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December 28, 2016

Abstract

Philip Reny’s approach to games with discontinuous utility functions can work outside its original
context. The existence of Nash equilibrium, as well as the possibility to approach an equilibrium
with a finite individual improvement path, are established, under a condition slightly weaker than
the better reply security, for three classes of strategic games: potential games, games with strate-
gic complementarities, and aggregative games with appropriate monotonicity conditions. MSC2010
Classification: 91A10; JEL Classification: C 72.

Key words: better reply security; Nash equilibrium; potential game; game with strategic comple-
mentarities; aggregative game.

1 Introduction

Reny (1999) made a significant step in the development of sufficient conditions for Nash equilibrium
existence in games with discontinuous utility functions. A feature common to games considered by
Reny and most of his followers, see, e.g., McLennan et al. (2011) or Prokopovych (2013), is that the
strategy sets are convex and each utility function is quasiconcave in own argument. Bich (2009) relaxes
the quasiconcavity, but not at all radically.

In this paper, we apply Reny’s approach to three different classes of strategic games: potential games;
games with strategic complementarities; aggregative games with appropriate monotonicity conditions.
What unites them is that the existence of a Nash equilibrium in none of them has anything to do with
convexity. Moreover, it is much easier to prove and understand in the case of a finite game; in an infinite
game, there may be no equilibrium at all without some continuity-like assumptions. And for each class
of games we obtain the weakest set of such assumptions known as of today.

Following Reny (2016), we consider games with purely ordinal preferences, i.e., where utility func-
tions take values from arbitrary chains rather than the real line. Inevitably, we only consider pure
strategies. Our (i.e., essentially, Reny’s) topological assumptions do not ensure the existence of the
best responses; therefore, the standard fixed point theorems cannot be applied directly. Instead, we
analyze the behavior of individual improvement paths and hence obtain more than the mere existence
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of a Nash equilibrium, viz. the possibility to come arbitrarily close to the set of Nash equilibria after a
finite number of individual improvements starting from an arbitrary strategy profile.

We understand potential games in a much broader sense than Monderer and Shapley (1996), viz.
we consider games where individual improvements are acyclic. Thus, our Theorem 1 generalizes the
main result of Kukushkin (2011), which in its turn generalized the good old “acyclicity plus open lower
contour sets” theorem (Bergstrom, 1975; Walker, 1977).

Strategic complementarities are also understood in a more general, ordinal sense, as in Milgrom and
Shannon (1994), rather than in the cardinal one, as in Vives (1990). Our Theorem 2 extends the main
result of Kukushkin et al. (2005) to infinite games, even with some strengthening.

The observation that aggregation helps Nash equilibrium to exist can be traced back to, at least,
Novshek (1985), see also Kukushkin (1994). The assumptions we impose on aggregation rules in Theo-
rem 3 are taken from Jensen (2010).

Section 2 contains basic definitions and notations associated with a strategic game. In Section 3,
we reproduce Reny’s basic notions and a bit more general topological condition, which, via a technical
Proposition 3, plays the key role in the rest of the paper. In Sections 4, 5, and 6, we consecutively
apply Proposition 3 to potential games, games with strategic complementarities, and aggregative games.
Several related questions of secondary importance are discussed in Section 7. More complicated (or just
tedious) proofs (of Proposition 1, Theorem 2 and Theorem 3) are deferred to Appendix.

2 Basic definitions

A strategic game Γ is defined by a finite set of players N and, for each i ∈ N , a strategy set Xi, a
chain Ci (a utility scale), and a “generalized” utility function ui : XN → Ci, where XN :=

∏
i∈N Xi is

the set of strategy profiles. For each i ∈ N , we denote X−i :=
∏

j∈N\{i}Xj , and often use notation like
(xi, x−i) ∈ XN . Viewing functions ui as components of a mapping uN : XN → CN , where CN :=

∏
i∈N Ci,

we denote G the graph of the mapping, i.e., the set of pairs ⟨xN , uN (xN )⟩ ∈ XN ×CN for all xN ∈ XN .

With every strategic game, we associate this individual improvement relation ◃Ind on XN (i ∈ N ,
yN , xN ∈ XN ):

yN ◃Indi xN 
 [y−i = x−i & ui(yN ) > ui(xN )];

yN ◃Ind xN 
 ∃i ∈ N [yN ◃Indi xN ].

By definition, a Nash equilibrium is a maximizer of the relation ◃Ind on XN , i.e., a strategy profile
xN ∈ XN such that yN ◃Ind xN holds for no yN ∈ XN . The set of Nash equilibria is denoted E(Γ) ⊆ XN .

A subgame Γ′ of Γ is a strategic game defined by subsets X ′
i ⊆ Xi for all i ∈ N and the restriction of

the utility mapping uN toX ′
N :=

∏
i∈N X ′

i; we will use the notation Γ′ ≤ Γ. The individual improvement
relation in a subgame is the restriction of◃Ind toX ′

N . If xN ∈ E(Γ)∩X ′
N , then xN ∈ E(Γ′); if xN ∈ E(Γ′),

it need not belong to E(Γ).

An (individual) improvement path is a (finite or infinite) sequence ⟨xkN ⟩k=0,1,... such that xk+1
N ◃Ind xkN

whenever k ≥ 0 and xk+1
N is defined. A strategic game Γ has the weak finite improvement property (weak

FIP) iff, for every strategy profile x0N ∈ XN , there is a finite improvement path x0N , . . . , xmN such that
xmN ∈ E(Γ). Γ has the quasi weak FIP (QwFIP) iff, for every finite subgame Γ′ of Γ, there is Γ′′ such
that Γ′ ≤ Γ′′ ≤ Γ and Γ′′ has the weak FIP.
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Henceforth, the strategy sets Xi are assumed to be topological spaces; each chain Ci is endowed
with its order interval topology; the sets XN , CN , X−i, and XN × CN are endowed with their product
topologies. For every xN ∈ XN , we denote Ḡ(xN ) := {vN ∈ CN | (xN , vN ) ∈ clG} (where clG denotes
the topological closure) and perceive Ḡ as a correspondence from XN to CN . We say that Γ has the very
weak FIP iff, for every open neighborhood O of E(Γ) and every x0N ∈ XN , there is a finite improvement
path x0N , . . . , xmN such that xmN ∈ O. If Γ has the very weak FIP, then E(Γ) ̸= ∅: otherwise, the definition
should be applicable to O = ∅, and xmN ∈ ∅ is impossible.

Remark. Kukushkin (2011) defined the very weak FIP in a slightly different way: given a strategy
profile, there should exist a Nash equilibrium every open neighborhood of which can be reached after
a finite number of improvements. It remains unclear whether Proposition 3 would be valid under that
definition of the property; however, the question does not look pressing.

3 Better-reply security and finite deviations

First, we reproduce Reny’s (1999, 2016) definitions. Player i ∈ N can secure a payoff of α ∈ Ci at
x∗N ∈ XN iff there exists yi ∈ Xi such that ui(yi, x−i) ≥ α for all x−i in some open neighborhood of
x∗−i. A game Γ is better-reply secure iff, whenever xN is not a Nash equilibrium and vN ∈ Ḡ(xN ), some
player i can secure a payoff strictly above vi at xN .

Somewhat modifying Prokopovych’s (2013) definition, we say that a subset Y ⊆ XN has the finite
deviations property iff there is a finite set of pairs {⟨i(h) ∈ N, yhi(h) ∈ Xi(h)⟩}h∈H such that for every

xN ∈ Y \E(Γ) there holds (yhi(h), x−i(h)) ◃Indi(h) xN for (at least) one h. A game Γ is said to have the local

finite deviations property iff, for every x̄N ∈ XN \ E(Γ), there is an open neighborhood of x̄N having
the finite deviations property.

Proposition 1. If a game Γ is better-reply secure and cluN (XN ) is compact, then Γ has the local finite
deviations property.

The statement is almost indistinguishable from Lemma 2 of Prokopovych (2013). Since our assump-
tions are much broader, a complete proof is given in Appendix, Section A.

Proposition 2. Let a game Γ have the local finite deviations property, and let Y ⊆ (XN \ E(Γ)) be
compact. Then Y has the finite deviations property.

Proof. By our assumption, there is an open neighborhood O(xN ) with the finite deviations property
of every xN ∈ Y . Since Y is compact, it is covered by a finite number of those open neighborhoods.
Taking the union of the appropriate sets {⟨i(h) ∈ N, yhi(h) ∈ Xi(h)⟩}h∈H , we see that Y has the finite
deviations property indeed.

Proposition 3. Let a game Γ have both local finite deviations and QwFIP properties, and let XN be
compact. Then Γ has the very weak FIP property and hence possesses a Nash equilibrium.

Proof. Let O ⊇ E(Γ) be open and let x0N ∈ XN \O. Since XN \O is compact, it has the finite deviations
property by Proposition 2. Let {⟨i(h) ∈ N, yhi(h) ∈ Xi(h)⟩}h∈H be an appropriate finite set of pairs. For

each i ∈ N , we define X ′
i := {x0i }∪{yhi(h) | h ∈ H & i(h) = i} ⊆ Xi. The sets X

′
i define a finite subgame
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Γ′ of Γ; by our assumption, there is Γ′′ such that Γ′ ≤ Γ′′ ≤ Γ and Γ′′ has the weak FIP. Therefore, there
is a finite improvement path x0N , . . . , xmN in Γ′′ such that xmN ∈ E(Γ′′). Now, we have either xmN ∈ O or
xmN /∈ O. In the first case, we are home because x0N , . . . , xmN remains a finite improvement path in Γ. In
the second case, we would have xmN ∈ XN \O ⊆ XN \ E(Γ) and hence there would be h ∈ H such that
(yhi(h), x

m
−i(h)) ◃Indi(h) x

m
N , which is incompatible with xmN ∈ E(Γ′′).

Since O ⊇ E(Γ) and x0N ∈ XN were arbitrary, we are home.

4 Potential games

The relation ◃Ind is acyclic iff there is no finite improvement cycle, i.e., no improvement path for which
x0N = xmN with m > 0. A sufficient condition for that is the existence of a generalized ordinal potential
(Monderer and Shapley, 1996), i.e., a function P : XN → R such that P (yN ) > P (xN ) whenever
yN ◃Ind xN . (For a finite game, that condition is also necessary.)

Theorem 1. Let Γ be a strategic game with compact strategy sets Xi. Let ◃Ind in Γ be acyclic. Let Γ
have the local finite deviations property. Then Γ has the very weak FIP property and hence possesses a
Nash equilibrium.

Proof. Let Γ′ be a finite subgame of Γ. Since ◃Ind is acyclic in Γ, and hence in Γ′ as well, every
improvement path in Γ′, if continued whenever possible, finds a Nash equilibrium at some stage. In
terms of Monderer and Shapley (1996), Γ′ has the finite improvement property (FIP); obviously, Γ′

has the weak FIP. Therefore, Γ has the QwFIP property and hence the very weak FIP property by
Proposition 3.

5 Strategic complementarities

We reproduce standard definitions useful for monotone comparative statics.

LetX and S be partially ordered sets (posets) and C be a chain. We say that a function u : X×S → C
satisfies the single crossing conditions (Milgrom and Shannon, 1994) iff, for all x, y ∈ X and s, s′ ∈ S,
there holds

[y > x & s′ > s & u(y, s) > u(x, s)] ⇒ u(y, s′) > u(x, s′); (1a)

[y < x & s′ < s & u(y, s) > u(x, s)] ⇒ u(y, s′) > u(x, s′). (1b)

u satisfies the weak single crossing condition (Shannon, 1995) iff

[y > x & s′ > s & u(y, s) > u(x, s)] ⇒ u(y, s′) ≥ u(x, s′) (2)

for all x, y ∈ X and s, s′ ∈ S. Either condition (1) implies (2).

Let X be a lattice. A function u : X → C is quasisupermodular (Milgrom and Shannon, 1994; LiCalzi
and Veinott, 1992) iff, whenever y, x ∈ X,

u(x) > u(y ∧ x) ⇒ u(y ∨ x) > u(y); (3a)

u(y) > u(y ∨ x) ⇒ u(y ∧ x) > u(x). (3b)
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Kukushkin (2013b) partitioned conditions (3) into four independent conditions, two of which will be
used here:

∀x, y ∈ X
[
u(x) > u(y ∧ x) ⇒ u(y ∨ x) > min{u(x), u(y)}

]
; (4a)

∀x, y ∈ X
[
u(x) > u(y ∨ x) ⇒ u(y ∧ x) > min{u(x), u(y)}

]
. (4b)

A function u : X → C is weakly quasisupermodular (Shannon, 1995; LiCalzi and Veinott, 1992) iff

∀x, y ∈ X
[
u(x) > u(y ∧ x) ⇒ u(y ∨ x) ≥ min{u(x), u(y)}

]
; (5a)

∀x, y ∈ X
[
u(x) > u(y ∨ x) ⇒ u(y ∧ x) ≥ min{u(x), u(y)}

]
. (5b)

These implications are obvious: (3a) ⇒ (4a) ⇒ (5a); (3b) ⇒ (4b) ⇒ (5b). Meanwhile, (3a) does not
imply (5b), and (3b) does not imply (5a).

Theorem 2. Let Γ be a strategic game such that each strategy set Xi is simultaneously a compact
topological space and a lattice. Let each utility function ui satisfy the condition (1a) with X := Xi,
S := X−i, and C := Ci. Let every function ui(·, x−i) : Xi → Ci (i ∈ N , x−i ∈ X−i) satisfy the condition
(4a). Let Γ have the local finite deviations property. Then Γ has the very weak FIP property and hence
possesses a Nash equilibrium.

Essentially, this theorem follows from Proposition 3 above and Theorem 1 of Kukushkin et al. (2005).
Since the assumptions of the latter theorem were somewhat stronger than those made here, a complete
proof is given in Appendix, Section B.

Theorem 2′. Let Γ be a strategic game such that each strategy set Xi is simultaneously a compact
topological space and a lattice. Let each utility function ui satisfy the condition (1b) with X := Xi,
S := X−i, and C := Ci. Let every function ui(·, x−i) : Xi → Ci (i ∈ N , x−i ∈ X−i) satisfy the condition
(4b). Let Γ have the local finite deviations property. Then Γ has the very weak FIP property and hence
possesses a Nash equilibrium.

The proof is dual to that of Theorem 2.

6 Aggregative games

We call a strategic game aggregative iff there are mappings σi : X−i → R (i ∈ N), aggregation rules,
and Ui : σi(X−i)×Xi → Ci (i ∈ N) such that

ui(xN ) = Ui(σi(x−i), xi)

for all i ∈ N and xN ∈ XN . For each i ∈ N , we denote Si := σi(X−i) ⊆ R. An aggregative game
is appropriately aggregative iff each strategy set Xi is a poset, while there are mappings g : XN → R,
Fi : Si ×Xi → R and vi : X−i → R (i ∈ N) satisfying the following conditions.

First, for all i ∈ N and xN ∈ XN ,

g(xN ) = Fi(σi(x−i), xi) + vi(x−i). (6)
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Second, each Fi has the strictly increasing differences property (Topkis, 1978):

∀si, s′i ∈ Si ∀yi, xi ∈ Xi

[
[yi > xi & s′i > si] ⇒ Fi(s

′
i, yi)− Fi(s

′
i, xi) > Fi(si, yi)− Fi(si, xi)

]
. (7)

A straightforward example of appropriate aggregation is given by σi(x−i) :=
∑

j ̸=i xj (with Xi ⊂ R),
in which case g(xN ) :=

∑
i ̸=j xi · xj/2, Fi(si, xi) := sixi, and vi(x−i) := 0 satisfy (6) and (7). Jensen

(2010) provides a number of less straightforward examples.

Theorem 3. Let Γ be an appropriately aggregative game such that each strategy set Xi is simultaneously
a compact topological space and a lattice. Let each Ui satisfy the weak single crossing condition (2) with
X := Xi, S := Si, and C := Ci. Let, for each i ∈ N , there be s∗i ∈ Si such that Ui(si, ·) satisfies (4a)
for all xi, yi ∈ Xi and si < s∗i , while satisfying (4b) for all xi, yi ∈ Xi and si > s∗i . Let Γ have the
local finite deviations property. Then Γ has the very weak FIP property and hence possesses a Nash
equilibrium.

The proof, based on Proposition 3 and a combination of ideas from Jensen (2010) and Kukushkin
(2016), is deferred to Appendix, Section C.

Theorem 3′. Let Γ be an appropriately aggregative game such that each strategy set Xi is simultaneously
a compact topological space and a lattice. Let each Ui satisfy the single crossing conditions (1) with
X := Xi, S := Si, and C := Ci. Let, for each i ∈ N , there be s∗i ∈ Si such that Ui(si, ·) satisfies (5a)
for all xi, yi ∈ Xi and si < s∗i , while satisfying (5b) for all xi, yi ∈ Xi and si > s∗i . Let Γ have the
local finite deviations property. Then Γ has the very weak FIP property and hence possesses a Nash
equilibrium.

The proof is virtually the same as that of Theorem 3; only the reference to Proposition 26 from
Kukushkin (2013b) should be replaced with the reference to Proposition 28 from the same paper.

7 Concluding remarks

7.1. The description of the preferences of the players with “generalized” utility functions is equivalent
to the description with complete binary relations as in Reny (2016). An even more general description
would emerge if each Ci were just a poset. Theorem 1 would remain valid in this case with the same
proof, cf. Kukushkin (2011). Whether Theorems 2 and 3 allow such a broad generalization is not clear
at the moment; most likely, additional assumptions would be needed.

7.2. The compactness assumption in Proposition 1 cannot simply be dropped. If each Ci is just R, it
boils down to the condition that each ui is bounded, both above and below. The fact that the proposition
may become wrong without an upper bound on utilities may be demonstrated with a one-person game.
As to the lower bound, two players are needed, but one of them may be a dummy.

Example 1. Let us consider a game where N := {1, 2}, X1 := [0, 1], X2 := {0}, and the utility mapping
is this:

uN (xN ) :=

{
(1− x1,−1/x1), if x1 > 0,

(0, 0), if x1 = 0.
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The game is better-reply secure since the graph G of the utility mapping uN is closed and a payoff
strictly above u1(xN ) is secured by any y1 ∈]0, 1[ if x1 = 0, or by any y1 ∈]0, x1[ if x1 > 0. Thus, all
assumptions of Proposition 1 are satisfied except that u2 is not bounded below. On the other hand, no
open neighborhood of (0, 0) has the finite deviations property; moreover, there is no Nash equilibrium.

As suggested by Reny (1999) himself, the proposition can be made applicable to unbounded utilities
via a re-interpretation of better-reply security. Namely, we could perceive uN as a mapping XN → R̄N ,
where R̄ := {−∞}∪R∪{+∞}, and require the inequality in the definition to hold for vectors in Ḡ(xN )
with infinite coordinates as well. (It should be noted that R̄ is compact in its order interval topology.)
In Example 1, G will no longer be closed under this interpretation, Ḡ(0, 0) = {(0, 0), (1,−∞)}, and
player 1 cannot secure any payoff above 1. In other words, another assumption will fail and there will
be no surprise in the absence of an equilibrium.

One could suspect the compactness assumption to imply that the preferences can actually be de-
scribed with a real-valued utility function. However, this is not the case: if Ci is R × {0, 1} with the
lexicographic order, then the closure of every bounded subset of Ci is compact, but its embedding into
the real line may be impossible (Wakker, 1988, Lemma 3.1).

7.3. The restriction of the main requirement in the definition of the finite deviations property to
xN ∈ Y \ E(Γ) (rather than all xN ∈ Y ) was taken from Prokopovych (2013). As can easily be seen
from Section A, Proposition 1 would remain valid without such a restriction. One could argue that the
two versions of the definition only differ when Y ∩E(Γ) ̸= ∅, so it makes no sense to distinguish between
them when the sole purpose is to establish the existence of an equilibrium. Since the very weak FIP
we study in this paper is more than the mere existence, the fact that the weaker condition is sufficient
might be worth noting.

7.4. Similarly to Kukushkin (2011), our Theorem 1 implies a new generalization of the old theorem
of Bergstrom (1975) and Walker (1977): An acyclic binary relation ◃ on a compact topological space
X admits a maximizer if, whenever y ◃ x, there is an open neighborhood O of x and a finite set
{z1, . . . , zm} ⊂ X such that for every x′ ∈ O there is k for which zk ◃ x′. Funnily, this particular
result seems to have never been published although there are quite a few of much more straightforward
generalizations in the literature.

7.5. The key role in the proof of Theorem 3 is played by a construction essentially invented by Jensen
(2010), who built on Huang (2002), Dubey et al. (2006), and Kukushkin (2005). Unfortunately, there
were technical oversights in Jensen (2010): the proof needed stronger assumptions than were made
explicitly (Jensen, 2012). In a personal communication, Jensen conjectured that his main theorem is
nonetheless valid as stated. Our Theorem 3 makes a significant step towards the vindication of his
position.

Appendix: Proofs

A Proof of Proposition 1

Since Γ is better-reply secure, for every vN ∈ Ḡ(x̄N ), there are j(vN ) ∈ N , αj(vN )(vN ) ∈ Cj(vN ), yj(vN ) ∈
Xj(vN ), and V−j(vN )(vN ) ⊆ X−j(vN ) such that V−j(vN )(vN ) is open, x̄−j(vN ) ∈ V−j(vN )(vN ), αj(vN )(vN ) >
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vj(vN ), and, whenever x−j(vN ) ∈ V−j(vN )(vN ), there holds uj(vN )(yj(vN ), x−j(vN )) ≥ αj(vN )(vN ). De-
noting W (vN ) := {wN ∈ CN | αj(vN )(vN ) > wj(vN )}, we have vN ∈ W (vN ) and hence Ḡ(x̄N ) ⊆∪

vN∈Ḡ(x̄N )W (vN ). Since every W (vN ) is open while Ḡ(x̄N ) is compact, there are v1N , . . . , vmN ∈ Ḡ(x̄N )

such that Ḡ(x̄N ) ⊆
∪m

h=1W (vhN ) =: W̃ .

Claim A.1. There is an open neighborhood V of x̄N such that uN (xN ) ∈ W̃ whenever xN ∈ V .

Remark. In principle, this claim belongs to textbook material. Since our assumptions are broader
than usual, a complete proof is given.

Proof of Claim A.1. We set F := (cluN (XN )) \ W̃ ⊂ CN ; F is compact. For every wN ∈ F , we have
(x̄N , wN ) /∈ Ḡ. Since Ḡ is closed, there is an open neighborhood V ′(wN ) of (x̄N , wN ) in XN × CN such
that V ′(wN ) ∩ Ḡ = ∅; without restricting generality, we have V ′(wN ) = V ′

X(wN ) × V ′
C(wN ), where

V ′
X(wN ) is open in XN , while V ′

C(wN ) is open in CN . Since {x̄N} × F is compact, it is covered by a

finite number of such neighborhoods: V ′(w1
N ), . . . , V ′(wm′

N ). We define V :=
∩m′

h=1 V
′
X(wh

N ); V is open
and x̄N ∈ V .

Now if xN ∈ V and uN (xN ) /∈ W̃ , we would have uN (xN ) ∈ F ; therefore, ⟨x̄N , uN (xN )⟩ ∈ V ′(wh
N ) for

some h. Since xN ∈ V ′
X(wh

N ), we have ⟨xN , uN (xN )⟩ ∈ V ′(wh
N ) as well. Therefore, ⟨xN , uN (xN )⟩ /∈ G,

which is impossible.

Picking such an open neighborhood V , we define O := V ∩
∩m

h=1[Xj(vhN ) × V−j(vhN )(v
h
N )]. Again, O

is open and x̄N ∈ O. Setting H := {1, . . . ,m}, i(h) := j(vhN ) and yhi(h) := yj(vhN ) for all h ∈ H, we check
that O satisfies the requirement.

Let xN ∈ O; hence uN (xN ) ∈
∪

h∈H W (vhN ) by Claim A.1 and hence α−j(vhN )(v
h
N ) > uj(vhN )(x

h
N )

for some h. Since x−j(vhN ) ∈ V−j(vhN )(v
h
N ), we have uj(vhN )(yj(vhN ), x−j(vhN )) ≥ α−j(vhN )(v

h
N ) > uj(vhN )(x

h
N ).

Thus, (yhi(h), x−i(h)) ◃Indi(h) xN indeed.

B Proof of Theorem 2

In light of Proposition 3, it is enough to show that Γ has the QwFIP property.

Let Γ′ ≤ Γ be finite; for each i ∈ N , we define X ′′
i as the minimal sublattice of Xi containing X ′

i.
Then X ′′

i is still finite; hence we can argue similarly to the proof of Theorem 1 of Kukushkin et al.
(2005). We define

X↑ := {xN ∈ X ′′
N | ∃yN ∈ X ′′

N [yN > xN & yN ◃Ind xN ]}; X↓ := X ′′
N \X↑;

yN ≻ xN 

[
[yN ∈ X↓ & xN ∈ X↑] or [xN , yN ∈ X↑ & yN > xN ] or

[xN , yN ∈ X↓ & yN < xN ]
]
. (8)

Clearly, ≻ is irreflexive and transitive.

Claim B.1. If xN ∈ X ′′
N \ E(Γ′′), then there exists yN ∈ X ′′

N such that yN ◃Ind xN and yN ≻ xN .
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Proof of Claim B.1. If xN ∈ X↑, then we pick yN ∈ X ′′
N such that yN ◃Ind xN and yN > xN . If

yN ∈ X↓, then yN ≻ xN by the first disjunctive term in (8). If yN ∈ X↑, then yN ≻ xN by the second
disjunctive term in (8).

Let xN ∈ X↓. We pick i ∈ N and yN ∈ X ′′
N such that yN ◃Indi xN . Denoting Yi := {zi ∈ X ′′

i | zi ≤
xi}, we pick z̄i ∈ Argmaxzi∈Yi

ui(zi, x−i), which is possible because Yi is finite. Since xN ∈ X↓, yi > xi
is impossible. If yi < xi, then ui(z̄i, x−i) ≥ ui(yi, x−i); hence ui(z̄i, x−i) > ui(xN ) and hence z̄i < xi.
If yi and xi are incomparable in the order, then yi ∨ xi > xi and yi ∧ xi < xi. An assumption that
ui(xN ) ≥ ui(yi ∧ xi, x−i) would imply ui(yi, x−i) > ui(yi ∧ xi, x−i), and hence ui(yi ∨ xi, x−i) > ui(xN )
by (4a), contradicting our assumption that xN ∈ X↓. Therefore, ui(yi ∧ xi, x−i) > ui(xN ); hence
ui(z̄i, x−i) > ui(xN ) and z̄i < xi again. Denoting zN := (z̄i, x−i), we see that zN ◃Ind xN and zN < xN .
To show that zN ≻ xN , we only have to show that zN ∈ X↓.

Suppose the contrary: there are j ∈ N and yj > zj such that

uj(yj , z−j) > uj(zN ). (9)

Let us consider two alternatives.

If j = i (hence z−j = x−i), yi > xi would contradict xN ∈ X↓ while yi < xi would contradict the
choice of z̄i; therefore, we have to assume that yi and xi are incomparable, hence yi ∨ xi > xi. The
choice of z̄i implies ui(z̄i, x−i) ≥ ui(yi ∧ xi, x−i) and hence, by (9) and (4a), ui(yi ∨ xi, x−i) > ui(xN ),
contradicting the assumption xN ∈ X↓.

Thus, we are led to j ̸= i; hence yj > zj = xj and z−j < x−j . Now (9) and (1a) imply uj(yj , x−j) >
uj(xN ), again contradicting the assumption xN ∈ X↓.

Finally, having x0N ∈ X ′′
N \ E(Γ′′), we start building an improvement path, applying Claim B.1 at

each step, i.e., picking xk+1
N ∈ X ′′

N such that xk+1
N ◃Ind xkN and xk+1

N ≻ xkN , as long as xkN /∈ E(Γ′′). Since
≻ is an order, we cannot return back. Since X ′′

N is finite, we reach E(Γ′′) at some stage.

C Proof of Theorem 3

In light of Proposition 3, it is enough to show that Γ has the QwFIP property. Let Γ′ ≤ Γ be finite.
Exactly as in the case of Theorem 2, we define X ′′

i , for each i ∈ N , as the minimal sublattice of Xi

containing X ′
i. Then X ′′

i is still finite.

To establish that Γ′′ has the weak FIP, we argue similarly to Jensen (2010) or Kukushkin (2016).

For each i ∈ N , we define the best response correspondence:

Ri(si) := Argmax
xi∈X′′

i

Ui(si, xi).

Since X ′′
i is finite, Ri(si) ̸= ∅ for each si ∈ S′′

i .

By Proposition 26 from Kukushkin (2013b), and conditions (4a) and (2), the correspondence Ri is
weakly ascending in the sense of Veinott (1989):

[s′i > si & yi ∈ Ri(s
′
i) & xi ∈ Ri(si)] ⇒ [yi ∨ xi ∈ Ri(s

′
i) or yi ∧ xi ∈ Ri(si)].
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Therefore, by Theorem 3.2 of Veinott (1989), or, easier to find, Proposition 2.5 from Kukushkin (2013a),
there exists an increasing selection ri from Ri. Henceforth, we fix such a selection for each i ∈ N and
denote X0

i := ri(S
′
i). Clearly, X

0
i ⊆ X ′′

i is a chain.

Now, we introduce this admissible best response improvement relation ◃BR on X ′′
N (i ∈ N , yN , xN ∈

X ′′
N ):

yN ◃BR
i xN 
 [yN ◃Indi xN & yi = ri(x−i)];

yN ◃BR xN 
 ∃i ∈ N [yN ◃BR
i xN ].

Since ri(x−i) is defined for every x−i ∈ X ′′
−i, every maximizer of ◃BR on X ′′

N is a Nash equilibrium in Γ′′.
Since X ′′

N is finite, it is sufficient to show that ◃BR is acyclic. We achieve this objective by producing
an order potential of ◃BR, i.e., an irreflexive and transitive binary relation ≻ on X ′′

N such that

∀xN , yN ∈ X ′′
N

[
yN ◃BR xN ⇒ yN ≻ xN

]
.

For each i ∈ N , we, henceforth, assume that S′
i := σi(X

′′
−i) = {s0i , s1i , . . . , smi } with ski > shi whenever

k > h; for each xi ∈ X0
i , we define κi(xi) := min{k | xi = ri(s

k
i )} and

Φi(xi) := −Fi(s
κi(xi)
i , xi) +

∑
k<κi(xi)

[Fi(s
k+1
i , ri(s

k
i ))− Fi(s

k
i , ri(s

k
i ))]. (10)

For xi ∈ X ′′
i \ X0

i , we define Φi(xi) arbitrarily, e.g., Φi(xi) := 0. For every xN ∈ X ′′
N , we define a set

N0(xN ) := {i ∈ N | xi ∈ X0
i } and a function

H(xN ) := g(xN ) +
∑
i∈N

Φi(xi). (11)

Now, we are ready to define our potential, a binary relation on X ′′
N :

yN ≻ xN 

[
N0(yN ) ⊃ N0(xN ) or [N0(yN ) = N0(xN ) & H(yN ) > H(xN )] or(

N0(yN ) = N0(xN ) & H(yN ) = H(xN ) &

∀i ∈ N [yi = xi or yi ≥ xi] & ∃i ∈ N [yi > xi]
)]
. (12)

Obviously, ≻ is irreflexive and transitive.

Claim C.1. If xN , yN ∈ X ′′
N and yN ◃BR xN , then yN ≻ xN .

Proof of Claim C.1. Let yN ◃BR
i xN and σi(x−i) = sk̄i . We have yi = ri(s

k̄
i ) ̸= xi by definition; hence

yi ∈ X0
i and N0(yN ) ⊇ N0(xN ). If the inclusion is strict, we have yN ≻ xN by the first term in (12).

Let us assume N0(yN ) = N0(xN ), i.e., xi ∈ X0
i . Taking into account (10), we can rewrite (11) as

H(xN ) =
∑

k<κi(xi)

[Fi(s
k+1
i , ri(s

k
i ))− Fi(s

k
i , ri(s

k
i ))] + Fi(s

k̄
i , xi)− Fi(s

κi(xi)
i , xi) + C(x−i); (13a)

H(yN ) =
∑

k<κi(yi)

[Fi(s
k+1
i , ri(s

k
i ))− Fi(s

k
i , ri(s

k
i ))] + Fi(s

k̄
i , yi)− Fi(s

κi(yi)
i , yi) + C(x−i). (13b)
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Let us assume that xi > yi; then κi(yi) ≤ k̄ < κi(xi). Subtracting (13a) from (13b), we obtain

H(yN )−H(xN ) = [Fi(s
κi(xi)
i , xi)− Fi(s

k̄
i , xi)]−

∑
k̄≤k<κi(xi)

[Fi(s
k+1
i , ri(s

k
i ))− Fi(s

k
i , ri(s

k
i ))]

=
∑

k̄≤k<κi(xi)

(
[Fi(s

k+1
i , xi)− Fi(s

k
i , xi)]− [Fi(s

k+1
i , ri(s

k
i ))− Fi(s

k
i , ri(s

k
i ))]

)
.

By (7), the difference is strictly positive. Therefore, yN ≻ xN by the second term in (12).

Now let us assume that xi < yi; then κi(xi) < κi(yi) ≤ k̄. Subtracting (13a) from (13b), we obtain

H(yN )−H(xN ) =∑
κi(xi)≤k<κi(yi)

[Fi(s
k+1
i , ri(s

k
i ))− Fi(s

k
i , ri(s

k
i ))] + [Fi(s

k̄
i , yi)]− Fi(s

κi(yi)
i , yi)− [Fi(s

k̄
i , xi)− Fi(s

κi(xi)
i , xi)]

=
∑

κi(xi)≤k<κi(yi)

(
[Fi(s

k+1
i , ri(s

k
i ))− Fi(s

k
i , ri(s

k
i ))]− [Fi(s

k+1
i , xi)− Fi(s

k
i , xi)]

)
+

(
[Fi(s

k̄
i , yi)− Fi(s

κi(yi)
i , yi)]− [Fi(s

k̄
i , xi)− Fi(s

κi(yi)
i , xi)]

)
.

By (7), the difference is non-negative; it can only be zero if κi(yi) = k̄ = κi(xi) + 1. Thus, yN ≻ xN by
the second or the third term in (12).

To summarize, we established that the admissible best response improvement relation ◃BR is acyclic
on X ′′

N . Starting from x0N ∈ X ′′
N an admissible best response improvement path in Γ′′, we inevitably

reach a Nash equilibrium at some stage. Therefore, Γ′′ has the weak FIP.
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