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Abstract

For order q kernel density estimators we show that the constant bq in bias =

bqh
q+o(hq) can be made arbitrarily small, while keeping the variance bounded.

A data-based selection of bq is presented and Monte Carlo simulations illustrate

the advantages of the method.
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1. Introduction

Let f denote a density, K an integrable function on R such that
∫

Kdt = 1

and let X1, ..., Xn be i.i.d. random variables with density f . Consider the kernel

estimator of f(x)

fh(x,K) =
1

n

n
∑

j=1

1

h
K

(

x−Xj

h

)

, h > 0. (1)

Denote αi(K) =
∫

xiK(x)dx the ith moment of K and let K be a kernel of

order q, that is αj(K) = 0, j = 1, ..., q−1, αq(K) 6= 0. It is well-known that the
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bias is proportional to αq(K)hq if f is q-smooth in some sense [Devroye, 1987,

Scott, 1992, Silverman, 1986, Wand & Jones, 1995].

The usual approach is to stick to some K and be content with the resulting

αq(K). The purpose of this paper is to show that it pays to reduce αq(K) by

choosing a suitable K. Despite the bias being proportional to αq(K)hq, the

benefits of the suggested approach are not obvious because as the qth moment

is made smaller, the variance of the estimator may go up. Our construction of

K allows us to control the variance. Our results imply that among all kernels

of order q with uniformly bounded variances there is no kernel with the least

nonzero |αq(K)|. The issue of selecting the kernel order does not arise in the

approach suggested in [Mynbaev and Martins Filho, 2010].

In case of L1 convergence the main idea can be illustrated using the corre-

sponding bias notion from Devroye [1987]. Let bias be defined as
∫

|f ⋆Kh−f |dt

where Kh(x) = K(x/h)/h. If K is of order q, f has q− 1 absolutely continuous

derivatives and an integrable derivative f (q), then by [Devroye, 1987, Theorem

7.2]

q!

∫

|f ⋆ Kh − f |dt/

(

hq

∫

|f (q)|dt

)

→ αq(K), h ↓ 0.

Here αq(K) can be made as small as desired using our Theorem 2.

We call a free-lunch effect the fact that αq(K) can be made as small as

desired, without increasing the density smoothness or the kernel order. Of

course, in finite samples bias cannot be eliminated completely. Put it differently,

for very small αq(K) sample variance starts to dominate the effect of small bias.

For simplicity, in our main results in Section 2 we consider only classical

smoothness characteristics. The simulation results in Section 3 compare our

kernel performance with that of three well-known kernel families. The overall

conclusion is that a better estimation performance is not necessarily a conse-

quence of some optimization criterion and can be achieved by directly targeting

the bias of the estimator. All proofs are contained in Section 4.
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2. Main results

Multiplication by polynomials [Deheuvels, 1977, Wand & Schucany, 1990] is

one of several ways to construct higher-order kernels. [Withers and Nadarajah,

2013] have explored the procedure of transforming a kernelK into a higher-order

kernel TaK via multiplication of K by a polynomial of order q, (TaK)(t) =
(
∑q

i=0 ait
i
)

K(t), with a suitably chosen vector of coefficients a = (a0, ..., aq)
′ ∈

R
q+1. Unlike several authors who chose the polynomial subject to some opti-

mization criterion (see [Berlinet, 1993, Fan & Hu, 1992, Gasser & Muller, 1979,

Lejeune and Sarda, 1992, Wand & Schucany, 1990]) Withers & Nadarajah with

their definition of the polynomial directly targeted moments of the resulting

kernel. In their Theorem 2.1, they defined a polynomial transformation in such

a way that the moments of the new kernel numbered 1 through q − 1 are zero.

They did not notice that the qth moment can be targeted in the same way and

can be made as small as desired and that the variance of the resulting estimator

retains the order 1/(nh) as the qth moment is manipulated. This is what we do

here. Besides, we show that not only variance but all the higher-order terms in

h in the Taylor decomposition of the bias and variance can be controlled not to

increase.

We do this under two sets of assumptions. The first set is that the density

is infinitely differentiable and all moments of K exist and the second is that the

density has a finite number of derivatives and the kernel and its square possess

a finite number of moments. We give complete proofs for the first set, because

part of the argument is new and it can be extended to justify some formal

infinite decompositions from [Withers and Nadarajah, 2013]. The proof for the

second set goes more along traditional lines (except for controlling higher-order

terms) and is therefore omitted.

Let βj(K) =
∫

R
|K(t)tj |dt denote the jth absolute moment of K. The

estimator of f (l)(x) is obtained by differentiating both sides of (1) l times.

Theorem 1. Suppose that f is infinitely differentiable and K has a continuous

derivative of order l. Further assume that K and K(l) have absolute moments
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of all orders,

lim sup
j→∞

∣

∣

∣

∣

f (j)(x)

j!
max

{

βj+1(K), βj+1(K
(l))

}

∣

∣

∣

∣

1/j

= 0, (2)

∥

∥

∥K(l)
∥

∥

∥

C(R)
= sup

t∈R

∣

∣

∣K(l)(t)
∣

∣

∣ < ∞. (3)

Then

Ef
(l)
h (x,K) =

∞
∑

i=0

f (i+l)(x)

i!
(−h)iαi(K), (4)

var
(

f
(l)
h (x,K)

)

=
1

nh2l+1

{

∞
∑

i=0

f (i)(x)αi(M)

i!
(−h)i − h

[

hlEf
(l)
h (x,K)

]2
}

(5)

where M =
[

K(l)
]2

and the series converge for all h ∈ R. Consequently, if K is

a kernel of order q, then

Ef
(l)
h (x,K)− f (l)(x) =

f (q+l)(x)

q!
(−h)qαq(K) +O(hq+1), (6)

var
(

f
(l)
h (x,K)

)

=
1

nh2l+1

{

f(x)

∫

R

M(t)dt+O(h)

}

. (7)

Further, for the ISE convergence of the estimator of the lth derivative of f the

asymptotically optimal bandwidth is given by

hopt =

{

(2l + 1)α0((K
(l))2)

2qnα0(f (q+l))2

[

q!

αq(K)

]2
}1/(2q+2l+1)

. (8)

With the function K we can associate symmetric matrices

Aq(K) =

















α0(K) α1(K) ... αq(K)

α1(K) α2(K) ... αq+1(K)

... ... ... ...

αq(K) αq+1(K) ... α2q(K)

















, Bq = Aq(K
2).

In the next theorem we prove the free-lunch effect, for simplicity limiting our-

selves to estimation of f(x).
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Theorem 2. Suppose that f is infinitely differentiable, K is continuous and

has absolute moments of all orders, ‖K‖C(R) < ∞,

lim sup
j→∞

∣

∣

∣

∣

f (j)(x)

j!
βq+j+1(K)

∣

∣

∣

∣

1/j

= 0, (9)

detAq(K) 6= 0. (10)

Let a vector b ∈ R
q+1 have components b0 = 1, b1 = ... = bq−1 = 0, bq > 0 and

set a = Aq(K)−1
b. Then

Efh(x, TaK)− f(x) =
f (q)(x)

q!
(−h)qbq +O(hq+1), (11)

var (fh(x, TaK)) =
1

nh
{f(x)b′Cqb+O(h)} (12)

where Cq = Aq(K)−1BqAq(K)−1 and b
′Cqb > 0. The terms of higher order in

h in (11) and (12) retain their magnitude as bq → 0.

Remark 1. Taking 0 < m < q, b0 = ... = bm−1 = bm+1 = ... = bq−1 = 0,

bm = 1, bq 6= 0 we obtain an (m, q)-kernel, see the related definitions and theory

in [Berlinet & Thomas-Agnan, 2004].

Corollary 1. Denote the elements of Aq(K)−1 by Aij
q , i, j = 0, ..., q, c =

(1, 0, ..., 0)′ ∈ R
q+1 and d = (0, ..., 0, bq)

′ ∈ R
q+1. Then b = c + d. As bq → 0,

one has (TaK)(t) →
(
∑q

i=0 A
i,0
q ti

)

K(t), b′Cqb = c
′Cqc + O(bq) → (Cq)11 =

∑

i,j A
i,0
q (Bq)ijA

j,0
q . It follows that in (11) bq can be made as small as desired,

while (12) retains its magnitude as we do this.

Remark 2. In the course of the proof of Theorem 2 we show that Bq is pos-

itive definite. The argument can be adapted to show that (10) holds if K is

nonnegative.

Since TaK, the optimal bandwidth and the minimized value of the asymp-

totic ISE all depend on the number bq in (11), application of the optimal band-

width (8) is not straightforward. We find it more convenient to discuss the

choice of bq in the simulations section.

In the next theorem we give conditions sufficient for the free-lunch effect

when f is not infinitely differentiable and K does not possess moments of all

orders.
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Kernel family q=2 q=4 q=6 q=8 q=10 q=12

Epanechnikov 0.2000 -0.0476 0.0117 -0.0029 0.0007 -0.0002

Gram-Charlier 1 -3 15 -105 945 -10395

Table 1: Moments of two types of kernels

Theorem 3. Suppose that (10) holds, f is (q + 1)-times continuously differ-

entiable, ‖f ′‖C(R) +
∥

∥f (q+1)
∥

∥

C(R)
< ∞ and β2q+1(K) + β2q+1(K

2) < ∞. Then

(11) and (12) are true. For the ISE convergence the optimal bandwidth is given

by (8) where l = 0.

3. Monte Carlo simulations

3.1. Description of kernel families and target densities

We focus on the category of kernels obtained from second-order kernels by

multiplying by polynomials, because our estimator is in this category. This

type of kernel construction is also known to be computationally efficient. For

the purpose of comparison with our kernels, we select two classes of kernels. One

is based on the Gaussian kernel and the other extends Epanechnikov’s approach.

We take the two families from [Berlinet & Thomas-Agnan, 2004].

Epanechnikov-type kernels are given in [Berlinet & Thomas-Agnan, 2004,

p.142]. The entry for the 8th order should look like this: (11025− 132300x2 +

436590x4−540540x6+225225x8)/4096. Outside the segment [−1, 1] the kernels

are zero, inside the segment they are defined by the formulas in that table.

The Gram-Charlier kernels are taken from [Berlinet & Thomas-Agnan, 2004,

p.140]. The entry for the 8th order has also been corrected to (105 − 105x2 +

21x4 − x6)/48φ(x). The corrections are based on equations from [Berlinet &

Thomas-Agnan, 2004, p.162] implemented in Mathematica. Here φ(x) is the

Gaussian density. All these kernels have even orders, and we also use only even

orders. The moments of the kernels of two types are given in Table 1.

The target densities, that is the densities to be estimated, are those proposed

in [Marron & Wand, 1992]. They are normal mixtures defined as follows:
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1. Gaussian (f1(x) ≡ N(0, 1)),

2. Bimodal (f2(x) ≡ N(−1, 4/9)/2 +N(1, 4/9)/2),

3. Separated-Bimodal (f3(x) ≡ N(−1.5, 1/4)/2 +N(1.5, 1/4)/2) and

4. Trimodal (f4(x) ≡ (9N(−6/5, 9/25) + 9N(6/5, 9/25) + 2N(0, 1/16))/20).

They are listed in the order of increasing curvature, the Trimodal being the

most difficult to estimate.

3.2. Bandwidth choice

Equations (6) and (7) imply that ISE =
∫

(var+ bias2)dx asymptotically is

φ(h) where

φ(h) = c1h
2q+c2h

−(2l+1), c1 =

(

αq(K)

q!

)2 ∫
(

f (q+l)
)2

dx, c2 =
1

n

∫

(

K(l)
)2

dx.

(13)

Minimizing φ we obtain

hopt =

(

(2l + 1)c2
2qc1

)1/(2q+2l+1)

(14)

from which the usual expression for the optimal bandwidth (8) obtains.

In what follows we consider only estimation of densities (l = 0). In this case

the minimized value of φ is

φ(hopt) = c
1/(2q+1)
1 c

2q/(2q+1)
2 (2q + 1)(2q)−2q/(2q+1). (15)

For conventional kernels the constants c1, c2 are given by (13) with l = 0 and

in case of TaK we have functions of bq

c1(bq) =

(

bq
q!

)2 ∫
(

f (q)
)2

dx, c2(bq) =
1

n
b
′Cqb. (16)

Plugging (16) in (14) we obtain definitions of hopt(bq). Substituting hopt(bq) in

(15) we obtain φ(hopt(bq)).

Obviously, (15) tends to zero as bq → 0. However, setting bq = 0 would not

eliminate bias completely. There is a general fact that for kernel estimators

bias can be zero only in case of special densities and kernels [Devroye, 1987,
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p.113]. In our situation, we illustrate this fact in Figure 1, which depicts the

behavior of average bias and MSE as functions of bq. Both increase as bq →

0. (Note: in Figure 1, average bias is the average over iterations of integrals
∫

(f(x) − f̂(x, bq))dx for each value of bq; f(x), f̂(x, bq) are a density and its

estimator, resp.). When bq → 0, the ”optimal” bandwidth (14) tends to infinity.

The estimator becomes oversmoothed, thus the behavior of average bias and

MSE observed in Figure 1.

0 5 10 15 20 25 30
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0 5 10 15 20 25 30
0
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0.12

0.14

0.16

Figure 1: Left pane: average bias. Right pane: Mean Squared Error. In both panes the

bq values are the values on the x axis times 2 × 10−4. The numbers of observations and

repetitions are 1000; the density is Gaussian, and the transformed kernel TaK is of order 2

based on the Epanechnikov family.

The choice of bq should reflect the trade-off between the free-lunch effect and

estimator variance in finite samples. In case of conventional kernels, this trade-

off is incorporated in the optimal bandwidth, and the bandwidth choice ends

there. Here we discuss two approaches we tried in our simulations: I) in one bq

is proportional to αq(K) with some scaling coefficient m, that is, bq = mαq(K)

and II) the other is based on comparison of minimized values of ISE (this was

the suggestion of one of the reviewers). After a lot of experimenting we found

that in fact Approach I works for q = 2, q = 4 giving m = 0.25, while Approach

II is better for q ≥ 6 giving m = 0.4. The following is the summary of our

experiments.

Approach I. Comparison of (6) and (11) shows that it makes sense to select
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bq = mαq(Kq) with some multiplier m. With this idea in mind, we looked at

empirical ISE for conventional kernels. It turned out that for small sample

sizes (around 100) the theoretical optimal bandwidth was not so optimal. The

best bandwidth was about 0.4hopt. For large sample sizes (around 1000) the

empirical ISE was flat in a large interval around the theoretical optimal h. That

large interval contained the number 0.4hopt. Thus, 0.4hopt was at least as good

as hopt in our simulations for all sample sizes and all conventional kernels. By

analogy we setm = 0.4 for TaK. This choice turned out to be robust with respect

to the choice of the estimated density. Unfortunately, estimation results with

TaK were strictly better than with conventional kernels only for kernel orders

q = 6, 8, 10, 12. In cases q = 2, q = 4 the transformed kernel with m = 0.4

was about as good as the conventional ones, and to find a better multiplier we

turned to the second approach.

Approach II. Here we explore the idea to choose bq satisfying

φ(hopt(bq)) ≤ φ(hopt), (17)

see the definitions in the beginning of Section 3.2. Plugging the numbers from

(16) and (15), resp., into (17) and canceling out common factors (they depend

only on n, q and f (q)) we obtain an equivalent condition

bq (b
′Cqb)

q
≤ |αq(Kq)|

(

α0(K
2
q )
)q

. (18)

The notation Kq is used to emphasize that K depends on q. Luckily, this condi-

tion does not involve the density to be estimated. The left side is a polynomial

of bq of degree 2q + 1. By Corollary 1 this polynomial is of order O(bq) in the

neighborhood of zero and (18) always holds for all small bq. However, selecting

bq very small or zero is not an option because of the estimator oversmoothing

problem illustrated in Figure 1.

Denote max bq the largest positive bq satisfying (18). Here we consider only

q = 2, q = 4. We tried to see if setting bq to max bq would work. For Gram-

Charlier kernels the values of max bq were 1 (q = 2) and 0.7612 (q = 4). For

Epanechnikov kernels the respective values of max bq were 0.1162 and 0.0067.
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Of these numbers, only 0.7612 worked well. Note that for the Gram-Charlier

kernel of order 4 one has αq(K) = 3, and the number 0.7612 is approximately

0.25αq(K). This suggests the choice m = 0.25. Surprisingly, the multiplier m =

0.25 worked well for all kernels considered in this paragraph (Gram-Charlier

and Epanechnikov of orders q = 2, q = 4), which ended our multiplier selection.

Just as a side remark, we explain why the second approach could not be

used for all q.

1) The values of max bq behave too irregularly to be useful.

2) Another difficulty is that the polynomial bq (b
′Cqb)

q
may not be strictly

monotone in the interval between zero and the upper bound. For instance, for

Gram-Charlier kernels of orders 2, 6, 10 the derivative of the said polynomial has

positive (sometimes double) roots, while the remaining kernels (of orders 4, 8,

12) are monotone, see Figure 2. Picking an arbitrary bq between zero and max bq

1 2 3 4 5

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

0.05

0.10

0.15

0.20

Figure 2: Graphs of hopt as a function of bq . Left pane: q = 2. Right pane: q = 4

may not provide the right balance between bias and variance. In simulations we

found excellent choices for all kernel orders but could not formulate a general

rule for selecting on ”optimal” bq.

Summarizing, the ”best” values of bq are bq = mαq(Kq) where the multiplier

m is 0.25 for q = 2, q = 4 and m = 0.4 for the remaining orders. The results

reported in the next section are based on these values. After having made these

choices we tried them on the kernels proposed by [Fan & Hu, 1992]. They worked

10



even better in that case (the statistics are not reported to preserve space). Fan

and Hu kernels are similar to Gram-Charlier in the sense that both families are

based on the Gaussian density φ(x). To show how different they are, we are

giving the expression for the Fan and Hu kernel of order q = 8: φ(x)(40320 −

282240x2 +352800x4 − 147840x6 +26145x8 − 2121x10 +77x12 −x14)/5040 (the

corresponding Gram-Charlier kernel is obtained by multiplying the polynomial

given in Section 3.1 by φ(x)).

Finally, we compared all four families of kernels: our kernels are the best, if

the multiplier is chosen as indicated, Epanechnikov is the second best, followed

by Gram-Charlier, which is followed by Fan and Hu. However, our simulations

do not guarantee that our multiplier choice will deliver improvement over any

other kernel family.

3.3. Estimation results

Let us say we want to estimate the trimodal density. With the chosen sample

size, we estimate it twice: once using the conventional kernel and then using its

rival TaK (of the same order and based on the kernel from the same family; the

multiplier value is either 0.25 or 0.4). This is repeated 1000 times and the Mean

Squared Error (MSE) for the transformed kernel is divided by the MSE for the

conventional kernel, to see the percentage gain/loss. The results are reported

in Table 2.

It is evident that the relative performance of the proposed kernels improves

as the sample size and kernel order grow. The improvement ranges from 5%

to 30% in the lower right corner of each subtable (where n = 1000 and q =

12). The improvement over Gram-Charlier kernels is much larger than over

Epanechnikov ones. The overall conclusion is that the proposed method delivers

better estimation, at least for the densities considered.
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Family n q = 2 q = 4 q = 6 q = 8 q = 10 q = 12

Gaussian density

n = 100 0.883 0.944 0.932 0.882 0.971 0.933

Epanechnikov n = 500 0.917 0.956 0.881 0.869 0.966 0.914

n = 1000 0.927 0.965 0.950 0.862 0.953 0.951

n = 100 0.979 0.891 0.961 0.690 0.798 0.614

Gram-Charlier n = 500 0.897 0.868 0.998 0.819 0.807 0.634

n = 1000 0.858 0.904 0.955 0.895 0.846 0.635

Bimodal density

n = 100 0.983 0.964 0.938 0.834 0.927 0.942

Epanechnikov n = 500 0.974 0.941 0.945 0.887 0.970 0.932

n = 1000 0.939 0.951 0.966 0.855 0.905 0.942

n = 100 0.960 0.926 0.957 0.675 0.783 0.627

Gram-Charlier n = 500 0.991 0.901 0.945 0.802 0.780 0.618

n = 1000 0.920 0.899 0.947 0.887 0.829 0.647

Separated bimodal density

n = 100 0.921 0.979 0.980 0.866 0.956 0.993

Epanechnikov n = 500 0.923 0.9730 0.970 0.831 0.960 0.910

n = 1000 0.905 0.987 0.938 0.851 0.951 0.962

n = 100 0.928 0.925 0.993 0.651 0.818 0.625

Gram-Charlier n = 500 0.847 0.953 0.974 0.729 0.809 0.668

n = 1000 0.907 0.906 0.966 0.776 0.803 0.670

Trimodal density

n = 100 0.945 0.937 0.958 0.822 1.006 1.028

Epanechnikov n = 500 0.944 0.974 0.946 0.878 0.935 0.948

n = 1000 0.968 0.960 0.917 0.888 0.965 0.967

n = 100 0.886 0.879 0.937 0.678 0.869 0.661

Gram-Charlier n = 500 0.923 0.893 0.974 0.659 0.828 0.667

n = 1000 0.959 0.880 0.952 0.675 0.815 0.666

Table 2: MSE ratios for estimation with sample sizes n = 100, 500, 1000 for two kernel families

and four densities; the number of iterations is 1000 everywhere
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4. Proofs

By c1, c2, ... we denote various positive constants whose precise value does

not matter.

Lemma 1. Under condition (2)

lim sup
j→∞

∣

∣

∣f (j)(x)/j!
∣

∣

∣

1/j

= 0, (19)

f (k)(x+ h) =

∞
∑

i=0

f (i+k)(x)

i!
hi, k = 0, 1, 2, ... (20)

where all the series converge for any h ∈ R.

Proof. We start with a simple generalization of inequality (1.4.7) from [Lukacs,

1970]. Let 1 ≤ i < j < ∞. By Hölder’s inequality with p = j/i, 1/q + 1/p = 1

we have

∫

∣

∣K(t)ti
∣

∣ dt ≤

(∫

|K(t)| dt

)1/q (∫

|K(t)| |t|
ip
dt

)1/p

≤

(∫

|K(t)| dt

)(j−i)/j (∫
∣

∣K(t)tj
∣

∣ dt

)i/j

or [βi(K)]
1/i

≤ [β0(K)]
1/i−1/j

[βj(K)]
1/j

. For i, j in the range under consider-

ation one has 0 < 1/i− 1/j < 1, so the above inequality implies

[βi(K)]
1/i

≤ cK [βj(K)]
1/j

for all 1 ≤ i < j < ∞ (21)

where cK = max {1, β0(K)} . This bound yields 1 ≤ c1βj(K)1/j . Using also (2)

we see that (19) is true. By the Cauchy-Hadamard theorem then the series

f(x + h) =
∑

∞

i=0 f
(i)(x)hi/i! converges for any h ∈ R. By the properties of

power series all the series (20) converge.

Lemma 2. If βi(K) + βi(K
(l)) < ∞, then for j = 0, 1, ..., l − 1 one has

sups∈R

∣

∣K(j)(s)si
∣

∣ ≤ c1
[

βi(K) + βi(K
(l))

]

.

Proof. Let s > 0. It is well-known that the Sobolev space W l
1[0, 1] is embedded

in Cj [0, 1] for j = 0, 1, ..., l− 1, that is, with some constant c2 independent of K

13



one has
∥

∥K(j)
∥

∥

C[0,1]
≤ c2

∫ 1

0

[

|K(t)|+ |K(l)(t)|
]

dt. Applying this bound to the

segment [s, s+ 1] and using the fact that |t/s|
i
≥ 1 for t ∈ [s, s+ 1] we obtain

∣

∣

∣K(j)(s)
∣

∣

∣ ≤ c2

∫ s+1

s

[

|K(t)|+ |K(l)(t)|
]

dt

≤
c2

|s|
i

∫ s+1

s

[

|K(t)|+ |K(l)(t)|
]

|t|
i
dt ≤

c2

|s|
i

[

βi(K) + βi(K
(l))

]

.

The case s < 0 is treated similarly. This proves the lemma.

Lemma 3. If condition (2) holds, we have the representation
∫

R
K(−s)f (l)(x+

sh)ds =
∑

∞

i=0 f
(i+l)(x)αi(K)(−h)i/i!.

Proof. Substituting f (l)(x+sh) from (20) and changing the order of integration

and summation produces

∫

R

K(−s)f (l)(x+ sh)ds =

∫

R

K(−s)

∞
∑

i=0

f (i+l)(x)

i!
(sh)ids

=
∞
∑

i=0

f (i+l)(x)

i!

∫

R

K(−s)(−s)ids(−h)i

=

∞
∑

i=0

f (i+l)(x)

i!
αi(K)(−h)i. (22)

The main problem is to prove that here the series can be integrated term-wise.

Consider
∣

∣

∣

∣

f (i+l)(x)

i!
βi(K)

∣

∣

∣

∣

1/i

=

∣

∣

∣

∣

f (i+l)(x)

(i+ l)!

(i+ l)!

i!
βi(K)

∣

∣

∣

∣

1/i

.

Here
∣

∣

∣

(i+l)!
i!

∣

∣

∣

1
i

= |(i+ l)...(i+ 1)|
1
i ≤ c1. By (21) βi(K)

1
i ≤ c2βi+l+1(K)1/(i+l+1).

Hence,

∣

∣

∣

∣

f (i+l)(x)

i!
βi(K)

∣

∣

∣

∣

1/i

≤ c3

∣

∣

∣

∣

f (i+l)(x)

(i+ l)!

∣

∣

∣

∣

1/i

βi+l+1(K)1/(i+l+1)

= c3





∣

∣

∣

∣

f (i+l)(x)

(i+ l)!

∣

∣

∣

∣

i+l
i





1/(i+l)

βi+l+1(K)1/(i+l+1).(23)

From Lemma 1 we know that
∣

∣f (j)(x)/j!
∣

∣

1/j
< 1 for all large j. Since (i+ l)/i >

(i + l)/(i + l + 1), we have for all large i
∣

∣

∣

f(i+l)(x)
(i+l)!

∣

∣

∣

i+l
i

≤
∣

∣

∣

f(i+l)(x)
(i+l)!

∣

∣

∣

i+l
i+l+1

which

14



together with (23) and (2) implies

∣

∣

∣

∣

f (i+l)(x)

i!
βi(K)

∣

∣

∣

∣

1/i

≤ c3

∣

∣

∣

∣

f (i+l)(x)

(i+ l)!
βi+l+1(K)

∣

∣

∣

∣

1/(i+l+1)

→ 0, i → ∞.

By the Cauchy-Hadamard theorem therefore the series
∑

|f (i+l)(x)|βi(K)hi/i!

converges for any h. This means that
∫

R

∑

∞

i=0 |f
(i+l)(x)|

∣

∣K(−s)si
∣

∣ /i!ds |h|
i
<

∞, h ∈ R. Attaching a unit mass to each i = 0, 1, ..., by the Fubini theorem we

see that in (22) the order of integration and summation can be changed:

∫

R

∞
∑

i=0

f (i+l)(x)

i!
K(−s)sihids =

∞
∑

i=0

f (i+l)(x)

i!

∫

R

K(−s)sidshi.

Proof of Theorem 1. Step 1. To justify integration by parts below, we start

with the proof that

lim
s→∞

K(j)(−s)f (l−1−j)(x+ sh) = lim
s→−∞

K(j)(−s)f (l−1−j)(x+ sh) = 0 (24)

for any h > 0 and j = 0, ..., l − 1, l ≥ 1 (if l = 0, no integration by parts is

needed). Consider the case s → ∞ (the case s → −∞ is similar). By Lemmas

1 (take k = l − 1− j) and 2 (select i+ 1 in place of i)

∣

∣

∣K(j)(−s)f (l−1−j)(x+ sh)
∣

∣

∣ =

∣

∣

∣

∣

∣

∞
∑

i=0

f (i+l−1−j)(x)

i!
K(j)(−s)sihi

∣

∣

∣

∣

∣

≤
c1
s

∞
∑

i=0

∣

∣

∣

∣

f (i+l−1−j)(x)

i!

∣

∣

∣

∣

hi
[

βi+1(K) + βi+1(K
(l))

]

. (25)

The series on the right converges for all h > 0. As an example, we show this

just for the part of the series that contains K(l) using (2).

Case j = l − 1. In this case (2) is directly applicable.

Case j < l−1. Denote m = i+ l−1− j ≥ i+1. By (21) βi+1(K
(l))1/(i+1) ≤

15



c1βm+1(K
(l))1/(m+1). Using this bound we obtain

∣

∣

∣

∣

f (m)(x)

i!
βi+1(K

(l))

∣

∣

∣

∣

1/i

=

∣

∣

∣

∣

f (m)(x)

m!

m!

i!
βi+1(K

(l))

∣

∣

∣

∣

1/i

≤ c2

∣

∣

∣

∣

f (m)(x)

m!

[

βm+1(K
(l))

]
i+1
m+1

∣

∣

∣

∣

1/i

= c2





∣

∣

∣

∣

f (m)(x)

m!

∣

∣

∣

∣

m+1
i+1

βm+1(K
(l))





i+1
m+1

1
i

≤ c2

[∣

∣

∣

∣

f (m)(x)

m!

∣

∣

∣

∣

βm+1(K
(l))

]

1
m

m(i+1)
i(m+1)

→ 0, i → ∞.

In the last transition we used the facts that |f (m)(x)|/m! < 1 for all large i and

(m+ 1)/(i+ 1) > 1 (as in the proof of Lemma 3).

Thus, by the Cauchy-Hadamard theorem (25) converges and (24) obtains

upon letting s → ∞.

Step 2. (24) allows us to integrate l times by parts:

Ef
(l)
h (x,K) =

1

n

n
∑

j=1

1

hl+1

∫

R

K(l)

(

x− t

h

)

f(t)dt

=
1

hl+1

∫

R

K(l)

(

x− t

h

)

f(t)dt =
1

hl

∫

R

K(l) (−s) f(x+ sh)ds

= −
1

hl
K(l−1) (−s) f(x+ sh)

∣

∣

s=∞

s=−∞
+

1

hl−1

∫

R

K(l−1) (−s) f ′(x+ sh)ds

= ... = −
1

h
K (−s) f (l−1)(x+ sh)

∣

∣

s=∞

s=−∞
+

∫

R

K(−s)f (l)(x+ sh)ds. (26)

(4) follows from this equation and Lemma 3.

Step 3. Next we evaluate the variance. Since Xj are i.i.d. we have

var
(

f
(l)
h (x,K)

)

=
1

nh2l+2
var

(

K(l)

(

x−X1

h

))

=
1

nh2l+2

{

E

[

K(l)

(

x−X1

h

)]2

−

[

EK(l)

(

x−X1

h

)]2
}

=
1

nh2l+2

{

∫

R

M

(

x− t

h

)

f(t)dt−

[∫

R

K(l)

(

x− t

h

)

f(t)dt

]2
}

. (27)

From (26) and (4)

∫

R

K(l)

(

x− t

h

)

f(t)dt = hl+1Ef
(l)
h (x,K) = hl+1

∞
∑

i=0

f (i+l)(x)

i!
(−h)iαi(K).

(28)
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Conditions (3) and (2) imply an analog of (2) for the kernel M :

∣

∣

∣

∣

f (j)(x)

j!
βj+1(M)

∣

∣

∣

∣

1/j

≤

∣

∣

∣

∣

f (j)(x)

j!

∥

∥

∥K(l)
∥

∥

∥

C(R)
βj+1(K

(l))

∣

∣

∣

∣

1/j

→ 0,

so Lemma 3 applies to M in place of K (with l = 0). Hence,

1

h

∫

R

M

(

x− t

h

)

f(t)dt =

∫

R

M(−s)f(x+ sh)ds =

∞
∑

i=0

f (i)(x)

i!
αi(M)(−h)i.

(29)

(27), (28) and (29) lead to (5). Equations (6), (7) follow from (4), (5).

Step 4. The optimal bandwidth has been derived in Section 3.2.

Proof of Theorem 2. To apply Theorem 1, we check that the kernel TaK sat-

isfies its conditions with l = 0. Using βj+1(TaK) ≤
∑q

i=0 |ai|βi+j+1(K) and

(
∑

|bi|
p)

1/p
≤

∑

|bi| we obtain

∣

∣

∣

∣

f (j)(x)

j!
βj+1(TaK)

∣

∣

∣

∣

1/j

≤

∣

∣

∣

∣

∣

f (j)(x)

j!

q
∑

i=0

|ai|βi+j+1(K)

∣

∣

∣

∣

∣

1/j

=

∣

∣

∣

∣

∣

q
∑

i=0

[∣

∣

∣

∣

fj(x)

j!
ai

∣

∣

∣

∣

βi+j+1(K)

]j/j
∣

∣

∣

∣

∣

1/j

≤

q
∑

i=0

[∣

∣

∣

∣

fj(x)

j!
ai

∣

∣

∣

∣

βi+j+1(K)

]1/j

≤ c1 max
i=0,...,q

∣

∣

∣

∣

fj(x)

j!
βi+j+1(K)

∣

∣

∣

∣

1/j

≤ c2 max
i=0,...,q

∣

∣

∣

∣

f (j)(x)

j!
[βq+j+1(K)]

i+j+1
q+j+1

∣

∣

∣

∣

1/j

= c2 max
i=0,...,q





∣

∣

∣

∣

f (j)(x)

j!

∣

∣

∣

∣

q+j+1
i+j+1

βq+j+1(K)





i+j+1
q+j+1

1
j

≤ c2 max
i=0,...,q

[

f (j)(x)

j!
βq+j+1(K)

]

i+j+1
q+j+1

1
j

→ 0, j → ∞.

Here we have used (21), (9), (19) and the fact that (q+ j+1)/(i+ j+1) ≥ 1 for

i = 0, ..., q. Thus, TaK satisfies (2), Theorem 1 is applicable and, in particular,

all the series involved converge.
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The definitions of a, TaK, Bq and Cq imply

Aq(K)a =











∑

aiαi(K)

...
∑

aiαi+q(K)











=











α0(TaK)

...

αq(TaK)











= b,

α0

(

(TaK)
2
)

=

∫

(TaK)
2
(s)ds =

q
∑

i,j=0

aiaj

∫

K2(t)ti+jdt

=

q
∑

i,j=0

aiajαi+j(K
2) = a

′Bqa = b
′Cqb.

These equations, (6) and (7) give (11) and (12).

The system φj(t) = K(t)tj , j = 0, ..., q, is linearly independent because the

equation
∑

ciφi(t) = 0 almost everywhere would imply
∑

cit
i = 0 on the set

{t : K(t) 6= 0} of positive measure. Bq is the Gram matrix of this system:

Bq =











∫

φ2
0(t)dt ...

∫

φ0(t)φq(t)dt

... ... ...
∫

φq(t)φ0(t)dt ...
∫

φ2
q(t)dt











.

Linear independence of φj implies positive definiteness of Bq and b
′Cqb > 0,

see [Gantmacher, 1959]. The final remark about the terms of higher order in h

is warranted by Theorem 1. The proof is complete.
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