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1 Introduction

Given a sequence of n ∈ N independent realizations {Xj}nj=1 of the random variable X, having density f on

R, the Rosenblatt-Parzen kernel estimator (Rosenblatt (1956), Parzen (1962)) of f is given by

fn(x) =
1

n

n
∑

j=1

(Shn
K)(x−Xj), (1.1)

where Shn
is an operator defined by

(Shn
K)(x) =

1

hn
K

(

x

hn

)

, (1.2)

K is a kernel, i.e., a function on R such that
∫

K(x)dx = 1 and hn > 0 is a non-stochastic bandwidth such

that hn → 0 as n → ∞.1

One of the most natural and mathematically sound (Devroye and Györfi (1985), Devroye (1987)) criteria

to measure the performance of fn as an estimator of f is the L1 distance
∫

|fn−f |. In particular, given that

this distance is a random variable (measurable function of {Xj}nj=1) it is convenient to focus on E
(∫

|fn − f |
)

,

where E denotes the expectation taken using f . For this criterion, there is a simple bound (Devroye, 1987,

p. 31)

E

(∫

|fn − f |
)

≤
∫

|(f ∗ Shn
K)− f |+ E

(∫

|fn − f ∗ Shn
K|

)

,

where for arbitrary f, g ∈ L1, (f ∗ g)(x) =
∫

g(y)f(x − y)dy is the convolution of f and g. The term

∫

|f ∗Shn
K − f | is called bias over R and E

(∫

|fn − f ∗ Shn
K|

)

is called the variation over R. There exists

a large literature devoted to establishing conditions on f and K that assure suitable rates of convergence

of the bias to zero as n → ∞ (see, inter alia, Silverman (1986), Devroye (1987) and Tsybakov (2009)). In

particular, if K is of order s, i.e., αj(K) = 0 for j = 1, ..., s − 1 and αs(K) 6= 0, where αj(K) =
∫

tjK(t)dt

is the jth moment of K, and f has an integrable derivative f (s), then
∫

|f ∗ Shn
K − f | is of order O(hs

n)

and this order cannot be improved, see, e.g., (Devroye, 1987, Theorem 7.2). In this note, we show that if in

(1.2) the kernel is allowed to depend on n, then the order O(hs
n) can be replaced by the order o(hs

n), without

increasing the order of the kernel or the smoothness of the density. In addition, another result from Devroye

1Throughout this note, integrals are over R, unless otherwise specified.
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(1987) states that if K is a kernel of order greater than s and the derivative f (s) is a-Lipschitz then the bias

is of order O(hs+a
n ). We achieve the same rate of convergence with kernels of order s.

2 Main results

Let L1 and C denote the spaces of integrable and (bounded) continuous functions on R with norms ‖f‖1 =

∫

|f | and ‖f‖C = sup |f |, and βs(K) =
∫

|t|s |K(t)| dt. Let {Kn} be a sequence of kernels and define

f̂n(x) =
1

n

n
∑

j=1

(Shn
Kn)(x−Xj).

In the following Theorem 1, the density f has the same degree of smoothness and the kernels Kn are of the

same order as in (Devroye, 1987, Theorem 7.2), but the bias is of order o(hs
n) instead of O(hs

n). This results

because the kernels depend on n and have “disappearing” moments of order s.

Theorem 1. Let {Kn} be a sequence of kernels of order s such that: 1. αs(Kn) → 0; 2. {usKn(u)} is

uniformly integrable. For all f with absolutely continuous f (s−1) and f (s) ∈ L1, we have ‖f ∗Shn
Kn−f‖1 =

o(hs
n).

Proof. Note that since Kn is a kernel

f ∗ Shn
Kn(x)− f(x) =

∫

Kn(t)[f(x− hnt)− f(x)]dt. (2.1)

Since f is s-times differentiable, by Taylor’s Theorem,

f(x− hnt)− f(x) =

s−1
∑

j=1

f (j)(x)

j!
(−hnt)

j +

∫ x−hnt

x

(x− hnt− u)s−1

(s− 1)!
f (s)(u)du.

Furthermore, given that Kn is of order s,

f ∗ Shn
Kn(x)− f(x) =

1

(s− 1)!

∫ ∫ x−hnt

x

(x− hnt− u)s−1f (s)(u)duKn(t)dt. (2.2)

Letting λ = −u−x
hnt

we have

∫ x−hnt

x

(x− hnt− u)s−1f (s)(u)du = (−hnt)
s

∫ 1

0

f (s)(x− hnλt)(1− λ)s−1dλ. (2.3)
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Substituting (2.3) into (2.2) we obtain

f ∗ Shn
Kn(x)− f(x) =

(−hn)
s

s!

∫ ∫ 1

0

f (s)(x− hnλt)s(1− λ)s−1dλtsKn(t)dt. (2.4)

Since
∫ 1

0
(1− λ)s−1dλ = 1

s , we have that

(−hn)
s

(s− 1)!

∫ ∫ 1

0

f (s)(x)(1− λ)s−1dλtsKn(t)dt =
(−hn)

s

s!
f (s)(x)

∫

tsKn(t)dt. (2.5)

Then, adding and subtracting (2.5) to the right-hand side of (2.4) gives

f ∗ Shn
Kn(x)− f(x) =

(−hn)
s

s!

(

f (s)(x)αs(Kn) +

∫ ∫ 1

0

[f (s)(x− hnλt)− f (s)(x)]s(1− λ)s−1dλtsKn(t)dt

)

.

Since f (s) ∈ L1 we write its continuity modulus as ω(δ) = sup|t|≤δ

∫ ∣

∣f (s)(x− t)− f (s)(x)
∣

∣ dx. It is well-

known (see properties M.2, M.6 and M.7 in Zhuk and Natanson (2003)) that

ω(δ) ≤ 2
∥

∥

∥f (s)
∥

∥

∥

1
, ω is nondecreasing and lim

δ→0
ω(δ) = 0. (2.6)

Then,

‖f ∗ Shn
Kn − f‖1 ≤ hs

n

s!

[

∥

∥

∥f (s)
∥

∥

∥

1
|αs(Kn)|+

∫ ∫ 1

0

∫

∣

∣

∣f (s)(x− hnλt)− f (s)(x)
∣

∣

∣ dx s(1− λ)s−1dλ|tsKn(t)|dt
]

≤ hs
n

s!

[

∥

∥

∥f (s)
∥

∥

∥

1
|αs(Kn)|+

∫ 1

0

∫

ω(λhn|t|) | tsKn(t)| dt s(1− λ)s−1dλ

]

=
hs
n

s!





∥

∥

∥f (s)
∥

∥

∥

1
|αs(Kn)|+

∫ 1

0





∫

|t|≤ 1√
hn

+

∫

|t|> 1√
hn



ω(λhn|t|)|tsKn(t)|dt s(1− λ)s−1dλ





(2.7)

≤ hs
n

s!





∥

∥

∥f (s)
∥

∥

∥

1
|αs(Kn)|+ ω

(

√

hn

)

βs(Kn) + 2
∥

∥

∥f (s)
∥

∥

∥

1

∫

|t|> 1√
hn

|tsKn(t)| dt



 . (2.8)

Given that αs(Kn) → 0 as n → ∞, {tsKn(t)} is uniformly integrable, which implies sup
n

βs(Kn) < ∞, and

using (2.6) and (2.8) we have

‖f ∗ Shn
Kn − f‖1 = o(hs

n). (2.9)

Remark 1. Kernel sequences {Kn} that satisfy the restrictions imposed by Theorem 1 can be easily

constructed. To this end, denote by Bs the space of functions with bounded norm ‖K‖Bs
= β0(K) + βs(K).
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Take functions K(0),K(s) ∈ Bs such that

α0(K(0)) = 1, αj(K(0)) = 0 for j = 1, ..., s; αj(K(s)) = 0 for j = 0, 1, ..., s− 1, αs(K(s)) = 1. (2.10)

We define the n-dependent kernel Kn = K(0) + hnK(s) with 0 < hn ≤ 1. Note that Kn is a kernel of order

s with αs(Kn) = hn which tends to zero as n → ∞. It is clear that any kernel K of order s can be written

as K = K(0) + αs(K)K(s), so that the conventional s-order kernels obtain from ours with αs(K) = hn.

Furthermore, it follows from (2.10) that {ts(K(0)(t) + hnK(s)(t))} is uniformly integrable.

Now, to obtain K(0) and K(s), assume that for a nonnegative kernel K we have β2s(K) < ∞. Then, we

can associate with K a symmetric matrix

As =









α0(K) α1(K) ... αs(K)
α1(K) α2(K) ... αs+1(K)
... ... ... ...

αs(K) αs+1(K) ... α2s(K)









,

such that detAs 6= 0 (see Mynbaev et al. (2014)). For an arbitrary vector b ∈ R
s+1 let a = A−1

s b and

define a polynomial transformation of K by (TaK)(t) =
(
∑s

i=0 ait
i
)

K(t). Then, we put K(0) = TaK with

b = (1, 0, ..., 0)′ and K(s) = TaK with b = (0, ..., 0, 1)′, which satisfy (2.10). Thus, we have the following

corollary to Theorem 1.

Corollary 1. Let Kn = K(0) + hnK(s) where K(0) and K(s) are as defined in Remark 1. Then, for all f

with absolutely continuous f (s−1) and f (s) ∈ L1, we have ‖f ∗ Shn
Kn − f‖1 = o(hs

n).

Remark 2. If Kn are supported on [−M,M ] for some M > 0 and for all n, then in (2.7), instead of splitting

R =
{

|t| ≤ 1/
√
hn

}

∪
{

|t| > 1/
√
hn

}

we can use R = {|t| ≤ M}∪{|t| > M} and then instead of (2.8) we get

‖f ∗ Shn
Kn − f‖1 ≤ hs

n

s!

[∥

∥

∥f (m)
∥

∥

∥

1
|αs(Kn)|+ ω(hnM)βs(Kn)

]

.

Hence, selecting {Kn} in such a way that αs(Kn) = O(ω(hn)), sup
n

βs(Kn) < ∞ and using the fact that

ω(hnM) ≤ (M + 1)ω(hn)
2 we get a result that is more precise than (2.9), i.e.,

‖f ∗ Shn
Kn − f‖1 = O(hs

nω(hn)).

2See property M.5 in Zhuk and Natanson (2003).
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Remark 3. By Young’s inequality, the variation of f̂n using Kn = K(0) + hnK(s) is such that

E

∫

|f̂n − f ∗ Shn
Kn| ≤ E

∫

|f̂n − f ∗ Shn
K(0)|+ hn

∫

|f ∗ Shn
K(s)|

≤ E

∫

|f̂n − f ∗ Shn
K(0)|+ hn

∫

|f |
∫

|K(s)|.

Letting f
(0)
n be the estimator in (1.1) with K = K(0), we have E

∫

|f̂n − f ∗ Shn
K(0)| ≤ E

∫

|f (0)
n − f ∗

Shn
K(0)|+ hn

∫

|f |
∫

|K(s)|. Hence,

E

∫

|f̂n − f ∗ Shn
Kn| ≤ E

∫

|f (0)
n − f ∗ Shn

K(0)|+ 2hn

∫

|f |
∫

|K(s)|.

Since, hn → 0 as n → ∞, the variation of f̂n is asymptotically bounded by the variation of the conventional

estimator fn using K(0), i.e., E
∫

|f (0)
n − f ∗ Shn

K(0)|.

Under the assumptions that f has a variance,
∫

(1 + t2)(K(0)(t))
2dt < ∞, (Devroye, 1987, Theorem 7.4)

showed that E
∫

|f (0)
n − f ∗ Shn

K(0)| = O((nhn)
−1/2). Thus,

√

nhnE

∫

|f̂n − f ∗ Shn
Kn| = (1 + (nh3

n)
1/2)O(1) = O(1),

where the last equality follows if nh3
n ≤ c < ∞.

We now provide an analog for Theorem 7.1 in Devroye (1987). There, the bias order O(hs+a) is achieved

for kernels with orders greater than s, while in the following theorems we obtain the same order of bias for

kernels of order s.

Theorem 2. Let {Kn} be a sequence of kernels of order s such that: 1. αs(Kn) = O(ha
n); 2. sup

n
βs+a(Kn) <

∞, for some a ∈ (0, 1]. For f with absolutely continuous f (s−1) and f (s) ∈ L1 assume that for some

0 < c < ∞

ω(δ) ≤ c |δ|a. (2.11)

Then, ‖f ∗ Shn
Kn − f‖1 = O(hs+a

n ).

Proof. As in the proof of Theorem 1, we have

‖f ∗ Shn
Kn − f‖1 ≤ hs

n

s!

[

∥

∥

∥
f (s)

∥

∥

∥

1
|αs(Kn)|+

∫ 1

0

∫

ω(λhn|t|)s(1− λ)s−1 | tsKn(t)| dtdλ
]

(2.12)
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By (2.11)

‖f ∗ Shn
Kn − f‖1 ≤ hs

n

s!

[

∥

∥

∥f (s)
∥

∥

∥

1
|αs(Kn)|+ cha

n

∫ ∫ 1

0

s(1− λ)s−1dλ
∣

∣ts+aKn(t)
∣

∣ dt

]

.

Hence, under conditions 1. and 2. in the statement of the theorem we have ‖f ∗Shn
Kn−f‖1 = O(hs+a

n ).

Remark 4. Practitioners may find condition (2.11) too general, preferring more primitive conditions on

f (s). To this end, we say that a function g defined on R satisfies a global Lipschitz condition of order a ∈ (0, 1]

if there exist positive functions l(x), r(x) such that

|g(x− h)− g(x)| ≤ l(x)|h|a for |h| ≤ r (x) , x ∈ R. (2.13)

The function l is called a Lipschitz constant and the function r is called a Lipschitz radius. The class

Lip(a, δ), for δ > 1, is defined as the set of functions g which satisfy (2.13) with l and r such that

∫

(l(x) + r(x)−δ)dx < ∞. (2.14)

In the next lemma we give two sufficient sets of conditions for g ∈ Lip(a, δ). In the first case g is compactly

supported, and in the second it is not.

Lemma 1. a) Suppose g has compact support, supp g ⊆ [−N,N ] for some N > 0, and g satisfies the usual

Lipschitz condition |g(x − h) − g(x)| ≤ c|h|a for any x, h and some a ∈ (0, 1]. Set l(x) = c, r(x) = 1 for

|x| < N and l(x) = 0, r(x) = |x| −N for |x| ≥ N . Then, g ∈ Lip(a, δ) with any δ > 1.

b) Suppose that |g(1)(t)| ≤ ce−|t|, t ∈ R. Let l(x) = c exp(−|x|/2 + 1/2), r(x) = (1 + |x|)/2, x ∈ R. Then,

g ∈ Lip(1, δ) with any δ > 1.

Proof. a) If |x| < N , then |g(x−h)−g(x)| ≤ |h|al(x) for all h (and not only for |h| ≤ r(x)). If |x| ≥ N , then

|h| ≤ r(x) = |x| −N implies |x− h| ≥ |x| − |h| ≥ N , so that |g(x− h)− g(x)| = 0 = |h|al(x) for |h| ≤ r(x).

b) Let |x| ≥ 1. We have

|g(x− h)− g(x)| ≤ |h| sup
|t−x|≤|h|

|g(1)(t)| ≤ |h|c sup
|t−x|≤|h|

e−|t|. (2.15)

|t− x| ≤ |h| ≤ r(x) = (1 + |x|)/2 implies |t| = |x+ t− x| ≥ |x| − |t− x| ≥ |x|/2− 1/2 ≥ 0 and (2.15) gives

|g(x− h)− g(x)| ≤ |h|c exp(1/2− |x|/2) = |h|l(x) for |h| ≤ r(x). Now let |x| < 1. Then, e−|x|/2 ≥ e−1/2 so

6



that by (2.15), |g(x− h)− g(x)| ≤ |h|c ≤ |h|c exp(1/2− |x|/2) = |h|l(x) for all h and not only for |h| ≤ r(x).

Condition (2.14) is obviously satisfied in both cases.

By part a) of Lemma 1, compactly supported densities with derivative f (s) that satisfies the usual a-

Lipschitz condition are such that f (s) ∈ Lip(a, δ) for any δ > 1. This corresponds to the case treated in

Theorem 7.1 of Devroye (1987). Part b) shows that for densities with unbounded domains, not covered by

Theorem 7.1, if f (s)(x) has derivative that decays exponentially as |x| → ∞, then f (s) ∈ Lip(1, δ) for any

δ > 1. Next we provide a version of Theorem 2 for densities with derivative f (s) ∈ Lip(a, δ).

Theorem 3. Suppose that the density f is such that its derivative f (s) belongs to L1, C (the respective

norms are finite) and Lip(a, δ). Let {Kn} be a sequence of kernels of order s such that: 1. αs(Kn) = O(ha
n);

2. sup
n

max{βs+a(Kn), βs+δ(Kn)} < ∞. Then, ‖f ∗ Shn
Kn − f‖1 = O(hs+a

n ).

Proof. As in the proof of Theorem 1, we have

‖f∗Shn
Kn−f‖1 ≤ hs

n

s!

[

∥

∥

∥f (s)
∥

∥

∥

1
|αs(Kn)|+

∫ 1

0

∫ ∫

∣

∣

∣f (s)(x− hnλt)− f (s)(x)
∣

∣

∣ |tsKn(t)|dt dx s(1− λ)s−1dλ

]

.

Let I(x) =
∫ ∣

∣f (s)(x− hnλt)− f (s)(x)
∣

∣ |tsKn(t)|dt and note that since f (s) ∈ Lip(a, δ)

I(x) =







∫

λhn|t|≤r(x)

+

∫

λhn|t|>r(x)







∣

∣

∣f (s)(x− hnλt)− f (s)(x)
∣

∣

∣ |tsKn(t)|dt

≤
∫

λhn|t|≤r(x)

l(x)λaha
n|t|a+s|Kn(t)|dt+

∫

λhn|t|>r(x)

|f (s)(x− hnλt)− f (s)(x)||tsKn(t)|dt

≤ ha
nβs+a(Kn)l(x) +

∫

λhn|t|>r(x)

|f (s)(x− hnλt)− f (s)(x)||tsKn(t)|dt.

Letting I1(x) =
∫

λhn|t|>r(x)

|f (s)(x− hnλt)− f (s)(x)||tsKn(t)|dt we have

I1(x) ≤
∫

λhn|t|>r(x)

1

|t|δ
(

|f (s)(x− hnλt)|+ |f (s)(x)|
)

|t|s+δ|Kn(t)|dt.

Noting that |t|−δ < λδhδ
nr(x)

−δ and given that ‖f (s)‖C < ∞, we obtain I1(x) ≤ 2‖f (s)‖C λδhδ

n

r(x)δ
βs+δ(Kn).

Consequently,

I(x) ≤ ha
n max{βs+a(Kn), βs+δ(Kn)}

(

l(x) + 2hδ−a
n ‖f (s)‖C

1

r(x)δ

)

. (2.16)
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Since
∫ 1

0
s(1− λ)s−1ds = 1

s and given (2.14)

‖f∗Shn
Kn−f‖1 ≤ hs

n

s!

[

∥

∥

∥f (s)
∥

∥

∥

1
|αs(Kn)|+

1

s
ha
n max{βs+a(Kn), βs+δ(Kn)}

∫ (

l(x) + 2‖f (s)‖C
1

r(x)δ

)

dx

]

.

(2.17)

Thus, using conditions 1. and 2. in the statement of the theorem, we have ‖f ∗Shn
Kn−f‖1 = O(hs+a

n ).

Remark 5. As in the case of Theorem 1, Theorems 2 and 3 do not address the construction of the kernel

sequence {Kn}. The following corollary to Theorem 3 shows that Kn = K(0) + ha
nK(s) is a suitable kernel

sequence, where K(0) and K(s) are as defined above.

Corollary 2. Suppose the density f is such that its derivative f (s) belongs to L1, C and to Lip(a, δ),

where a ∈ (0, 1], δ > 1. Let K(0),K(s) satisfy (2.10) and belong to the intersection Bs+a ∩ Bs+δ. Put

Kn = K(0)+ha
nK(s), 0 ≤ hn ≤ 1. Then Kn is a kernel of order s for hn > 0 and ‖f ∗Shn

Kn−f‖1 = O(hs+a
n ).

The condition K(0) ∈ Bs+a and the definition Kn = K(0) + ha
nK(s) can be replaced by K(0) ∈ Bs+1 and

Kn = K(0) + hnK(s), respectively, without affecting the conclusion.
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