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                                                          Abstract                                                                               

In this paper, we incorporate regret into the decision-making process of a pension fund and derive the optimal 

asset allocation of a final-wealth-maximizing pension fund in the accumulation and decumulation phases. We 

find that the optimal asset allocation must be congruent in both phases if and only if the pension fund is upside 

regret averse. In particular, our results suggest that allocation to risky assets must increase through time in the 

accumulation and decumulation phases so that the pension fund can realize gains from any upsides in the risky 

asset market, thereby maximizing final wealth and limiting the feeling of regret ex-post. Although decisions in 

both phases are congruent, we find that the optimal asset allocation generally depends on wealth levels. This 

evidence implies that separate management of the accumulation and decumulation phases of a pension fund 

decreases available wealth levels and is not an optimal strategy. 
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1. Introduction 

The major contribution of this paper lies in the use of regret theory to analyze the optimal asset allocation of a 

pension fund that aims to maximize the expected modified utility of its final wealth. Unlike in the standard 

expected utility framework wherein a pension fund independently considers only the investment choices it makes 

and performs expected utility maximization based on these choices, without recourse to other potential choices 

that could have been made, regret theory gives room for the pension fund to account for its favoured investment 

choices as well as other feasible investment choices that could be made. In essence, the fund pension experiences 

regret if the outcome of its investment choices is worse than the outcome of at least one of the forgone investment 

choices, and it rejoices if otherwise. Thus, because of the possibility of future regret, the objective function—the 

expected modified utility of the pension fund’s final wealth— is set up in such a way as to incorporate a function 

that captures feelings of potential regret. This way, we are able to develop a set-up aimed at examining the extent 

to which the anticipation of future regret influences current investment choices and optimal asset allocation of a 

pension fund. The presence of a regret function distinguishes our framework, the regret theory framework, from 

traditional expected utility framework and serves as a novel contribution to the literature.. 

Accessible literature on asset allocation problems and optimal portfolio strategies for pension funds largely 

neglects regret theory and widely favors traditional expected utility maximization.  In addition to the many 

documented limitations and violations of the traditional expected utility theory so elegantly demonstrated in the 

behavioral economics literature, our major discontent with the theory is that it assumes economic agents consider 

each outcome independently and disregard other possible outcomes. This can be interpreted to mean that pension 

fund managers, for example, care only about the investment choices they make. However, in practice, fund 

managers do experience a feeling of regret whenever forgone investment choices yield better returns ex-post than 

the choices they made ex-ante. This causes them to incorporate the possibility of regret in their subsequent 

investment decisions and asset allocation. As a simple illustration, consider a fund manager who can receive a $5 

return on investment for each dollar invested in the debt capital market and either a $7.5 or $1.5 return on 

investment for each dollar invested in the equity capital market. If he takes a huge position in the equity capital 

market and finally receives a $1.5 return on investment for each dollar invested, he almost surely will experience 

a feeling of regret for getting less than he could have gotten had he taken most positions in the debt capital 

market. Next time, this experience will shape his investment decisions and therefore make him averse to regret, 

and this aversion will induce him to incorporate regret into his decision-making process. Despite this intuitive 

perspective on regret, to the best of our knowledge, nowhere has this common human behavioral tendency been 

incorporated into the investment decision making process to analyze the optimal asset allocation of a pension 

fund. It is therefore in this area that this paper fills a void in the literature. 

Generally speaking, the concept of regret, developed by Bell, Loomes and Sugden (1982), is intuitive and 

proposes a normative theory of choice under uncertainty that explains many observed violations of the axioms 

upon which the traditional expected utility theory is built. Regret is a cognitively mediated emotion of pain and 

anger when people observe ex-poste that they took a bad decision ex-ante and could have taken an alternative 

decision with a better outcome. In capital markets, people experience regret when their investments give a worse 



 

 

performance than an alternative investment they could have easily chosen a priori. This, for instance, is in 

contrast with disappointment, which is experienced when a negative outcome happens relative to prior 

expectations. Regret, which is a powerful negative emotion, is strongly associated with a feeling of responsibility 

for a choice made and is known to influence decision-making under uncertainty. It involves the regret/rejoice that 

a person feels when he gets outcome 𝑥 instead of outcome 𝑦. The theory assumes people are rational but base 

their decisions not only on expected payoffs or utility but also on expected regret, so that they try to anticipate 

future regret and consistently incorporate it into their investment decision making process. The incorporation of 

regret yields a modified utility and people reach their investment decisions by maximizing the expected value of 

this modified utility. This makes regret theory suitable for analyzing the optimal asset allocation of a pension 

fund.    

The anticipation of future regret is so strong that it forces even Harry Markowitz to relook his very own Nobel 

winning asset allocation theory when confronted with a financial decision on his pension plan. His quote: ‘I 

should have computed the historical covariance of the asset classes and drawn an efficient frontier. Instead I 

visualized my grief if the stock market went way up and I wasn’t in it—or if it went way down and I was 

completely in it. My intention was to minimize future regret, so I split my pension scheme contributions 50-50 

between bonds and equities.’ ‘Harry Markowitz, as quoted in Zweig (1998), America’s top pension fund’, 

Money, 27, page 114. This gives further support and credibility to the claim that regret does influence optimal 

investment decision of a pension fund. Anticipation of future experience of regret may lead individuals to make 

certain decisions that contrast with expected utility paradigm. This assertion will be investigated in the context of 

the optimal asset allocation of a pension fund in this paper.  

Meanwhile, unlike other fund managers, the case of pension funds requires the introduction of two 

characteristics: (i) the different behaviors of the managed funds during the accumulation (Ac) and decumulation 

(Dc) phases, and (ii) mortality risk. In addition, we must take cognizance of regret risk because we aim to work in 

a regret theoretic framework. So, this paper considers three dimensions of risk: traditional risk (volatility of final 

wealth), regret risk and mortality risk. To the best of our knowledge, no work on optimal asset allocation has 

simultaneously considered these risks. The only work, at least to our knowledge, which considers these risks in 

asset allocation theory, does not consider them simultaneously. For instance, Bajeux-Besnainou and Jordan 

(2001) consider only volatility risk, Michenaud and Solnik (2008) consider volatility risk and regret risk and 

Battocchio, Menoncin and Scaillet (2007) consider volatility risk and mortality risk. While the intuition of 

applying regret theory to asset allocation is not new, this is the first time that a formal regret theoretic approach is 

applied to the optimal asset allocation of a pension fund facing the aforementioned risks.  

As we have motivated above, regret is a major factor when making investment choices because institutional 

investors, more often than not, care about their choices relative to other strategies they could have employed. 

Although evidence favoring the influence of regret on decision-making exists instinctively, it is surprising that 

the theory has caught only little attention in the field of finance. In the few available studies, Muermann, Mitchell 

and Volkman (2006) apply regret theory to asset allocation in defined contribution pension schemes. They find 

that an investor who takes regret into account will hold more risky assets (stocks) when the equity premium is 



 

 

low but less risky assets when the equity premium is high. Braun and Muermann (2003) apply regret theory to 

demand for insurance. Dodonova and Khoroshilov (2005) apply a pseudo regret theory to asset pricing. Heybati, 

Rahnamay and Moosavi (2011) apply regret theory to portfolio optimization. Michenaud and Solnik (2008) study 

currency hedging techniques for foreign assets in a regret theoretic framework and derive some interesting 

implications for long and short hedging positions when a foreign currency appreciates or depreciates ex-post. 

However, all these models offer approximate explicit investment rules outside the context of a pension fund.  

In this paper, instead, we provide explicit optimal solutions for investment rules within the context of a pension 

fund which manages employees’ contributions towards retirement. Our methodology allows the derivation of 

approximate closed-form solutions for optimal investment choices available to a pension fund. In particular, 

during the active years of the employees, the fund wealth increases because of the contributions that the 

employees make towards retirement while, after retirement, the fund wealth decreases because of the pension 

payments that the pension fund makes to the retired employees.  Following Battocchio, Menoncin and Scaillet 

(2007), we suppose that a representative employee has no other choice at the retirement date than to receive a 

pension until the death time 𝜏, which is assumed to be a random variable. The pension fund then maximizes the 

expected modified utility of its final wealth, in anticipation of future regret.  In our model, the contribution and 

pension rates are constant and linked by a feasibility condition that guarantees the convenience of both the 

pension fund and the representative employee to amicably enter the pension contract. We argue why this 

feasibility condition must hold and derive its approximate closed-form expression under the assumption that the 

death time 𝜏 follows a log-logistic distribution. We emphasize that our result is quite different from the closed-

form expressions obtained under the assumption of both a Gompertz-Makeham and a Weibull distributed death 

time 𝜏 as in Battocchio, Menoncin and Scaillet (2003, 2007). We also remark that the motivation for our choice 

of distribution for the death time 𝜏 stems from the fact that death-survival analyses for a random death time are 

best done under the assumption of a log-logistic distribution.  

Furthermore, we consider that a pension fund does not only manage retirement funds preretirement when 

contributions towards future pensions are made, but also manages the remaining wealth postretirement when 

pensions are being paid. Therefore, since management of the remaining wealth postretirement is also the duty of 

a pension fund, we set up the required optimization problem for the optimal asset allocation during the entire 

life of the representative subscriber in such a way that the final date of the optimization problem coincides with 

the death time of the subscriber. After solving this optimization problem in a regret theoretic framework, we 

find that the optimal portfolio compositions of the pension fund are identical during the accumulation and 

decumulation phases. In particular, we show that the amount of wealth invested in the risky-asset class increases 

through time during the accumulation phase and also increases through time after the retirement date, during the 

decumulation phase. We claim that this behavior is borne out of regret aversion. Regret averse pension funds 

would increasingly retain their positions in the risky-asset class for fear of the potential regret of missing out on 

any boom or upside in the risky-asset market.  

 



 

 

To summarize, in addition to other important results, our major contribution in this paper is systematic. We 

integrate regret into a well-defined objective function and this allows us to derive optimal investment strategies 

that reflect the risk and regret aversion of a pension fund. We find that the optimal asset allocation must be 

congruent in both phases if and only if the pension fund is upside regret averse. In particular, our results suggest 

that allocation to risky assets must increase through time in both accumulation and decumulation phases, so that 

the pension fund can realize large gains from the upside potential of the risky-asset market, thereby maximizing 

final wealth and limiting the feeling of regret ex-post. Although decisions in both phases are congruent, we find 

that the optimal asset allocation generally depends on wealth levels. This evidence implies that separate 

management of the accumulation and decumulation phases of a pension fund decreases available wealth levels 

and is not a robust strategy.  

  The rest of the paper flows as follows. Section 2 explains some important concepts that will aid the 

understanding of other ideas in subsequent sections, presents and discusses the financial model, and elaborates 

on the computation of feasibility condition on contribution and pension rates when the death time 𝜏 follows a 

log-logistic distribution. Section 3 presents the regret theoretic framework for the pension fund maximization 

problem, discusses regret theory and its importance for decision making under uncertainty and describes our 

modeling framework. Section 4 develops the objective function, applies regret theory to a pension fund which 

seeks to maximize its expected modified utility of final wealth, and computes the optimal allocation rule. 

Section 5 discusses the theoretical results in relation to the effective management of a pension fund and 

concludes with directions for future research. 

2. The Financial Markets Pension Fund Model 

We follow Brennan, Schwartz and Lagnado (1997) and Battocchio, Menoncin and Scaillet (2007) and consider 

a financial market with one risky-asset class (common stock) and one riskless-asset class (T-bills) having rates 

of return 
𝑑𝑆𝑆  and 

𝑑𝐺𝐺  respectively, and where 𝑟 is the short term interest rate. If we assume also that dividend 

yield 𝛿 on common stocks influences returns on risky-asset class, then the joint price process follows 

{  
                            𝑑𝑆𝑆 = 𝜇𝑆𝑑𝑡 + 𝜎𝑆𝑑𝑧𝑆,     𝑆(𝑡0) = 𝑆0        𝑑𝐺𝐺 = 𝑟𝑑𝑡,     𝐺(𝑡0) = 𝐺0𝑑𝑟 = 𝜇𝑟𝑑𝑡 + 𝜎𝑟𝑑𝑧𝑟𝑑𝛿 = 𝜇𝛿𝑑𝑡 + 𝜎𝛿𝑑𝑧𝛿

                                                          (1)    
where the parameters μi, σi (i = r, δ, S) are at most functions of the variables r, δ, S, and 𝑑𝑧𝑖 are increments due 

to Weiner process. 𝑆0 and  𝐺0 are deterministic, positive and represent the initial prices of the risky and riskless-

asset classes respectively, while S and 𝐺 are their prices at time  𝑡 > 0. It should be noted that the dependence of 

the return 
𝑑𝑆𝑆  on 𝑟 and 𝛿 is completely straightforward. Indeed,  

𝑑𝑆𝑆  depends on 𝑟 and 𝛿 through the dependence of 

at least one of 𝜇𝑆 and 𝜎𝑆 on at most r, δ, S. This process may be estimated and tested statistically to ascertain the 

level of statistical significance of the effect of the state variables on stock returns, but that is not the focus of this 

paper. 



 

 

2.1.1 The Contributions and Pensions Payments 

If 𝑈(𝑡) denotes the total amount of contributions to the fund and 𝑉(𝑡) denotes the total amount of pensions paid 

by the fund, then 𝑈(𝑡) and 𝑉(𝑡) follow the ordinary linear differential equations 𝑑𝑈(𝑡) = 𝑢𝑑𝑡,  𝑡0 ≤ 𝑡 < 𝑇                                                                       (2𝑎) 𝑑𝑉(𝑡) = 𝑣𝑑𝑡, 𝑇 ≤ 𝑡 < 𝜏                                                                          (2𝑏) 
where 𝑢 > 0 and 𝑣 > 0 are constant and do not vary with time. The pensions are paid until the death time of the 

subscriber and do not depend on the investment performance of the fund. 

2.1.2 The Feasibility Condition 

This is the condition that has to be satisfied before the subscriber and pension fund enter a pension contract in 

the first place. For this reason, the pension fund cannot freely dictate the contributions and pensions while the 

subscriber cannot solely dictate the pensions. The contributions and pensions cannot be chosen separately. The 

subscriber and the pension fund have to reach an agreement on the contributions and pensions simultaneously. 

When the subscriber enters the fund, he anticipates that the expected present value of all pensions cannot be 

lower than the expected present value of all contributions. Similarly, the pension fund formalizes the contract 

with the subscriber when it is convinced that the expected present value of all pensions cannot be more than the 

expected present value of all contributions. 

Money enters and leaves the pension fund according to the rate 

𝑚(𝑡) = 𝑑𝑈(𝑡)𝑑𝑡 𝕀𝑡<𝑇 − 𝑑𝑉(𝑡)𝑑𝑡 𝕀𝑡≥𝑇                                                                 (3𝑎) 
or 𝑚(𝑡) = 𝑢𝕀𝑡<𝑇 − 𝑣(1 − 𝕀𝑡<𝑇), 
where  𝕀𝑡<𝑇 = {1, if  𝑡 < 𝑇0, if 𝑡 ≥ 𝑇  

If 𝑢 represents the constant contribution rate to the pension fund and 𝑣 represents the constant pension rate paid 

to a representative subscriber, then the feasibility condition holds for the pair (𝑢, 𝑣), 𝑢 > 0 and 𝑣 > 0 if 

𝔼 [∫𝑚(𝑡)𝑒−𝑟𝑡𝑑𝑡𝜏
0 ] = 0, and the resulting expression for the feasibility condition is 

𝑢𝑣 = −1 + 1 − 𝔼[𝑒−𝑟𝜏]1 − 𝔼[𝑒−𝑟𝜏𝕀𝜏<𝑇] − 𝑒𝑟𝑇ℙ(𝜏 ≥ 𝑇),                                                (3𝑏) 
where 𝜏 is the random death time. The proof is in Appendix 1 and the computation of the closed form 

approximations for the feasibility condition is in Appendix 2. 



 

 

3. Pension Fund Maximization Problem in a Regret Theoretic Framework 

In this section we approach the problem of a pension fund from a regret/rejoicing point of view. Since pension 

funds are largely connected with collecting, pooling and investing funds contributed by sponsors and 

beneficiaries in order to provide means for the beneficiaries to accumulate savings over their active working 

years so as to finance their consumption needs in retirement, we shall assume that the main problem of a 

pension fund is to maximize the expected modified utility of its final wealth at the death time of its subscribers.  

Contrary to the traditional choiceless utility function which is defined on outcomes of actual investment choices 

that a pension fund makes, the modified utility function does not only consider outcomes of actual investment 

choices, but it also includes a comparison of these outcomes with the outcomes of other investment choices that 

a pension fund could have made, but has not made. This makes it possible to incorporate regret into the 

modified utility function for the purpose of decision making. Regret-conscious pension funds do not only care 

about the expected return and volatility of their invested funds, but they also care about the deviations of the 

outcomes of their actual choices from the outcomes of their forgone choices. So, they face both volatility risk 

and regret risk. Volatility risk is linked to deviations of the invested fund’s return from its expected value. 

Regret risk is the risk that the pension funds are going to experience a feeling of regret in the future. That is, the 

risk that the outcomes of their actual investment choices will be worse than the outcomes of their forgone 

investment choices. There is also mortality risk, which is the risk of death of a subscriber and it enters the 

problem through the feasibility condition. 

In our work, we suppose that a pension fund can make two choices. The first is to invest/allocate a strictly 

positive amount 0 < 𝛼 < 1 to a risky-asset class and the remaining to a riskless-asset class while the second is 

to allocate nothing 𝛼 = 0 to the risky-asset class and allocate all to the riskless-asset class. We suppose that the 

pension fund is unsure of the performance of the risky-asset class, but always knows beforehand the 

performance of the riskless-asset class, so that this performance serves as a benchmark with which the pension 

fund compares the outcome of its actual investment strategy. The pension fund is assumed to experience a 

feeling of regret or rejoicing on the outcome of its choice. If we suppose that the pension fund makes or prefers 

the first choice (of taking a huge position in the risky-asset class) knowing full well that it may later regret its 

action or decision if it so happens that the outcome (performance) of the second choice (of taking no position in 

the risky-asset class) turns out much better than the outcome of his first choice, how would its optimal 

allocation choice/decision be today in order to maximize the expected modified utility of its final wealth, 

improve its feeling of rejoicing and lessen its feeling of regret that may occur in the future/ex-post after it has 

exited it position to evaluate its proceeds? This is one of the questions we shall answer in this part of our 

research.  

 

 

 



 

 

3.1.1 The Maximization Problem Setup 

As we have motivated in the previous section, regret theory rests on two fundamental assumptions. The 

first is that agents experience the sensations of regret and rejoicing, and the second is that agents try to 

anticipate and take account of these ex-post sensations when making ex-ante decisions under 

uncertainty. The modified utility function is therefore defined over the ex-post (final) outcomes of 

choices and rational investors would make choices ex-ante by maximizing the expected value of this 

modified utility. This allows agents to take the anticipation of regret into account in an axiomatic 

fashion. The modified utility function is not only defined over the outcome of the choice an agent 

makes, but it also includes a comparison with the outcome of another choice that could have been made 

in the same state of the world.    

 

If we define the expected value of the modified utility of a rational regret averse agent faced with two 

choices by                                             𝔼(𝜓(𝑥, 𝑦)) = 𝔼 (𝑈(𝑥) + 𝑓(𝑈(𝑥) − 𝑈(𝑦)))                                (4𝑎)    
 

then the agent will seek to make a choice ex-ante that will give a final outcome 𝑥 which will maximize 

his expected modified utility, i.e. 

                                                            max                  𝑥 𝔼(𝜓(𝑥, 𝑦)) = ∇                                                                  (4b)    
with  ∇= max𝑥 𝔼(𝑈(𝑥) + 𝑓(𝑈(𝑥) − 𝑈(𝑦))). 
 

It is important to note that if agents experience no regret or rejoicing at all, or if the function 𝑓 is linear, 

then the above formulation collapses to the conventional expected utility paradigm. 

 

Now that we have discussed the relevant aspects of regret theory that will aid our work on pension 

funds, we will proceed to how we can apply it in a pension fund context. Therefore, in what follows, we 

shall study the investment behavior of a pension fund in a regret theoretic framework. 
 

3.1.2  The Managed Wealth of the Pension Fund 

In the preceding section, we stated that the pension fund is assumed to have two choices—either it 

invests a strictly positive amount in the risky-asset class or it invests nothing in the risky-asset class. 

We further suppose that the pension fund does not prefer the choice of taking no position in the risky-

asset class. This is the choice or decision of the pension fund. If 𝜃(𝑡) represents the number of units of 

the risky-asset class and ∅(𝑡) represents the number of units of the riskless-asset class, then the 

apportioned wealth to the risky-asset class is 𝜃(𝑡)𝑆(𝑡) and the allotted wealth to the riskless-asst class 

is ∅(𝑡)𝐺(𝑡). Therefore, the total wealth process 𝑊(𝑡) of the pension fund, which we shall call the 

outcome of its choice of taking a positive position in the risky-asset class, evolves according to 



 

 

𝑊(𝑡) = 𝜃(𝑡)𝑆(𝑡) + ∅(𝑡)𝐺(𝑡)                                                                          (5𝑎) 
The associated stochastic differential equation is  𝑑𝑊 = 𝜃𝑑𝑆 + ∅𝑑𝐺 + (𝑆 + 𝑑𝑆)𝑑𝜃 + 𝐺𝑑∅                                                   (5𝑏) 
Introducing the self-financing condition suggests that changes in portfolio composition are only due to 

variations in the prices of assets constituting the portfolio. Therefore, the term  (𝑆 + 𝑑𝑆)𝑑𝜃 + 𝐺𝑑∅ should 

normally be nonexistent or zero. However, since we are considering the case of a pension fund, then, without 

any loss of generality, we can argue that the self financing condition ensures that the additional term (𝑆 +𝑑𝑆)𝑑𝜃 + 𝐺𝑑∅ comes from the contributions 𝑢 made by the subscriber during the accumulation phase and it is 

used to finance the pension payments 𝑣 during the decumulation period. Accordingly, therefore,  (𝑆 + 𝑑𝑆)𝑑𝜃 + 𝐺𝑑∅ = 𝑚𝑑𝑡                                                                             (6𝑎) 
where 𝑚 is the rate at which money enters and leaves the fund, and so 𝑑𝑊 = (𝑊𝑟 + ɸ(𝜇𝑆 − 𝑟) +𝑚)𝑑𝑡 + ɸ𝜎𝑆𝑑𝑧𝑆                                                  (6𝑏) 
where ɸ = 𝜃𝑆 = 𝛼𝑊 is the amount of wealth apportioned to the risky-asset class, 𝑑𝑆 = 𝑆(𝜇𝑆𝑑𝑡 + 𝜎𝑆𝑑𝑧𝑆) and 𝑑𝐺 = 𝐺𝑟𝑑𝑡 represent the price process for the risky-asset class and the riskless-asset class respectively. 

Now, since we want to perform the analysis of a pension fund in a regret theoretic framework, we will not only 

consider the outcome of the decision/choice made by the pension fund, but we shall also consider the outcome 

of another choice that the pension fund could have made. In particular, we consider a case in which the pension 

fund could have made a choice of taking no position in the risky-asset class, i.e. investing solely in the riskless-

asset class. The wealth process or outcome of such a choice/decision would be  𝑊𝑜(𝑡) = ∅(𝑡)𝐺(𝑡)                                                                         (7𝑎) 
and its associated stochastic differential equation would be  𝑑𝑊𝑜 = ∅𝑑𝐺 + 𝐺𝑑∅                                                                       (7𝑏) 
 

Self-financing condition would then imply that 𝐺𝑑∅ = 𝑚𝑑𝑡                                                                                        (8𝑎) 
where 𝑚 is as before, and so    𝑑𝑊𝑜 = (𝑊𝑜𝑟 + 𝑚)𝑑𝑡                                                                      (8𝑏) 
Equations (5a) –8(b) explicitly show the outcome of the actual investment choice made by the pension fund as 

well as the outcome of a forgone investment choice that the pension fund could have made. In what follows, we 

will now proceed and write down the objective function of the pension fund in a regret theoretic framework. 

 



 

 

4  The Objective Function of the Pension Fund 

The objective of the pension fund is to maximize the expected modified utility of its final wealth/final outcome 

at the death time 𝜏 of its subscriber, under the assumption that the pension fund anticipates to experience a 

feeling of regret if the outcome of its investment choice is less than the outcome of a forgone investment choice 

and that the pension fund takes this feeling into account when making its decision under uncertainty with the 

sole aim of curtailing future regrets. The forgone investment choice is taken as a full investment in the riskless-

asset class. Following (4a), we can write the modified utility function of the pension fund as  

         𝜓(𝑊,𝑊𝑜) = (𝑈(𝑊)+ 𝑓(𝑈(𝑊) − 𝑈(𝑊𝑜)))= (𝑈(𝜃𝑆 + ∅𝐺) + 𝑓 (𝑈(�̂�𝑆 + ∅𝐺) − 𝑈(∅𝐺)))                                                      (9𝑎)     
Thus, the objective function of the pension fund is  

                    max                  ɸ𝔼𝑡0𝜏 ( 𝜓(𝑊(𝜏),𝑊𝑜(𝜏))) = ∇                                                            (9b)      
where  ∇= max

ɸ
𝔼𝑡0𝜏 ( 𝑈(𝜃𝑆 + ∅𝐺) + 𝑓 (𝑈(�̂�𝑆 + ∅𝐺) − 𝑈(∅𝐺))) 

i.e. finding the right allocation to the risky-asset class that will help maximize the expected modified utility of 

the pension fund’s final wealth.  Following [4] and [9], we assume the death time 𝜏 is independent of all other 

sources of risk. With this assumption, we can rewrite the above expected value as  

𝔼𝑡0𝜏 ( 𝜓(𝑊(𝜏),𝑊𝑜(𝜏))) = 𝔼𝑡0 [∫ 𝑔(𝑡)𝜓(𝑊(𝑡),𝑊𝑜(𝑡))𝑑𝑡∞

𝑡0 ]                                    (10) 
where 𝑔(𝑡) = 𝑛(𝑡)𝑝𝑡0𝑒−𝜌(𝑡−𝑡0) is the actuarial discount factor, 𝑛(𝑡) is the instantaneous mortality rate (known 

as mortality force), 𝑝𝑡0 is the survival probability and 𝜌 is the positive intertemporal discount rate [4].  
Now, we need to define the utility function 𝑈(∗) and the regret function 𝑓(∗) that we shall use in the course of 

our analysis. The one most widely used utility function in the literature is the constant relative risk aversion 

utility function of the form 𝑈(𝑋) = 
𝑋1−𝜗1−𝜗  with 1 − 𝜗 < 1. Here, we shall use a slight modification of this utility 

function. Now, we know that a pension function derives utility from its wealth after all contributions have been 

made and pensions have been paid. Therefore, if we let 𝑀(𝑡) represent all contributions and payments up to the 

present time, where 𝑀(𝑡) can be written as [4] 
𝑀(𝑡) = ∫𝑚(𝑠)𝑒−𝑟(𝑠−𝑡)𝑑𝑠𝑡

𝑡0  

then the pension fund will derive some utility from 𝑊(𝑡) −𝑀(𝑡), and so the utility function must be defined on 

this argument, i.e. 𝑈(𝑊(𝑡) − 𝑀(𝑡)). This is our slight modification of the utility function. For the regret 



 

 

function 𝑓(∗), we assume that it is of the form 𝑓(𝑌) = (𝑌 + 𝑎)𝜌,  with 𝑎 > 0 and 𝜌 > 0, both of which are 

positive and less than 1 [1]. Accordingly, therefore, the modified utility function can be written as  

𝜓(𝑊,𝑊𝑜) = (𝑊(𝑡) − 𝑀(𝑡))1−𝜗1 − 𝜗 + ( 11 − 𝜗 ((𝑊(𝑡) −𝑀(𝑡))1−𝜗 − (𝑊𝑜(𝑡) −𝑀(𝑡))1−𝜗) + 𝑎)𝜌         (11) 
where all variables are as previously defined.  

4.1  The Optimization Problem of the Pension Fund 

The previous sections set the ground for formulating the optimization problem of the pension fund. As we 

assume that the pension fund seeks to maximize the expected modified utility of its terminal wealth after all 

contributions have been made and pensions have been made, we write the regret theoretic asset allocation 

problem as 

{  
  
  maxɸ

𝔼𝑡0 [∫ 𝑔(𝑡) ((𝑊(𝑡) −𝑀(𝑡))1−𝜗1 − 𝜗 + ( 11 − 𝜗 ((𝑊(𝑡) − 𝑀(𝑡))1−𝜗 − (𝑊𝑜(𝑡) −𝑀(𝑡))1−𝜗) + 𝑎)𝜌)  𝑑𝑡∞

𝑡0 ]                                                          𝑑ɸ = (𝑊𝑟 + ɸ(𝜇𝑆 − 𝑟) +𝑚)𝑑𝑡 + ɸ𝜎𝑆𝑑𝑧𝑆                   𝑑𝑊𝑜 = (𝑊𝑜𝑟 + 𝑚)𝑑𝑡 𝑊(𝑡0) = 𝑊0     𝑊𝑜(𝑡0) = 𝑊0𝑜
   (12) 

where 𝑔(𝑡) is the actuarial discount factor [4].  
Following [4], let us define the function  

{𝑉(𝑡,𝑊,𝑊0,ɸ) = [∫𝑔(𝑠) ((𝑊(𝑠) −𝑀(𝑠))1−𝜗1 − 𝜗 + ( 11 − 𝜗 ((𝑊(𝑠) −𝑀(𝑠))1−𝜗 − (𝑊𝑜(𝑠) −𝑀(𝑠))1−𝜗) + 𝑎)𝜌)𝑑𝑠∞

𝑡 ] .  

then the value function can be written as 𝐽(𝑡,𝑊,𝑊0) = max
ɸ
 𝑉(𝑡,𝑊,𝑊0, ɸ) 

This value function satisfies the HJB Hamilton-Jacobi-Bellman equation 

𝐽𝑡 +maxɸ [  
   
{  
  𝑔(𝑡) ((𝑊(𝑡) −𝑀(𝑡))1−𝜗1 − 𝜗 + ( 11 − 𝜗 ((𝑊(𝑡) − 𝑀(𝑡))1−𝜗 − (𝑊𝑜(𝑡) − 𝑀(𝑡))1−𝜗) + 𝑎)𝜌)+𝐽𝑊(𝑊𝑟 + ɸ(𝜇𝑆 − 𝑟) +𝑚) + 12 𝐽𝑊𝑊ɸ2𝜎𝑆2 + 𝐽𝑊0(𝑊𝑜𝑟 + 𝑚) ]  

   = 0  
From this equation, the first order condition for the maximization yields 

[   
 
{  
  𝑔(𝑡)(𝑊(𝑡) −𝑀(𝑡))−𝜗 (1 + 𝜌 ( 11 − 𝜗 ((𝑊(𝑡) − 𝑀(𝑡))1−𝜗 − (𝑊𝑜(𝑡) − 𝑀(𝑡))1−𝜗) + 𝑎)𝜌−1)+𝐽𝑊𝜇𝑆 + 𝐽𝑊𝑊𝜎𝑆2ɸ ]   

 = 0 



 

 

⇒ ɸ∗ = − ℙ𝐽𝑊𝑊𝜎𝑆2                                                                    (13) 
where the subscripts indicate the partial derivatives with respect to 𝐽 and  

ℙ = { 
 𝑔(𝑡)(𝑊(𝑡) −𝑀(𝑡))−𝜗 (1 + 𝜌 ( 11 − 𝜗 ((𝑊(𝑡) − 𝑀(𝑡))1−𝜗 − (𝑊𝑜(𝑡) −𝑀(𝑡))1−𝜗) + 𝑎)𝜌−1)+𝐽𝑊𝜇𝑆  

The first order conditions are necessary and sufficient for optimality because the modified utility is concave in 𝑊 and hence in ɸ, since 𝑊 is a function of ɸ. In fact, under all the suitably stated conditions that must hold for 

the optimization problem of the pension fund, the modified utility function, and hence the value function, is 

increasing and concave in 𝑊. The proof is given in Appendix 3. 

After substituting the expression of ɸ∗, we obtain the resulting Hamilton-Jacobi-Bellman equation 

[  
   
{  
  𝐽𝑡 + 𝑔(𝑡) ((𝑊(𝑡) −𝑀(𝑡))1−𝜗1 − 𝜗 + ( 11 − 𝜗 ((𝑊(𝑡)−𝑀(𝑡))1−𝜗 − (𝑊𝑜(𝑡)−𝑀(𝑡))1−𝜗) + 𝑎)𝜌)+𝐽𝑊(𝑊𝑟 +𝑚) + ℵ𝐽𝑊𝑊𝜎𝑆2 (12ℵ − 𝐽𝑊(𝜇𝑆 − 𝑟)) + 𝐽𝑊0(𝑊𝑜𝑟 +𝑚) ]  

   = 0 

For the value function, we can try the substitution 𝐽(𝑡,𝑊,𝑊0) = ℎ(𝑡)𝑔(𝑡) 𝜓(𝑊,𝑊𝑜), where ℎ(𝑡) is a function 

that needs to be determined [4].  From this substitution, we have  

𝐽𝑡 = 𝑔(𝑡)𝜓(𝑊,𝑊𝑜) 𝜕ℎ(𝑡)𝜕𝑡 +  ℎ(𝑡)𝜓(𝑊,𝑊𝑜) 𝜕𝑔(𝑡)𝜕𝑡 + ℎ(𝑡)𝑔(𝑡) 𝜕𝜓(𝑊,𝑊𝑜)𝜕𝑡  

𝐽𝑊 = ℎ(𝑡)𝑔(𝑡) 𝜕𝜓(𝑊,𝑊𝑜)𝜕𝑊 ,   𝐽𝑊𝑊 = ℎ(𝑡)𝑔(𝑡) 𝜕𝜕𝑊 𝜕𝜓(𝑊,𝑊𝑜)𝜕𝑊 , 𝐽𝑊𝑜 = ℎ(𝑡)𝑔(𝑡) 𝜕𝜓(𝑊,𝑊𝑜)𝜕𝑊𝑜   
Plugging these expressions into the Hamilton Jacobi Bellman equation and simplifying terms, we obtain that ℎ(𝑡) satisfies 

𝜕ℎ(𝑡)𝜕𝑡 + ( 1𝑔(𝑡) 𝜕𝑔(𝑡)𝜕𝑡 + 𝑟 (1 + 12𝜎𝑆2 𝑟(1 − 𝜗)(𝜌 − 1) 𝑔(𝑡)) + 12𝜎𝑆2 𝑔(𝑡)ℎ(𝑡) 1(𝜌 − 1)) ℎ(𝑡) + 𝐴(𝑊,𝑊𝑜) = 0 

where 

𝐴(𝑊,𝑊𝑜) = 12 ℵ2𝐽𝑊𝑊𝜎𝑆2 − 𝐽𝑊𝐽𝑊𝑊 ℵ(𝜇𝑆 − 𝑟)𝜎𝑆2  

The precise form of the function ℎ(𝑡) is not important for computing the optimal portfolio composition of the 

pension fund since the Arrow-Pratt risk aversion index computed on 𝐽(𝑊,𝑊𝑜) does not depend on ℎ(𝑡). This 

makes it possible for us to obtain the composition of the optimal asset allocation of the pension fund. Thus, 



 

 

given a pair (𝑢, 𝑣) of constant contribution and pension rates satisfying the feasibility condition, the 

composition of the optimal asset allocation of a pension fund which maximizes the expected modified utility of 

its final wealth is given by  

ɸ∗ = 𝐸(𝐿 − 𝐻)𝜎𝑆2                                                                     (14) 
where 

{  
              𝐸 = ( 1𝑔(𝑡) + 𝜇𝑆) [1 + 𝜌(𝜌−1)1−𝜗 (𝑊1−𝜗 −𝑊𝑜1−𝜗) + 𝜌(𝜌 − 1)(𝑊𝑜−𝜗 −𝑊−𝜗)𝑀 + 𝑎𝜌(𝜌 − 1)]𝐿 =   𝜗 [−1 + 𝜌(𝜌−1)1−𝜗 (𝑊1−𝜗 −𝑊𝑜1−𝜗) + 𝜌(𝜌 − 1)(𝑊𝑜−𝜗 −𝑊−𝜗)𝑀 + 𝑎𝜌(𝜌 − 1)]𝐻 = 𝜌(𝜌 − 1) ( 1𝑊𝜗 + 𝑀𝜗𝑊𝜗+1) [1 + 𝜌(𝜌−2)1−𝜗 (𝑊1−𝜗 −𝑊𝑜1−𝜗) + 𝜌(𝜌 − 2)(𝑊𝑜−𝜗 −𝑊−𝜗)𝑀 + 𝑎𝜌(𝜌 − 2)] 
Without any loss of generality, and for simplicity, we can disregard the last term (set 𝑎 to zero) in each 
of the above expressions, replace 𝑀 with its value and then break each expression into two parts to get 

{  
   
  
    
              𝐸𝑢 = ( 1𝑔(𝑡) + 𝜇𝑆) [1 + 𝜌(𝜌 − 1)1 − 𝜗 (𝑊1−𝜗 −𝑊𝑜1−𝜗) + 𝜌(𝜌 − 1)(𝑊𝑜−𝜗 −𝑊−𝜗)∫𝑢𝑡0 𝕀𝑡<𝑇𝑒−𝑟(𝑠−𝑡)𝑑𝑠]

𝐿𝑢 = 𝜗 [−1 + 𝜌(𝜌 − 1)1 − 𝜗 (𝑊1−𝜗 −𝑊𝑜1−𝜗) + 𝜌(𝜌 − 1)(𝑊𝑜−𝜗 −𝑊−𝜗)∫𝑢𝑡0 𝕀𝑡<𝑇𝑒−𝑟(𝑠−𝑡)𝑑𝑠]
                 𝐻𝑢 = 𝜌(𝜌 − 1)( 1𝑊𝜗 + 𝜗𝑊𝜗+1∫𝑢𝑡0 𝕀𝑡<𝑇𝑒−𝑟(𝑠−𝑡)𝑑𝑠) [   

  1 + 𝜌(𝜌 − 2)1 − 𝜗 (𝑊1−𝜗 −𝑊𝑜1−𝜗) +
𝜌(𝜌 − 2)(𝑊𝑜−𝜗 −𝑊−𝜗)(∫𝑢𝑡0 𝕀𝑡<𝑇𝑒−𝑟(𝑠−𝑡)𝑑𝑠)]   

  
 

ɸ𝑢∗ = 𝐸𝑢(𝐿 − 𝐻)𝜎𝑆2                                                                       (14𝑎) 
and  

{  
  
   
 𝐸𝑣 = ( 1𝑔(𝑡) + 𝜇𝑆) 𝜌(1 − 𝜌)(𝑊𝑜−𝜗 −𝑊−𝜗)∫𝑣(1 −𝑡

0 𝕀𝑡<𝑇)𝑒−𝑟(𝑠−𝑡)𝑑𝑠
𝐿𝑣 = 𝜗𝜌(1 − 𝜌)(𝑊𝑜−𝜗 −𝑊−𝜗)∫𝑣(1 −𝑡

0 𝕀𝑡<𝑇)𝑒−𝑟(𝑠−𝑡)𝑑𝑠
𝐻𝑣 = 𝜌2(1 − 𝜌)(𝜌 − 2) 𝜗𝑊𝜗+1 (∫𝑣(1 −𝑡

0 𝕀𝑡<𝑇)𝑒−𝑟(𝑠−𝑡)𝑑𝑠)2 (𝑊𝑜−𝜗 −𝑊−𝜗)
 

               ɸ𝑣∗ = 𝐸𝑣(𝐿 − 𝐻)𝜎𝑆2                                                              (14𝑏) 
so that  ɸ∗ = ɸ𝑢∗ + ɸ𝑣∗  

where 𝑢 and 𝑣 are linked by the feasibility condition and 𝐿 = 𝐿𝑢 + 𝐿𝑣 and 𝐻 = 𝐻𝑢 +𝐻𝑣.  



 

 

The first set of equations depends explicitly on the contribution rate 𝑢 and the wealth level of the pension fund 

as a result of its actual investment choice, i.e. investing a positive amount in the risky- asset class. It also 

depends on the wealth level of a forgone investment choice, i.e. the investment choice that could have been 

made, which would involve taking no position in the risky-asset class. The wealth level of the forgone 

investment decision is a benchmark with which to compare the outcome or wealth level of the pension fund’s 

actual investment choice. The second set of equations also depends on the two wealth levels as well as on the 

pension rate 𝑣. Furthermore, the mortality risk 𝜏 enters the maximization problem through the link that exists 

between the contribution rate 𝑢  and the pension rate 𝑣 in the feasible condition derived in Appendix 1.  It is 

very pertinent to further stress that 𝑢 and 𝑣 must satisfy this feasibility condition as we have already 

demonstrated. As noted in [9], if this link between 𝑢 and 𝑣 is completely not considered through the feasibility 

condition, then the composition of the optimal asset allocation of a pension fund is independent of mortality 

risk. Such an optimal asset allocation strategy for a pension fund can produce very shallow and extremely 

restricted results in practice.  

A very important deduction from the two sets of equations is that the optimal allocation of the pension fund 

does explicitly depend on the wealth levels. This becomes evident since the equations themselves depend on the 

wealth levels and when we substitute the expressions of the equations into the composition of the optimal asset 

allocation of the pension fund, we get that it also depends on the wealth levels. From this, therefore, we can 

deduce that it is suboptimal for a pension fund to manage the accumulation phase, when contributions are made, 

and the decumulation phase, when pensions are paid, separately. Hence our model prohibits the pension fund 

from outsourcing any of the phases of the pension fund management to a second or third party. This means that 

the idea of outsourcing, commonly employed by large pension funds in emerging economies, is not effective 

and does not conform to an optimal strategy in a regret theoretic framework. Ideally, a firm should commit the 

entire management of its employees’ retirement plan to the same pension fund and the pension fund itself must 

not outsource any of the phases of the pension management process. If it does, its action will be suboptimal and 

may have undesirable consequences. We now investigate what happens at the two phases involved in the 

management of a pension fund – accumulation and decumulation phases.  

4.1.1 Accumulation Phase 

When 𝑡 ≤ 𝑇, the pension fund is in the accumulation phase and the optimal allocation strategy in this phase can 

be written as  

 𝐸𝑢 = ( 1𝑔(𝑡) + 𝜇𝑆)(1 + 𝜌(𝜌 − 1)1 − 𝜗 (𝑊1−𝜗 −𝑊𝑜1−𝜗) + 𝜌(𝜌 − 1)(𝑊𝑜−𝜗 −𝑊−𝜗) 𝑢𝑟 (𝑒𝑟𝑡 − 1)) 

𝐿𝑢 = 𝜗 (−1 + 𝜌(𝜌 − 1)1 − 𝜗 (𝑊1−𝜗 −𝑊𝑜1−𝜗) + 𝜌(𝜌 − 1)(𝑊𝑜−𝜗 −𝑊−𝜗) 𝑢𝑟 (𝑒𝑟𝑡 − 1)) 

𝐻𝑢 = 𝜌(𝜌 − 1) ( 1𝑊𝜗 + 𝑢𝑟 𝜗𝑊𝜗+1 (𝑒𝑟𝑡 − 1))(1 + 𝜌(𝜌 − 2)1 − 𝜗 (𝑊1−𝜗 −𝑊𝑜1−𝜗) + 𝜌(𝜌 − 2)(𝑊𝑜−𝜗 −𝑊−𝜗)𝑢𝑟 (𝑒𝑟𝑡 − 1)) 



 

 

ɸ𝑢∗ = 𝐸𝑢(𝐿 − 𝐻)𝜎𝑆2  and ɸ𝑣∗ = 0 since 𝑡 ≤ 𝑇 ⇒  (∫𝑣(1 −𝑡
0 𝕀𝑡<𝑇)𝑒−𝑟(𝑠−𝑡)𝑑𝑠) = 0 

We first recall that 𝜇𝑆 can be positive, negative or zero and ( 1𝑔(𝑡)+ 𝜇𝑆) >0 since 𝑔 is a discount factor whose 

value is positive and less than 1. Suppose now that the pension fund is not regret averse. During the 

accumulation phase, and in the absence of regret aversion, i.e. 𝜌=0, the optimal allocation to the risky-asset 

class assumes negative values and thus contains a decreasing proportion of the risky-asset class with respect to 

time. This means that, in the absence of regret aversion, the optimal allocation to risky assets during the 

accumulation phase decreases through time in order for the pension fund to meet payments of future pensions to 

its subscribers. This property is not difficult to check. For instance, when we set the regret coefficient to zero 

and differentiate the resulting expression with respect to time, we obtain  𝑑ɸ𝑢∗𝑑𝑡 = 1𝑔2 𝑑𝑔𝑑𝑡 < 0 ∀ 𝑑𝑔𝑑𝑡 < 0 

as previously noted. The graphical illustration is shown as below 

                          

Figure 4: Behavior of the optimal asset allocation with time 

This behavior during the accumulation phase substantiates the implications of the results documented in 

Battocio, Menoncin and Scaillet (2003, 2007). However, in the presence of regret, as in our case, the conclusion 

is not always the same. Indeed, we notice that, depending on the level of aversion and the choice of the 

underlying variables, the optimal asset allocation to the risky-asset class takes positive values and thus contains 

a non-decreasing proportion of the risky-asset class with regard to time. This means that, in the presence of 

regret aversion, regret averse pension funds have an optimal risky-asset allocation strategy that increases 

through time during the accumulation phase. In our view, the intuition behind this is pragmatically clear. Regret 

averse pension funds invest more in risky assets as time passes so as not to miss the upside potential of the 

risky-asset market, especially in bullish times. Thus a regret averse pension fund invests an increasing amount 

of wealth in the risky asset class. This is done in order to have a higher return on the managed wealth and on the 

contributions made by the subscribers.  
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4.1.2 Decumulation Phase 

When 𝑡 > 𝑇, the pension fund is in the decumulation phase and the optimal asset allocation strategy in this 

phase can be written as  

𝐸𝑣 = 𝑣𝑟 ( 1𝑔(𝑡) + 𝜇𝑆) 𝜌(1 − 𝜌)(𝑊𝑜−𝜗 −𝑊−𝜗)(𝑒𝑟(𝑡−𝑇) − 1) 
                                             𝐿𝑣 = 𝑣𝑟 𝜗𝜌(1 − 𝜌)(𝑊𝑜−𝜗 −𝑊−𝜗)(𝑒𝑟(𝑡−𝑇) − 1) 
                                             𝐻𝑣 = (𝑣𝑟)2 𝜌(1 − 𝜌) 𝜗𝑊𝜗+1 (𝑒𝑟(𝑡−𝑇) − 1) (𝜌(𝜌 − 2)(𝑊𝑜−𝜗 −𝑊−𝜗)(𝑒𝑟(𝑡−𝑇) − 1)) 
                                             ɸ𝑣∗ = ( 1𝑔(𝑡) + 𝜇𝑆)(𝜗 − 𝑣𝑟 𝜌(𝜌 − 2) 𝜗𝑊𝜗+1 (𝑒𝑟(𝑡−𝑇) − 1))𝜎𝑆2 

During the decumulation phase, and in the absence of regret aversion, i.e. 𝜌=0, the optimal allocation to the 

risky-asset class takes positive values and therefore increases through time when the actuarial discount factor 

decreases with time. This property is very easy to check. Indeed, if we set the coefficient of regret aversion to 

zero, we obtain 

ɸ𝑣∗ = ( 1𝑔(𝑡) + 𝜇𝑆)𝜗 > 0 

which shows that the risky-asset class takes positive values. Furthermore, if we take the time derivative of this 

expression, we see that 𝑑ɸ𝑣∗𝑑𝑡 = −1𝑔2 𝑑𝑔𝑑𝑡 > 0 ∀ 𝑑𝑔𝑑𝑡 < 0 

which shows that the optimal allocation to the risky-asset class increases through time. Again, this conforms to 

the deductions made in Battocio, Menoncin and Scaillet (2003, 2007). This behavior is depicted below.  

                         

Figure 5: Behavior of the optimal asset allocation with time 
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In the presence of regret, as in our case, the situation is somewhat similar. Indeed, for all admissible levels of 

regret aversion, the optimal allocation to the risky-asset class takes only positive values during the decumulation 

phase and increases through time. The optimal allocation is skewed in favor of the risky-asset class in the 

decumulation phase. In fact when the retirement date 𝑇 is still far away, the pension fund can afford to invest in 

the risky-asset class because of the belief that the risky-asset class may provide a better opportunity for it to 

accumulate more wealth before the retirement date. This behavior is borne out of regret aversion. The pension 

fund is averse to regret because it does not want to experience the feeling of regret that comes when the risky-

asset appreciates over time and the pension fund does not have a high position in it. We recall from the 

formulation of our problem that the pension fund feels regret or rejoicing with respect to the risky-asset class. 

Therefore, if the pension fund anticipates an ex-post feeling of regret and factors this feeling into its decision 

making process, then to maximize its portfolio value, increase its final wealth level and minimize its future 

regret the pension fund’s optimal strategy would be to take an increasing position in the risky-asst class during 

both the accumulation and decumulation phases.  

We must emphasize that this result contrasts the behavior of a pension fund in the traditional expected utility 

(EU) framework. In the EU framework, the optimal allocation to risky assets decreases through time in the 

accumulation phase so that the pension fund would be able to make a sure and substantial pension payment in 

the decumulation phase, while the optimal asset allocation to risky assets increases through time in the 

decumulation phase. In our case, however, the allocation to the risky-asset class soars with time during both 

phases. In particular, this is so in the decumulation phase because after retirement and during the payment of 

pensions, the higher the number of pension installments paid, the fewer remaining pensions left to be paid, and 

as the death time approaches, the probability that the pension subscriber would die increases, so the pension 

fund can accept to take much risk with less feeling of regret ex-post. The pension fund can afford to invest more 

and more in the risky-asset class in order to have a high return on the received contributions from the 

subscribers (which are then reinvested for the purpose of growing the contributed funds) and on the total 

managed wealth. This behavior is borne out of regret. Regret aversion forces the pension fund to behave this 

way so as to minimize the feeling of regret that would occur if the risky-asset goes up and the pension fund is 

not there.  

When the pension fund starts paying pensions, the higher the number of pension installments paid, the lower the 

probability to pay another pension installment since the death probability increases through time. Thus, after the 

retirement date 𝑇 when 𝑡 increases, the pension fund can afford to invest increasingly in the risky-asset class 

because it has fewer pensions to pay and thus would deem it optimal to increase the allocation to risky assets 

because of the upside potential they are capable of generating. Thus, for a pension fund which seeks to 

maximize the expected modified utility of its final wealth, the optimal asset allocation rule is such that the 

amount allocated to risky-asset class increases through time during both phases— the accumulation phase and 

the decumulation phase.  

 

 



 

 

5 Conclusion  

Battocchio et al (2007) use the theory of expected utility-maximization, applied to the management of two 

phases of a pension fund, the accumulation and decumulation phases, to conclude that the optimal asset 

allocation to risky assets in both phases must be different—it must decrease through time in the accumulation 

phase and increase through time in the decumulation phase. Instead, in this paper, we have considered the 

problem of finding the optimal asset allocation of a pension fund in a regret theoretic framework. We 

incorporate regret into the decision making process of a pension fund and thus study the same problem in a 

regret theoretic framework. We focused on the composition of the optimal asset allocation strategy in the 

accumulation and decumulation phases of the pension fund management. The configuration of the financial 

market is such that there is a risky-asset class whose price follows a geometric Brownian motion, a riskless-

asset class paying a non trivial interest rate and the market is not necessarily complete. Furthermore, the pension 

fund is assumed to possess a power utility function and a regret/rejoice function which satisfies all the usual 

properties of a standard regret function. Our emphasis is on regret theory and we derive approximated closed 

form solutions for the pension fund management. We analyzed the optimal allocation problem during both the 

accumulation phase and the decumulation phase. We considered a random death time of the representative 

subscriber and assumed the death time follows a Log-logistic distribution. We then derive the feasibility 

condition connecting the contribution rate 𝑢, the pension rate 𝑣, and the random death time 𝜏 under the 

assumption that the contribution and pension rates are constant. This is a major area of contribution in this 

paper. There are three risk attributes entering our objective function. The first is the traditional volatility, the 

second is the regret risk, embedded in the regret function, and the third is the mortality risk that comes in 

through the feasibility condition.  

We showed that the optimal asset allocation for a regret averse pension fund in the accumulation phase is not 

different from the one in the decumulation phase. This is another major area of contribution in this paper. This 

particular result contrasts sharply with that obtained in the expected utility framework in which the optimal 

asset allocation during the accumulation phase is completely different from the optimal asset allocation in the 

decumulation phase. In expected utility framework particularly, the allocation to risky assets decreases with 

time during the accumulation phase so as to make it possible for the pension fund to guarantee the payment of 

pensions to the representative subscriber after retirement while, during the decumulation phase when pensions 

are paid, the optimal allocation to risky assets increases with time. Instead, in our case, in the regret theory 

framework, the optimal allocation to risky-asset class increases during both accumulation and decumulation 

phases. The intuition to support this behavior is that when pensions are paid, the probability of paying more 

pensions decreases as time passes because of the subscriber’s inevitable closeness to death after the retirement 

date. This makes it possible for the pension fund to invest the remaining available wealth in more and more 

risky assets and so the allocation to risky assets increases with time. The pension fund is confident enough to 

take higher positions in risky assets because of its reducing level of obligations and its desire to benefit from the 

upside potential of the risky-asset market. We also observe that the optimal asset allocation of the pension fund 

jointly depends on its global wealth levels in both the accumulation phase and the decumulation phase. 

Therefore, it is not optimal for a pension fund to manage the accumulation phase and decumulation phase 



 

 

separately. Outsourcing the management of just a phase of a pension fund is therefore not an optimal strategy. A 

pension fund that manages the accumulation phase should ideally manage the decumulation phase. 

Future research would be an extension of our model to cater to the optimal asset allocation rule of a pension 

fund that manages the retirement proceeds of immortal subscribers in a regret theoretic framework. Although 

humans are not immortal and so such an extension would be purely theoretical with very little practical 

implications and real life consequences, we believe the outcome would be inspiring to those theoretical analysts 

and researchers who are interested in immortality bias in survival analysis as regards the management of 

pension funds.   
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Appendix 1 

Derivation of the Feasibility Condition 

If 𝑢 represents the constant contribution rate to a pension fund and 𝑣 represents the constant pension 

rate paid to a subscriber, then the feasibility condition holds for the pair (𝑢, 𝑣), 𝑢 > 0 and 𝑣 > 0 if 

𝔼 [∫𝑚(𝑡)𝑒−𝑟𝑡𝑑𝑡𝜏
0 ] = 0, and the resulting expression for the feasibility condition is 

𝑢𝑣 = −1+ 1 − 𝔼[𝑒−𝑟𝜏]1 − 𝔼[𝑒−𝑟𝜏𝕀𝜏<𝑇] − 𝑒𝑟𝑇ℙ(𝜏 ≥ 𝑇) 
where 𝜏 is the random death time. 

Proof 

Given that 𝑇 is the retirement date: 

 When 𝑡 < 𝑇, we have 𝕀𝑡<𝑇 = 1 and 𝑚(𝑡) = 𝑑𝑈(𝑡)𝑑𝑡 = 𝑢 > 0 ⇒ contributions are made, 
money enters the fund and so we are in the accumulation phase. 

 

 When 𝑡 ≥ 𝑇, we have 𝕀𝑡<𝑇 = 0 and 𝑚(𝑡) = − 𝑑𝑉(𝑡)𝑑𝑡 = −𝑣 < 0 ⇒ pensions are paid, money 

leaves the fund and so we are in the decumulation phase. 

If we denote the expected present value of all pensions by 𝔼𝑃𝑉𝑃, where 

       𝔼𝑃𝑉𝑃 = 𝔼∫𝑣(1 − 𝕀𝑡<𝑇)𝜏
0 𝑒−𝑟𝑡𝑑𝑡 

and the expected present value of all contributions by 𝔼𝑃𝑉𝐶, where  

𝔼𝑃𝑉𝐶 =  𝔼∫𝑢𝕀𝑡<𝑇𝜏
0 𝑒−𝑟𝑡𝑑𝑡 

then from the point of view of the subscriber, 𝔼𝑃𝑉𝑃 ≥ 𝔼𝑃𝑉𝐶, i.e. 

𝐴: 𝔼∫𝑣(1 − 𝕀𝑡<𝑇)𝜏
0 𝑒−𝑟𝑡𝑑𝑡 ≥ 𝔼∫𝑢𝕀𝑡<𝑇𝜏

0 𝑒−𝑟𝑡𝑑𝑡 
and from the point of view of the pension fund, 𝔼𝑃𝑉𝑃 ≤ 𝔼𝑃𝑉𝐶, i. e 



 

 

𝐵: 𝔼∫𝑣(1 − 𝕀𝑡<𝑇)𝜏
0 𝑒−𝑟𝑡𝑑𝑡 ≤ 𝔼∫𝑢𝕀𝑡<𝑇𝜏

0 𝑒−𝑟𝑡𝑑𝑡 
Accordingly, therefore, both parties reach an agreement when 𝐴 ∩ 𝐵 ≠ ∅, i. e.  
𝔼∫𝑣(1 − 𝕀𝑡<𝑇)𝜏
0 𝑒−𝑟𝑡𝑑𝑡 ≥ 𝔼∫𝑢𝕀𝑡<𝑇𝜏

0 𝑒−𝑟𝑡𝑑𝑡 ∩   𝔼∫𝑣(1 − 𝕀𝑡<𝑇)𝜏
0 𝑒−𝑟𝑡𝑑𝑡 ≤ 𝔼∫𝑢𝕀𝑡<𝑇𝜏

0 𝑒−𝑟𝑡𝑑𝑡 ≠ ∅ 

         ⇒ 𝔼∫𝑢𝕀𝑡<𝑇𝜏
0 𝑒−𝑟𝑡𝑑𝑡 = 𝔼∫𝑣(1 − 𝕀𝑡<𝑇)𝜏

0 𝑒−𝑟𝑡𝑑𝑡 
        ⇒ 𝔼∫(𝑢𝕀𝑡<𝑇 − 𝑣(1 − 𝕀𝑡<𝑇))𝜏

0 𝑒−𝑟𝑡𝑑𝑡 = 0, i. e. 
𝔼 [∫𝑚(𝑡)𝑒−𝑟𝑡𝑑𝑡𝜏

0 ] = 0, 
where  𝑚(𝑡) = 𝑢𝕀𝑡<𝑇 − 𝑣(1 − 𝕀𝑡<𝑇),  𝑒−𝑟𝑡  is the discount factor and 𝜏 is the random death time of 

the subscriber. This is the feasibility condition that has to be satisfied before the subscriber and the 

pension fund can accept the pair (𝑢, 𝑣). It guarantees that neither the pension fund nor the subscriber 

feels cheated. 

We next prove  𝑢𝑣 = −1+ 1 − 𝔼[𝑒−𝑟𝜏]1 − 𝔼[𝑒−𝑟𝜏𝕀𝜏<𝑇] − 𝑒𝑟𝑇ℙ(𝜏 ≥ 𝑇) 
Eliminating 𝑚(𝑡) from 𝔼[∫ 𝑚(𝑡)𝑒−𝑟𝑡𝑑𝑡𝜏0 ] = 0 and 𝑚(𝑡) = 𝑢𝕀𝑡<𝑇 − 𝑣(1 − 𝕀𝑡<𝑇) yields 

                   𝑢 𝑣 = 𝔼[∫ 𝑒−𝑟𝑡𝑑𝑡𝜏0 ] − 𝔼[∫ 𝕀𝑡<𝑇𝑒−𝑟𝑡𝑑𝑡𝜏0 ]𝔼[∫ 𝕀𝑡<𝑇𝑒−𝑟𝑡𝑑𝑡𝜏0 ]  

𝑢𝑣 = 𝔼[∫ 𝑒−𝑟𝑡𝑑𝑡𝜏0 ]𝔼[∫ 𝕀𝑡<𝑇𝑒−𝑟𝑡𝑑𝑡𝜏0 ] − 1 

Now, since we can write 

∫𝑒−𝑟𝑡𝑑𝑡𝜏
0 = 1𝑟 − 𝑒−𝑟𝜏𝑟  

and  



 

 

∫𝕀𝑡<𝑇𝑒−𝑟𝑡𝑑𝑡𝜏
0 = {1 − 𝑒−𝑟𝜏𝑟  for 𝜏 < 𝑇1 − 𝑒−𝑟𝑇𝑟  for 𝜏 ≥ 𝑇 

then we have 

                               𝔼 [∫ 𝑒−𝑟𝑡𝑑𝑡𝜏
0 ] = 1𝑟 − 𝔼(𝑒−𝑟𝜏)𝑟 = 1𝑟 (1 − 𝔼(𝑒−𝑟𝜏)) 

and  

                                                𝔼 [∫𝕀𝑡<𝑇𝑒−𝑟𝑡𝑑𝑡𝜏
0 ] = ∫1 − 𝑒−𝑟𝜏𝑟𝑇

0 𝑓(𝜏) + ∫ 1− 𝑒−𝑟𝑇𝑟 𝑓(𝜏)∞
𝑇  

where 𝑓(𝜏) is the density of the random death time 𝜏. 
Complete integration by parts yields 

𝔼 [∫𝕀𝑡<𝑇𝑒−𝑟𝑡𝑑𝑡𝜏
0 ] = 1𝑟 (ℙ(𝜏 < 𝑇) + ℙ(𝜏 ≥ 𝑇)) − 1𝑟 ∫𝑒−𝑟𝜏𝑓(𝜏)𝑑𝜏 − 1𝑟𝑇

0 𝑒−𝑟𝑇ℙ(𝜏 ≥ 𝑇) 
or  

𝔼 [∫ 𝕀𝑡<𝑇𝑒−𝑟𝑡𝑑𝑡𝜏
0 ] = 1𝑟 (1 − 𝔼(𝑒−𝑟𝜏𝕀𝜏<𝑇) − 𝑒−𝑟𝑇ℙ(𝜏 ≥ 𝑇)) 

Thus 𝑢𝑣 = −1 + (1 − 𝔼(𝑒−𝑟𝜏))1 − 𝔼(𝑒−𝑟𝜏𝕀𝜏<𝑇) − 𝑒−𝑟𝑇ℙ(𝜏 ≥ 𝑇) 
as required to prove. 

Remarks 

The proposition shows that pensions are proportional to contributions. This is exactly what is observed 

in practice; the higher the contributions towards retirement, the higher the pensions at retirement.  

 

 

 



 

 

Appendix 2 

Computation of the Feasibility Condition 

Battocchio, Menoncin and Scaillet (2003, 2007) assume death time 𝜏 follows a Gompertz-Makeham 

distribution and a Weibull distribution and they compute the feasibility condition based on these 

assumptions. Here, we explicitly compute the feasibility condition by supposing that the death time 𝜏 
follows a log-logistic distribution. Besides giving a concrete view of the feasibility condition, the log-

logistic distribution takes only positive arguments, provides a better characterization of the death time 

and is most widely used in death/survival analysis. These are some of its desirable properties which 

explain why we favor it in our work. 

The log-logistic distribution density function of the death time 𝜏 is given by 

𝑓(𝜏) = 𝛽𝛼 (𝜏𝛼)𝛽−1[1 + (𝜏𝛼)𝛽]2  where 𝜏 > 0, 𝛼 > 0, 𝛽 > 0 

𝛼 and 𝛽 are the scaling and shaping factor respectively. 

                                               

Figure 1: Log-logistic distribution of death time 𝜏 with 𝛼 = 1.7, 𝛽 = 1.3 

The expected time of death is given by 

∫ 𝜏𝑓(𝜏)𝑑𝜏 = 𝛼B (1 − 1𝛽 , 1 + 1𝛽) = 𝛼𝛤 (1 − 1𝛽)𝛤 (1 + 1𝛽) , 𝛽 > 1 ∞
0  

where B and 𝛤 are the Beta and Gamma functions respectively. The behavior of the expected death 

time is shown in Figure 2 where we have set 𝛼 ∈ [2, 10] and 𝛽 ∈ [1.10, 1.50]. We see that the 

expected time of death soars to roughly 100 years when the parameters take the set values above.  



 

 

 

Figure 2: Expected time of death for the log-logistic distribution 

Before we compute the feasibility condition, we need to first obtain ℙ(𝜏 ≥ 𝑇), 𝔼(𝑒−𝑟𝜏) and 𝔼(𝑒−𝑟𝜏𝕀𝜏<𝑇) under our assumption of a log-logistic death time 𝜏 distribution.  

 ℙ(𝜏 ≥ 𝑇) 
The probability that the death time 𝜏 would occur on or after the obligatory retirement date 𝑇 is given 

by 

ℙ(𝜏 ≥ 𝑇) = 𝛽𝛼∫ (𝜏𝛼)𝛽−1[1 + (𝜏𝛼)𝛽]2 𝑑𝜏
∞
𝑇  

If we apply the change of variable 𝑢 = 1 + (𝜏𝛼)𝛽 , where 𝑢 → 0 𝑎𝑠 𝜏 → ∞,we will obtain  
ℙ(𝜏 ≥ 𝑇) = 11 + (𝑇𝛼)𝛽 

We remark that if the retirement date is very far into the future, the probability of death time occurring 

after the retirement date tends to zero. This means that the death time is most likely to occur before the 

retirement date and thus there is a risk that the employee may die in active service before retirement. 

This explains why more countries are increasingly favoring earlier retirement dates. 
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  𝔼(𝑒−𝑟𝜏)                                                                                                                              
This is the expected value of the discounting factor over the death time of the subscriber.  An 

advantage of the log-logic distribution is that it takes only positive death time, unlike a Normal 

distribution which can assume an undesirable negative death time. Considering this, we have 

𝔼(𝑒−𝑟𝜏) = 𝛽𝛼∫ 𝑒−𝑟𝜏∞
0

(𝜏𝛼)𝛽−1[1 + (𝜏𝛼)𝛽]2 𝑑𝜏 = ∫ 𝑢−2𝑒−𝑟𝛼(𝑢−1)1𝛽∞
1 𝑑𝑢    

where we have used the change of variable 𝜏 = 𝛼(𝑢 − 1) 1𝛽 . Since this integral does not admit an 

elementary algebraic solution, we may propose an approximation as in the Proposition  below. 

Proposition  

Under the assumption that  (𝑢 − 1)1𝛽 < 1 for 𝛽 > 0,  𝔼(𝑒−𝑟𝜏) approximates to  

  𝔼(𝑒−𝑟𝜏) ≅ βrα [( 1rα)β−1 Γ(β) − 2 ( 1rα)2β−1 Γ(2β)]  
where  Γ is the complete gamma function defined as 

Γ(s) = ∫ ts−1∞
0 e−tdt = (s − 1)! 

Proof                                                                                                                                                                        

Set 𝑡 = 𝑟𝛼(𝑢 − 1)1𝛽  and use negative binomial theorem to expand [1 + ( 𝑡𝑟𝛼)𝛽]−2after which the 

result follows. 

 𝔼(𝑒−𝑟𝜏𝕀𝜏<𝑇) 
Computing 𝔼(𝑒−𝑟𝜏𝕀𝜏<𝑇)  is akin to computing 𝔼(𝑒−𝑟𝜏) but with an added restriction that the death 

time must occur before the retirement date, i.e. given that the subscriber dies before the retirement 

date. Arguments similar to Proposition 2 give 

𝔼(𝑒−𝑟𝜏𝕀𝜏<𝑇) ≅ 𝛽𝑟𝛼 [( 1𝑟𝛼)𝛽−1∫𝑡𝛽−1𝑒−𝑡𝑑𝑡 − 2 ( 1𝑟𝛼)2𝛽−1𝑇
0 ∫𝑡2𝛽−1𝑒−𝑡𝑑𝑡𝑇

0  ] 
If we define the lower incomplete gamma function as   



 

 

𝛾(𝑠, 𝑥) = ∫𝑡𝑠−1𝑒−𝑡𝑑𝑡 𝑥
0  

then we will have  𝔼(𝑒−𝑟𝜏𝕀𝜏<𝑇) ≅ 𝛽𝑟𝛼 [( 1𝑟𝛼)𝛽−1 𝛾(𝛽, 𝑇) − 2 ( 1𝑟𝛼)2𝛽−1 𝛾(2𝛽, 𝑇) ] 
Accordingly, we plug these closed-form approximations for ℙ(𝜏 ≥ 𝑇), 𝔼(𝑒−𝑟𝜏) and 𝔼(𝑒−𝑟𝜏𝕀𝜏<𝑇) into 

the feasibility condition to get 

𝑢𝑣 ≅
𝛽 [( 1𝑟𝛼)𝛽−1 Γ(β, T) − 2 ( 1𝑟𝛼)2𝛽−1 Γ(2β, T)] + 𝑟𝛼 𝑒−𝑟𝑇[1 + (𝑇𝛼)𝛽]𝑟𝛼 − 𝛽 [( 1𝑟𝛼)𝛽−1 𝛾(𝛽, 𝑇) − 2 ( 1𝑟𝛼)2𝛽−1 𝛾(2𝛽, 𝑇)] − 𝑟𝛼 𝑒−𝑟𝑇[1 + (𝑇𝛼)𝛽]

 

where Γ(𝑠, 𝑥) is the upper incomplete gamma function defined as  

Γ(𝑠, 𝑥) = ∫ 𝑡𝑠−1𝑒−𝑡𝑑𝑡 ∞
𝑥  

and  

𝛾(𝑠, 𝑥) + Γ(𝑠, 𝑥) = Γ(s) = ∫ 𝑡𝑠−1𝑒−𝑡𝑑𝑡 ∞
0 = (𝑠 − 1)! 

This is the condition that has to be satisfied for the pension fund and the subscriber to agree on a 

pension contract when the death time of the subscriber is assumed to follow a log-logistic distribution. 

We present the results of the feasibility condition for several values of 𝛼, 𝛽, 𝑇 and 𝑟 in Table 1 below. 𝑟 𝛼 𝛽 𝑇 𝑢𝑣 
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 Table 1: Approximation for the feasible ratio 

From Table 1 it is clear that, given the age of a subscriber, when the retirement date 𝑇 increases, the 

feasible ratio 
𝑢𝑣  decreases and so the pension fund can afford to pay a higher pension rate to the 

subscriber. In fact, the pension fund can demand lower contribution rates when the contributions are 

made for a long period of time. Furthermore, when the retirement date 𝑇 is sufficiently far away, the 

feasible ratio 
𝑢𝑣  is decreasing with respect to 𝛽 and increasing with respect to 𝛼. Our result contrasts 

with Battocchio, Menoncin and Scaillet (2003, 2007) who find a decreasing relationship between  
𝑢𝑣   

and both 𝛼 and 𝛽 for a sufficiently large retirement date 𝑇.  
Table 1 also shows that the higher the short term interest rate 𝑟 the higher the feasible ratio and 

therefore the lower the pension rate the pension fund can afford to pay. In fact, when the interest rate 

increases it becomes more difficult for the pension fund to meet future payments. This will 

consequently force the pension fund to demand higher contribution rates. Again our result contrasts 

sharply with Battocchio, Menoncin and Scaillet (2003, 2007) who find an inverse relationship between 

the feasible ratio 
𝑢𝑣 and the short term interest rate.  We also find that, as the retirement date 𝑇 

increases, the probability that the death time will occur after the retirement date decreases. This means 

that more and more, it gets more and more likely that the subscriber will die before retirement or while 

in service. 

Using the derived approximated ratio, we can graphically depict the behavior of the ratio 
𝑢𝑣 with 

respect to the parameters 𝛼 and 𝛽. These graphs are shown in Figure 3, where three different values of 𝑇 and 𝑟 are chosen. In particular,  𝑇 = 10, 20, 30 and 𝑟 = 0.05, 0.06, 0.07 and the values of 𝛼 and 𝛽 

belong to [10,20] and [1.05, 1.15] respectively.  

 

 

 



 

 

Figure 3: Feasible ratio 
𝑢𝑣 

                                           𝑇 = 30, 𝑟 = 0.045                                                                 𝑇 = 30, 𝑟 = 0.05 

                                𝑇 = 20, 𝑟 = 0.045                                                                𝑇 = 30, 𝑟 = 0.06                    
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                         𝑇 = 10, 𝑟 = 0.045                                                                    𝑇 = 30, 𝑟 = 0.07                       
The first column of Figure 3 shows the behavior of the feasible ratio 

𝑢𝑣 for 𝑇 ∈ {10, 20, 30}, while the 

second column analyzes how  
𝑢𝑣 changes for 𝑟 ∈ {0.05, 0.06,0.07}. We notice from the second 

column of Figure 3 that changes in 𝑟 does not markedly affect the shape of  
𝑢𝑣 . As such, the interest 

rate 𝑟 only affects the magnitude or level of  
𝑢𝑣 without concomitantly altering its behavior with 

respect to other parameters.  

 

 

Appendix 3 

Proof of Concavity and Monotonicity of the Value Function 

Under all the suitably stated conditions that must hold for the optimization problem of the pension 

fund, the modified utility function, and hence the value function, is increasing and concave in 𝑊. 

Proof 

We have  

𝜕𝜓𝜕𝑊 = (𝑊(𝑡) − 𝑀(𝑡))−𝜗 (1 + 𝜌 ( 11 − 𝜗 ((𝑊(𝑡) −𝑀(𝑡))1−𝜗 − (𝑊𝑜(𝑡) −𝑀(𝑡))1−𝜗) + 𝑎)𝜌−1) > 0 

and  𝜕2𝜓𝜕𝑊2 = −𝑄 < 0 
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where  

𝑄 = [   
  
{  
  𝜗(𝑊(𝑡) −𝑀(𝑡))−𝜗−1 (1 + 𝜌 ( 11 − 𝜗 ((𝑊(𝑡) −𝑀(𝑡))1−𝜗 − (𝑊𝑜(𝑡) − 𝑀(𝑡))1−𝜗) + 𝑎)𝜌−1)+𝜌(1 − 𝜌) ( 11 − 𝜗 ((𝑊(𝑡) − 𝑀(𝑡))1−𝜗 − (𝑊𝑜(𝑡) − 𝑀(𝑡))1−𝜗) + 𝑎)𝜌−2 (𝑊(𝑡) − 𝑀(𝑡))−2𝜗 ]   

  > 0 

Hence the modified utility is concave in 𝑊, implying that the first order condition is necessary for 

optimality. This is a standard result in optimization theory. It guarantees that, under suitable conditions 

for the optimization problem, the value function is increasing and concave in 𝑊. Here the value 

function is increasing and concave in 𝑊 because it is a function of the modified utility, which is itself 

increasing and concave in 𝑊. 


