7)
- 033 O3x3 - :
033 03x3 SO

with

1<v <8,

_ 1 902(00) do2(0o) s B(gn(,1)?)
Jo=E (03(90) o0 of ) and 7y, 1, = B )’

Note finally that Corollary 4.2 contains as a particular case asymptotics of the GQMLE
for: i) the periodic GARCH(1,1) when §; = 2 and agy = ag_, ii) the periodic power
GARCH(1,1) corresponding to ag:y = o~ and iii) the periodic threshold GARCH(1,1)
when 6, =1 (1 <t <8S).

4.4. GQMLE for PC'H models with complex periodic patterns

4.4.1. GQMLE and reduction of the number of parameters in high frequency
PCH models

Though periodic C'"H models have been successfully applied to low frequency seasonal series

like daily series (e.g. Bollerslev and Ghysels, 1996; Franses and Paap, 2004; Osborn et al,
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2008), a potential drawback with these models is that they involve a very large number
of parameters when the period S tends to be large, like in intraday series. For instance,
for half-hourly series (e.g. Taylor, 2006), which imply a period of S = 48, the unrestricted
PAP-GARCH (1,1) model (4.4) requires 45 = 192 parameters, making their estimation and
interpretation extremely challenging. To overcome this problem, several solutions have been
suggested to reduce the number of implied parameters in high frequency periodic models. An
ad hoc device is to restrict some parameters to reduce the parameter space. For example, in
model (4.4) one might take 5, = 5, (2 < v < 5) as already done by Franses and Paap (2000)
for the PGARC H model. However, the most usual approach is to use some basis functions
like Fourier approximation (Jones and Brelsford, 1967; Bollerslev et al, 2000; Taylor, 2006;
Anderson et al, 2007; Tesfaye et al, 2011; Franses and Paap, 2011; Rossi and Fantazani,
2015), periodic B-splines (Ziel et al, 2015) or periodic wavelets (see also Ziel et al, 2016;
Ambach and Croonenbroeck, 2015; Ambach and Schmid, 2015). In this Subsection we will
see how the GQM LE may be adapted when model (2.1) is reparametrized to reduce the
parameter space in high frequency PC'H models. We follow here the approach of Jones and

Brelsford (1967), which is based on the following reparametrization

901} = (001),17 '--QOU,mU)I

Oov,; = 0 + 0 cos (2”?” — 93].) . 1< <m,

, 1<v <8 (4.8)

where for identifiability reasons we assume that 0y, € (0,1) for all j as cos(z +nmw) =
(—1)" cos (x) (see also Rossi and Fantazani (2015) for the periodic long memory EGARCH

S
model and Franses and Paap (2011) for the periodic autoregression). In lieu of m = > m,
v=1
parameters, the new reparametrization (4.8) only involves a number of m* = 3 max;<,<g (my)

parameters to be estimated. For example, for the PAP-GARCH (1,1) model (4.4), specifi-

cation (4.8) reduces to

(
% * 2mv *
Woy = Wy + Wpg COS (T - w03)
2mv *

% *
Qoo = 4 + gy cos (32 — o)

ok * 2mv *
Qo = ay_ + oy cos (35 — o)

Boy = Bor + Bog cOS (2%1; - 533)
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*/

where the parameter of the model is now denoted by 05 = (w, o, g, B ), with w§ =

* ! * / ! * * * * \/
(Wo1, Wha whs) s gy = (0431+70431+70431+) ; Qg = (a31—aa31—aa31—) » Bo = (Bors Boz: Bos) -
and (wgs, o, a33_,533)/ € (0,1)*. Note that the number of parameters in (4.9) does not
depend on S and is reduced for large S from 45 to 12.

Now with 65 in place of 6y, model (2.1) may be rewritten as follows

€EnS+v — O-nSJr’UnnS—HH 1<ov<§ (4 10)

OnS4+v = QO: (ERS+U—1’ EnS+u—2; +++5 ‘gz()v) = JnS—l—U (0*) )

where the function ¢} is obtained from ¢, by rearrangement while replacing 6y by ;. We
assume that 05 € ©* C R™ for some compact parameter space ©*. Of course, the stability
and positivity constraints on 6 in (2.1) are directly translated in terms of ¢ through (4.8).
Like model (2.1), we define o7, (0%), 0pg4, (07) and ZC*FE (0) as in (3.0), (3.1) and (3.2),

respectively for some instrumental functions h := (hq, ..., hg)', i.e.

U:LSH;( ") = @} (€nStv—1, Enstv—2, -3 0) 1<v< S
(€

~ ~ *
€nS+v—1; €EnS4+v—2; --+5 €0, €1, - ,91)), ne Z7
-1 S
~x% *
Jv 6nS+v7 OnS+v (9 )) )

v=1

e ¥

&:LS+U ( ) 2

=

L*Th (9* =

-
o

n=

where g, (1 < v < 5) is defined as above and €y, ¢_1, ... are fixed initial values. The GQMLE
of 6" is then given by

O, = arg max LTh (0%) .
6*cor

Note finally that consistency and asymptotic normality of /0\; ;, are established in the same
way as ET@ under the same assumptions A1-A10 with an appropriate adaptation considering

0" in place of 6.

4.4.2. GQMLFE for PCH models when the period S is non-integer

Next to high frequency seasonality, another well-observed case of complex periodic patterns
is seasonality with a non-integer period. For example, many weekly series have an annual

seasonal pattern with period 365.25/7 ~ 52.179 (e.g. De Livera et al, 2011). When a periodic
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model like (2.1) is fitted to a series characterized by a non-integer period S € (1,00), one
usually takes (by simple approximation) the period to be the integer part of S, which is
denoted by [S], where [S] = n € N* with n < S < n + 1. In doing so, the proposed
[S]-periodic model in which

Oor = o115, t € Z,

will not reflect the actual S-periodicity of the series and will induce a kind of "shift" between
the [S]-seasonal series it generates and the actual S-seasonal series to which it is devoted to
represent. Thus, a [S]-periodic model will be inadequate. At first glance, it seems not possible
to envisage a periodic model with non-integer S since the period actually represents the
number of model parameters and hence it cannot take a priori non-integer values. However,
we can exploit a variation of the trigonometric approximation (4.8) dealing with non-integer
S. Indeed, in the framework of the PC'H model (2.1) consider the following generalization
of (4.8) given by

001] - (9011,1) '”‘901),mv)/

, 1 <o <[9], (4.11)
Oov; = 933» + ng cos (2% — ng) , 1< <m,

where S is now assumed a positive real number. In particular, for the PAP-GARCH (1,1)

model (4.4), the corresponding "augmented" specification of (4.9) with non-integer period is

(
gk * 27v *
wou = why + why cos (252 — wis)

Aoyt = a81+ + Oé(>.)<2+ cos (2LSU o 06534,) 1< v < [S] (4 12)
2mv * , N B ‘ |

— * * —_
Qoy— = Oy + Qo_ COS (T a03_)

\ Bo, = Bor + By cos (2% - 533)

A similar approach has been introduced by De Livera et al (2011) in the case of seasonal
(but non-periodic) exponential smoothing TBAT'S models (The acronym T'BAT'S refers to:
Trigonometric Box-Cox transform, ARM A errors, Trend, and Seasonal components). But
in contrast with seasonal models, the period S in a periodic model is generally interpreted as
the number of model parameters, making the adaptation of periodic models to non-integer

periods more challenging. Note that if S is non-integer then model (4.11) (and hence model
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(4.12)) is not [S]-periodic over v, since for example

- * * 2mv * [S]
wO,er[S] = wm + Woz COS (? — CUO3 + 27?)

7& Wow,

and so on. So specification (4.11) avoids inducing the aforementioned shift in modeling like

model (2.1) and then it would be more suitable in representing non-integer periodicity.
Now with specification (4.11), model (2.1) may be reparametrized as in (4.10) to deal

with non-integer periods, giving the following variation of (4.10) for a positive real period

S >0,

EnS-i-v = UnS+v77nS+v7 , 1 S v S [S] s (4].3)

o * . O* e * *
OnS+v = Py <€ns+v717 EnS+v—25 -y 90@) — UnS+v (90) )

where the function ¢} and 6 are defined as in (4.10). The GQM LE of (4.13) is defined in
the same way as (4.10) and its properties are established under similar assumptions.
Note finally that other trigonometric, or more generally other Fourier approximations,

can be considered in place of (4.11) (see e.g. Tesfaye et al, 2011; Franses and Paap, 2011).

5. Conclusion

A few broad conclusions may be drawn. Firstly, the class of periodic conditional volatility
PCH models considered here is quite general and covers most of the standard ARC'H
formulations. Moreover, periodicity is expressed via the volatility coefficients as well as
the innovation making the model more flexible in representing periodic series with different
shapes of distribution along seasons. Secondly, the GQM LFE proposed for the PC'H model
is based on S instrumental functions and is then in accordance with the periodicity of
the independent innovation, giving the possibility to the GQM LE to reduce to the M LE,
and then to be asymptotically efficient, when the instrumental functions coincide with the
distributions of the innovation. Thirdly, the GQMLEFE is consistent and asymptotically

Gaussian under mild assumptions as in the non-periodic case. However, its asymptotic
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variance is in a "sandwich" form, which is unusual in C'"H models, and is reduced only for
some special cases.

One useful application of the proposed GQM LE is the prediction of powers of the PCH
model in a one-step parametric framework, where S different powers along seasons are to
be considered. In addition, a potential application of the GQM LE of PCH models is the
calculation of the corresponding Values at Risk (VaR’s) for which the Gaussian QM LE
is generally inconsistent in the presence of heavy tailed distributions (see El Ghourabi et
al, 2016; Francq and Zakoian, 2015-2016 in the C'H case). Another useful property of the
GQMLE, is that it can be easily adapted to PC'H models with complex periodic patterns
such as high frequency periodicity and non-integer periodicity. Note finally that this work
has been mainly considered in a theoretical perspective and applications of the proposed

models and methods to real data are appealing.

6. Proofs

Proofs of Theorems 3.1 and Theorem 3.2 follow from similar arguments used in establishing
asymptotics of the GQM LE for non-periodic C'H models (Berkes and Horvath, 2004; Francq
and Zakoian, 2004-2013-2015, El Ghourabi et al, 2016).

6.1. Proof of Theorem 3.1

Result (3.4) follows while establishing the following three lemmas.
Lemma 6.1 Under A2, A3 and A5 we have
sup ZNS,Q (9) — LNS,Q (8) — O,
0€O N—oo
-1

N S
where Ly, (0) = % > 2 9o (€nstv, Tnsyo (0)).

n=0 v=1
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Proof In view of A2-A3 and (3.1)-(3.2), a Taylor expansion gives a.s.

=

-1

N|=

S
> " sup |gun (€nssv: Thsyy (0))] [Fnsto (6) = Onssw (0))]
1 0cO

sup |Las (0) — Lasa (9)( <
0cO

[e=]

3

v

2

IA
Sl=
hE

bs+v (6) sup
6c6

€ €nS+v
U:?S_:U(H) < 7LS+U(0)> ‘ + TC Z bt

0 v=1

S
I

=2

S
% Z bnS-l—v |€nS+v|6 Sup

n

IN

‘1+5

+ A Z (6.1)

nS+v

I
=)

v=1

where 07 4., (0) is between 0,54, (f) and 0,54, (¢) and

b (0) = 21618 04 (0) — 0 (0)] .

Now from A5 and the Markov inequality it follows that for all 1 <v < .S and £, >0

Z P ( nS+U ’6n5+v ) Z CE(|e]™)pov ‘Tv)p‘sv

so by the Borel-Cantelli lemma
brsso (0) |ensso]™ %5 Oforall 1 <o <S.

Thus, Lemma 6.1 follows from (6.1) and the Césaro lemma. [

Lemma 6.2 Under A1, A2 and A

S S
E (Z G (€v, 0y (6))) <FE (Z Gv (€v, 0 ((90))> for all 6 # 6. (6.2)

v=1

Proof Using A1, the fact that

Onstv(0
9o (€nS+4v, Tnstv (0)) = go <77n8+vv #U((%))) —log (o ns+v (00))
and A4 we have

E (é 9o (€nstvs Tnsto (0)) — ZS: 9o (€nSt0s Tnsise (90))> _

S
> E{g (% ((990))) ~ 9o (m,l)> <0,




with equality if and only if 0,51, (0) = 0ps10 (00) and by A2 if and only if § = 6y. O
Lemma 6.3 Under A1-AS5, for all 6 # 6y there is a neighborhood V (0) such that

limsup sup Lygy (0%) < limsupLysy (o)  a.s. (6.3)
N—oco 0*€V(0) N—oo

Proof For any § € © and any positive integer k, let V} (6) be the open ball of center
and radius 1/k. Using Lemma 6.1 we have
limsup sup ZNS,h 0) <
N—oo 0*cV,(0)nO B

limsup sup  Lygp (0°) — limsupsup |Lysy (0) — Lysa (6)‘
N—oo  0*€V,(0)NO N N—oo 60€O B B

S N-1
< lim sup (Sl Z Nil Z Sup = gy (EnSJrva OnS+v (6*))> y a.S.

N—oo v=1 0 V€VL(0)NO

As the instrumental functions (hq, ..., hg) are by A3 integrable and differentiable, they are
bounded. Therefore, by A2

s s

S_l Z E sSup v (EnS—HM OnS+v (0*)) < S_l Z <ML + C) < 0. (64)
—1 0*cVi(0)NO o—1 -

Now since by Al {¢,t € Z} is strictly periodically stationary and periodically ergodic, it

follows that for all 1 < v < S, the sub-process {€,s51,,n € Z} is strictly stationary and

ergodic. Hence, as

sup (gv (EnS—HH OnS+v (0*>)) )
0* €V}, (0)NO

is a measurable function of the terms of {€,s.,,n € Z}, it follows that the sequence

{ sup 9o (enS—I—w OnS+v (9*)) ,n e Z} , (65)
0* Vi (0)NO

is strictly stationary and ergodic with

E ( sSup v (6n5+v7 OnS+v (0*))> S [—OO, +OO)
0* eV (0)NO

For the process given by (6.5), applying the ergodic theorem for strictly stationary and
ergodic sequences with a possibly infinite mean (cf. Billingsley 1995, p. 284, 495) and using
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Eo, (9, (€nstv, Tnsto (0))) < 00 we get

s
limsup sup Lygp(0%) < %ZE ( SUP Gy (€nsStv, Tnstu (9*))> :
N—oo 6*€Vi(0)NO o* GVk(O)ﬂ@

v=1

By the Beppo-Levi theorem (e.g. Billingsley, 1995 p. 219) and using (6.4), the sequence

Z E sup v (enS-‘rv) OnS+v (0*)) )
0*eV,(0)Ne keN*

converges while decreasing to

S
% Z E90 (g’l) (EnS+U7 O-nS+U (0))) )

v=1
as k — oo. Thus, (6.3) follows from (6.2). O

Proof of Theorem 3.1

To complete the proof of the theorem, we use a standard compactness argument and
Lemmas 6.1-6.3. Note that we have shown from Lemma 6.1-6.3 that for any neighborhood
V' (6p) of 0o,

S
limsup sup Lygp(67) < hm LNSh (0o) = hm LNSh (0o) = %Z (gv (€4, 04 (60))) -
N—oo 6%V (00) —
(6.6)
The compact © is recovered by the union of any neighborhood V' (y) of 6y and a set of
neighborhoods V' (6), 8 € ©\V (), where V (6) fulfills Lemma 6.3. Therefore, there exists
a finite sub-covering of © by V (6y), V (01), ...,V (0x) such that

sup ZNS,Q () = min sup (ZNS,Q (9)) :
C) i€{1,2,...k} pconv (6;)

From Lemma 6.3 and (6.6), the latter equality shows that /éNS,@ € V (0y) for N sufficiently

large, which completes the proof of the theorem. [
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6.2. Proof of Theorem 3.2

From A6 and the strong consistency of ?O\Ng,@, a Taylor expansion gives

VNG Lry (Oxsn) = 0
= VNZLry (@vs,@) + VNG L (5Ns,@> ~ VNG Lry (EN S@)
= VNS Ly 0) + o L (07) VN (Bvs — 60
+V N (%ET,@ <9Ns,@) — ZLrp @NS,@)) ,

where 6" is between Oyg,, and 6. Therefore, the asymptotic normality result (3.6) follows
while the three following lemmas are proved.
Lemma 6.4 Under A1-A5, A7 and A9-A10,

sup VN || 2 Lrs (0) = 5Lra (0] 2 0.

0V (6o) N—oo

for some neighborhood V (6y) of 6.
Proof We have

S N-1

sup \/_HaeLTh( )—%ET@(Q)H = sup o~ > [gvl (Ensitor Ong o (0)) 2225t

0€V (00) 0€V (00)

v=1 n=|

0
—Gu1 (5nS+y, OnStv (9)) aansﬂ, 9)] H

S N-1
1 = ao—nS+v
< sup o E E 1901 (Enstv, Onsto (0)) = Gut (Enstvs Trsro (0 |‘ H
eV (%o) v=1 n=0
S N-1
1 1 aGnS+v 8EHS+U(9)
+ sup g E i E |Go1 (Enstvs Tns+o (0 !‘ o : (6.7)
96V(90 v=1 n—

From A3 and A9, the second term in the right hand side of (6.7) is bounded by

which is of order O (T‘l/ 2) a.s. For the first term in (6.7), using a Taylor expansion,
assumptions A3, A5, A7, A10 and the Cauchy-Shwartz inequality, it follows that this term
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is bounded by

S N-1
C n 1 * ao'nS+v
SVN E p w, G2 (5n5’+v> UnS-H; | ) H
v=1 n=0
S N-1 5
C TLL EnS+v v 1 60n5+v(6)
< sTmO_ DL 3K, (1 17 ) sup ‘ s o ®) 00
v=1 n=0 o€V (o)
= o(1) a.s.,

where o7, (0) is between 7,54, (0) and 0,54, (¢). This completes the proof of the lemma.
O
Lemma 6.5 Under A1-A10, for any 0 between ET@ and 6y,

PLru(0)) b 1
—a00r— . 1Anz (6o).

Proof From A3 and A7 we have

|

8006’

N-1 S

1 00 n5+v(0) 00ns+v(0) ?ons10(0)
N_S gv? <€nS+v7 OnS+v (9)) na-gv laglv + Gul (EnS+v7 OnS+v (0)) ;0—6-&-01;

S bl

By the Holder inequality, A7 and A10 it follows that
. ( I [ H)
1% 90

so the ergodic theorem implies that
5 2
9 9v (E’Uva-’U(e)) a Ju (EU,UU 9
=k ( Sup Z ( o067 — 000 = H)
0V (60) ||

From the dominated convergence theorem, the latter expectation tends to zero when

2Ly (0 H

N—
c

OnS+v 90)’7ns+v
ons+uv(0)

&
Mm

1 820n5+v 9) +
Tnsio(0) 0606

1 8Jns+v 8O'nS—O—'u H)
/

7LS+U 0 o6

n=0 v=1

Ly p(0)  82Lrp(bo)
lim sup H 2 — =
90007 9000’
N=00 gcv(6y)

V (0p) tends to the singleton {fy}. Now since @T@ is consistent then

3,

N—oo

9Ly p(6)  9*Lr.p(00)
9000’ 9000’
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On the other hand since by A3

exists for all ¢ > 0 and E (Supgev(l) 9o (m,,5)|) < oo, then A4 and the dominated conver-

gence theorem entail the following moment conditions

E (%%) =—1, foralll1 <ov <S5,

which in turn imply that

25,
E (g”l (0,0 (60)) aaea(eqo)> =0

Note that the following equality

Goz (2,6) = 20tfzs) = L

gives

20'1;
G2 (€ns+m OnS+v (90)) = Gv2 (77ns+m 1) 8396(;0)'

Therefore, by the periodic ergodic theorem we finally get

82LT’Q(90) a.s. 1
9000 N oo 1Ans (o) ,

which proves the lemma. []

Lemma 6.6 Under A1-A10

VN £ N (0,18, (6))

N—oo

where By s (6o) given by (3.5b) is invertible under AS8.
Proof Note that

S N-1
A /NaLT,h(QO) — 1 Z Z 891} 5nS+v70nS+v(90))
a0 SV N
v=1 n=0
S N-1 9

_ 1 1 1 8U7LS+U(60)

- S Z VN Jul 77n5+w 1) 2024, (00) 00
v=1 n=0
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Since by the periodic ergodic theorem we have

S N-1 S N-1
891} 6nS+1J7anS+v(00)) agv(6n5+1uo'ns+v(90)) _ L gvl(nnS‘HJ’ ) 8Un5+v(00) 8UHS+1)(90)
S\F o0 o0’ - § :N 45%02 ¢ (60) a0 o0’
v=1 n=0 v=1 n=0
a.s. 1
= 2 0
v 3B (60),

then by the martingale central limit theorem (Billingsley, 1961) we get (6.8).
Now we prove that By, ; (f) is nonsingular under A8. If By, ; (6) is singular, then there

exists a non-null vector x € R™ such that x'By, s (6p) x = 0. Note that

S
X/Bb,[ (90) x = % Z E (gm (nv’ 1>2) E <XIU%(190) 608(990) 806é,90)x>
v=1

S
= é Z E (gvl (nva 1)2> E (03(190) <X/608(960)> ) :
v=1

Since by A8, E (g1 (1, 1)2) > 0 for any v € {1,..., S}, it follows that x'By, ; (o) x = 0 if
2
and only if F (03(190) <X'aa?9(9°)> > =0, Yv € {1,..., S}, which holds if and only if

0

2
03(190) (XI80725(990)> =0 as WYwel{l, .S} <:>X/808(6 ) — (0 as Voe (1,...5}.

By the last part of A8 this implies that x = 0, which contradicts the fact that x # 0. Hence,
By, s (0o) is nonsingular. [
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