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 Oil Price Shock and Effects on Stock Markets of Emerging Economies 

 

 

 

New Oil Price Shock and Stock Markets of Emerging Economies 

 

Abstract 

The present study investigates the effect of sharp continuous falling crude oil prices on stock 

market indices of emerging economies like Brazil, Russia, India, China, South Africa and South 

Korea and also the relationship between crude oil prices and stock indices of these countries. The 

period of the study spans from July 2009 to January 2016. Multivariate cointegration techniques 

along with vector error correction mechanism, impulse response functions and multivariate CCC-

GARCH model have been employed in the study. The  long-run relationship has been empirically 

established  between the variables only in Brazil and Russia, but, no such relationship has been 

found in case of other emerging economies. Except South Africa, stock indices of the other 

emerging economies adjust to changes in crude oil prices to correct short-run disequilibrium 

although, with varied  speed of adjustment.  CCC-GARCH estimation reveals the existence of 

volatility spillovers between crude oil prices and stock indices and convergence have been 

achieved for all the emerging economies. 
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1 Motivation of the Study 
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     Global crude oil prices have experienced a continuous and steady decline particularly over the 

last twelve months, leading to a noteworthy revenue deficit in many crude oil exporting nations, 

while for consumers in many crude oil importing countries lower crude oil price means paying 

less to heat their homes or drive their cars. But cheap oil, at its lowest price in over a decade, is 

also having far-reaching and unexpected geopolitical and economic consequences around the 

world. 

    Brazil, the second largest producer of crude oil in Latin America also suffered a setback. More 

than 50% of total oil production in Brazil comes from its pre-salt fields. Pre-salt refers to the oil 

reservoirs found under the thick layer of salt in Brazil’s deepwater. These fields have proved to be 

highly productive, with production already at more than 700,000 barrels a day in May 2015. Lower 

crude oil prices added pressure to the Brazilian economy as because elevated crude oil prices are 

required to stimulate investment in the country’s deep-water offshore oil fields that contribute to 

country’s economic growth. According to the World Economic outlook published by the 

International Monetary Fund, Brazil’s gross domestic product (GDP) has contracted by 1.5% in 

2015 which simply reflects the dampening effect of lower crude oil prices and tighter external 

financial condition.  

     The economy of Russia depends heavily on energy revenues with oil and gas accounting for 

more than seventy per cent of export incomes.The growth rate of Russian economy shrinks by 

about 0.7% in 2015 and there is a forecast by World Bank that the Russian economy will sink into 

recession in 2016, if oil prices do not recover. Russian rouble (RUB) already suffers a heavy 

setback and Russia is compelled to hike its interest rate to 17% in support of its currency which 

simply shows that the Russian economy is hardly pressed by falling oil prices  



3 
 

 On the other hand, falling crude oil price is just like a blessing for Indian economy, though there 

are many hitches. It helps to narrow down India's current account deficit - the amount India owes 

to the world in foreign currency. Again, the Indian rupee (INR) exchange rates also gets affected 

though, to a very few extent. The value of a free currency like rupee depends on its demand in the 

currency market. This is because it significantly depends on the current account deficit. A towering 

deficit means the country has to sell rupees and purchase dollars to disburse its bills. This 

diminishes the value of the rupee. A plunge in oil prices is, thus, good for the rupee. However, the 

disadvantage is that the dollar strengthens each and every time, whenever crude oil prices plunge 

down, which counteracts any benefits that have been derived from a fall in current account deficit.  

     Brent crude oil was recorded at a new low of $28.94 per barrel (as on January 10, 2016) and 

WTI (West Texas Intermediate) crude is down to below $29.44 per barrel (as on February 7, 2016). 

Simultaneously, demand for crude oil has plummeted throughout the globe and especially in Asia 

where the bigger economy and energy consumer, China, is undergoing the slowest economic 

growth in a decade. With the global economy looking shaky due to China's slowdown, traders said 

the outlook for oil remains for cheap prices for much 2016. According to the analysts, the reasons 

for this sharp decline in oil prices are two-fold - weak demand in many countries due to gloomy 

economic situation, coupled with surging US production. They are of the opinion that the 

enormous US storage project is the main cause for falling WTI crude. Keeping in tune with these 

decisions taken by the United States and OPEC, Russia, the second largest producer of crude oil 

only next to Saudi Arabia also decided not to cut production in order to shore up oil prices. But, 

the actual fact is that there is an apprehension amongst the oil producing nations that if these oil 

producing countries like Russia, United States, Brazil and member countries of OPEC cut their 

production they will lose their dominant niche in the market to their competitors.  
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     A number of substantial finance researchers have concentrated on the issue of the relationship 

between oil prices, stock markets and macroeconomic variables like growth rate, employment, 

inflation, monetary policy, etc. Authors like, Loungani (1986), Brurbridge & Harrison (1984) and 

Mork (1989) shows that nonlinear relationship exists between economy and the oil prices. 

Barnanke, Gertler & Watson (1997), Sadorsky (1999), Papapetrou (2001), Barsky & Kilian (2001), 

Lee & Ni (2002), Hamilton & Herrera (2004), Yang & Bessler (2004), Anoruo & Mustafa (2007), 

McSweeney & Worthington (2007), Miller & Ratti (2009), and others investigate the impact of oil 

price shock on stock markets of developed countries. Basher et al. (2010), applies structural vector 

autoregression model for examining the dynamic relationship between oil prices, exchange rates 

and stock markets of emerging economies.   

     The objective of this paper is to examine the relationship between crude oil price and stock 

market indices of the emerging economies in the context of plunge in the crude oil price in recent 

times. It may be relevant to point out that the recent shock is different than the previous shocks. 

Major oil shocks after World War II include Suez Crisis of 1956-57, the OPEC oil embargo of 

1973-1974, the Iranian revolution of 1978-1979, the Iran-Iraq War initiated in 1980, the first 

Persian Gulf War in 1990-91, and the oil price spike of 2007-2008. All these historical oil shocks 

are associated with increase in crude oil price and its negative effects on the economy. The recent 

decline in inflation may be a “supply side” effect associated with the declining price of oil, in the 

same respect that the surge in oil prices in the 1970’s was responsible for soaring inflation. Falling 

oil prices are also an important part of the recent phenomenon of resurging economic growth in 

the U.S. Much like how the increase in the price of oil in the 1970’s was “a negative supply shock” 

effectively creating unemployment and declining output, this recent decline in the price of oil is 
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behind a “positive supply shock” in part responsible for the recent boost in economic activity and 

decline in unemployment in the US (ibid.). 

     Ono (2011), Ghorbel & Boujelbene (2013) and Morales & Gassie-Falzone (2014) have done 

something similar studies but have used different data periods and methods for analysis. There are 

also considerable number of research work like Gisser & Goodwin (1986); Hamilton (2003); 

Bittlingmayer (2005); Kilian (2008); Kilian & Park (2009) and Fang (2010) that study the effect 

of increasing oil prices or positive oil price shock on the stock markets and the country’s economic 

health. But, none of them or any other studies have been found to be conducted that evaluate the 

impact of declining oil prices or negative oil price shocks on the stock markets even during sharp 

continuous fall in crude oil price in the recent times. 

     From February 02, 2014 to January 31, 2016, i.e. over the last twenty four months WTI crude 

oil price has fallen by 103%. The massive supply of crude oil by the oil producing countries 

throughout the globe continued to pressure markets. The study of Basher et al. (2010), reveal that 

oil prices react positively to a surprising hike in demand for oil consumption, while it reacts 

negatively to sudden increase in oil supply. According to Goldman Sachs, volatility in oil price 

which is at its highest since the collapse of Lehman Brothers in 2008, could reach 100% as storage 

capacity comes under pressure. Moreover, China, which is the second largest importer of crude oil 

only next to United States is also experiencing economic slowdown and depressing stock markets, 

has reduced its import of crude oil. This entire situation and particularly falling crude oil prices 

has a substantial effect on the economy and stock markets of oil exporting countries like Brazil 

and Russia. In this backdrop, this paper entails a dataset up to January 31, 2016 so as to capture 

the volatility spillovers and also the latest effect of falling crude oil prices on the stock markets of 
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the emerging economies like Brazil, Russia, India, China, South Africa and South Korea which 

can surely be considered a new contribution to the existing oil price literature. 

 

2. Literature Review  

     Oil price shocks that originate from the energy markets are defined in various ways. According 

to Hamilton (2003), oil price shock is an increase in net oil price, i.e. the logarithm change in the 

nominal price of oil in the current year in relation to the previous years.  He argues that oil price 

shocks may precisely affect short-run economic performance of a country due to its temporary 

ability to disrupt bulk purchases for consumption and investment goods. The findings of Hamilton 

are reflected in the earlier study conducted by Gisser and Goodwin (1986) and Darby (1982). 

Again the study results of Mork (1989) reveal an asymmetric affiliation between changes in oil 

price and output growth. On the other hand, Kilian (2008a) states that oil price shocks may be 

demand driven and the nominal oil price shocks measured by Hamilton (2003), does not sort out 

or wiped out the oil price changes caused by the exogenous political actions. Moreover, it cannot 

be implied that nominal oil shocks necessarily includes corresponding real oil price shocks. So, in 

order to overcome these problems, Kilian (2009) employs vector autoregression (VAR) by using 

real oil price, oil supply and a proxy variable for measuring global demand for industrial 

commodities as three variables.   

     Basher et al. (2010), applies six-variable SVAR model and impulse response functions to find 

out the affiliation between oil price shock, exchange rates and stock markets of the emerging 

countries. Their study results reveal that oil prices react positively to a surprising hike in demand 

for oil consumption, while it reacts negatively to sudden increase in oil supply. Bittlingmayer 

(2005) shows that increase in oil price is interrelated with decrease in stock prices. Hamilton (2009) 
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are of the opinion that consistent rise in real oil price during the period of 2002 to 2008 are mainly 

because of strong and growing demand for crude oil from China, India and other emerging 

economies. The impact of oil price shock on the stock markets of three BRIC countries, i.e. Russia, 

India and China have been analyzed by Fang (2010). He uses the model proposed by Kilian and 

Park (2009) and the study results reveal that oil price shocks and oil specified demand shocks do 

not have any significant impact on Indian stock markets, whereas these shocks have positive 

impact on Russian stock markets. Again, in case of China, he finds that oil specified demand 

shocks alone positively affect the stock markets of China, while oil price shocks has mixed 

condition on the stock markets of China. Abdelaziz et al. (2008) investigates the linkages between 

oil prices, exchange rates and stock prices of four Middle East countries – Kuwait, Oman, Saudi 

Arabia and Egypt. VECM and FIML estimations suggest that there exists long-run positive impact 

of oil prices on the stock prices of these four oil exporting countries and long-run equilibrium 

readjustments in each stock market take place through changes in oil prices.  

     Ono (2011) investigates the effect of oil prices on real stock returns for BRIC countries for the 

period of 1999:1 to 2009:9. Using vector autoregression (VAR) model he found that real stock 

returns positively respond to some of the oil price indicators for China, India and Russia, but, in 

the case of Brazil no significant responses are found. Variance decomposition analysis shows that 

the contribution of oil price shocks to volatility in real stock returns is relatively large and 

statistically significant for China and Russia. Morales and Gassie-Falzone (2014) examines the 

volatility spillovers between oil prices and emerging economies like BRIC. The paper investigates 

the BRIC financial markets and their movements with regards to energy markets (oil, natural gas 

and electricity) and to US stock returns fluctuations.  
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     Most of the studies on oil price shocks and stock markets concentrate on developed countries 

rather than putting their attention on emerging economies. Very few studies like Hammoudeh and 

Aleisa (2004); Hammoudeh and Huimin (2005) and Basher and Sadorsky (2006) examine the 

relationship between oil prices and stock markets of emerging economies. In general, they are of 

the opinion that oil price shocks affect stock indices of these emerging countries.  

     The scrutiny of the above literatures reveals mixed results and the empirical findings show both 

positive and negative impact of oil prices on stock market indices.  Therefore, the present study 

seeks to find out the effect of declining oil prices which is also regarded as “new oil price shock” 

on the stock markets of emerging economies as well as volatility spillovers between crude oil 

prices and stock indices of emerging economies like Brazil, Russia, India, China, South Africa and 

South Korea.  

 

3 Data Set and Methodology  

       For the present study, weekly data of the closing indices of Bovespa (stock index of Brazil), 

MICEX (stock index of Russia), BSE Sensex (stock index of India), Shanghai Composite (stock 

index of China), FTSE South Africa (stock index of South Africa) and KOSPI (stock index of 

South Korea) as well as the closing prices of the crude oil index represented by the WTI (West 

Texas Intermediate) crude oil prices have been considered. WTI crude oil index is used as a 

benchmark for world oil markets. Data on stock market indices are retrieved from Bloomberg 

database and the closing indices of all these countries are taken in terms of USD. Because of non-

synchronous data we have taken weekly data and to avoid the weekend effect we have chosen 

Wednesday’s closing prices. The total study period spans from 05 July, 2009 to 31 January, 2016. 

However, it needs to mention that this is the period of post global recession. To determine this 
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period, we have consider reports of Business Cycle Dating Committee of U.S. National Bureau of 

Economic Research (NBER) as the standard benchmark. According to the Business Cycle Dating 

Committee of U.S. National Bureau of Economic Research, the global recession begin in 

December 2007 and ended in June 2009.For better analysis, all the data values are expressed in 

terms of logs. To analyze the data obtained from different sources as mentioned above, 

econometric tools like Elliott, Rothenberg and Stock point optimal (ERS) unit root test, Johansen 

Cointegration Test, Vector Error Correction Model (VECM), and Impulse Response Function have 

been used.  Volatility spillovers between crude oil prices and stock markets are measured by using 

multivariate CCC-GARCH model. 

4 Results and Discussion 

4.1 Test of Stationarity: Unit Root Test 

          In our study we examine the presence of unit root by using Elliott, Rothenberg and Stock 

point optimal (ERS) unit root test (1996) to determine whether the time series is non-stationary. 

ERS test is a modified version of the Dickey-Fuller t test and it is substantially powerful than 

ordinary ADF unit root test. The results of ERS unit root test are given in table 1.  

       Lag lengths and model of the test are preferred according to the MAIC (Modified Akaike Info 

Criterion). The test is run taking first differences of all the series allowing intercept and 

deterministic time trend in the regression. The null hypothesis is rejected at 1 per cent level of 

significance indicating that all the series are stationary. This means that the selected series are 

integrated of order one, i.e.   I(1) and thus suitable for long memory test. 

Table 1 here. 

 

4.2 Johansen Cointegration Test 

http://en.wikipedia.org/wiki/National_Bureau_of_Economic_Research
http://en.wikipedia.org/wiki/National_Bureau_of_Economic_Research
http://en.wikipedia.org/wiki/National_Bureau_of_Economic_Research
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     Johansen cointegration test provide a mean to determine whether a set of endogenous variables 

for each of the emerging economies (i.e. for Brazil - Bovespa and crude oil price; for Russia – 

MICEX and crude oil price; for India - BSE Sensex and crude oil price; for China - Shanghai 

Composite and crude oil price; for South Africa – FTSE SA and crude oil price and for South 

Korea – KOSPI and crude oil price) share a common long-run stochastic trend, while allowing for 

the possibility of short-run divergences. Table 2 reports the results for testing the number of 

cointegrating relations. The (nonstandard distribution) critical values are taken from MacKinnon-

Haug-Michelis (1999) so they differ slightly from those reported in Johansen and Juselius (1990). 

To determine the number of cointegrating relations r conditional on the assumptions made on the 

trend, we can proceed sequentially from r = 0 to r = k – 1 until we fail to reject. The estimation for 

each group assumes the level data Zt have no deterministic trends and the cointegrating equations 

have intercepts. Lags interval of 1 to 4 is used based on Akaike Information Criterion (AIC). 

Table 2 here 

 

For Brazil and Russia both trace statistic and maximum eigenvalue statistic indicates one 

cointegrating equation in each case which is significant at 5 per cent level.  But, no cointegrating 

equations have been found in case of India, China, South Africa and South Korea. The results 

show that in only in Brazil and Russia the set of variables (crude oil price and stock market index) 

is cointegrated, as both the trace statistic and maximum eigenvalue statistic reject the null 

hypothesis of no cointegration and therefore there exists a stationary long-run relationship between 

the set of variables. This implies that there are common stochastic trends indicating a degree of 

economic integration between crude oil price and stock index for Brazil, and Russia. This may due 

to the fact that both Brazil and Russia are oil producing countries and thus their economy rely 
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much on the demand and supply of crude oil and so it is quite natural to find out a stationary long-

term relationship between stock markets and crude oil prices for these two countries. 

 

4.3 Vector Error Correction Model (VECM)   

The multivariate cointegration test results reveal that while allowing for the (linear) trend, the 

set of series for Brazil and Russia are cointegrated, that is, there is a long-run or equilibrium 

relationship between the set of series. But, of course, in the short-run there may be disequilibrium. 

On the other hand, although there is no long-term relationship between crude oil prices and stock 

markets in case of India, China, South Africa and South Korea, very short-term relationship may 

exist along with disequilibrium. Therefore, it is equally important to see whether any adjustments 

for short-run disequilibrium are made by VECM in case of India, China, South Africa and South 

Korea. Again, in case of Brazil and Russia causal relations should be examined with VECM that 

corrects for disequilibrium.  

The VECM which is first used by Sargan and later popularized by Engle and Granger has 

cointegration relations built into the specifications so that it restricts the long-run behavior of the 

endogenous variables to converge to their cointegrating relationships while allowing for short-run 

adjustment dynamics.  The cointegration term is known as the error correction term, since the 

deviation from long-run equilibrium is corrected gradually through a series of partial short-run 

adjustments. In this connection, VECM is applied in this study and corresponding VEC model is: 

 

      q        q    

ΔSIt = β0 + ∑β1i ΔSIt – i + ∑β2i ΔCOPt – i  +  α1Zt - 1  + e1t   (1) 
   i = 1       i = 1    

 
 

           n                       n          
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ΔCOPt = δ0 + ∑δ1i ΔCOPt – i + ∑δ2i ΔSIt – i  +σ1Zt - 1  + e2t         (2)      
    i = 1        i = 1 

 

   Where, SIt and COPt  represent stock indices and crude oil price and  Zt - 1 is the error correction 

term which we get from the cointegration equation, so that changes in variables  ΔSIt, and ΔCOPt 

are partially driven by past values of Zt. The coefficient of error correction α1 and σ1 are expected 

to capture the long-run equilibrium adjustments of ΔSIt and ΔCOPt while the coefficients on  ΔSIt 

– i, and ΔCOPt – i are expected to capture the short-run dynamics of the model. Table 3, 4, 5, 6, 7 

and 8 displays the results of VECM for each emerging economies. 

Table 3 here 

Table 4 here 

Table 5 here 

Table 6 here 

Table 7 here 

Table 8 here 

 

     The responses of each selected series to correct the disequilibrium are captured by the 

significance and size of the estimated coefficients α1 and σ1 of the VECM equations 1 and 2. 

However, the VECM estimations give varied results. For Brazil α1 is found to be statistically 

significant (at 10%) while σ1 is not. This implies that with respect to Brazil, only stock indices 

follows and adjusts to disturbances to restore long-run equilibrium, but that the crude oil prices do 

not react significantly and about 2.02% of disequilibrium is corrected each week by changes in 

Bovespa. For Russia, both α1 and σ1 are significant at 1% and 5% level, i.e. both MICEX and crude 

oil price react significantly and about 5.58% and 0.18% of disequilibrium is corrected each week 
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by changes in MICEX and crude oil prices. In case of India, σ1 is found to be statistically significant 

at 1% level and only 0.02% of disequilibrium is corrected each week by changes in crude oil price. 

For China, only α1 is found to be significant at 1% level and about 3.92% of short-run 

disequilibrium is corrected each week by changes in Shanghai Composite. In case of South Africa, 

only σ1 is found to be statistically significant at 1% level and only 0.05% of disequilibrium is 

corrected each week by changes in crude oil price. Finally, for South Korea it is found that both 

α1 and σ1 are significant at 1% level, i.e. both KOSPI and crude oil price react significantly and 

about 5.15% and 0.28% of disequilibrium is corrected each week by changes in KOSPI and crude 

oil prices. In Russia and South Korea, stock indices series adjust more rapidly to crude oil price 

shocks. However, in China and Brazil the speed of the short-run disequilibrium adjustment is much 

slower than compared to Russia and South Korea.    

     The short-run interactions are shown by the coefficients of the lagged differenced terms of the 

respective stock indices and crude oil price series for each country. In tables 3 to 8 it has been 

found that few short-run adjustment coefficients of stock indices series are statistically significant.  

This implies that there is very little evidence of short-run dynamics among the variables of interest 

in all the emerging economies. 

 

 

4.4 Impulse Response Analysis 

According to Christopher Sims, the estimated lagged coefficients of unrestricted vector 

autoregression (VAR) fail to provide enough information about the dynamic affiliation between 

the variables in the system, but it is supportive in tracing out the responses of the system to random 

shocks.  
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Thus, to measure the impulse response functions, we applied structural VAR (SVAR) model 

as used by Kilian & Park (2009). 

 

 

Here,   ε1t ,  and ε2t , correspond to   white noise error term and e1t and  e2t  represents the 

residuals from VECM equations. Any disturbance in ε1t is quickly and directly transmitted to e1t 

through the first equation and also to e2t through the second equations respectively. Similar 

reactions occur in case of any disturbances in ε2t. Therefore, it is found that a random shock in one 

innovation in SVAR model form a chain reaction with the other variables over time in the system. 

These chain reactions for each emerging economy are measured by impulse response functions 

which are displayed in figures 1, 2, 3, 4, 5 and 6.   

Figure 1 here 

Figure 2 here 

Figure 3 here 

Figure 4 here 

Figure 5 here 

Figure 6 here 

 

For all the countries impulse response functions have been derived using lag intervals of 3 and 

4. In the case of Brazil, it is found that  crude oil price shocks have positive impact on Bovespa 
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and crude oil price is directly related with it. This means that an increase in crude oil price also 

increases Bovespa and vice versa. Brazil being an oil exporting country, higher crude oil prices 

boosts up Brazilian stock markets. Similarly, in Russia too we observe direct relationship between 

crude oil prices and stock markets. This means when crude oil prices increases, MICEX also 

increases and vice versa. Thus, in oil exporting countries like Brazil and Russia, the effect of higher 

crude oil exports that brings in more foreign currencies helps to bump up domestic stock markets 

as well as country’s economy.  Moreover, both Bovespa and MICEX adjust to innovations in crude 

oil prices to correct short-run disequilibrium though, the adjustment speed of MICEX is much 

faster than that of Bovespa. On the other hand, when we measure response of crude oil price to 

Bovespa and MICEX, we find that crude oil price is responsive to changes in Bovespa but does 

not react to changes in MICEX.  

In India , it is observed that BSE Sensex is also quite sensitive to changes in crude oil prices 

although, BSE Sensex does not adjust to innovations in crude oil prices. Next, in the case of China, 

the first figure that measures responses of Shanghai Composite to crude oil price, the graph of 

Shanghai Composite is almost flat even after taking higher lag intervals of 4 and 5, 5 and 6, 6 and 

7, etc. Thus, Shanghai Composite is less susceptible to changes in crude oil prices but, of course 

in the short-run it adjusts to crude oil price innovations at a moderate speed to correct 

disequilibrium.  Similarly, in case of South Africa also, the graph of FTSE SA index is flat even 

at higher lag intervals and thus, FTSE SA index does not react to changes in crude oil prices. 

Moreover, it does not even adjust to innovations in crude oil prices for correction of short-run 

disequilibrium.  Finally, for South Korea it is found that KOSPI is responsive to changes in crude 

oil prices and furthermore, it also adjusts at a much higher speed to innovations in crude oil prices 

to correct short-run disequilibrium.  
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4.5 CCC-GARCH Model 

Multivariate GARCH Model 

     In our study the volatility spillovers between crude oil prices and stock indices like Bovespa, 

MICEX, BSE Sensex, Shanghai Composite, FTSE SA and KOSPI are estimated by multivariate 

Constant Conditional Correlation (CCC)-GARCH model. As in the univariate case, we can define 

multivariate GARCH models by specifying their first two conditional moments. An Rm-valued 

GARCH process (εt ), with εt = (ε1t , . . ,  ε mt ), must then satisfy, for all t ∈ Z, (Franq & Zakoian, 

2010) 

 

E(ε t | εu ,  u< t) = 0, Var(ε t | εu ,u< t) = E(ε t ε`t | εu , u <t) = Ht .  (3) 

 
 
     The multivariate extension of the concept of the strong GARCH process is based on 

an equation of the form 

εt = Ht
1/2 ηt         (4) 

 
     Where (ηt) is a sequence of iid Rm-valued variables with zero mean and identity covariance 

matrix. The matrix Ht
1/2 can be chosen to be symmetric and positive definite but it can also be 

chosen to be triangular, with positive diagonal elements (see, for instance, Harville, 1997, Theorem 

14.5.11). The second alternative may be of consideration because if, for instance, Ht
1/2  is chosen 

to be lower triangular, the first component of εt only depends on the first component of ηt (Franq 

& Zakoian, 2010). 

     Specification selection for Ht is evidently further sensitive than that in the univariate framework 

as: (i) Ht should be (almost surely) symmetric, and positive definite for all t; (ii) the specification 
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should be simple enough to be agreeable to probabilistic study (existence of solutions, stationarity, 

. . .), while being of sufficient generality; (iii) the specification should be prudent enough to 

facilitate reasonable and practical estimation. Nevertheless, the model should not be that easy to 

be capable to capture the – possibly complicated – dynamics in the covariance structure (Franq & 

Zakoian, 2010). 

     Moreover, it may be useful to have the so-called stability by aggregation property. If ε t  

satisfies Eqn. 3, the process ( ε t  ) defined by ε t = P ε t where P is an invertible square matrix, is 

such that, 

E(ε t | εu ,  u< t) = 0, Var(ε t | εu , u< t) =  Ht = PHt P`        (5) 

 
     The steadiness by aggregation of a class of specifications for Ht requires that the conditional 

variance matrices Ht fit in to the identical group for any choice of P. This property is mainly 

pertinent in finance because if the components of the vector εt  are asset returns, ε t  is a vector of 

portfolios of the same assets, each of its components consisting of amounts (coefficients of the 

corresponding row of P) of the initial assets (Franq & Zakoian, 2010). 

 

Constant Conditional Correlation Model 

     CCC-GARCH model is a model of conditional variances and correlations that is based on the 

on the decomposition of the conditional covariance matrix into conditional standard deviations 

and correlations. In this model, the conditional correlation matrix is time-invariant (Silvennoinen 

& Terasvirta, 2008). Suppose that, for a multivariate GARCH process of the form as given by eqn. 

4, all the past information on εkt , involving all the variables εl t−i , is summarized in the variable 
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hkk,t , with Ehkk,t = E ε 2kt . Then, letting  ηkt = h−1/2
kkt εkt , we define for all k a sequence of iid 

variables with zero mean and unit variance. The variables ηkt are generally correlated, so let   R 

= Var (ηkt) = (ρkl), where ηt = (η1t , …, ηmt)`. The conditional variance of  

εt = diag(h1/2
11,t , …,h1/2

mm,t) ηt           (6) 

is then written as  

Ht = diag(h1/2
11,t , …,h1/2

mm,t) R diag(h1/2
11,t , …,h1/2

mm,t).        (7) 

 

To complete the specification, the dynamics of the conditional variances hkk,t has to be defined. 

The simplest constant conditional correlations (CCC) model relies on the following univariate 

GARCH specifications (Franq & Zakoian, 2010): 

 

       q    p 

hkk,t = wk + ∑ak,i ε2
k, t-I  + ∑ bk,j hkk, t-j , k = 1,…..,m       (8) 

           i=1                          j=1 

 

where, ώ k  >  0, ak,I  ≥ 0, bk,j  ≥ 0,   -1 ≤ ρkl ≤ 1 , ρkk = 1 and R is symmetric and positive 

semi-definite. Observe that the conditional variances are specified as in the diagonal 

model. The conditional covariances clearly are not linear in the squares and cross 

products of the returns (Franq & Zakoian, 2010). 

In a CCC-GARCH (p, q) process, let (ηt) be a sequence of iid variables with distribution η. A 

process (εt) is called CCC-GARCH (p, q) if it satisfies 
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 εt  = Ht 
½  ηt , 

 Ht = Dt RDt ,          (9) 

         q        p 

 ht = w + ∑ Ai εt-i     + ∑ Bj ht-j , 
       i=1       j=1 

 

where, R is a correlation matrix, w is a m x 1 vector with positive coefficients, and the Ai and Bj 

are m x m matrices with nonnegative coefficients.  

 

We have, εt = Dt ηt , where ηt = R½ ηt  is a centered vector with covariance matrix R. The 

components of εt  thus have the usual expression εkt = hkk, t 
1/2 ηkt , but the conditional variance 

hkk, t depends on the past of all the components of εt  (Franq & Zakoian, 2010). 

     One advantage of this specification is that a simple condition ensuring the positive 

definiteness of Ht  is obtained through the positive coefficients for the matrices Ai and Bj 

and the choice of a positive definite matrix for R. We shall also see that the study of the 

stationarity is remarkably simple (Franq & Zakoian, 2010). 

     However, as stated by Franq & Zakoian (2010), CCC model suffers from some limitations like 

(i) the assumption of constant conditional correlation is arbitrary in nature and (ii) the non-stable 

nature of constant conditional correlation by aggregation. 

     The results of CCC-GARCH estimation that measures the volatility spillovers between 

Bovespa and crude oil; MICEX and crude oil; BSE Sensex and crude oil; Shanghai Composite and 

crude oil; FTSE SA and crude oil and finally between KOSPI and crude oil are given below in 
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table 9. The graph of time varying volatilities of crude oil along with the stock indices of each 

emerging economies are displayed in figure 7. 

Table 9 here 

Figure 7 here 

     The results of CCC-GARCH estimation show that there are co- movements between the crude 

oil prices and the stock indices of the emerging economies. In Brazil convergence achieved after 

133 iterations, in Russia convergence achieved after 130 iterations, in India convergence achieved 

after 201 iterations,  in China convergence achieved after 144 iterations, in South Africa 

convergence achieved after 193 iterations and finally in case of South Korea convergence achieved 

after 108 iterations. 

 

5. Conclusions  

     This study investigates the relationship between crude oil prices and stock indices of emerging 

economies. The results of Johansen cointegration analysis indicate a degree of economic 

integration between crude oil prices and stock indices only in case of Brazil and Russia. Therefore 

there exists a stationary long-run relationship between the set of variables in Brazil and Russia, 

but, no such relationship has been found in case of other emerging economies like India, China, 

South Africa and south Korea. VECM reveal that in Russia and South Korea, MICEX and KOSPI 

adjust more rapidly to crude oil price shocks. However, in China and Brazil the speed of the short-

run disequilibrium adjustment is much slower than compared to Russia and South Korea.    

For oil exporting countries like Brazil and Russia, crude oil price has significant effect on 

Bovespa and MICEX. In India, BSE Sensex is also somewhat sensitive to changes in crude oil 

prices although, BSE Sensex does not adjust to innovations in crude oil prices. Shanghai 
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Composite is less susceptible to changes in crude oil prices but, of course in the short-run it adjusts 

to crude oil price innovations at a moderate speed to correct disequilibrium. FTSE SA index does 

not react to changes in crude oil prices and it does not even adjust to innovations in crude oil prices 

for correction of short-run disequilibrium. KOSPI is responsive to changes in crude oil prices and 

it also adjusts at a much higher speed to innovations in crude oil prices to correct short-run 

disequilibrium. CCC-GARCH estimation shows the existence of volatility spillovers between 

crude oil prices and Bovespa, MICEX, BSE Sensex, Shanghai Composite, FTSE SA and KOSPI 

and convergence have been achieved for all the emerging economies. 

     As because the fall in oil prices is anticipated to have a huge enduring factor, oil exporters like 

Brazil and Russia will require financial adjustments, through their magnitude and speed that varies 

according to the size of buffers (fiscal vulnerability). Oil importers on the other hand, need to 

balance rebuilding room for policy along with managing and administering domestic cyclical risks. 

However, the countries with severe financial vulnerabilities should go for saving much of the 

windfall, while the countries that are facing large output gaps should spend it. In a nutshell, the oil 

importing countries should use this period as a chance to reinforce and fortify their monetary policy 

frameworks (IMF Discussion Note, 2015).  

     Lower crude oil prices offer an opportunity to commence and carry out serious fuel pricing and 

budgetary reforms in both oil-importing and oil-exporting countries. The resulting stronger fiscal 

balances would create room for rising priority expenditures and cutting distortionary taxes that 

speeds up   economic growth.  

     For oil importing countries, the economic impact of plummeting oil prices depends on various 

geopolitical factors and also on the motive that are behind the fall in oil prices. If the oil prices 

plunge down due to increase in production and supply, consumers have more money in hand to 
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spend on domestic products instead of imported oil, which in turn boosts up the domestic economy. 

On the other hand, if oil prices fall because of dilemma in the global economy, nevertheless, then 

the lower oil price is more an indication for problems than a reason to celebrate. Consequently, 

some modest stimulus can be expected from low oil prices for oil importing countries.  
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TABLES 

 

 

Table 1: ERS Point-Optimal unit root test results 

 

Indices Level First difference 

constant Constant + trend constant Constant + trend 

Bovespa 6.4799 21.7233 1.7874*** 0.8887*** 

MICEX 25.9734 15.1775 0.4167*** 0.8429*** 

BSE Sensex 53.8488 16.1975 1.5483*** 1.6598*** 

Shanghai Composite 6.4340 15.3511 0.8196*** 2.2585*** 

FTSE South Africa 13.2894 11.0313 0.4323*** 0.8217*** 

KOSPI 24.7686 14.4043 0.1755*** 0.6195*** 

Crude Oil 14.1021 42.7076 1.5653*** 1.8842*** 

 

*** represent the statistical significance level of 1%;  ** represent the statistical significance level of 5%; 
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Table 2: Multivariate cointegration test results 

Brazil 

Hypothesis Trace Test Critical Values at 5% 

Null Alternative 

r = 0 r = 1 25.8680* (0.0439) 20.2618 

r ≤ 1 r  = 2 1.9323 (0.9830) 9.1645 

  Maximum Eigenvalue Test Critical Values at 5% 

r = 0 r = 1 18.2512* (0.0563) 15.8921 

  0.6967 (0.9830) 9.1645 

Russia 

Null Alternative Trace Test Critical Values at 5% 

r = 0 r = 1 22.0847* (0.0277) 20.2618 

r ≤ 1 r  = 2 1.4751 (0.8778) 9.1645 

  Maximum Eigenvalue Test Critical Values at 5% 

r = 0 r = 1 20.6097* (0.0084) 15.8921 

r ≤ 1 r  = 2 1.4751  (0.8778) 9.1645 

India 

Null Alternative Trace Test Critical Values at 5% 

r = 0 r = 1 13.3252 (0.3421) 20.2618 

r ≤ 1 r  = 2 3.0880 (0.5644) 9.1645 

  Maximum Eigenvalue Test Critical Values at 5% 

r = 0 r = 1 10.2372 (0.3132) 15.8921 

r ≤ 1 r  = 2 3.0880 (0.5644) 9.1645 

China 

Null Alternative Trace Test Critical Values at 5% 

r = 0 r = 1 10.1852 (0.6216) 20.2618 

r ≤ 1 r  = 2 0.6016 (0.9896) 9.1645 

  Maximum Eigenvalue Test Critical Values at 5% 

r = 0 r = 1 9.5836 (0.3738) 15.8921 

r ≤ 1 r  = 2 0.6016 (0.9896) 9.1645 

* Significant at 5% critical values.  ( ) MacKinnon-Haug-Michelis (1999) p-values 
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Table 2: Multivariate cointegration test results (cond.) 

South Africa 

Null Alternative Trace Test Critical Values at 5% 

r = 0 r = 1 12.9825 (0.3652) 20.2618 

r ≤ 1 r  = 2 4.2594 (0.3749) 9.1645 

  Maximum Eigenvalue Test Critical Values at 5% 

r = 0 r = 1 8.7231 (0.4641) 15.8921 

r ≤ 1 r  = 2 4.2594 (0.3749) 9.1645 

South Korea 

Null Alternative Trace Test Critical Values at 5% 

r = 0 r = 1 11.5256 (0.4922) 20.2618 

r ≤ 1 r  = 2 1.3113 (0.9058) 9.1645 

  Maximum Eigenvalue Test Critical Values at 5% 

r = 0 r = 1 10.2125 (0.3457) 15.8921 

r ≤ 1 r  = 2 1.3113 (0.9058) 9.1645 

 
 
 
 
 
 
 
Table 3: VECM estimations for Brazil 

 
 Δ Bovespa Δ Crude oil 

Price 

Zt-1 

 
-0.020184* 
[-1.52461] 

 1.63E-05 
[ 0.64797] 

Δ Bovespa t - 1 -0.072695 
[-1.21009] 

 7.79E-05 
[ 0.68146] 

Δ Bovespa t - 2  0.007119 
[ 0.11865] 

 4.65E-05 
[ 0.40710] 

Δ Crude oil Price t - 1  47.12779 
[ 1.49762] 

 0.010069 
[ 0.16810] 

Δ Crude oil Price t – 2   20.43504 
[ 0.64917] 

-0.055587 
[-0.92770] 

Constant -37.11609 
[-0.41128] 

-0.108413 
[-0.63112] 

R2 0.016630 0.005971 

Adj. R2 0.001679 -0.000954 

F-statistics 3.523910 0.008865 

 
*, ** and *** denotes significance at 10%, 5% and 1% levels. [ ] t statistics. 
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Table 4: VECM estimations for Russia 
 
 

 Δ MICEX Δ Crude oil 

Price 

Zt-1 

 
-0.055827*** 

[-4.05945] 
-0.001811** 
[-1.82458] 

Δ MICEX t - 1 -0.071907 
[-1.33899] 

-0.002292 
[-0.59110] 

Δ MICEX t - 2  0.066687 
[ 1.26727] 

 0.005016 
[ 1.32043] 

Δ Crude oil Price t - 1  3.269977*** 
[ 4.31248] 

 0.042855 
[ 0.78293] 

Δ Crude oil Price t – 2   1.472834** 
[ 1.90110] 

-0.036260 
[-0.64835] 

Constant  2.808797 
[ 1.18378] 

-0.112921 
[-0.65926] 

R2  0.104077  0.018205 

Adj. R2  0.090705  0.003552 

F-statistics  7.783218  1.242378 
 

*, ** and *** denotes significance at 10%, 5% and 1% levels. [ ] t statistics. 
 

 
 
 

 
Table 5: VECM estimations for India 
 
 

 Δ BSE 
Sensex 

Δ Crude oil 
Price 

Zt-1 

 
 5.66E-05 
[ 0.00794] 

-0.000160*** 
[-3.22238] 

Δ BSE Sensex t - 1  0.056465 
[ 1.03579] 

-0.000172 
[-0.45324] 

Δ BSE Sensex t - 2 -0.053217 
[-1.03567] 

 0.000228 
[ 0.63786] 

Δ Crude oil Price t - 1  43.48208*** 
[ 5.61247] 

 0.024051 
[ 0.44667] 

Δ Crude oil Price t – 2  -1.869818 
[-0.23101] 

-0.036996 
[-0.65765] 

Constant  33.03923 
[ 1.34995] 

-0.110736 
[-0.65101] 

R2  0.094963  0.034574 

Adj. R2  0.081455  0.020164 

F-statistics  7.030150  2.399387 
 

*, ** and *** denotes significance at 10%, 5% and 1% levels. [ ] t statistics. 
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Table 6: VECM estimations for China 
 
 

 Δ Shanghai 

Composite 

Δ Crude 
oil Price 

Zt-1 

 
-0.039158*** 

[-2.70667] 
-0.000378 
[-0.82840] 

Δ Shanghai Composite t - 1 0.058399 
[ 1.06805] 

 0.000810 
[ 0.47024] 

Δ Shanghai Composite t - 2  0.027710 
[ 0.50526] 

 0.001103 
[ 0.63812] 

Δ Crude oil Price t - 1  0.359843 
[ 0.20567] 

 0.033203 
[ 0.60205] 

Δ Crude oil Price t – 2  1.184586 
[ 0.67682] 

-0.038073 
[-0.69012] 

Constant -2.228188 
[-0.40878] 

-0.105967 
[-0.61675] 

R2  0.023329  0.005814 

Adj. R2  0.008752 -0.009025 

F-statistics  1.600385  0.391813 
 

*, ** and *** denotes significance at 10%, 5% and 1% levels. [ ] t statistics. 
 

 
 

Table 6: VECM estimations for South Africa 
  
 

 Δ FTSE 

South Africa 

Δ Crude oil 
Price 

Zt-1 

 
-0.005584 
[-1.08482] 

-0.000473*** 
[-2.47173] 

Δ FTSE South Africa t - 1 -0.015400 
[-0.25723] 

 0.001118 
[ 0.50203] 

Δ FTSE South Africa t - 2 -0.063237 
[-1.05626] 

-0.001293 
[-0.58015] 

Δ Crude oil Price t - 1  0.061375 
[ 0.03852] 

 0.015783 
[ 0.26623] 

Δ Crude oil Price t – 2  -0.059352 
[-0.03732] 

-0.030087 
[-0.50844] 

Constant  8.225897** 
[ 1.77422] 

-0.108642 
[-0.62969] 

R2  0.008300  0.022358 

Adj. R2 -0.006501  0.007766 

F-statistics  0.560786  1.532249 
 

*, ** and *** denotes significance at 10%, 5% and 1% levels. [ ] t statistics. 
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Table 6: VECM estimations for South Korea 
 
 

 Δ KOSPI Δ Crude oil 

Price 

Zt-1 

 
-0.051487*** 

[-3.37183] 
-0.002820*** 

[-2.34418] 

Δ KOSPI t - 1 -0.051764 
[-0.89879] 

 0.004376 
[ 0.96464] 

Δ KOSPI t - 2  0.075218 
[ 1.30900] 

-0.000219 
[-0.04836] 

Δ Crude oil Price t - 1  0.877120 
[ 1.18999] 

 0.006528 
[ 0.11244] 

Δ Crude oil Price t – 2   0.283889 
[ 0.38563] 

-0.045890 
[-0.79135] 

Constant  1.289871 
[ 0.59440] 

-0.117896 
[-0.68969] 

R2  0.047042  0.020342 

Adj. R2  0.032818  0.005720 

F-statistics  3.307371  1.391189 
 

*, ** and *** denotes significance at 10%, 5% and 1% levels. [ ] t statistics. 
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Figure 1: Impulse response of Bovespa to crude oil prices. 

 
Response to Cholesky one S.D. innovations ± 2 S.E. 
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Figure 2: Impulse response of MICEX to crude oil price. 
 

Response to Cholesky one S.D. innovations ± 2 S.E. 
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Figure 3: Impulse response of BSE Sensex to crude oil prices. 
 

Response to Cholesky one S.D. innovations ± 2 S.E. 
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Figure 4: Impulse response of Shanghai Composite to crude oil prices. 
 

Response to Cholesky one S.D. innovations ± 2 S.E. 
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Figure 5: Impulse response of FTSE SA to crude oil prices. 
 

Response to Cholesky one S.D. innovations ± 2 S.E. 
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Figure 6: Impulse response of KOSPI to crude oil prices. 
 

Response to Cholesky one S.D. innovations ± 2 S.E. 
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Table 9: Multivariate CCC-GARCH Estimation Results 

Brazil 

 Coefficient Std. Error z-Statistic Prob. 

Bovespa 55851.12 450.0292 124.1055 0.0000 

Crude Oil 94.37944 0.319013 295.8480 0.0000 

Russia 

 Coefficient Std. Error z-Statistic Prob. 

MICEX 1451.465 3.812277 380.7345 0.0000 

Crude Oil 94.33337 0.314193 300.2406 0.0000 

India  

 Coefficient Std. Error z-Statistic Prob. 

BSE Sensex 18514.22 203.5039 90.97721 0.0000 

Crude Oil 94.50119 0.325444 290.3764 0.0000 

China 

 Coefficient Std. Error z-Statistic Prob. 

Shanghai Composite 2341.797 7.686751 304.6536 0.0000 

Crude Oil 92.08316 0.390236 235.9677 0.0000 

South Africa 

 Coefficient Std. Error z-Statistic Prob. 

FTSE SA 3278.724 9.653885 339.6274 0.0000 

Crude Oil 93.84101 0.337621 277.9482 0.0000 

South Korea 

 Coefficient Std. Error z-Statistic Prob. 

KOSPI 1966.111 5.589439 351.7547 0.0000 

Crude Oil 95.09210 0.462898 205.4279 0.0000 
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Fig. 7: Time varying volatilities of crude oil and stock indices of emerging economies 
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Fig. 7: Time varying volatilities of crude oil and stock indices of emerging economies (contd.) 
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Fig. 7: Time varying volatilities of crude oil and stock indices of emerging economies (contd.) 

 


