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Abstract

This paper establishes consistency and asymptotic normality of the generalized

quasi-maximum likelihood estimate (GQMLE) for a general class of periodic condi-

tionally heteroskedastic time series models (PCH). In this class of models, the volatil-

ity is expressed as a measurable function of the in�nite past of the observed process

with periodically time-varying parameters, while the innovation of the model is an in-

dependent and periodically distributed sequence. In contrast with the aperiodic case,

the proposed GQMLE is rather based on S instrumental density functions where S

is the period of the model while the corresponding asymptotic variance is in a "sand-

wich" form. Application to the periodic GARCH and the periodic asymmetric power

GARCH model is given. Moreover, we discuss how to apply the GQMLE to the pre-

diction of power problem in a one-step framework and to PCH models with complex

periodic patterns such as high frequency seasonality and non-integer seasonality.
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1. Introduction

Since the introduction of the AutoRegressive Conditionally Heteroskedastic (ARCH) model

by Engle (1982) and its leading GARCH generalization by Bollerslev (1986), conditional

volatility models have continued to capture the interest of researchers in the statistical and

�nancial econometric literature (e.g. Francq and Zakoïan, 2010). Among the numerous

extensions of the original ARCH formulation, which have been introduced, there is the

periodic GARCH (PGARCH) speci�cation proposed by Bollerslev and Ghysels (1996).

This model whose coe¢cients are periodic over time, aims at modeling time series volatility

with periodic dynamic behavior (e.g. Franses and Paap, 2000-2004; Ghysels and Osborn,

2001; Taylor, 2006; Osborn et al, 2008; Regnard and Zakoïan, 2011; Sigauke and Chikobvu,

2011; Rossi and Fantazani, 2015; Ziel et al, 2016). Typical examples of time series for which

periodic volatility models have proved useful are �nancial stock return series, which tend

to show seasonal volatility. In particular, it is well documented that daily return series are

characterized by the day-of-the-week e¤ect (e.g. Franses and Paap, 2000; Balaban et al,

2001; Tsiakas, 2006; Berument et al, 2007; Osborn et al, 2008; Charles, 2010; Aknouche,

2016) while the month-of-the-year e¤ect is present in monthly return series (e.g. Beller

and Nofsinger, 1998; Tsiakas, 2006; Aknouche, 2016). Moreover, various intraday high

frequency return series also exhibit periodicity in volatility (e.g. Andersen and Bollerslev,

1997; Bollerslev et al, 2000; Taylor, 2004; Taylor, 2006; Smith, 2010; Rossi and Fantazani,

2015). Other important examples of non-�nancial intraday series that may be a¤ected by

periodicity in volatility are half-hourly Net Imbalance Volume (NIV ) series (Taylor, 2006)

and hourly wind power and wind speed series (e.g. Ambach and Croonenbroeck, 2015;

Ambach and Schmid, 2015; Ziel et al, 2016).

Statistical inference for PGARCH models and their extensions has been mainly con-

ducted using the standard Gaussian quasi-maximum likelihood estimate (QMLE). This

estimate, which is calculated on the basis of the Gaussian likelihood, is consistent and as-

ymptotically Normal (CAN) under quite mild assumptions (cf. Bollerslev and Ghysels, 1996;

Franses and Paap, 2000, Aknouche and Bibi, 2009; Aknouche and Al-Eid, 2012; Ziel, 2015).
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In particular, no moment condition on the observed process is required (Aknouche and Bibi,

2009; Aknouche and Al-Eid, 2012). However, asymptotic normality of the Gaussian QMLE

requires a fourth moment condition on the model innovation, which constitutes a serious

limitation, especially for heavy-tailed innovations that are well-observed in practice (e.g.

Boynton et al, 2009; Bidarkota et al, 2009).

For non-periodic conditionally heteroskedastic (CH) models, a large amount of research

has been executed in latter decades to study the so-called Generalized QMLE (GQMLE,

Newey and Steigerwald, 1997; Berkes and Horvàth, 2004; Francq et al, 2011; Francq and

Zakoïan, 2013; Fan et al, 2014; Zhu and Li, 2015). This estimate is calculated on the

basis of a given instrumental distribution and reduces to the Gaussian QMLE when the

instrumental function is Gaussian. In fact, the GQMLE has been partly introduced as a

�exible alternative to the Gaussian QMLE in reducing the inherent moment condition on

innovation. An interesting application of the GQMLE is the prediction of powers of return

series in a fully parametric one-step framework (Francq and Zakoïan, 2013). Furthermore,

the GQMLE may be seen as a useful and �exible alternative to the Gaussian QMLE in

estimating some risk measures, like the Value at Risk (V aR), where the Gaussian QMLE

fails in the presence of heavy tailed series (Francq and Zakoïan, 2015-2016, El Ghourabi et

al, 2016).

This paper establishes consistency and asymptotic normality of the GQMLE for a gen-

eral class of periodic conditionally heteroskedastic (PCH) models. In this class, the volatil-

ity is expressed as a measurable parametric function of the in�nite past of the observed

process, whereas the innovation of the model is an independent and periodically distributed

sequence. Most earlier works on periodic conditionally heteroskedastic models assume in-

dependence and stationarity of the innovation of the model while the volatility coe¢cients

are periodic over time (Bollerslev and Ghysels, 1996; Franses and Paap, 2000, Osborn et

al, 2008; Aknouche and Bibi, 2009; Aknouche and Al-Eid, 2012; Rossi and Fantazani, 2015;

Ziel, 2015-2016). Here, periodicity of the model is manifested via the volatility coe¢cients

and also the distribution of the model innovation. This makes the model more �exible in
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representing seasonality in volatility with possible various identi�ability assumptions on the

marginal distributions of the periodic innovation. For example, it is well known that in daily

return series certain trading days of the week may have di¤erent distributions to those in

alternate trading days (Boynton et al, 2009; Bidarkota et al, 2009). These distributions may

be light-tailed or heavy-tailed with di¤erent orders of magnitude (e.g. di¤erent Kurtoses).

For certain trading days one even suspects that second moment do not exist. So, a PCH

model with periodic innovation would be better in representing such situations than a PCH

with stationary independent innovation.

In contrast with non-periodic CH models for which the GQMLE only involves one

instrumental density, our GQMLE for PCH models is calculated on the basis of S instru-

mental functions corresponding to the di¤erent seasons, where S is the period of the model.

This choice seems assorted with the independence and periodicity of the model innovation,

which implies at most S di¤erent marginal distributions. It allows the proposed GQMLE to

reduce to the Maximum Likelihood estimate (MLE) when the S chosen instrumental func-

tions coincide with the S marginal distributions of the innovation and hence to be asymp-

totically e¢cient. The assumptions of consistency and asymptotic normality of the proposed

GQMLE are quite mild. In addition, due to the periodicity of the model innovation, the

asymptotic variance has an unusual "sandwich" form compared to non-periodic CH models

(Francq and Zakoïan, 2013). As an application, we examine the asymptotic behavior of

the GQMLE for the particular periodic asymmetric power GARCH (PAP -GARCH (1; 1))

process that we de�ne below. This model generalizes the well-known asymmetric power

GARCH (AP -GARCH (1; 1)) model proposed by Deng et al (1993) to the case where the

volatility coe¢cients, the power and the innovation of the model are periodic over time.

It retains the main features of the AP -GARCH model, which are asymmetry, correlation

power and persistence in volatility, and is expected to account for periodicity in volatility.

We also discuss application of the GQMLE to the prediction of power problem as well as to

PCH models with complex periodic patterns like high-frequency periodicity and non-integer

periodicity.
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The rest of this paper is structured as follows. In Section 2, the general PCH model is

brie�y described and some results that are needed in the subsequent Sections are provided.

Then, the GQMLE is de�ned in Section 3 and its consistency and asymptotic normality are

established under mild assumptions. To illustrate the results, Section 4 shows asymptotic

properties of the GQMLE on some speci�c instrumental densities and also on the periodic

asymmetric power GARCH (1; 1) model, where the general assumptions are made more

explicit. Moreover, the applicability of the GQMLE to the prediction of power problem

and to PCH models with large and/or non-integer periods is discussed. Section 5 concludes

while detailed proofs of the main results are left to Section 6.

2. A general class of periodic conditionally heteroskedas-

tic models

A sequence of real-valued random variables f�t; t 2 Zg is said to be independent and S-

periodically distributed (ipdS in short) if f�t; t 2 Zg is independent and �t has the same
distribution as �nS+t for all t; n 2 Z, where S, called the period, is the smallest positive
integer satisfying the latter property. For S = 1 an idp1 sequence is clearly independent and

identically distributed (henceforth iid). Let f�t; t 2 Zg be an unobservable ipdS sequence
de�ned on a probability space (
;F ; P ) with unknown probability densities ffv; 1 � v � Sg,
i.e. fv is the density of �nS+v (n 2 Z; 1 � v � S). Consider a S-periodic sequence of

unknown parameters f�0t; t 2 Zg satisfying �0;nS+v = �0v = (�0v;1; :::�0v;mv
)0 2 R

mv with

mv 2 N� = N r f0g, (n 2 Z; 1 � v � S). A general periodic conditionally heteroskedastic

(PCH) time series model is a stochastic di¤erence equation of the form

8
<
:

�t = �t�t;

�t = 't (�t�1; �t�2; :::; �0t) ;
t 2 Z; (2:1a)

whose solution, f�t; t 2 Zg, is an observable stochastic process on (
;F ; P ). It is assumed
that �t is independent of f�i; i < tg and 'v, which satis�es 'v = 'nS+v (1 � v � S; n 2 Z),
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is a positive real-valued measurable function: R1 � Rmv ! (0;1). To emphasize model
periodicity, equation (2:1a) may be rewritten as follows

8
<
:

�nS+v = �nS+v�nS+v;

�nS+v = 'v (�nS+v�1; �nS+v�2; :::; �0v) ;
1 � v � S; n 2 Z: (2:1b)

where for all 1 � v � S, the vth season (or channel) stands for the set f:::; v � S; v; v + S; :::g.
The true unknown parameter of the model, denoted by �0 = (�

0
01; :::; �

0
0S)

0 2 Rm, belongs to
a compact parameter space � = �1 � ::: � �S � R

m with m =
PS

v=1mv and �v � R
mv

(1 � v � S). Thus in (2:1) various speci�cations are allowed along seasons with possibly

various parameter dimensions mv (1 � v � S). In the periodic GARCH literature (e.g.

Bollerslev and Ghysels, 1996; Aknouche and Bibi, 2009; Ziel, 2015), it is generally assumed,

as in non-periodic CH models, that f�t; t 2 Zg is iid so periodicity of the model appears
only through the sequence of parameters f�0t; t 2 Zg. Here, f�t; t 2 Zg is rather ipdS and in
a more general framework periodicity of the model is expressed via both inputs f�0t; t 2 Zg
and f�t; t 2 Zg of (2:1). In fact, for model (2:1) to be identi�able, a scaling assumption on
f�t; t 2 Zg is needed. The standard identi�ability assumption is the unit second moment
condition E (�2t ) = 1 (e.g. Bollerslev and Ghysels, 1996; Aknouche and Bibi, 2009; Ziel, 2015)

but we do not need to make it in this paper. Instead, we will assume S general conditions

on f�t; t 2 Zg ensuring consistency of the generalized QMLE we propose below. It turns

out that these conditions (see A4 below) also allow to identify the model and replace in

�exible manner the unit second moment assumption. Other identi�ability assumptions on

the f�t; t 2 Zg may be induced by some objectives of the model posterior to its building
such as predicting the powers of f"t; t 2 Zg (Francq and Zakoïan, 2013), estimating the
conditional value at risk of the model (Francq and Zakoïan, 2015-2016), etc. We will see

that the GQMLE should be de�ned so that the implied sets of identi�ability assumptions

on f�t; t 2 Zg would be compatible for all distributions of the innovation (cf. Section 4.2).
Model (2:1) is quite general and important examples thereof are: the stable periodic

GARCH (PGARCH) proposed by Bollerslev and Ghysels (1996), the in�nite periodic

ARCH model (Ziel, 2015-2016), the stable long memory periodic EGARCH model (Rossi
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and Fantazani, 2015), and the stable periodic asymmetric power GARCH (PAP -GARCH)

model that we will de�ne below (cf. Example 2.1-2.3 and Section 4.2). When S = 1, equa-

tion (2:1) reduces to the general conditionally heteroskedastic (CH) model studied by Francq

and Zakoïan (2013, 2015, 2016) and El Ghourabi et al (2016). It is also a particular case

of the general multivariate causal periodic time series model suggested by Ziel (2015). The

following examples illustrate the model (2:1) via some speci�c subclasses of it.

Example 2.1 (The in�nite periodic ARCH (1) model)
An important example of (2:1) is the in�nite periodic ARCH (PARCH (1)) model,

which is de�ned by
8
<
:

�t = �t�t;

�2t = �0t;0 + �0t;1�
2
t�1 + �0t;2�

2
t�2 + :::

t 2 Z; (2:2)

where f�t; t 2 Zg is ipdS and the positive coe¢cients (�0t;j; t 2 Z) are S-periodic over t for
all j 2 N; i.e. �0t;j = �0;t+kS;j, k; t 2 Z, j 2 N. A number of S identi�ability conditions on
f�t; t 2 Zg are required. They are induced by the instrumental functions used in calculating
the GQMLE we propose below and should also be compatible with other objectives of the

model such as the prediction of powers of the observed process (cf. Francq and Zakoïan, 2013

in the CH case). For model (2:2), the function 't in (2:1) corresponds to 't (x1; x2; :::) =

�0t;0+
P1

j=1 �0t;jxj (t 2 Z) while the corresponding parameter vector �0 = (�001; :::; �00S)
0 2 �

is obtained by parametrizing the coe¢cients (�0t;j; t 2 Z; j 2 N). Speci�cally, for 1 � v � S

we assume that

�0v;j = �v;j (�0v) ;

with known functions �v;j (:) : �v ! [0;1), for some �v � R
mv . For instance, a simple

PARCH (1) model is obtained for the functions

�v;j (�0v) =

8
<
:

bv
jdv+1

if j � 1
1 if j = 0;

, 1 � v � S;

with �0v = (bv; dv)
0 2 �v =

�
bv; bv

�
�
�
dv; dv

�
and � = �1 � ::: � �S � (0;1)2S ; where

0 < bv < bv and 0 < dv < dv (1 � v � S) (see Francq and Zakoïan, 2010 in the ARCH (1)
case).
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When f�t; t 2 Zg is iid, model (2:2) is a particular case of the periodic nonlinear AR (1)-
ARCH (1) model proposed by Ziel (2015-2016) where conditions on its existence are pro-
vided. It is a periodic version of the in�nite ARCH (1) introduced by Robinson (1991) and
is recommended for representing strong persistence and periodicity in volatility. It is also

a generalization of the most widely used periodic GARCH model (Bollerslev and Ghysels,

1996). Indeed, consider the following PGARCH (1; 1) model given by

8
<
:

�nS+v = �nS+v�nS+v;

�2nS+v = !0v + �0v�
2
nS+v�1 + �0v�

2
nS+v�1

1 � v � S; n 2 Z; (2:3)

where f�t; t 2 Zg is ipdS with sup1�v�S E (log (�2v)) < 1 and !0v > 0; �0v � 0; �0v � 0.

Under the stability condition
SY

v=1

�0v < 1; (2:4)

which in turn is implied by the strict periodic stationarity condition

SX

v=1

E
�
log
�
�0v�

2
v�1 + �0v

��
< 0;

(cf. Aknouche and Bibi, 2009, Corollary 1) we have

�2t =

1X

j=0

j�1Y

i=0

�0;t�i
�
!0;t�j + �0;t�j�

2
t�1�j

�
:

So (2:3) is a particular case of (2:2). �

Example 2.2 (The periodic asymmetric power GARCH (1; 1) model)

Let S = 5 and consider the speci�c 5-periodic Asymmetric Power GARCH (1; 1) (PAP -

GARCH (1; 1)) given by

8
<
:

�5n+v = �5n+v�5n+v

��v5n+v = !0v + �0v+(�
+
5n+v�1)

�v�1 + �0v�(�
�
5n+v�1)

�v�1 + �0v�
�v�1
5n+v�1

1 � v � 5, n 2 Z;

(2:5)

where !0v > 0; �0v+ � 0; �0v� � 0; �0v � 0; �v > 0 (1 � v � 5) ; �0 := �5, x
+ = max(x; 0)

and x� = �min(x; 0). Assuming �v known (1 � v � 5), the unknown parameter of the
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model is denoted by �0 = (�
0
01; � � � ; �005)

0 2 � � (0;1)20 with �00v = (!0v; �0v+; �0v�; �0v) 2
�v � (0;1)4, 1 � v � 5, where � = �1�� � ���5 is a compact parameter space. Moreover,
parameter restriction on the model may be considered when having prior information on the

marginal distributions of the returns. For example, model (2:5) may be used to represent

daily stock returns where each trading day of the week v 2 f1; 2; ::; 5g has a proper marginal
distribution. If for a given trading day w 2 f1; 2; ::; 5g we admit that the asymmetry (or
leverage e¤ect) of the model is insigni�cant then one may assume that �0w+ = �0w� := �0w

so that the corresponding parameter reduces to �0w = (!0w; �0w; �0w)
0 2 (0;1)3. It is also

possible to consider the powers �v (1 � v � 5) as unknown parameters to be jointly estimated
with �0. In that case, the parameter vector of the model is denoted by  0 = (�

0; �00)
0
with

� = (�1; �2; :::; �5)
0 2 (0;1)5. Note also that the powers may be considered constant, i.e.

�1 = ::: = �5. On the other hand, the sequence f�t; t 2 Zg is assumed to be ipdS satisfying
S identi�ability conditions depending on the chosen estimation method as well as on the

objective of the model (see Section 4.2).

For S = 1, model (2:5) reduces to the Asymmetric Power GARCH (AP -GARCH (1; 1))

model proposed by Ding et al (1993). It also reduces to the periodic GARCH(1; 1) when

�v = 2 and �0v+ = �0v� (1 � v � S), to the periodic power GARCH(1; 1) corresponding

to �0v+ = �0v� (1 � v � S) and to the periodic threshold GARCH(1; 1) when �v = 1 for

all 1 � v � S. Beside the stylized facts captured by the AP -GARCH model such as the

so-called "leverage e¤ect" and the "Taylor e¤ect" (e.g. Aknouche and Touche, 2015), model

(2:5) might also account for periodicity, which is often observed in �nancial return data.

Note �nally that under the stability condition (2:4), �t given by (2:5) can be written in the

form (2:1) and hence the PAP -GARCH (1; 1) model is a particular case of the PCH model

(2:1). �

Example 2.3 (Mixed speci�cations)

The PCH model (2:1) also allows di¤erent speci�cations along seasons. For S = 5,
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consider the following model
8
>>>>>>>>>>>>><
>>>>>>>>>>>>>:

�5n+v = �5n+v�5n+v, 1 � v � 5; n 2 N

�25n+1 = �1;0 (�01) +
1P
j=1

�1;j (�01) �
2
5n+1�j

log
�
�25n+2

�
= !02 + �02�

2
5n+1 + �02 log

�
�25n+1

�

�5n+3 = !03 + �03+(�
+
5n+2) + �03�(�

�
5n+2) + �03�5n+2

��45n+4 = !04 + �04 j�5n+3j+ �04�5n+3

��55n+5 = !05 + �05+(�
+
5n+4)

�4 + �05�(�
�
5n+4)

�4 + �05�
�4
5n+4

; (2:6)

where the parameter of the model is denoted by �0 = (�001; � � � ; �005)
0 2 � � (0;1)m1+14

with �01 2 �1 � R
m1 for some m1 2 N

�, �02 = (!02; �02; �02)
0 2 �2 � (0;1)3, �03 =

(!03; �03+; �03�; �03)
0 2 �3 � (0;1)4, �04 = (!04; �04; �04)

0 2 �4 � (0;1)3 and �05 =

(!05; �05+; �05�; �05)
0 2 �5 � (0;1)4. All parameter spaces �1; ::;�5 and � = �1�� � ���5

are assumed compact while the powers �4 > 0 and �5 > 0 are known. Note that �01 is

a parametrization of the coe¢cients �1;j (j 2 N) in (2:6). As in the previous examples,
the innovation sequence f�t; t 2 Zg satis�es certain identi�ability assumptions depending on
the chosen instrumental functions used in computing the GQMLE. For v = 1, it is clear

that �5n+1 has a similar form as (2:1). By successive replacement in (2:6), it can be seen

that �5n+v (2 � v � 5) may be cast in the form (2:1) with some conditions on the �1;j (�01)

(j 2 N) for the volatility to exist, but without any requirement on �0v (2 � v � 5). So (2:6)
is a particular case of (2:1). In fact, model (2:6) combines the in�nite ARCH (1) for v = 1,
the Exponential GARCH (1; 1) (EGARCH (1; 1)) for v = 2, the threshold GARCH (1; 1)

for v = 3, the power GARCH (1; 1) for v = 4 and the asymmetric power GARCH(1; 1) for

v = 5.

In this illustrative model, various speci�cations across seasons are permitted. In practice,

many seasonal volatility series may show certain stylized facts on a given season and not

on another. For example, in daily return series, which generally show the day-of-the-week

e¤ect (Tsiakas, 2006; Berument et al, 2007; Osborn et al, 2008), the "Monday" series may

be characterized by a stronger persistence compared to other trading days. Also, a certain

trading day may have a distribution with tails heaver than those of the other trading days
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(e.g. Boynton et al, 2009; Bidarkota et al, 2009). And this may be true for the asymmetry

property (e.g. Balaban et al, 2001; Charles, 2010). Thus, one can consider a periodic

volatility model with di¤erent speci�cations each of which is adapted to the speci�c stylized

facts marking the season in question. Of course, this is only a schematic and hypothetical

example and other mixed speci�cations are conceivable. However, they should be preceded

by preliminary theories (�nancial for example) and con�rmed and reinforced by applications.

�

Throughout this paper, we make on equation (2:1) a stability assumption, which implies

the properties of strict periodic stationarity and periodic ergodicity that we recall here for

convenience (see also Boyles and Gardener, 1983; Aknouche and Al-Eid, 2012). A real-valued

stochastic process fYt; t 2 Zg de�ned on (
;F ; P ) is said to be strictly periodically stationary
with period S 2 N

� (henceforth spsS) if its in�nite-dimensional distribution is invariant

under a shift multiple of S for all season v (1 � v � S), i.e. the probability distribution of

(:::; Yv; Yv+1; Yv+2; :::) is the same as that of (:::; Yv+hS; Yv+1+hS; Yv+2+hS; :::) for all 1 � v � S

and h 2 Z. Here, S is the smallest positive integer verifying the latter property. Thus, a sps1
process with S = 1 is strictly stationary and the simplest spsS process is an ipdS sequence.

Strict periodic stationarity is intimately related to strict stationarity. Indeed, a process

fYt; t 2 Zg is spsS if and only if all the S "sub-processes" fYnS+v; n 2 Zg (1 � v � S)

are strictly stationary. The periodic analog of the ergodic theorem for spsS processes is the

periodic ergodic theorem (e.g. Boyles and Gardener, 1983), which can be stated as follows.

If fYt; t 2 Zg is spsS with E (Yv) <1 for all 1 � v � S then

1
n

nX

t=1

Yt
a:s:!
n!1

1
S

SX

v=1

Y �
v ; (2:7)

for some random variables Y �
v (1 � v � S) on (
;F ; P ) satisfying Y �

v = limn!1
1
n

Pn�1
k=0 YkS+v;

a:s: Result (2:7) also extends to the case where E (Yv) 2 R [ f+1g for some v 2 f1; :::; Sg.
When for a given season v0 2 f1; :::; Sg the corresponding strictly stationary sub-process
fYnS+v0 ; n 2 Zg is ergodic, then the limiting random variable Y �

v0
is almost surely constant
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and then

Y �
v0
= E(Yv0), a:s:

If all sub-processes fYnS+v; n 2 Zg (v 2 f1; :::; Sg) are ergodic, then the whole process
fYt; t 2 Zg is said to be periodically ergodic. In that case, the limiting variable in (2:7)
simpli�es to 1

S

PS
v=1E (Yv), the mean of the seasonal means. Periodic ergodicity may also

be de�ned more explicitly. Let T : RZ ! R
Z denote the shift transformation de�ned for any

xv = (:::; xv; xv+1; xv+2; :::) 2 RZ by Txv = (:::; xv+1; xv+2; xv+3; :::) (1 � v � S) and write T S

for the S-th power of T : T S = T �T � :::�T , S times. A Borel set Dv � RZ of the form Dv =
�
xv 2 RZ : xv = (:::; xv; xv+S; xv+2S; :::)

	
is called S-invariant along the season v (1 � v � S)

if T�S (Dv) = Dv, where T
�S (Dv) =

�
xv 2 RZ : T Sxv 2 Dv

	
. A spsS process fYt; t 2 Zg is

said to be periodically ergodic if for any v 2 f1; :::; Sg, P ((:::; Yv; Yv+S; Yv+2S; :::) 2 Dv) = 0

or 1, for all S-invariant Borel setDv over the season v. Similarly to strict periodic stationarity,

the simplest periodically ergodic process is an ipdS sequence. Like strict stationarity and

ergodicity (see e.g. Billingsley, 1995, Theorem 36:4), strict periodic stationarity and periodic

ergodicity are preserved under certain periodic transformations. Indeed, if fYt; t 2 Zg is spsS
and periodically ergodic and if fZt; t 2 Zg is given by Zt = ft (:::; Yt�1; Yt; Yt+1; :::), where ft

is a function from R
Z into R, which is measurable, S-periodic over t (ft = ft+nS for all n

and t) and may depend on S-periodically time-varying parameters, then so is fZt; t 2 Zg.
Now consider the following assumption on model (2:1).

A1: f�t; t 2 Zg is a strictly periodically stationary and periodically ergodic solution of
equation (2:1).

For speci�c cases of (2:1), assumption A1 may be expressed more explicitly in terms of

the inputs of (2:1). See Section 4.3 for the periodic asymmetric power GARCH (1; 1).
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3. Generalized QMLE for periodic conditionally het-

eroskedastic models

Turn now to the statistical problem of estimating the parameter �0 using a series �1; �2; :::; �T

generated from (2:1) with sample size T = NS (N � 1). For every generic parameter

� = (�01; :::; �
0
S)
0 2 �, if we set

�nS+v (�) = 'v (�nS+v�1; �nS+v�2; :::; �v) ; (3:0)

then clearly �nS+v (�0) = �nS+v for all 1 � v � S and n 2 Z. Given any arbitrary �xed
initial values e�0;e��1; :::, de�ne

e�nS+v (�) = 'v (�nS+v�1; �nS+v�2; :::; �1;e�0;e��1; :::; �v) ; 1 � v � S, n � 0; (3:1)

as a proxy for �nS+v (�). For some chosen measurable positive real-valued functions h1; :::; hS

that we call instrumental functions, de�ne the generalized quasi-likelihood criterion relatively

to h := (h1; :::; hS)
0 and for any � 2 � to be

eLT;h (�) = 1
NS

N�1X

n=0

SX

v=1

gv (�nS+v; e�nS+v (�)) (3:2)

with gv (x; &) = log
�
1
&
hv
�
x
&

��
, & > 0, x 2 R, 1 � v � S:

Then the generalized QMLE (henceforth GQMLE) b�T;h of �0 is a solution to the problem

b�T;h = argmax
�2�

eLT;h (�) ; (3:3)

for some compact space �.

Clearly, b�T;h reduces to the Gaussian QMLE (cf. Aknouche and Bibi, 2009; Aknouche

and Al-Eid, 2012 in the PGARCH(p; q) case) when h1 = h2 = ::: = hS = �, � being the

standard Gaussian density. Moreover, b�T;h is the maximum likelihood estimate (MLE) when

h1 = f1; h2 = f2; :::; hS = fS;

where fv is the density of �nS+v (1 � v � S, n 2 Z).
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As emphasized above, in calculating the GQMLE we have used S instrumental densities

(h1; :::; hS) rather than just one density like in CH models (cf. Berkes and Horvàth, 2004;

Francq and Zakoïan, 2013). The main motivation behind this choice stems from the fact

that the innovation process f�t; t 2 Zg is assumed to be ipdS rather than iid and hence it
has S marginal distributions (f1; :::; fS). Thus, our choice allows the GQMLE to reduce to

theMLE when the S chosen instrumental functions (h1; :::; hS) coincide (in the appropriate

order) with the S marginal densities (f1; :::; fS) of f�t; t 2 Zg. On the other hand, if only
one instrumental density, say h1, is used then the corresponding GQMLE given by (3:3)

cannot reduce to the MLE even when the S marginal distributions of the ipdS innovation

f�t; t 2 Zg are known. Therefore, it is likely that the GQMLE cannot be asymptotically

e¢cient.

Let C > 0 and 0 < � < 1 be positive generic constants that are not necessarily the same

when appearing in di¤erent terms. To study strong consistency of the GQMLE consider

the following assumptions.

A2 For any � 2 �, �nS+v (�) > !v a:s: for some !v > 0 (1 � v � S). Moreover,

�nS+v (�) = �nS+v (�0) a:s: if and only if � = �0.

A3 The functions h1; :::; hS are integrable and di¤erentiable over R
� = Rnf0g. Moreover,

for all 1 � v � S, there exist constants Kv > 0 and �v > 0 such that: jxh0v (x) =hv (x)j �
Kv

�
jxj�v + 1

�
for all x 2 R� and E

�
j�vj�v

�
> 0.

A4 E
�PS

v=1 gv (�v; &v)
�
2 [�1;+1) and E

�
SP
v=1

gv (�v; 1)

�
< E

�
SP
v=1

gv (�v; &v)

�
for

all &v > 0, &v 6= 1 (1 � v � S).

A5 i) For any (x1; x2; :::) 2 R
1 the functions � ! 'v (x1; x2; :::; �) are a:s: continu-

ous for all 1 � v � S. ii) For some � v > 0, E (j�vj�v) < 1 for all 1 � v � S. iii)

sup�2� je�nS+v (�)� �nS+v (�)j � C�n a:s.

Assumptions A1-A5 are similar to those given for the non-periodic CH model (see

Berkes and Horvàth (2004) for the GARCH model and Francq and Zakoïan (2013) for the

CH model) with an appropriate adaptation to the periodic case. Indeed, A2 implies that

the volatility is bounded from below a:s: Further, A2 imposes an identi�ability condition,
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which for the speci�c stable PGARCH case is given in terms of the PGARCH polynomials

(cf. Aknouche and Bibi, 2009). On the other hand, the smoothness condition A3 on hv

(cf. Berkes and Horvàth, 2004) is not so restrictive and is satis�ed for a broad range of

standard instrumental functions hv. In addition, assumption A4 naturally implies S mo-

ment conditions on the ipdS sequence f�t; t 2 Zg. These assumptions allow to identify the
model and generalize the standard unit second moment assumption E (�2t ) = 1. Finally,

A5 is a moment assumption on the observed process that may appear restrictive. However,

most Markovian-like speci�cations (PGARCH, PAP -GARCH) can be cast in a recurrence

equation of the form Yt = AtYt�1 + Bt with f(At; Bt) ; t 2 Zg is ipdS. For this equation the
stability condition A1 implies the �niteness of the moment E (j�vj� ) < 1 for some � > 0

(1 � v � S) and so part ii) of A5 vanishes (see Aknouche and Bibi, 2009 in the speci�c

PGARCH (p; q) model and Berkes et al, 2003 for the standard GARCH(p; q)). Strong

consistency of the GQMLE given by (3:3) is now established.

Theorem 3.1 Assume A1-A5 hold for Kv > 0 and �v > 0, (1 � v � S). Then,

b�NS;h a:s:!
N!1

�0: (3:4)

To study asymptotic normality of b�T;h, let

gv1 (x; &) =
@gv(x;&)
@&

; gv2 (x; &) =
@2gv(x;&)
@&2

, x 2 R; & > 0; 1 � v � S;

and de�ne the matrices

Ah;f (�0) = 1
S

SX

v=1

E (gv2 (�v; 1))E
�

1
�4v(�0)

@�2v(�0)
@�

@�2v(�0)
@�0

�
(3:5a)

Bh;f (�0) = 1
S2

SX

v=1

E
�
gv1 (�v; 1)

2�E
�

1
�4v(�0)

@�2v(�0)
@�

@�2v(�0)
@�0

�
(3:5b)

Jh;f (�0) = A�1h;f (�0)Bh;f (�0)A
�1
h;f (�0) ; (3:5c)

whose existence is guaranteed by A1-A5 and the following assumptions:

A6 �0 belongs to the interior of �.

A7 All hv ( 1 � v � S) are twice di¤erentiable at all x 2 R� with
��x2 (h0v (x) =hv (x))0

�� �
Kv

�
jxj�v + 1

�
for all x 2 R� and E

�
j�vj2�v

�
<1, 1 � v � S.
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A8 For all 1 � v � S, 0 < E
�
gv1 (�v; 1)

2� <1, E (gv2 (�v; 1)) <1 and E (gv2 (�v; 1)) 6=
0. Moreover, Ah;f (�0) is nonsingular and for any x 2 Rm, x0

@�2nS+v(�0)

@�i
= 0 ( i = 1; :::;m)

implies x = 0 for all 1 � v � S.

A9 For any (x1; x2; :::) 2 R
1 the functions � ! 'v (x1; x2; :::; �) (1 � v � S) have

continuous second-order derivatives. In addition, there is a neighborhood V (�0) of �0 such

that

sup�2V (�0)

@(e�nS+v(�)��nS+v(�))@�

 � C�n a:s.

A10 The expectations E

 
sup

�2V (�0)

 1
�v(�)

@�v(�)
@�


4
!
, E

 
sup

�2V (�0)

 1
�v(�)

@2�v(�)
@�@�0


2
!
and

E

 
sup

�2V (�0)
j��1v (�) �v (�0)j2�v

!
are �nite for all 1 � v � S.

Like consistency assumptions,A6-A10 are also similar to standard assumptions made for

the generalized QMLE in non-periodic CH models (cf. Berkes and Horvàth, 2004; Francq

and Zakoïan, 2013). Some of these assumptions simplify or vanish for certain speci�c cases

(see Section 4.3 below). In particular, the last part of A8, which implies Bh;f (�0) is non-

singular, vanishes for the stable PGARCH model with iid innovation. Now, we have the

following asymptotic normality result.

Theorem 3.2 Under A1-A10

p
N
�
b�NS;h � �0

�
L!

N!1
N
�
0; 4Jh;f (�0)

�
: (3:6)

Some remarks are in order:

i) When S = 1, result (3:6) reduces to Theorem 2 by Berkes and Horvàth (2004) for the

GARCH(p; q) and to Theorem 1 by Francq and Zakoïan (2013) in the CH case.

ii) When h1 = ::: = hS := h and f�t; t 2 Zg is iid so that f1 = ::: = fS := f , then

g1 = ::: = gS, g11 = ::: = gS1; g12 = ::: = gS2;

and Jh;f (�0) given by (3:5c) reduces to

Jh;f (�0) = � 2h;fJ
�1 with

� 2h;f =
E(g11(�0;1)2)
(E(g12(�0;1)))

2 and J =

SX

v=1

E
�

1
�4v(�0)

@�2v(�0)
@�

@�2v(�0)
@�0

�
:
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In the latter case, the last part of A8 implies that J is nonsingular (see e.g. Francq and

Zakoïan, 2010) and the nonsingularity assumption on Ah;f (�0) is unnecessary. In particular,

for the speci�c stable PGARCH(p; q) model with h1 = ::: = hS = � we �nd the asymptotic

result by Aknouche and Bibi (2009, Theorem 4).

iii) When (h1; :::; hS) = (f1; :::; fS), where fv is the density of �v (1 � v � S), the

GQMLE reduces to the Maximum Likelihood Estimate (MLE), which is then asymptoti-

cally e¢cient. Furthermore,

E (gv2 (�v; 1)) = �E
�
gv1 (�v; 1)

2�

= �E
�
1 + f 0v(�v)

fv(�v)
�v

�2
; 1 � v � S;

and Jh;f (�0) given by (3:5) simpli�es when h = f to

Jf;f (�0) =

"
SX

v=1

E
�
1 + f 0v(�v)

fv(�v)
�v

�2
E
�

1
�4v(�0)

@�2v(�0)
@�

@�2v(�0)
@�0

�#�1
:

iv) For some speci�c PCH models in which
@�2nS+v(�0)

@�
does not depend on �0v0 for all

v0 6= v; as it often happens for �nite pure ARCH-like models, the matrix Jh;f (�0), which

is in a "sandwich" form, may have a simpler expression as the inverse of a block-diagonal

matrix (see (4:7) in Section 4.3 below).

4. Illustrations and applications

4.1. Examples of instrumental distributions

Example 4.1 (Gaussian QMLE)

For model (2:1), let S = 5 and consider the GQMLE with the same instrumental density

along seasons, which is the standard Gaussian distribution, i.e.

h1 (x) = ::: = h5 (x) = � (x) = (2�)�
1

2 exp
�
�1
2
x2
�
; x 2 R:
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The resulting GQMLE is called the Gaussian QMLE. The �rst derivatives of gv (x; &)

(1 � v � 5) are given by

g1v (x; &) = &�1
�
1� x2&2

�
; (1 � v � 5) ;

and the unique solution to the equation

@
@&v
E

 
5X

i=1

gi (�i; & i)

!
= 0; 1 � v � 5;

is

&1 =
1

E(�21)
; &2 =

1

E(�22)
; :::; &5 =

1

E(�25)
:

Hence
5P
v=1

gv (�v; &v) admits a unique maximum at

�
1

E(�21)
; :::; 1

E(�25)

�0
so A4 is satis�ed

if

E
�
�21
�
= ::: = E

�
�25
�
= 1; (4:1)

which is the standard unit second moment condition (cf. Bollerslev and Ghysels, 1996;

Aknouche and Bibi, 2009; Ziel, 2015). On the other hand, A8 holds if E (�4v) < 1
(1 � v � 5) and

E
�
g1v (�v; 1)

2� = E (1� �2v)
2

(E (g2v (�v; 1)))
2 = 4

, 1 � v � 5:

Now if f�t; t 2 Zg is iid with marginal distribution f then Jh;f (�0) given by (3:5c) reduces
to

J�;f (�0) = � 2�;fJ
�1;

with

� 2�;f =
E(1��2v)

2

4
=

V ar(�2v)
4

and J =
SX

v=1

E
�

1
�4v(�0)

@�2v(�0)
@�

@�2v(�0)
@�0

�
:

If, however, f�t; t 2 Zg is not iid, but ipdS with marginal distributions f = (f1; :::; fS), then
these distributions should be compatible with (4:1). Furthermore, Jh;f (�0) has the sandwich

form (3:5c)

Jh;f (�0) = A�1h;f (�0)Bh;f (�0)A
�1
h;f (�0) ;
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with

Ah;f (�0) = 2
S

SX

v=1

E
�

1
�4v(�0)

@�2v(�0)
@�

@�2v(�0)
@�0

�
;

Bh;f (�0) = 1
S2

SX

v=1

V ar
�
�2v
�
E
�

1
�4v(�0)

@�2v(�0)
@�

@�2v(�0)
@�0

�
: �

Example 4.2 (A mixed QMLE)

Let S = 3 and consider the GQMLE of model (2:1) with instrumental densities given by:

i) the standard Gaussian density h1 (x) = � (x) for season 1, ii) the Laplace density

h2 (x) =
1
2
exp (� jxj) ; x 2 R;

for season 2 and iii) a particular case of the generalized Gaussian density

h3 (x) = exp
�
�2 jxj1=2

�
; x 2 R;

for the third season. Then,

g11 (x1; &1) = &�11
�
1� x21&

2
1

�
,

g21 (x2; &2) = �&�12
�
1� jxj &�1

�
;

g31 (x3; &3) = �&�13
�
1� jxj

1

2 &�
1

2

�
:

so the unique solution to the equation

@
@&v
E

 
3X

i=1

gi (�i; & i)

!
= 0; 1 � v � 3;

is

&1 =
1

E(�21)
; &2 = E (j�2j) ; &3 =

r
E
�
j�3j1=2

�
:

Therefore,
3P
v=1

gv (�v; &v) admits a unique maximum at

�
1

E(�21)
; E (j�2j) ;

r
E
�
j�3j1=2

��0
and

A4 is satis�ed if

E
�
�21
�
= 1; E (j�2j) = 1; E

�
j�3j1=2

�
= 1: (4:2)
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Moreover, A8 holds if all the following conditions are ful�lled:

E
�
j�1j4

�
<1; E

�
�22
�
<1; E (j�3j) <1.

Note that the assumption of iid innovation f�t; t 2 Zg is not compatible with (4:2). Of course,
this example is only illustrative and aims at showing that the GQMLE may be given via

various instrumental functions. However, the choice of these instrumental functions should

be made carefully and depends on the adopted model and its objectives. �

Example 4.3 (Another mixed QMLE)

Let S = 5 and consider the GQMLE of model (2:1) with the following �ve instrumental

functions:

i) h1 (x) =
r(1�

1
r )

2�( 1r )
exp

�
�1
r
jxjr
�
; r > 0 (Generalized Gaussian density, � being the Gamma

function).

ii) h2 (x) =
a

2�(a)
jxja�1 exp (�a jxj) ; a > 0 (Double Gamma density).

iii) h3 (x) =
�
2
jxj��1 exp

�
� jxj�

�
; � > 0 (Double Weibull density).

iv) h4 (x) =
�
#�1
2

�
(1 + jxj)�# ; # > 0.

v) h5 (x) = K
�
1 +

�
x��
b

�2��m
exp

�
�� tan�1

�
x��
b

��
, K; b > 0; m � 1=2; �; � 2 R

(Pearson�s Type IV distribution, K being a normalizing constant (cf. Zhu et al, 2015)).

Then straightforward calculations similar to Example 4.1 and Example 4.2 show that A4

is satis�ed if

E (j�1jr) = 1, E (j�2j) = 1, E
�
j�3j�

�
= 1, E

�
j�4j
1+j�4j

�
=
1

#
, E
�
2m�2

5
+��5

1+�2
5

�
= 1:

Moreover, A8 is satis�ed if all the following conditions hold:

E
�
j�1j2r

�
< 1; E

�
�22
�
<1; E

�
j�3j2�

�
<1;

E
�
�2��v

�
< 1 for some �� > 0 (4 � v � 5) :
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4.2. Prediction of powers in PCH models: The one-step parametric

approach

An important application of the GQMLE in CH models is the prediction of the power of the

observed process f"t; t 2 Zg in a one-step setting (cf. Francq and Zakoïan, 2013). Though in
CH models one usually considers prediction of the squared process f"2t ; t 2 Zg, Francq and
Zakoïan (2013) pointed out the importance of predicting the powered term j"tjr when r 2 R
is rather a real number. This issue is particularly interesting i) for heavy-tailed distributions

with in�nite second moment when 0 � r < 2, ii) for duration models when r < 0 and iii) for

calculating the conditional variance of the prediction errors of the squares when r > 2 (see

Francq and Zakoïan, 2013). Since the best prediction in the mean square sense of j"tjr (6= 0)
is �rt (�0) under E (j�1jr) = 1, Francq and Zakoïan (2013) used the GQMLE to estimate the

CH model under the latter assumption, getting that prediction without extra-calculation.

They showed that their one-step approach has some advantages over the standard two-step

approach, which consists in estimating the volatility �rt (�0) by the Gaussian QMLE in a �rst

step, and then estimating E (j�1jr) non-parametrically in a second step. Francq and Zakoïan
(2013) also characterized a class of instrumental densities they called omnibus class, which

makes the consistency assumptions of the GQMLE compatible with the unit absolute power

moment condition E (j�1jr) = 1.
In this subsection we show how the GQMLE for the PCH model (2:1) can be applied

to perform prediction of powers in a one-step parametric approach as in Francq and Zakoïan

(2013). In contrast with non-periodic CH models, S di¤erent powers corresponding to

seasons are considered in our PCH case.

For any non-null real numbers r1; :::; rS such that E (j�vjrv) < 1 (1 � v � S), the best

predictor in the mean square sense of j"nS+vjrv given its past history is

E (j"nS+vjrv =FnS+v�1) = �rvnS+vE (j�vj
rv) , 1 � v � S. (4:3)

Similarly, the best mean square predictor of log j"nS+vj givenFnS+v�1 is log �rvnS+v+E (log (j�vj))
provided that E (log (j�vj)) < 0. The latter case may be seen as a limit of (4:3) when rv ! 0
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for all 1 � v � S. Thus, the one-step fully parametric method for predicting the powers of

the PCH process (2:1) is described as follows.

i) Given a series generated from (2:1), estimate �0 by the GQMLE b�NS;h under A1-A10
and the following assumption:

A11 For all 1 � v � S, E (j�vjrv) = 1 if rv 6= 0 and E (log j�vj) = 0 if rv 6= 0.
ii) The best predictor in the mean square sense of j"nS+vjrv given FnS+v�1 is estimated

by 8
<
:

�rvnS+v

�
b�NS;h

�
if rv 6= 0

log �nS+v

�
b�NS;h

�
if rv = 0

; 1 � v � S.

Now the following corollary of Theorem 3.1 and Theorem 3.2 gives asymptotic properties

of the GQMLE in the framework of prediction of powers using the one-step parametric

approach. It is a generalization of Theorem 1 by Francq and Zakoïan (2013) to the PCH

case.

Corollary 4.1 Under A1-A11, results (3:4) and (3:6) remain true.

Note that A11 is considered only in the framework of prediction of power problem in

a one-step parametric approach. Apart from this problem, A11 is unnecessary for the

consistency and asymptotic normality of the GQMLE.

Note that depending on the choice of the instrumental densities h1; h2; ::; hS, assumption

A4 induces S moment conditions on f�t; t 2 Zg (cf. Examples 4.1-4.2), which may be

inconsistent with A11. The functions h1; h2; ::; hS are said to be omnibus for the prediction

of power problem if the implied assumption A4 is compatible with A11 for all distributions

of the innovations �1; :::; �S. For a given rv > 0 ( 1 � v � S) let C (rv) be the class of
functions de�ned by (cf. Francq and Zakoïan, 2013)

C (rv) =

8
>>><
>>>:
h : h(x) =

8
>>><
>>>:

cv jxj�v�1 exp
�
�� jxj

rv

rv

�
if rv > 0

cv jxj��v�1 exp
�
� jxj

rv

rv

�
if rv < 0

cv jxj��v�1 exp
�
� jxj

rv

rv

�
if rv = 0

9
>>>=
>>>;

for some cv; �v > 0 ( 1 � v � S). The following result, which is a trivial generalization of

Proposition 2 by Francq and Zakoïan (2013), shows that the class CS (r1; :::; rS) de�ned by
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the following Cartesian product

CS (r1; :::; rS) :=
Y

1�v�S
C (rv) ;

is the class of omnibus functions for the prediction of power problem in PCH models.

Proposition 4.1 Let h1; :::; hS be instrumental functions satisfying A3. Then, A4 holds

for all distributions of �1; :::; �S satisfying A11 if and only if h1 2 C (r1) ; :::; hS 2 C (rS).
The proof of Proposition 4.1 is very similar to that of Proposition 2 in Francq and Zakoïan

(2:13) and hence is omitted. Thus assumption A4 could be omitted in Corollary 4.1 if the

instrumental functions (h1; :::; hS)
0 belong to the class of omnibus functions CS (r1; :::; rS).

4.3. GQMLE of the Periodic Asymmetric Power GARCH (1; 1)

We illustrate theGQMLE asymptotics given in Section 3 on the following PAP -GARCH (1; 1)

model with a general period S 2 N�,

�t = �t�t (4:4a)

��tt = !0t + �0t+(�
+
t�1)

�t�1 + �0t�(�
�
t�1)

�t�1 + �0t�
�t�1
t�1 ; t 2 Z; (4:4b)

where, as in Example 2.2, f�t; t 2 Zg is ipdS and the volatility parameters !0t > 0; �0t+ �
0; �0t� � 0; �0t � 0, �t > 0 are S-periodic over t with �t is assumed known for all t.

The parameter of the model is denoted by �0 = (�001; :::; �
0
0S)

0 2 � � R
4S with �00v =

(!0v; �0v+; �0v�; �0v), 1 � v � S where � is a compact space. Letting

Yt = ��tt ;

At = �0t+(�
+
t�1)

�t�1 + �0t�(�
�
t�1)

�t�1 + �0t;

Bt = !0t;

model (4:4) may be written in the following stochastic recurrence equation

Yt = AtYt�1 +Bt; t 2 Z; (4:5)
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with ipdS input f(At; Bt) ; t 2 Zg. From Brandt (1986), if we assume that

SX

v=1

E
�
log+ (Av)

�
<1;

then a su¢cient condition for (4:4) to have a strictly periodically stationary and periodically

ergodic solution is that

S0 :=
1
S

SX

v=1

E (log (Av)) < 0: (4:6)

The latter condition may be interpreted as a stability condition in average among the di¤erent

seasons. Following the same lines of Bougerol and Picard (1992) and Aknouche and Bibi

(2009, Corollary 1), a necessary condition for (4:4) to have a strictly periodically stationary

solution is that
SQ
v=1

�0v < 1, which is the same condition as (2:4). Thus, concerning the

GQMLE for the speci�c model (4:4), several assumptions among A1-A10 stated above can

be made more explicit. Indeed, assumption A1 for model (4:4) is satis�ed if we assume (4:6)

and the following condition:

B1 8� 2 � :
SQ
v=1

�v < 1 and for all 1 � v � S, !v > ! for some ! > 0.

On the other hand, from Berkes et al (2003), it is easy to show using equation (4:5)

that under condition (4:6) there is � > 0 such that E (j�vj� ) < 1 for all 1 � v � S (see

also Aknouche and Bibi, (2009, Theorem 2) in the PGARCH (p; q) case). Hence, A5 holds

under (4:6) without any moment assumption on the process f�t; t 2 Zg. Moreover, letting
A�0v+ = �0v+z; A�0v� = �0v�z and B�0v (z) = 1 � �0vz (1 � v � S), the identi�ability

assumption A2 can be replaced for model (4:4) by the following explicit condition:

B2 For all 1 � v � S : B�0v (z) has no common root with A�0v+ (z) and A�0v� (z),

A�0v+ (1) + A�0v� (1) 6= 0. In addition, �0v+ + �0v� + �0v 6= 0.
The latter condition also implies that Bh;f (�0) given by (3:5) is nonsingular so the last

part of A8 holds. Finally, following Francq and Zakoïan (2013) (see also Hamadeh and

Zakoïan (2011) for the Gaussian QMLE with S = 1), we make on f�t; t 2 Zg the following
assumption, which entails A6-A10.

B3 For all 1 � v � S, if P (�v 2 �v) = 1 for a set �v then �v has a cardinal j�vj > 2.
Further, P (�v > 0) 2 (0; 1).
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Consequently, we have the following asymptotic result for the GQMLE of the PAP -

GARCH (1; 1) model (4:4).

Corollary 4.2 Under (4:6), A4, A8 and B1-B3, results (3:4) and (3:6) hold for the

GQMLE of model (4:4).

It is worth noting that when the instrumental functions (h1; :::; hS)
0 belong to the class

of omnibus functions CS (r1; :::; rS), for some r1; :::; rS > 0, then assumption A4 may be

replaced in Corollary 4.2 by the following more explicit moment condition on f�t; t 2 Zg:
B4 8v 2 f1; :::; Sg, E j�vjrv = 1 and E j�vj2rv <1 for some r1; :::; rS > 0.

Now, consider the particular PAP -ARCH (1) model, which corresponds to (4:4) with

�v = 0 for all 1 � v � S. Then �0 = (�
0
01; :::; �

0
0S)

0 2 � � R3S with �00v = (!0v; �0v+; �0v�).
Moreover, the asymptotic variance Jh;f (�0) in (3:5c) is block-diagonal and is explicitly given

by

Jh;f (�0) =

0
BBBBBB@

� 2h1;f1J
�1
1 03�3 03�3 03�3

03�3 � 2h2;f2J
�1
2 03�3 03�3

03�3 03�3
. . .

...

03�3 03�3 � � � � 2hS ;fSJ
�1
S

1
CCCCCCA
, (4:7)

with

Jv = E
�

1
�4v(�0)

@�2v(�0)
@�

@�2v(�0)
@�0

�
and � 2hv ;fv =

E(gv1(�v ;1)2)
(E(gv2(�v ;1)))

2 , 1 � v � S:

Note �nally that Corollary 4.2 contains as a particular case asymptotics of the GQMLE

for: i) the periodic GARCH(1; 1) when �t = 2 and �0t+ = �0t�, ii) the periodic power

GARCH(1; 1) corresponding to �0t+ = �0t� and iii) the periodic threshold GARCH(1; 1)

when �t = 1 (1 � t � S).

4.4. GQMLE for PCH models with complex periodic patterns

4.4.1. GQMLE and reduction of the number of parameters in high frequency

PCH models

Though periodic CH models have been successfully applied to low frequency seasonal series

like daily series (e.g. Bollerslev and Ghysels, 1996; Franses and Paap, 2004; Osborn et al,
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2008), a potential drawback with these models is that they involve a very large number

of parameters when the period S tends to be large, like in intraday series. For instance,

for half-hourly series (e.g. Taylor, 2006), which imply a period of S = 48, the unrestricted

PAP -GARCH(1; 1) model (4:4) requires 4S = 192 parameters, making their estimation and

interpretation extremely challenging. To overcome this problem, several solutions have been

suggested to reduce the number of implied parameters in high frequency periodic models. An

ad hoc device is to restrict some parameters to reduce the parameter space. For example, in

model (4:4) one might take �v = �1 (2 � v � S) as already done by Franses and Paap (2000)

for the PGARCH model. However, the most usual approach is to use some basis functions

like Fourier approximation (Jones and Brelsford, 1967; Bollerslev et al, 2000; Taylor, 2006;

Anderson et al, 2007; Tesfaye et al, 2011; Franses and Paap, 2011; Rossi and Fantazani,

2015), periodic B-splines (Ziel et al, 2015) or periodic wavelets (see also Ziel et al, 2016;

Ambach and Croonenbroeck, 2015; Ambach and Schmid, 2015). In this Subsection we will

see how the GQMLE may be adapted when model (2:1) is reparametrized to reduce the

parameter space in high frequency PCH models. We follow here the approach of Jones and

Brelsford (1967), which is based on the following reparametrization
8
<
:

�0v = (�0v;1; :::�0v;mv
)0

�0v;j = ��0j + ��0j cos
�
2�v
S
� ��0j

�
, 1 � j � mv

; 1 � v � S: (4:8)

where for identi�ability reasons we assume that ��0j 2 (0; 1) for all j as cos (x+ n�) =

(�1)n cos (x) (see also Rossi and Fantazani (2015) for the periodic long memory EGARCH
model and Franses and Paap (2011) for the periodic autoregression). In lieu of m =

SP
v=1

mv

parameters, the new reparametrization (4:8) only involves a number ofm� = 3max1�v�S (mv)

parameters to be estimated. For example, for the PAP -GARCH (1; 1) model (4:4), speci�-

cation (4:8) reduces to
8
>>>>>><
>>>>>>:

!0v = !�01 + !�02 cos
�
2�v
S
� !�03

�

�0v+ = ��01+ + ��02+ cos
�
2�v
S
� ��03+

�

�0v� = ��01� + ��02� cos
�
2�v
S
� ��03�

�

�0v = ��01 + ��02 cos
�
2�v
S
� ��03

�

, 1 � v � S; (4:9)
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where the parameter of the model is now denoted by ��0 =
�
!�00 ; �

�0
0+; �

�0
0�; �

�0
0

�0
with !�0 =

(!�01; !
�
02; !

�
03)

0, ��0+ =
�
��01+; �

�
01+; �

�
01+

�0
; ��0� =

�
��01�; �

�
01�; �

�
01�
�0
, ��0 = (��01; �

�
02; �

�
03)

0.

and
�
!�03; �

�
03+; �

�
03�; �

�
03

�0 2 (0; 1)4. Note that the number of parameters in (4:9) does not
depend on S and is reduced for large S from 4S to 12.

Now with ��0 in place of �0, model (2:1) may be rewritten as follows

8
<
:

�nS+v = �nS+v�nS+v;

�nS+v = '�v (�nS+v�1; �nS+v�2; :::; �
�
0v) := ��nS+v (�

�
0) ;

, 1 � v � S; (4:10)

where the function '�v is obtained from 'v by rearrangement while replacing �0 by �
�
0. We

assume that ��0 2 �� � Rm
�

for some compact parameter space ��. Of course, the stability

and positivity constraints on �0 in (2:1) are directly translated in terms of �
�
0 through (4:8).

Like model (2:1), we de�ne ��nS+v (�
�), e��nS+v (��) and eL�T;h (�) as in (3:0), (3:1) and (3:2),

respectively for some instrumental functions h := (h1; :::; hS)
0, i.e.

��nS+v (�
�) = '�v (�nS+v�1; �nS+v�2; :::; �

�
v) ;

e��nS+v (��) = '�v (�nS+v�1; �nS+v�2; :::;e�0;e��1; :::; ��v) ;
1 � v � S

n 2 Z;

eL�T;h (��) = 1
NS

N�1X

n=0

SX

v=1

gv
�
�nS+v; e��nS+v (��)

�
;

where gv (1 � v � S) is de�ned as above and e�0;e��1; ::: are �xed initial values. The GQMLE

of �� is then given by

b��T;h = arg max
��2��

eL�T;h (��) :

Note �nally that consistency and asymptotic normality of b��T;h are established in the same
way as b�T;h under the same assumptionsA1-A10 with an appropriate adaptation considering
�� in place of �.

4.4.2. GQMLE for PCH models when the period S is non-integer

Next to high frequency seasonality, another well-observed case of complex periodic patterns

is seasonality with a non-integer period. For example, many weekly series have an annual

seasonal pattern with period 365:25=7 � 52:179 (e.g. De Livera et al, 2011). When a periodic

27



model like (2:1) is �tted to a series characterized by a non-integer period S 2 (1;1), one
usually takes (by simple approximation) the period to be the integer part of S, which is

denoted by [S], where [S] = n 2 N
� with n � S < n + 1. In doing so, the proposed

[S]-periodic model in which

�0t = �0;t+[S]; t 2 Z;

will not re�ect the actual S-periodicity of the series and will induce a kind of "shift" between

the [S]-seasonal series it generates and the actual S-seasonal series to which it is devoted to

represent. Thus, a [S]-periodic model will be inadequate. At �rst glance, it seems not possible

to envisage a periodic model with non-integer S since the period actually represents the

number of model parameters and hence it cannot take a priori non-integer values. However,

we can exploit a variation of the trigonometric approximation (4:8) dealing with non-integer

S. Indeed, in the framework of the PCH model (2:1) consider the following generalization

of (4:8) given by

8
<
:

�0v = (�0v;1; :::�0v;mv
)0

�0v;j = ��0j + ��0j cos
�
2�v
S
� ��0j

�
, 1 � j � mv

; 1 � v � [S] ; (4:11)

where S is now assumed a positive real number. In particular, for the PAP -GARCH (1; 1)

model (4:4), the corresponding "augmented" speci�cation of (4:9) with non-integer period is

8
>>>>>><
>>>>>>:

!0v = !�01 + !�02 cos
�
2�v
S
� !�03

�

�0v+ = ��01+ + ��02+ cos
�
2�v
S
� ��03+

�

�0v� = ��01� + ��02� cos
�
2�v
S
� ��03�

�

�0v = ��01 + ��02 cos
�
2�v
S
� ��03

�

, 1 � v � [S] : (4:12)

A similar approach has been introduced by De Livera et al (2011) in the case of seasonal

(but non-periodic) exponential smoothing TBATS models (The acronym TBATS refers to:

Trigonometric Box-Cox transform, ARMA errors, Trend, and Seasonal components). But

in contrast with seasonal models, the period S in a periodic model is generally interpreted as

the number of model parameters, making the adaptation of periodic models to non-integer

periods more challenging. Note that if S is non-integer then model (4:11) (and hence model
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(4:12)) is not [S]-periodic over v, since for example

!0;v+[S] = !�01 + !�02 cos
�
2�v
S
� !�03 + 2�

[S]
S

�

6= !0v;

and so on. So speci�cation (4:11) avoids inducing the aforementioned shift in modeling like

model (2:1) and then it would be more suitable in representing non-integer periodicity.

Now with speci�cation (4:11), model (2:1) may be reparametrized as in (4:10) to deal

with non-integer periods, giving the following variation of (4:10) for a positive real period

S > 0;
8
<
:

�nS+v = �nS+v�nS+v;

�nS+v = '�v (�nS+v�1; �nS+v�2; :::; �
�
0v) := ��nS+v (�

�
0) ;

, 1 � v � [S] ; (4:13)

where the function '�v and �
�
0 are de�ned as in (4:10). The GQMLE of (4:13) is de�ned in

the same way as (4:10) and its properties are established under similar assumptions.

Note �nally that other trigonometric, or more generally other Fourier approximations,

can be considered in place of (4:11) (see e.g. Tesfaye et al, 2011; Franses and Paap, 2011).

5. Conclusion

A few broad conclusions may be drawn. Firstly, the class of periodic conditional volatility

PCH models considered here is quite general and covers most of the standard ARCH

formulations. Moreover, periodicity is expressed via the volatility coe¢cients as well as

the innovation making the model more �exible in representing periodic series with di¤erent

shapes of distribution along seasons. Secondly, the GQMLE proposed for the PCH model

is based on S instrumental functions and is then in accordance with the periodicity of

the independent innovation, giving the possibility to the GQMLE to reduce to the MLE,

and then to be asymptotically e¢cient, when the instrumental functions coincide with the

distributions of the innovation. Thirdly, the GQMLE is consistent and asymptotically

Gaussian under mild assumptions as in the non-periodic case. However, its asymptotic
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variance is in a "sandwich" form, which is unusual in CH models, and is reduced only for

some special cases.

One useful application of the proposed GQMLE is the prediction of powers of the PCH

model in a one-step parametric framework, where S di¤erent powers along seasons are to

be considered. In addition, a potential application of the GQMLE of PCH models is the

calculation of the corresponding Values at Risk (V aR�s) for which the Gaussian QMLE

is generally inconsistent in the presence of heavy tailed distributions (see El Ghourabi et

al, 2016; Francq and Zakoïan, 2015-2016 in the CH case). Another useful property of the

GQMLE, is that it can be easily adapted to PCH models with complex periodic patterns

such as high frequency periodicity and non-integer periodicity. Note �nally that this work

has been mainly considered in a theoretical perspective and applications of the proposed

models and methods to real data are appealing.

6. Proofs

Proofs of Theorems 3.1 and Theorem 3.2 follow from similar arguments used in establishing

asymptotics of the GQMLE for non-periodic CH models (Berkes and Horvàth, 2004; Francq

and Zakoïan, 2004-2013-2015, El Ghourabi et al, 2016).

6.1. Proof of Theorem 3.1

Result (3:4) follows while establishing the following three lemmas.

Lemma 6.1 Under A2, A3 and A5 we have

sup
�2�

���eLNS;h (�)� LNS;h (�)
��� a:s:!
N!1

0;

where LT;h (�) =
1
T

N�1P
n=0

SP
v=1

gv (�nS+v; �nS+v (�)).
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Proof In view of A2-A3 and (3:1)-(3:2), a Taylor expansion gives a:s:

sup
�2�

���eLNS;h (�)� LNS;h (�)
��� � 1

T

N�1X

n=0

SX

v=1

sup
�2�

��gv1
�
�nS+v; �

�
nS+v (�)

��� je�nS+v (�)� �nS+v (�)j

� 1
T

N�1X

n=0

SX

v=1

bnS+v (�) sup
�2�

��� �t
��2
nS+v

(�)

h0v1
hv1

�
�nS+v

��
nS+v

(�)

����+ 1
TC

TX

t=1

bt (�)

� 1
T

N�1X

n=0

SX

v=1

bnS+v (�) j�nS+vj�v sup
�2�

��� 1
��
nS+v

(�)

���
1+�v

+ 1
TC

TX

t=1

bt (�) ; (6:1)

where ��nS+v (�) is between e�nS+v (�) and �nS+v (�) and

bt (�) = sup
�2�

je�t (�)� �t (�)j :

Now from A5 and the Markov inequality it follows that for all 1 � v � S and �v > 0

1X

n=0

P
�
bnS+v (�) j�nS+vj�v > �v

�
�

1X

n=0

CE(j�j�v )�
�v
�v

n

�
�v
�v
v

;

so by the Borel-Cantelli lemma

bnS+v (�) j�nS+vj�v a:s:!
n!1

0 for all 1 � v � S:

Thus, Lemma 6.1 follows from (6:1) and the Césaro lemma. �

Lemma 6.2 Under A1, A2 and A4

E

 
SX

v=1

gv (�v; �v (�))

!
< E

 
SX

v=1

gv (�v; �v (�0))

!
for all � 6= �0: (6:2)

Proof Using A1, the fact that

gv (�nS+v; �nS+v (�)) = gv

�
�nS+v;

�nS+v(�)

�nS+v(�0)

�
� log (�nS+v (�0)) ;

and A4 we have

E

�
SP
v=1

gv (�nS+v; �nS+v (�))�
SP
v=1

gv (�nS+v; �nS+v (�0))

�
=

SP
v=1

E
�
gv

�
�v;

�v(�)
�v(�0)

�
� gv (�v; 1)

�
< 0;
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with equality if and only if �nS+v (�) = �nS+v (�0) and by A2 if and only if � = �0. �

Lemma 6.3 Under A1-A5, for all � 6= �0 there is a neighborhood V (�) such that

lim sup
N!1

sup
��2V (�)

eLNS;h (��) < lim sup
N!1

eLNS;h (�0) a:s: (6:3)

Proof For any � 2 � and any positive integer k, let Vk (�) be the open ball of center �
and radius 1=k. Using Lemma 6.1 we have

lim sup
N!1

sup
��2Vk(�)\�

eLNS;h (��) �

lim sup
N!1

sup
��2Vk(�)\�

LNS;h (�
�)� lim sup

N!1
sup
�2�

���LNS;h (�)� eLNS;h (�)
���

� lim sup
N!1

 
S�1

SX

v=1

N�1
N�1X

n=0

sup
�2Vk(�)\�

gv (�nS+v; �nS+v (�
�))

!
, a:s:

As the instrumental functions (h1; :::; hS) are by A3 integrable and di¤erentiable, they are

bounded. Therefore, by A2

S�1
SX

v=1

E

 
sup

��2Vk(�)\�
gv (�nS+v; �nS+v (�

�))

!
< S�1

SX

v=1

�
1
!v
+ C

�
<1: (6:4)

Now since by A1 f�t; t 2 Zg is strictly periodically stationary and periodically ergodic, it
follows that for all 1 � v � S, the sub-process f�nS+v; n 2 Zg is strictly stationary and
ergodic. Hence, as

sup
��2Vk(�)\�

(gv (�nS+v; �nS+v (�
�))) ;

is a measurable function of the terms of f�nS+v; n 2 Zg, it follows that the sequence
(

sup
��2Vk(�)\�

gv (�nS+v; �nS+v (�
�)) ; n 2 Z

)
; (6:5)

is strictly stationary and ergodic with

E

 
sup

��2Vk(�)\�
gv (�nS+v; �nS+v (�

�))

!
2 [�1;+1):

For the process given by (6:5), applying the ergodic theorem for strictly stationary and

ergodic sequences with a possibly in�nite mean (cf. Billingsley 1995, p. 284; 495) and using
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E�0 (g
�
v (�nS+v; �nS+v (�))) <1 we get

lim sup
N!1

sup
��2Vk(�)\�

eLNS;h (��) � 1
S

SX

v=1

E

 
sup

��2Vk(�)\�
gv (�nS+v; �nS+v (�

�))

!
:

By the Beppo-Levi theorem (e.g. Billingsley, 1995 p. 219) and using (6:4), the sequence

 
1
S

SX

v=1

E

 
sup

��2Vk(�)\�
gv (�nS+v; �nS+v (�

�))

!!

k2N�
;

converges while decreasing to

1
S

SX

v=1

E�0 (gv (�nS+v; �nS+v (�))) ;

as k !1. Thus, (6:3) follows from (6:2). �

Proof of Theorem 3.1

To complete the proof of the theorem, we use a standard compactness argument and

Lemmas 6.1-6.3. Note that we have shown from Lemma 6.1-6.3 that for any neighborhood

V (�0) of �0,

lim sup
N!1

sup
��2V (�0)

eLNS;h (��) � lim
N!1

eLNS;h (�0) = lim
N!1

LNS;h (�0) =
1
S

SX

v=1

E�0 (gv (�v; �v (�0))) :

(6:6)

The compact � is recovered by the union of any neighborhood V (�0) of �0 and a set of

neighborhoods V (�), � 2 �nV (�0), where V (�) ful�lls Lemma 6.3. Therefore, there exists
a �nite sub-covering of � by V (�0) ; V (�1) ; :::; V (�k) such that

sup
�2�

eLNS;h (�) = min
i2f1;2;:::;kg

sup
�2�\V (�i)

�
eLNS;h (�)

�
:

From Lemma 6.3 and (6:6), the latter equality shows that b�NS;h 2 V (�0) for N su¢ciently

large, which completes the proof of the theorem. �
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6.2. Proof of Theorem 3.2

From A6 and the strong consistency of b�NS;h, a Taylor expansion gives
p
N @
@�
eLT;h

�
b�NS;h

�
= 0

=
p
N @
@�
LT;h

�
b�NS;h

�
+
p
N @
@�
eLT;h

�
b�NS;h

�
�
p
N @
@�
LT;h

�
b�NS;h

�

=
p
N @
@�
LT;h (�0) +

@2

@�@�0
LT;h (�

�)
p
N
�
b�NS;h � �0

�

+
p
N
�
@
@�
eLT;h

�
b�NS;h

�
� @

@�
LT;h

�
b�NS;h

��
;

where �� is between b�NS;h and �0. Therefore, the asymptotic normality result (3:6) follows
while the three following lemmas are proved.

Lemma 6.4 Under A1-A5, A7 and A9-A10,

sup
�2V (�0)

p
N
 @
@�
LT;h (�)� @

@�
eLT;h (�)

 p!
N!1

0:

for some neighborhood V (�0) of �0.

Proof We have

sup
�2V (�0)

p
N
 @
@�
LT;h (�)� @

@�
eLT;h (�)

 = sup
�2V (�0)

1
S
p
N



SX

v=1

N�1X

n=0

h
gv1 ("nS+v; �nS+v (�))

@�nS+v(�)

@�

�gv1 ("nS+v; e�nS+v (�)) @e�nS+v(�)@�

i

� sup
�2V (�0)

1
S
p
N

SX

v=1

N�1X

n=0

jgv1 ("nS+v; �nS+v (�))� gv1 ("nS+v; e�nS+v (�))j
@�nS+v(�)@�



+ sup
�2V (�0)

1
S

SX

v=1

1p
N

N�1X

n=0

jgv1 ("nS+v; e�nS+v (�))j
@�nS+v(�)@�

� @e�nS+v(�)
@�

 : (6:7)

From A3 and A9, the second term in the right hand side of (6:7) is bounded by

C
S
p
N

SX

v=1

N�1X

n=0

�n 1
!v

�
1 +Kv

��� "nS+v!v

���
�v
�
;

which is of order O
�
T�1=2

�
a:s. For the �rst term in (6:7), using a Taylor expansion,

assumptions A3, A5, A7, A10 and the Cauchy-Shwartz inequality, it follows that this term
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is bounded by

C
S
p
N

SX

v=1

N�1X

n=0

�n 1
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��gv2
�
"nS+v; �

�
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� C
S
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�n 1
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�
1 +
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���
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�2V (�0)

 1
�nS+v(�)

@�nS+v(�)
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= o (1) a:s:,

where ��nS+v (�) is between e�nS+v (�) and �nS+v (�). This completes the proof of the lemma.
�

Lemma 6.5 Under A1-A10, for any �� between b�T;h and �0,

@2LT;h(�
�)

@�@�0
p!

N!1
1
4
Ah;f (�0) :

Proof From A3 and A7 we have

@
2LT;h(�)

@�@�0

 =


1
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�
:

By the Hölder inequality, A7 and A10 it follows that

E

 
sup

�2V (�0)

@
2LT;h(�)

@�@�0


!
<1;

so the ergodic theorem implies that

lim
N!1

sup
�2V (�0)

@
2LT;h(�)

@�@�0
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 � E
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�

!
, a:s:

From the dominated convergence theorem, the latter expectation tends to zero when

V (�0) tends to the singleton f�0g. Now since b�T;h is consistent then
@

2LT;h(�
�)

@�@�0
� @2LT;h(�0)

@�@�0

 a:s:!
N!1

0.
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On the other hand since by A3

gv1 (x; &) =
@gv(x;&)
@&

= �1
&
� h0v(x& )

hv(x& )
x
&2
; 1 � v � S;

exists for all & > 0 and E
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�
< 1, then A4 and the dominated conver-

gence theorem entail the following moment conditions

E
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= �1; for all 1 � v � S;

which in turn imply that
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Note that the following equality
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gives

gv2 ("nS+v; �nS+v (�0)) = gv2
�
�nS+v; 1

� @2�v(�0)
@�@�0

:

Therefore, by the periodic ergodic theorem we �nally get

@2LT;h(�0)

@�@�0
a:s:!
N!1

1
4
Ah;f (�0) ;

which proves the lemma. �

Lemma 6.6 Under A1-A10

p
N
@LT;h(�0)

@�

L!
N!1

N
�
0; 1

4
Bh;f (�0)

�
;

where Bh;f (�0) given by (3:5b) is invertible under A8.

Proof Note that

p
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Since by the periodic ergodic theorem we have
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1
4
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then by the martingale central limit theorem (Billingsley, 1961) we get (6:8).

Now we prove that Bh;f (�0) is nonsingular under A8. If Bh;f (�0) is singular, then there

exists a non-null vector x 2 Rm such that x0Bh;f (�0)x = 0. Note that

x
0Bh;f (�0)x = 1

S2

SX

v=1
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�
gv1 (�v; 1)

2�E
�
x
0 1
�4v(�0)

@�2v(�0)
@�

@�2v(�0)
@�0

x

�

= 1
S2

SX

v=1

E
�
gv1 (�v; 1)

2�E
�

1
�4v(�0)

�
x
0 @�2v(�0)

@�

�2�
:

Since by A8, E
�
gv1 (�v; 1)

2� > 0 for any v 2 f1; :::; Sg, it follows that x0Bh;f (�0)x = 0 if

and only if E

�
1

�4v(�0)

�
x
0 @�2v(�0)

@�

�2�
= 0, 8v 2 f1; :::; Sg, which holds if and only if

1
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x
0 @�2v(�0)
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�2
= 0 a:s: 8v 2 f1; :::; Sg , x

0 @�2v(�0)
@�

= 0 a:s: 8v 2 f1; :::; Sg :

By the last part of A8 this implies that x = 0, which contradicts the fact that x 6= 0. Hence,
Bh;f (�0) is nonsingular. �
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