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Abstract

We consider a symmetric multi-person zero-sum game with two sets of alternative

strategic variables which are related by invertible functions. They are denoted by (s1, 52, ..., 85)
and (1, 1t,,...,1t,) for players 1, 2, ..., n. The number of players is larger than two. We
consider a symmetric game in the sense that all players have the same payoff functions.
We do not postulate differentiability of the payoff functions of players. We will show
that the following patterns of competition, 1) all players choose s;, 2) all players choose
t; and 3) m playerschoose t;, i = 1,...,mand n—m playerschooses;, j =m+1,....,n
where 1 < m < n — 1, are equivalent, that is, they yield the same outcome. However,
in an asymmetric zero-sum game with more than two players the equivalence does not
hold.
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1 Introduction

We consider an n-person symmetric zero-sum game with two sets of strategic variables which
are related by invertible functions. They are denoted by (sq,s2,...,5,) and (¢1,22,...,1,)
for players 1, 2, ..., n. n is an integer number which is larger than 2. We do not postulate
differentiability of the payoff functions of players.

We will show that the following patterns of competition are equivalent, that is, they yield
the same outcome.

(1) All players choose s;, i € N. We call this competition s; competition.
(2) All players choose #;,i € N. We call this competition ¢; competition.

(3) Some players choose #; and other players choose s;. Specifically, m players choose
ti,i =1,2,...,m,and n — m players choose s, j = m + 1, m + 2, ..., n, where
1 <m < n—1. We call this competition #; — s; competition.

We assume that the game is symmetric in the sense that all players have the same payoff
functions, and consider symmetric equilibria where all players, whose strategic variables are
si’s, choose the same values, and also all players, whose strategic variables are #;’s, choose
the same values.

Relative profit maximization in a symmetric oligopoly with differentiated goods is an ex-
ample of symmetric n-person zero-sum game with two alternative strategic variables. Each
firm chooses its output or price. The results of this paper imply that when firms in a symmet-
ric oligopoly maximize their relative profits, Cournot and Bertrand equilibria are equivalent,
and price-setting behavior and output-setting behavior are equivalent!.

However, in an asymmetric n-person zero-sum game with more than two players the
equivalence does not hold. In Section 7 we present an example that shows the non-equivalence
of Cournot and Bertrand equilibria in an asymmetric oligopoly.

2 The model

Consider an n-person zero-sum game with n > 3 as follows. There are n players, 1, 2, ..., n.
The set of players is denoted by N. They have two sets of alternative strategic variables,
(s1,82,...,8,) € S x Sy x---x Sy and (¢t1,12,...,1y) € Ty X T x --- x Ty,. S; and T; for
i € N are compact sets in metric spaces. The relations of them are represented by

si = fi(ti,ta,...,ty), I € N.

(f1, f2,..., fn) is a continuous invertible function, and so it is one-to-one and onto func-
tion. We denote
ti = gi(s1,52,...,82), I € N.

I About relative profit maximization under imperfect competition please see Matsumura, Matsushima and
Cato (2013), Satoh and Tanaka (2013), Satoh and Tanaka (2014a), Satoh and Tanaka (2014b), Tanaka
(2013a), Tanaka (2013b) and Vega-Redondo (1997). An oligopoly is symmetric when demand functions
are symmetric and all firms have the same cost functions.



(g1,82,...,gn) is also a continuous invertible function. The payoff functions of the players
areu;(s1,82,...,8,) fori € N. They are continuous and quasi-concave. We do not postulate
differentiability of the payoff functions?. All players have the same payoff functions. Since
the game is zero-sum, we have

n
Zui(sl,sz,...,sn)zo, (1)

i=1

for given (s1,52,...,Sn).

3 s; competition

First, consider competition by s;, i € N, for all players. Let s*, i € N, be the values of
s;’s which, respectively, maximizes u;, i € N, given s;’.‘, j # i, 1in a neighborhood around
(s7.85.....57)in S1 x S x --- x Sy. Then,

* *
ui(Sy,....8;

sy = ui(st, . usiy...,sy) foralls; #5570 € N. ()

i

We assume that all s}’s are equal at equilibria. Thus, u;(s7,....s],...,s;)’s for all i are
equal, and by the property of zero-sum game they are zero. By symmetry of the game we

have
Wi(ST, e SiveenSy) =ur(sy, oo siv.. sy)forj #ik #i,j #k.
From this and (1)

- Z Uiy, SiveenSy) = —(m—=Du sy, ooy SiveenySn) = Ui(STy o SiveeySy).
j=1i#i
Therefore, from (2)
Uj(STo ooy i sy) = uj(sT, . osf, .o sy) for j #i.

By symmetry

wi(sT oo S sy) = ui(sy, ..., 87, ... ) for j # 1.
Combining this and (2)
Wi (7o e uSinenaySy) Sui(sT, ooy s) o ousy) < ui(sy, oo iSjyeenySy)

foralls; #s;, and alls; # 57, j #1i,i € N.

This is equivalent to

ui(sy,....s;

veeesSy) =maxu;(sy, ..., S0y, Sy) =minui(sy, .., Sj, ..., 80,
S; Sj

j#igivensy, k#1i,j,

2In Satoh and Tanaka (2016) we analyze maximin and minimax strategies in oligopoly when payoff functions
of firms are differentiable.



(s7.s5, ....sy) is a Nash equilibrium of the s; competition game. By the Glicksberg’s the-
orem (Glicksberg (1952)) there exists a Nash equilibrium.
Let s*, ; bea vector of sy fork # i, j. We can show the following lemma.

Lemma 1. The following three statements are equivalent.

(1) There exists a Nash equilibrium in the s; competition game.

(2) Given sy forallk # i, j, the following relation holds.

v = maxmlnul(s,,s], i) = minmaxu; (s, sj,5%; )= v; for any pair of i and j.
S;i S ’ S S ’

(3) There exists a real number v, si* and s;." such that

u; (s, sj,8%; ) > vs foranys;, and u; (s,, ) < vy for any s;, 3)

i
for any pair of i and j.

—l]

Proof. (1 - 2)
Let s and s;‘.‘ be the equilibrium strategies of Player i and j. Then,

S . . * * _ . % * *
Vi = rrsl}nrrglxu,(s,,s], s 1) < msaxuz(sz,sj,s_i,j) = u;i(s;,57,8%; ;)
— (X I
—nginu,(si,sj, )<n}axr§11nu,(s,,s], 5% ) =i
1

On the other hand, miny; u;i(si,sj,5%; j) < ui(si,s;,8%, ]) then max,, ming; u;(si,s;,s i,j) <
* * *
maxg; ui(si,s]-,s_i’j), and so maxy, ming; u;(s;, S;, _w) < ming; maxy, u;(s;i,S;, _i’j).

Thus, v§ < V‘;., and we have v] = V“}.
2—73)
m . Lk .. m . .
Lets;" = argmaxg; ming; u; (s,,sj,s_ .) (the maximin strategy),sj = argming; maxg; u,(s,,s],s_i’j)
(the minimax strategy), and let vy = v} = v . Then, we have
m * : m *
ui(si", 8,85 ;) = ngxnui(si (i8S ) = msaxnglnuz(sz,s,, sZi ) = Vs
I

= mlnmaxu,(s,,sj, % ;) = maxu; (s, s, s, ) > ui(si, s sE; ).

S S ’ Si > —LJ
B—=1)
From (3)
m *
u; (s; ,Sj,S_i’j) >y > u,-(s,-,s _l J) foralls; € S;, s, € SJ
l?utj[mg si = s and s; = s7, we see Vs = ui(si", s, s, ]) and (sj",s"", 5%, ]) is an equi-
librium. Thus, s7* = 57 and s;-” = s;‘. d

Since at equilibria all u;’s are zero, we have v§ = vi. = vy = 0. Denote the values of
t;, i € N, which are derived from the following equation;

(11,12, tn) = (i (7,85, ooy 80), 82(ST 285 e ey Sh)s ey 88T, 85,0 50)),

byt*, i eN.



4 t; competition

Next consider competition by #;, i € N, for all players. In this section we use the following
notation.

ity ... ty) = ui(f1t1, ... tw)s..., fu(t1,....ty)) foreachi € N.

Let?;, i € N, be the values of #;’s which, respectively, maximizes v;, i € N, giveni;j, j # i,
in a neighborhood around (71,75, ...,%;) in Ty x T5 x --- x Ty,. Then,

v,—(fl,...,fi,...,fn)zvi(fl,...,ti,...,fn)forallti 7517,, i €N, (4)

We assume that all 7;’s are equal at equilibria. Thus, v; (f1,....%,...,I;) for all i are equal,
and by the property of zero-sum game all v;’s are zero. By symmetry of the model

Vi (et Bn) = 0k G i) for j £ ik # 0L # k.

From this and (1)

— > vt B == =DVt B) = i ).
j=1.j#i

Therefore, from (4)
Vi1 tise ) Z 0GB ) for

By symmetry we get

v,-(fl,...,tj,...,fn)2vi(fl,...,li,---,fn)fOTj Fi.
Combining this and (4)
vi(fl,...,ti,...,fn)fvi(fl,...,fi,...,fn)fvi(fl,...,lj,...,fn)

foralls; #7;, andalltj #1;, j #1i,i € N.
This is equivalent to
Ui(fla---sfiw--afn)Zﬂ?xvi(fl,---,[i’---,fn):r?jnvi(fl,---’lj,---,fn)’
j #igiveniy, k #i,j.

Let 7_; ; be a vector of 7 for k # i, j. Similarly to Lemma 1 we can show the following
lemma.

Lemma 2. The following three statements are equivalent.

(1) There exists a Nash equilibrium in the t; competition game.



(2) Giventy forallk # i, j, the following relation holds.

v = maxminv; (4, 1;,1—;, ;) = minmaxv; (t;,1j,1—; j) = v;- for any pair of i and j.
i i b

14
(3) There exists a real number vy, t]" and t;-” such that

v (1", tj,1-; ;) > v; forany ¢;, and v; (ti,t;",f_i,j) < v, for any ¢

for any pair of i and j.

t.

J:VIZO.

Thus, 1/* = #; and 1 = 7;. Since at equilibria all v;’s are zero, we have vi = v
Denote the values of s;, i € N, which are derived from the following equation;

(51,52,---,5n) = (ﬁ(flafZaafn),fz(flyfzy’fn)99fn(flyf2,’t~n))9

by 5§, i €N.

5 t; —s; competition

Next, consider #; — s; competition. Assume that m players choose #;, i = 1,2...,m, and
the remaining n — m players choose s;, j =m + 1,m +2,...,n. m is an integer such that
1 <m < n — 1. At least one player chooses #;, and at least one player chooses s;. In this
section we use the following notation.

u)i([l,...,[m,Sm+1,...,Sn)

= i (Fi(trseetms gma1 oo @Dy fn(t s @t G o G ) St

foreach i € N, where

gi(...)=g;(1,....5m. Sm41,....8n)for je{m+1,...,n,}
with

si= filtt,.. . tm, €@m+1(C..), ..., gn(...)) fori €{l,...,m}.

Lett;, i =1,2,...,m, ands;, j =m+1,...,n,bethevaluesof t; and s; which maximizes,
respectively, w; and w;, in a neighborhood around the equilibrium point. Then,

wi(f],...,lTi,...,le,Em-i—l,...,gn) (5)
>wi(t1, .. s tive ety Sma1s....5p) foralls; #6, 1 =1,2,...,m,
and
wj(t_l,...,fm,§m+1,...,§j,...,§n) (6)
> w1, tm,Smt1s---Sj,....85p) foralls; #5;, j=m+1,m+2,...,n,

) Sn)



We assume that at equilibria all z;, i = 1,2,...,m, are equal, and all Si, J=m+1,m+

2,...,n,are equal. Since all players have the same payoff functions, all w;, i = 1,2,...,m,
areequal, and allw;, j =m 4+ 1,m 4+ 2,...,n, are equal. Then, from (1) we obtain
mwi(fl,...,fm,gm_}_l,...,gj,...,gn)+(n_m)wj(fl,...,fm,§m+1,...,§j,...,§n):O,
and so
_ o _ _ m - - _ _
wj(tl,...,tm,sm+1,...,Sj,...,sn):—n_mw,-(tl,...,tm,smH,...,SJ,...,sn).

If w; = 0 (or w; = 0), then w; = 0 (or w; = 0). (6) is rewritten as

wi(fl,...,fm,§m+1,...,§j,...,§n)
<wi(ti,.. s tm.Sm41s---,8j,....5p) foralls; #5;, j=m+1,m+2,....n,
Combining this and (5),
wi(fl,...,ti,...,t_m,im-‘,-l,...,gj,...,gn) Ewi(fl,...,[_i,...,Z_m,Em—{-l,...,Ej,...,En)
S wl(fl,,fm,gm-l,-],,S],,En)

forallt; #¢;, i =1,2,....,m, andalls; #5;, j =m+ 1, m+2,....n.

This is equivalent to

w,-(t_l,...,t_,-,...,fm,§m+1,...,§j,...,5n):n"ltaxwi(fl,...,t,-,...,z_m,§m+1,...,§n)
1
=minw;(f1.....4m. Sm+1.---.5j,...,5,) for any pair of i, j.
s
Let 7—; be a vector of 7 for k € {1,...,m}, k # i and 5_; be a vector of §; for | €

{m+1,...,n}, | # j.Similarly to Lemma 1 we can show the following lemma.
Lemma 3. The following three statements are equivalent.

(1) There exists a Nash equilibrium in the t; — s; competition game.

(2) Giventy, k #i,ke{l,.... myands;, | # j, 1 € {m+1,...,n}, the following relation
holds.

ts __ : - = o (T a5y — ls . . .
V; =IIlt?XII}}nwl'(li,l‘_i,Sj,S_j) —nslinrnt?xw,(t,,t_,,sj,s_]) =V for any pair of i and j.

(3) There exists a real number ves, t{* and s such that

wi(tfs,t__,-,Sj,E_j) > vy for any s, and wi(l‘i,l‘__i,sgs,i_j) < v;s for any ¢;

for any pair of i and j,

Thus, 1/* = f; and s;s = §;. Denote the values of s;, i € {1,2,...,m} and the values of
tj, je{m+1,m+2,...,n}, which are derived from the following equation;

(s17S27“'7sm) = (fl(fl’EZv~--»Em,tm+latm+2a~--,tn)7f2(~--),-u,fm(---)),

(tm+1-tmt2, - o tn) = (1051, 52, o, St S41-Sm425 - - -»51), €20 .. )y oo gm(L L)),

by s, i €{l,2,...,m}andt;, je{m+1,m+2,...,n}.



6 Equivalence of three patterns of competition

First we show the following proposition.

Proposition 1. s; competition and t; — sj competition where one player, Player 1, chooses t
are equivalent.

Each player j in {2,...,n} chooses s; as his/her strategic variable. To prove this propo-
sition we need the following lemma.

Lemma 4.
maxmin wi (t1,5j,5—;) = maxminu(sy,s;j,5—;).
15} S S1 S

S_jisavectorof sy forl €{2,....n}, | # j.
Proof. minsj w1 (t1,55,5—;) 1s the minimum of wi(= u1) with respect to s; given #; and
5—j. Lets;(t1) = argming; w(f1, 57, 5—;), and fix the value of 51 at

0 0 0

s1 = f1(t1,82(57,52, ..., 8 (1), ... Sn)s oo 8n(ST, 82, ..., 8 (t1), ..., Sn)).
Then, we have

Hgi,nul(S?’Sj,E—j) <ui(s.s;(n),5-5) = minwi (11,5, 5-;),
J J

where ming ;U1 (s?, §j,5—j) is the minimum of u; with respect to s; given the value of s;

at s?. We assume that 5 (11) = argming; wq(f1,5;,5-) is single-valued. By the maximum
theorem and continuity of w1, s;(¢1) is continuous. Then, any value of s? in some neighbor-

hood around (51, 52, ..., 5,) can be realized by appropriately choosing #; given s; and 5_;
as s? = fl(tl,gz(s?,sz,...,s.,-(tl),...,sn), .. .,gn(s?,sz, ...,8j(t1),...,8n)). Therefore,
maxminuy(sy,s;,5—;) < maxminwi(f1,5;7,5-;). 7
S1 S 131 S

On the other hand, ming S u1(st,s5,5-5) is the minimum of 1 with respect to s; given s1
and 5—;. Lets;(s1) = argming;, u1(s1,5;,5—;), and fix the value of 71 at g1(s1,5,(s1),5—;).
Then, we have

minwy (11,85, 5-;) = Minwi(g1(s1,8;(51),5-5).8j.5-;) = u1(s1,8;(s1),5-) = Minuy(s1,55.5-5),
J J J

where ming; wi(g1(s1,5;(s1),5—;),5;,5—;) is the minimum of wy (= u1) with respect to s;
given the value of 7 at g1(s1, 5, (s1), 5—;). Weassume that s (s1) = argming; uy(s1,s;,5—;)
is single-valued. By the maximum theorem and continuity of u1, s (s1) is continuous. Then,
any value of ¢ in some neighborhood around (71, 52, . . . , 5,) can be realized by appropriately
choosing s1 given s; and 5_; as t1 = g1(s1,5,(s1),5—;). Therefore,

max min wi (t1,5;,5—;) < maxminuq(sy,s;j,5—;). 8)
sy st S

Combining (7) and (8), we get

maxminwi (ty,s;,5—;) = maxminuq(sy,s;,5—;).
1 S S1 S



Proof of Proposition 1. We show that the condition for (51,...,5,) and the condition for
(s7,...s,) are the same. From Lemma 3

max min wi (¢1,S;,5—;) = minmax wq(t1,5;,5—;).
1 S S 1
Since any value of 51 can be realized by appropriately choosing #; givens;, j # 1,and 5_;,
we have maxg, u1(s1,s;,5—;) = max,, wi(t1,s;,5—;) for any s;. Thus,

minmaxu(sy,s;,5—;) = minmax wq(f,8;7,5-;).
S S1 Sj 131

With Lemma 4 we conclude

maxminuq(sy,s;,5—;) = minmaxu(sy,s;,5—;) = u1(51,52,...,85,) = 0.
S1 S; S; S1

Thisis 2 of Lemma 1. The result of this proposition means that wy (f1,5;,5-;) = w;(f1,5;,5-;) =
0. O

Next we show the following proposition.

Proposition 2. t; competition and t; — sj competition where one player, Player n, chooses sy,
are equivalent.

To prove this proposition we need the following lemma.
Lemma 5.
min max w; (¢, 1—;, s,) = minmax v; (t;,1—;, t,).
Sn t tn t;

i—; is avector of ty fork € {1,...,n—1}, k #1i.

Proof. max;; w;(t;,1—;,s,) is the maximum of w; (= v;) with respect to #; given s, and 7_;.
Let #;(s,) = argmax,, w;(t;,1—;,s,), and fix the value of 7, at

Zr(z) = gn(fi(ti(sn), i th), S=i ((ti (sn), —i.tn)).Sn).
where f_; is a vector of f; fork € {2,...,n — 1}, k # i. Then, we have
max v; (ti. 1= 1)) = max vj (7, t—i, &n(fi(ti(sn), t=i tn), f=i ((ti(Sn), 1=i, tn)), Sn))

> wi(ti(Sn). 1=, Sn) = max w (ti =i, Sn),
1

where max;, v; (t;,1—;, t,?) is the maximum of v; with respect to #; given the value of ¢, at

gn (fi(ti (sn), i tn), S=i ((ti (sn). i tn)),Sn).

We assume that #; (s,) = argmaxy, w; (t;,7—;, s,) is single-valued. By the maximum theorem
and continuity of wj, t; (s,) is continuous. Then, any value of t,? in some neighborhood
around (71,12, ..., ) can be realized by appropriately choosing s, given t; and 7_; as

t;? = gn(fi(ti (sn), i, tn), J—i((ti (sn), i, In)). Sn).



Therefore,
minmax v; (t;,7—;,t,) > minmax w; (&, 1—;, Sp). 9
tn t; Sn t
On the other hand, max;, v; (#;,7—;, t,) is the maximum of v; with respect to ; given ¢, and
1—i. Let t;(t,) = argmaxy, v;(f;,1—i, 1), and fix the value of s, at f,(t; (ty), i, t,). Then,
we have

max wi (¢, i~ $n) = max w; (i, i—i, fu(li (tn), 1=i 1n)) = Vi (ti (tn), I=i, 1n) = Maxv; (ti, I~i tn),
12 l 1

where max;, w; (f;,7—;, sp) is the maximum of w; (= v;) with respect to #; given the value
of s, at fu(ti(ty),1-i,t,).We assume that #;(t,) = argmax, v;(f;,1—;,1,) is single-valued.
By the maximum theorem and continuity of v;, #; (t,) is continuous. Then, any value of s,
in some neighborhood around (¢1,175,...,5,) can be realized by appropriately choosing ¢,
given t; and 7—; as s, = f,,(t; (tn),1—i, ty). Therefore,

min max w; (t;,1—;, sy) > minmax v; (f;, —i, t). (10)
Sn ti tn t

Combining (9) and (10), we get

minmax w; (¢, 1—j,s,) = m
Sn t; L

inmaxv; (t,1—i, ty).
ti

n

O]

Proof of Proposition 2. We show that the condition for (f1,...,#,) and the condition for
(f1....,1,) are the same. From Lemma 3

max min wj (t;,1—;, s,) = min max w (ti 1—i, Sn).
Sn i

t; Sn
Since any value of 7, can be realized by appropriately choosing s, given ;, i # n, and i—;,

we have ming, w; (t;,1—;, Sp) = miny, v; (t;,1—;, t,) for any ¢;. Thus,

max min v; (¢;,1—;, ty) = maxmin w; (¢, 1—;, sp).
t; In t; Sn

From Lemma 5 we have ming, max;, w;(t,7—;,s,) = ming, max, v;(t;,1—;, t,). Therefore,
we obtain

max minv; (t;,1—j, ty) = minmax v; (t;,1—;, ty) = vi (1,12, ...,I;) = 0.
t; tn tn t;

Thisis 2 of Lemma 2. The result of this proposition means that w; (f;,—;, 5,) = wy (f;, 1—;, 5p) =
0. O

Finally we show the following proposition.

Proposition 3. #; —sj competition in which m players choose t;’s as their strategic variables, and
ti —sj competition in which m — 1 players choose t;’s as their strategic variables are equivalent,
where2 <m <n — 1.

10



To prove this proposition we need the following lemma.

Lemma 6.
maxminwi(ti,t__i,Sj,E_j) =maxminwi(si,t__i,Sj,E_j).
/Y Si S8
t—; is a vector of x for k € {l,...,m}, k # i. 5-; is a vector of §; for I € {m +
I,....,n}, [ #j.

Proof. ming; w;(t;,1—;,s;,5—;) is the minimum of w; (= u;) with respect to s; given #;, —;
and 5_;. Let s;(#;) = argming ;Wi (ti,1—i,sj,5—j). The values of variables other than ;,
s;(t;), —; and 5_; are determined by the following equations;

S1 =fl(l_l,...,li,...,Z_m,l‘m+1,...,tj,...,ln),

.

Si= filtisoo tive i tmitmg1s .oty ty),

Sm = fm(fl,...,ti,...,1;7,;,[m+1,...,lj,...,tn),
Imt1 = &m+1(S1, s Sive s Smy Sma1s .58 (ti)s ..., 8n),
t; = gj(Sl,...,Si,...,Sm,..;m.H,...,Sj(ti),...,§n),
tn =gn(sl,...,si,...,sm,.s"mjul,...,Sj(t,-),...,in).

Denote this s; by s?, and fix the value of s; at sP. Then, we have

rlfslinwi(S?,t_—i,Sj,E—j) <wi(ti,1—,s;(t;),5—j) = Hsli_nwi(fi,l_—i,sj',i—j),
J J

where ming; w; (s?, f—i,sj,5—j) is the minimum of w; (= u;) with respect to s; given the
value of Si at slp . We assume that‘s j (t,-) = argmin, w (t, I_Ti’s j»S—j) 1s single-valued. By
the maximum theorem and continuity of w;, s;(¢;) is continuous. Then, any value of s?
in some neighborhood around (5;,7—;,5;,5— ;) can be realized by appropriately choosing #;
given s, 7_; and 5_;. Therefore,
max min wi(s,-,t__,-,s,-,E_,-) < max min w; (¢;, l‘__i,S,',§_j). (11)
S S ’ ’ t; S ‘
On the other hand, ming; w; (s;, t—i,sj,5—;) is the minimum of w; (= u;) with respect to
s; given s;, 1—; and 5—;. Let s;(s;) = argming, w;(s;,7—;,5;,5—;). The values of variables
other than s;, s;(s;), 7—; and 5_; are determined by the following equations;

S1 :fl(l_l,...,Z,‘,...,l_m,tm+1,...,tj,...,ln),

11



.

Smo= fm(t1,... ti,. tm,th,...,z,-,...,t,,),

tmt+1 = &m+1(S1, .. Siv oo s SmaSmats .8 (Si)s ... 8n),
.
ti =gi(S1o .y Sivee s Smy Smtts 585 (8i), ..., 5n),
ti =g (St o Sivee s SmySmats ... 8(8i), ..., 8n),
.
th = &n(Sts. .o\ Sive oo SmaSmtts 58 (Si), ..., Sn).

Denote this #; by ¢?, and fix the value of ; at 7. Then, we have

IIslinwi(f,p,t_—i,Sj,i—j) < wi(si =i, 8;(8),5-j) = rrslinwi(si,f—i,sj,f—j),
J J

where ming; w; (t ,I—i,sj,5—j) is the minimum of w; (= u;) with respect to s; given the
value of ¢; at to We assume that s;(s;) = argming, w; (s;,7—;,5;,5—;) is single-valued. By
the maximum theorem and continuity of w;, s; (s,) is continuous. Then, any value of lio
in some neighborhood around (7;, 7—;,5;,5—;) can be realized by appropriately choosing s;
given s;, 5_; and 7_;. Therefore,

maxminw; (t;,71—;,5;,5—;) < maxminw; (s;,1—;,5;,5—;). (12)
t; Ay Si S

Combining (11) and (12), we get

max minw; (t;,1—;,5;,5—;) = maxmin w; (s;,1—;,S;,5—;).
t; S S S

O]

Proof of Proposition 3. We show that the condition for (#;,7—;,5;,5—;) and the condition
for (5;,7—;,57,5—) are the same. From Lemma 3

max min w; (t;,71—;,5;,5—;) = mmmaxw,(t,,t_,,sj,s_J)
t; S

Since any value of s; can be realized by appropriately choosing #; given s, 7—;, 5—j, we have
max;, w;(t,t—;,s;,5—;) = maxy, w;(s;,1—;,s;,5—;) for any s;. Thus,

mmmaxw,(t,,t_l,s], S_j) = mlnmaxw,(s,,t_,,sj, 5_j).
sj s; 8

With Lemma 6 we conclude

maxmlnw,(s,,z_,,s], 5_j) = maxmlnw,(s,,t_,,s],s_])
si 5 si 8

12



Summarizing these results we conclude.

Proposition4. s; competition, t; competition andt;—s; competition with any number of players
whose strategic variables are t;’s are equivalent, and payoffs of all players at any equilibrium
are zero.

Proof. From Proposition 1

wl(t_l,Ej,E_j) = wj(t_l,ij,i_j) =0, J (S {2,3, e ,n}.
This means that the payoffs of all players when only one player chooses #; and all other
players choose s;’s are zero. From Proposition 2

Wy (ti,1—i,5,) = wi(tj, 1—;,5,) =0, i € {1,2,...,n—1}.
This means that the payoffs of all players when only one player chooses s; and all other
players choose ¢;’s are zero. From the result of Proposition 3

wi(t1,12,5;.5—;) = w;j(t1,t2,5;,5—j) =0, i €{1,2}, j €{3,4,....n}.
This means that the payoffs of all players when two players choose ¢;’s and all other players
choose s;’s are zero. Then, inductively we conclude that
wi(fi -, 55,5-;) = w;(ti, 1-i,5j,5-j) =0,

in the game where m players choose #;’s as their strategic variables for any m such that 2 <
m < n — 1. i denotes a player whose strategic variable is #;, and j denotes a player whose
strategic variable is s ;. Thus, payoffs of all players in any #; —s; competition are zero. By the
definitions of s; competition and ¢; competition payoffs of all players in the s; competition
and the #; competition are zero. O

7 Example: relative profit maximization in oligopoly with
differentiated goods

Consider an oligopoly with three firms producing differentiated goods. The firms are A, B
and C. The inverse demand functions are

pA=a—xA—be—bxc,
pB=a—xgp—bxy—bxc,

and

pc =a—xc —bxy—bxp,
where 0 < b < 1. py, pp and pc¢ are the prices of the goods of Firm A, B and C, and
x4, xp and xc¢ are the outputs of them. From these inverse demand functions the direct
demand functions are derived as follows;

_(1=b)a—(1+b)pa+b(pa+ pc)
N (1 —=b)(1 +2b) ’

XA

13



_(=D)a—(1+b)pp+b(ps+ pc)
- (1—b)(1 + 2b)

XB

9

and

_ (=ba—QA+bpc+b(patpp)

e (1—b)(1 + 2b)

The (absolute) profits of the firms are
TTA = PAXA —CAXA,

B = PBXB —CBXB,

and
Tc = pcXc —ccXxcC-

c4, cp and c¢ are the constant marginal costs of Firm A, B and C. The relative profits of
the firms are

B+
A =TT — —(—
2
T4+ TC
YB=TTB — 7
2
and
T4+ TR
pc =nmCc — ——F.
2
We see

YA+ ¢ +oc =0,

so . the game is zero-sum. In a Cournot model the firms determine their outputs to maxi-
mize their relative profits. In a Bertrand model they determine the prices of their goods to
maximize their relative profits. The Cournot equilibrium outputs are

¢ _bcc +bcg—bcy—4cqg—ab+4a

Y4 = 4—b)(2+b) ’

L€ bcc —bcp —4cp +bcg —ab + 4a
B~ (4—b)2 +b) ’

C bcg —bcc —4dcc +bcg —ab + 4a
¢ (4—0b)(2+b)

The Bertrand equilibrium prices are

3b2cc + 3bcc + 3b2%cp + 3bcp + 4b%cq4 + Theg + 4cq — 5ab? + ab + 4a
B

Pa= (2 + b)(4 + 5b) ’
B 3b%cc + 3bcc + 4b%cp + Thep + 4cp + 3b%cy + 3bc g — 5ab? + ab + 4a
P = (2 + b)(4 + 5b) ’
B _ 4b%cc + Thec + 4cc + 3b2cp + 3bcp + 3b%cyq + 3bcy — 5ab? + ab + 4a
pc = (2 + b)(4 + 5b) ’

14



The difference between the relative profit in the Bertrand equilibrium and that in the Cournot
equilibrium for each of Firm A, B, Cis

B <pC B 9h3(b + 2)(cc —4dcgec + 2cqcc + cB + 2cqcB — 2cA)

oA va (b — 82— 1)(5b + 42
g b= 920 15 + 47
and
B c 9b3(b+2)(2CC—ZCBCC 2CACC—CB+4CACB—CA)
Yc —¢¥c =

(b =420 —1)(5b + 4)?

Ifand onlyifcyq = cp = cc, we have (pA = gaA, (pB = (pB, (pC = (pg. Thus, in a symmetric
oligopoly Cournot and Bertrand equilibria coincide. However, in an asymmetric oligopoly
they do not coincide. For example, if cg = ¢¢ but c4 > cp, the difference between the
relative profit in the Bertrand equilibrium and the relative profit in the Cournot equilibrium
for each firm is
B c_ 180°(b+2)(cp —ca)’ -0
A =04 = T 02— )b+ 42

B ¢ _ 9W}b+2)(cp—ca)’

— € = 0

BT T a2 —1)Gb+ 42
and s 5

9b°(b +2)(cp —ca)
B C
— € = 0.

YT T a2 —1)b + 42
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