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1 Introduction

Let f be a density associated with a real random variable X and {Xj}nj=1 be an independent and identically

distributed random sample of size n from f . The Rosenblatt-Parzen estimator for the density f evaluated

at x ∈ R is given by

f̂RP (x) =
1

n

n
∑

j=1

1

hn
K

(

x−Xj

hn

)

,

where hn > 0 is a global bandwidth and K is a kernel on R satisfying

∫ +∞

−∞
K(t)dt = 1. (1)

If f and K are m ∈ N times continuously differentiable, with f (m) and K(m) denoting their mth order

derivatives, the most commonly used estimator of f (m) at x ∈ R (Bhattacharya (1967)) is given by f̂
(m)
RP (x) =

1
n

∑n
j=1

1
hm+1
n

K(m)
(

x−Xj

hn

)

.

Estimators for f (m) are important in various contexts. They can be used to evaluate the location of

modes and inflection points of f , to construct plug-in bandwidths for kernel density estimation of f , and

can be applied to the estimation of scores in certain additive models (Härdle and Stoker (1989)). The

asymptotic properties of f̂
(m)
RP (x) have been studied by, among others, Bhattacharya (1967), Schuster (1969)

and Silverman (1978). Singh (1977, 1979, 1987) show that it is possible to reduce bias and improve the mean

integrated squared error (MISE) of f̂
(m)
RP (x) by considering restrictions on the class of kernels K used in its

construction. Similar efforts have been undertaken by Muller (1984) and Henderson and Parmeter (2012).

Recently, Mynbaev and Martins-Filho (2010) proposed a class of nonparametric density estimators that

attains bias reduction relative to f̂RP (x) by imposing global higher order Lipschitz conditions on f . Usually,

the order of the bias for f̂RP (x) is established by requiring that f be r-times (r ∈ N) differentiable. They

show that r-times differentiability is stronger than a Lipschitz order r. Hence, although some smoothness

is still required to attain a suitable order for the bias, the constraint on the class of densities containing

f is milder than what is traditionally required. In practice, certain discontinuous densities satisfy global

Lipschitz conditions of a certain order, but are not differentiable of the same order.1

1For an example of one such density, see (Mynbaev and Martins-Filho, 2010, p. 232).
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In this paper we propose a new class of estimators for f (m) by considering m-order derivatives of the

kernel density estimators in the class proposed in Mynbaev and Martins-Filho (2010). We provide a full

asymptotic characterization of the new density derivative estimators, including uniform consistency, asymp-

totic normality and give exact convergence rates. An important byproduct of our results is an expression

and the exact order for the bias for the density estimators proposed in Mynbaev and Martins-Filho (2010).

There, they only provide the order of the bound on the absolute bias. This is useful, since it allows for our

discussion of optimal bandwidth selection based on the minimization of an asymptotic approximation for

the integrated mean squared error.

Besides this introduction, this paper contains four more sections. Section 2 provides new estimators for

f (m) based on a class of density estimators proposed in Mynbaev and Martins-Filho (2010) and a fundamental

integral representation for their bias. Section 3 provides asymptotic properties of our estimators and discusses

optimal bandwidth selection. Section 4 contains a small Monte Carlo study that gives some evidence on the

small sample properties of our estimators and compares their performance to that of f̂
(m)
RP . Finally, section

5 provides a conclusion. All proofs and technical lemmas are collected in the Appendix.

2 A class of estimators for f (m)(x) and their bias

The properties of nonparametric density estimators are traditionally obtained by imposing smoothness con-

ditions on the underlying density f . Smoothness can be regulated by finite differences, which can be defined

as forward, backward, or centered. The corresponding examples of finite first-order differences for a func-

tion f(x) are f(x + h) − f(x), f(x) − f(x − h) and f(x + h) − f(x − h), where h ∈ R. We will focus on

centered even-order differences because, as will soon become apparent, the resulting kernels are symmetric.

Let Cl
2k = (2k)!

(2k−l)!l! , l = 0, ..., 2k, k ∈ N be the binomial coefficients, ck,s = (−1)s+kCs+k
2k , s = −k, ..., k and

∆2k
h f(x) =

k
∑

s=−k

ck,sf(x+ sh), h ∈ R. (2)

We say that a function f(x) : R → R satisfies the Lipschitz condition of order 2k if for any x ∈ R there

exist H(x) > 0 and ε(x) > 0 such that
∣

∣∆2k
h f(x)

∣

∣ ≤ H(x)h2k for all h such that |h| ≤ ε(x). We call
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H(x) a Lipschitz constant and ε(x) a Lipschitz radius.2 For example, taking k = 1, 2 we have ∆2
hf(x) =

[f(x+ h)− f(x)]− [f(x)− f(x− h)] and ∆4
hf(x) = [f(x+ 2h)− f(x+ h)]− 3[f(x+ h)− f(x)] + 3[f(x)−

f(x−h)]− [f(x−h)−f(x−2h)]. For a kernel K Mynbaev and Martins-Filho (2010) define a class of kernels

{Mk(x)}k=1,2,3,··· where

Mk(x) = − 1

ck,0

k
∑

|s|=1

ck,s
|s| K

(x

s

)

. (3)

K is called a seed kernel for Mk. The main impetus for the definition of Mk(x) is that it allows us to express

the bias of our proposed estimator

f̂k(x) =
1

n

n
∑

j=1

1

hn
Mk

(

x−Xj

hn

)

for k = 1, 2, · · ·

in terms of centered even-order differences of f(x). Let λk,s = (−1)s+1(k!)2

(k+s)!(k−s)! , s = 1, ..., k and since − ck,s

ck,0
=

− ck,−s

ck,0
= λk,s, s = 1, ..., k, (3) can also be written as Mk(x) =

∑k
s=1

λk,s

s

(

K
(

x
s

)

+K
(

−x
s

))

. It follows

by construction that Mk is symmetric, that is Mk(x) = Mk(−x), x ∈ R. Since the coefficients ck,s satisfy

∑k
|s|=0 ck,s = (1− 1)2k = 0, we have − 1

ck,0

∑k
|s|=1 ck,s = 1 or

∑k
s=1 λk,s =

1
2 .

Consequently, (1) and (3) imply that
+∞
∫

−∞
Mk(x)dx =

∑k
s=1

λk,s

s

(

+∞
∫

−∞
K
(

x
s

)

dx+
+∞
∫

−∞
K
(

−x
s

)

dx

)

= 1,

establishing that {Mk(x)}k=1,2,··· is a class of kernels. Tsybakov (2009) provides several choices for a seed

kernel K, but perhaps the most popular would be a Gaussian density. In this case f̂k(x) has derivatives

of all orders. It should also be noted that when K is symmetric f̂1(x) is the traditional Rosenblatt-Parzen

density estimator. We define a new class of m = 1, 2, · · · order nonparametric estimators for f (m) by

f̂
(m)
k (x) =

1

n

n
∑

j=1

1

hm+1
n

M
(m)
k

(

x−Xj

hn

)

=
1

n

n
∑

j=1

uj (4)

where uj =
1

hm+1
n

M
(m)
k

(

x−Xj

hn

)

and

M
(m)
k (x) = − 1

ck,0

k
∑

|s|=1

ck,s
|s|smK

(m)
(x

s

)

. (5)

It follows from the fact that {Xj}nj=1 is an independent and identically distributed random sample that

E
(

f̂
(m)
k (x)

)

=
1

n

n
∑

j=1

1

hm+1
n

E

(

M
(m)
k

(

x−Xj

hn

))

=
1

n

n
∑

j=1

E(uj) = E(u1) (6)

2Theorem 1 in Mynbaev and Martins-Filho (2010) obtained expressions for H(x) and ε(x) for the Gaussian and Cauchy
densities.
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and

V
(

f̂
(m)
k (x)

)

= V





1

n

n
∑

j=1

1

hm+1
n

M
(m)
k

(

x−Xj

hn

)



 =
1

n2

n
∑

j=1

V (uj) =
V (u1)

n
=

1

n
(E(u21)− E(u1)

2). (7)

As in the existing literature, restrictions on K and f are needed to obtain a suitable representation for the

bias and variance of the density derivative estimators. Hence, we assume that

Assumption 1.

a)K is symmetric and belongs to the weighted Sobolev space with norm ‖K‖Wm
1

=
∫

R

(

|K(t)|+ |K(m)(t)|
)

|t|dt.

b) max
{

|f(s)|, ..., |f (m−1)(s)|
}

= O(s), |s| → ∞.

Assumption 1 is used to obtain an integral representation for the bias B(f̂
(m)
k (x)) = E(f̂

(m)
k (x))−f (m)(x)

of f̂
(m)
k (x) in terms of centered even order differences of f (m)(x). Most of other results depend on this

representation.

Theorem 1. Under Assumption 1, for any hn > 0, B(f̂
(m)
k (x)) = − 1

ck,0

+∞
∫

−∞
K(t)∆2k

hnt
f (m)(x)dt.

3 Asymptotic characterization of f̂
(m)
k (x)

3.1 Uniform consistency and orders for bias and variance

We start our investigation of the asymptotic behavior of f̂
(m)
k (x) by providing conditions under which

the estimator is asymptotically uniformly unbiased and uniformly consistent. To establish the uniform

consistency f̂
(m)
k (x) we make the following assumption:

Assumption 2. a) The characteristic function φK of K satisfies
∫

R

|smφK(s)|ds <∞; b) f (m)(x) is bounded

and uniformly continuous in R; c) nh2m+2
n → ∞ as n→ ∞.

Theorem 2. Suppose that Assumption 2 a) and 2 c) hold. Then,

lim
n→∞

E

(

sup
x∈R

|f̂ (m)
k (x)− E(f̂

(m)
k (x))|

)

= 0.

Let also Assumption 2 b) hold. Then f̂
(m)
k (x) is uniformly consistent.

We note that the rate of decay of the bandwidth in Assumption 2 c), needed for the uniform consistency

of f̂
(m)
k (x), could potentially be relaxed by, for example, limiting uniform consistency to restricted (compact)
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subsets of R. In the following theorem we provide exact orders for the bias and variance of the estimators.

As a result, it can be promptly verified that the usual rate of decay of hn implied by nh2m+1
n → ∞ as n→ ∞

is sufficient for pointwise consistency. The theorem depends on the following assumption.

Assumption 3. a) f (m)(x) is bounded and continuous in R; b) there exist functions H2k,m(x) > 0 and

ε2k(x) > 0 such that

∣

∣

∣
∆2k

h f
(m)(x)

∣

∣

∣
≤ H2k,m(x)h2k for all |h| ≤ ε2k(x); (8)

c)
∞
∫

−∞
|K(t)|t2kdt <∞.

Theorem 3. Suppose that Assumptions 1 and 3 hold. Then, for all x ∈ R and 0 < hn ≤ ε2k(x)

∣

∣

∣B(f̂
(m)
k (x))

∣

∣

∣ ≤ ch2kn
(

H2k,m(x) + ε−2k
2k (x)

)

(9)

where the constant c does not depend on x or hn. Suppose additionally that
∞
∫

−∞
|K(m)(t)|2(1 + |t|)dt < ∞

and there exist functions H1(x) > 0 and ε1(x) > 0 such that

|f(x)− f(x− h)| ≤ H1(x)|h| for all |h| ≤ ε1(x). (10)

Then, for all x ∈ R and 0 < hn ≤ min{ε2k(x), ε1(x)}

V (f̂
(m)
k (x)) =

1

nh2m+1
n

{

f(x)

∞
∫

−∞

(

M
(m)
k (t)

)2

dt+R1(x, hn)− hn[f
(m)(x) +R2k(x, hn,m)]2

}

, (11)

where the residuals satisfy

|R1(x, hn)| ≤ c1|h|(H1(x) + ε−1
1 (x)), |R2k(x, hn,m)| ≤ c2h

2k
n (H2k,m(x) + ε−2k

2k (x)) (12)

with constants c1 and c2 independent of x and hn.

3.2 Integrated mean squared error and bandwidth choice

We consider optimal choice of bandwidth by minimizing the Integrated Mean Squared Error (IMSE),

IMSE(f̂ (m)(x)) =

∫

R

(

V (f̂ (m)(x)) +B(f̂ (m)(x)))2
)

dx.

The precise value of IMSE, as a function of hn, is usually impossible to obtain. The common approach is

to derive asymptotic approximations of variance and bias, as hn → 0, and plug those approximations into

5



IMSE to obtain an approximation of type IMSE ≍ ϕ(hn) where ϕ depends on hn, n and some well-defined

constants. Then minimization of ϕ over hn yields an expression of the optimal hn as a function of the sample

size. This is the approach we take up here. The result we formulate below, when m = 0, is better than

Theorem 8 in Mynbaev and Martins-Filho (2010). In the latter theorem IMSE is bounded above by ϕ(hn),

while here we obtain the asymptotic expression for IMSE. Our results depend on two auxiliary lemmas that

are given in the appendix.

In the next theorem we derive the exact order of bias, as hn → 0. The result is stronger than the upper

bound (9) and, correspondingly, it requires stronger conditions. The result is also new for m = 0 as Mynbaev

and Martins-Filho (2010) did not derive the exact order of bias. We need the following assumption.

Assumption 4. a)
∫

|K(t)||t|2k+1dt = β2k+1(K) < ∞; b) f (m+2k) is absolutely continuous, bounded and

satisfies the following Lipschitz condition: there exist positive functions H1,m(x), ε(x) such that

∣

∣

∣f (m+2k)(x)− f (m+2k)(x− h)
∣

∣

∣ ≤ H1,m(x)|h| for all |h| ≤ ε(x). (13)

Theorem 4. Suppose that Assumptions 1 and 4 hold. Then

B(f̂ (m)(x)) = cf (m+2k)(x)h2kn +O(h2k+1
n G(x)) (14)

where c = (−1)k+1α2k(K) (k!)
2

(2k)! , α2k(K) =
∫

R
K(t)t2kdt and G(x) = H1,m(x) + 2‖f(m+2k)‖C

ε(x) .

We note that if the Lipschitz condition in (13) is uniform on R, then we can write B(f̂ (m)(x)) =

cf (m+2k)(x)h2kn + O(h2k+1
n ). In the next theorem we obtain the optimal bandwidth by minimizing the

asymptotic expression for IMSE.

Theorem 5. In addition to the conditions imposed in Theorem 3 for validity of (11) let us assume the

conditions f (m), H1, ε
−1
1 ∈ L1, H2k, ε

−2k
2k ∈ L2 that provide integrability in x of the right side of (11). In

addition to the conditions of Theorem 4, suppose that f (m+2k), H, 1ε ∈ L2 which makes sure that the right

side of (14) is square integrable. Then

IMSE = h4kn

[

c2‖f (m+2k)‖2L2
+O(hn)

]

+
1

nh2m+1
n

[

‖M (m)
k ‖2L2

+O(hn)
]

. (15)
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where c is the constant from Theorem 4. Hence, the function ϕ(hn) = c1h
4k
n + c2

1
nh2m+1

n

where c1 =

c2‖f (m+2k)‖2L2
and c2 = ‖M (m)

k ‖2L2
approximates IMSE. Minimization of ϕ yields the following optimal

bandwidth

hopt =

(

(2m+ 1)c2
4knc1

)1/(4k+2m+1)

. (16)

3.3 Asymptotic normality

In this section we state a theorem that gives the asymptotic normality of our estimator under suitable

normalization. The proof is omitted as it follows closely the proof of Theorem 9 in Mynbaev and Martins-

Filho (2010).

Theorem 6. Suppose that Assumption 3 a) and 3 b) hold. Let
∫

R
|K(m)(t)|2+δdt < ∞ for some δ > 0. If

nhn → ∞ and nh4k+2m+1
n → 0, then

(nh2m+1
n )1/2(f̂ (m)(x)− f (m)(x))

d→ N

(

0, f(x)

∫

R

[

M
(m)
k (t)

]2

dt

)

. (17)

4 Monte Carlo study

We implement our estimator f̂
(m)
k with k = 1, 2, 3, 4, 8 for derivatives of order m = 0, 1, 2. Our simulations

were conducted for four different densities and three different seed kernels (K) to constructMk. Since the fit

quickly worsens as the derivative order grows, we did not consider m > 2. Note that if k = 1 and the seed K

is symmetric, the kernel Mk is just K, so results reported below for k = 1 are actually for Rosenblatt-Parzen

estimators. Mynbaev and Martins-Filho (2010) demonstrated that increasing k indeed improves estimation

(they allowed k to take values 2, 4, 8) of the density. In case of derivative estimation considering large k is

technically more complex because the formula for the optimal bandwidth (16) requires a derivative of order

2k +m of the density.

The four densities to be estimated were proposed in Marron and Wand (1992) and are examples of nor-

mal mixtures. They are: 1) Gaussian (f1(x) ≡ N(1, 1)); 2) Bimodal (f2(x) ≡ 1
2N(−1, 19 ) +

1
2N(1, 19 ));

3) Separated-Bimodal (f3(x) ≡ 1
2N(−1.5, 14 ) +

1
2N(1.5, 14 )) and 4) Trimodal (f4(x) ≡ 9

20N(− 6
5 ,

9
25 ) +

7
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Figure 1: Comparison of three seed kernels

9
20N( 65 ,

9
25 ) +

1
10N(0, 1

16 )). These four densities were used by Mynbaev and Martins-Filho (2010) for their

simulations. They also considered one more density, whose second derivative is not continuous for all x

but satisfies a Lipschitz condition of order 2. We exclude this fifth density from consideration because the

optimal bandwidth we apply is not defined for the fifth density unless m = 0 and k = 1 (this case has already

been considered by Mynbaev and Martins-Filho (2010)).

The three seeds we consider are: 1) Gaussian, 2) t distribution with 5 degrees of freedom and 3) con-

centrated density. The concentrated density is defined as exp(−x8)/c, where c = 2Γ( 98 ) is the normalization

constant. Figure 1 provides a graph for the different seeds we use. The motivation for the name of the con-

centrated density is clear from Figure 1. Note that the concentrated density has a flat top and nonexistent

tails, while the t distribution is sharper at the top than the Gaussian and has fat tails. We did not use

degrees of freedom larger than 5 for the t-distribution to avoid smoothing of the density at the top. The

reason to experiment with different seeds was motivated by the fact that even with a very large number of

observations (n = 100, 000) the differences between the estimated density derivative and the true density

8
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derivative at the peaks and troughs of the graph do not vanish (see Figure 2). We report first the results

for the Gaussian seed and then indicate the variations caused by replacing the seed. For each of the four

densities 1000 samples of size 400 were generated. In our first set of simulations five estimators were obtained

for each sample: f̂k(x) for k = 1, 2, 3, 4, 8 where, as stated earlier, f̂1(x) = f̂RP (x), the Rosenblatt-Parzen

estimator. For all estimators, the optimal bandwidth hopt in (16) was used in our implementation. The usual

caveat applies: in practice, this bandwidth is infeasible given that f(x) is unknown. However, in the context

of a Monte Carlo study it is desirable since estimation performance is not impacted by the noise introduced

through a data driven bandwidth selection. Table 1 provides average absolute bias (B) and average mean

squared error (MSE) for each density considered for n = 200, 400, 600 respectively. We observe the following

general regularities. As follows from the theory, increases in the values of k seem to reduce average absolute

bias and MSE, but this is not verified for all experiments. Specifically, the step from k = 3 to k = 4 does

not always improve B and MSE in case of higher order derivatives or in case of densities that are more

difficult to estimate, i.e, f3 and f4. Further, density functions with larger curvature (in increasing order of

9



curvature f1, f2, f3, and f4) are more difficult to estimate both in terms of bias and mean squared error for

all estimators considered. Our proposed estimators (f̂2, f̂3, f̂4) outperform the Rosenblatt-Parzen estimator

both in terms of bias and mean squared error, except when estimating f4.

For the other two seeds (concentrated and t distribution) we give a verbal description of the simulation

results (full tables are available on request). When we use the concentrated distribution as a seed, the

statistics behave the same as one moves right along the table (they worsen when the density curvature

increases). The behavior along columns changes. For m = 0, the case k = 1 is about as good as k = 2,

except for f4 when the Rosenblatt-Parzen is the best. In case m = 1, 2 the Rosenblatt-Parzen outperforms

the others. This is true both for B and MSE. With t distribution with 5 degrees of freedom as a seed,

the requirement
∫

K(t)t2kdt < ∞ implied by the definition of the optimal bandwidth limits the value of k:

k ≤ 2. For m = 1, 2 our estimator with k = 2 outperforms the Rosenblatt-Parzen for all densities, except

f4. For m = 0, our estimator is better everywhere.

Finally, if we compare, for fixed k and m, the three seeds, the Gaussian is the best of all, with the margins

being the largest for f4, which is the most difficult to estimate. The Gaussian density seems to strike the

right balance between concentration and dispersion.

5 Conclusion

We have shown that taking derivatives of order m of the density estimators in the class first proposed by

Mynbaev and Martins-Filho (2010) produce estimators for the m order derivative of the densities that have

desirable asymptotic properties. In particular, these estimators are (uniformly) consistent and asymptotically

normally distributed under suitable normalization. In addition, the reduction in the order of the bias, relative

to the classical Rosenblatt-Parzen density estimator, first discovered in Mynbaev and Martins-Filho (2010)

in the context of density estimation, also manifests itself in the context of derivative estimation. These

theoretical results are supported by a small Monte Carlo study, but in agreement with previous simulations

we conducted in the case of density estimation, very large values of k seem, in some contexts, to damage

finite sample performance as measured by MSE. An interesting extension of this research would be to develop

10



a practical criterion for the selection of k, viz., a criterion for the selection of an optimal density or density

derivative estimator in the class we have proposed. We leave such efforts for future studies.
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Table 1. Five estimators with optimal bandwidth hopt
Average absolute bias (B), Mean Squared Error (MSE)

n = 200 f1(x) f2(x) f3(x) f4(x)
estimators B MSE B MSE B MSE B MSE

f̂1 0.110 0.003 0.121 0.005 0.147 0.007 0.148 0.006

m = 0 f̂2 0.107 0.002 0.129 0.004 0.140 0.005 0.158 0.008

f̂3 0.099 0.002 0.129 0.004 0.142 0.006 0.164 0.008

f̂4 0.102 0.002 0.125 0.005 0.130 0.006 0.176 0.009

f̂8 0.099 0.002 0.131 0.005 0.145 0.006 0.184 0.010

f̂1 0.202 0.009 0.338 0.030 0.463 0.060 0.571 0.088

m = 1 f̂2 0.177 0.008 0.293 0.026 0.428 0.055 0.666 0.123

f̂3 0.170 0.009 0.296 0.024 0.455 0.051 0.762 0.170

f̂4 0.176 0.007 0.301 0.022 0.443 0.052 0.841 0.203

f̂8 0.178 0.008 0.299 0.025 0.440 0.056 0.931 0.267

f̂1 0.415 0.047 0.978 0.273 1.887 0.999 3.209 3.036

m = 2 f̂2 0.041 0.037 0.930 0.258 1.775 0.844 4.185 5.345

f̂3 0.358 0.037 0.945 0.230 1.792 0.922 5.263 7.547

f̂4 0.407 0.043 0.928 0.228 1.950 0.980 6.045 10.842

f̂8 0.413 0.041 1.007 0.273 2.010 1.144 7.372 15.053

n = 400 f1(x) f2(x) f3(x) f4(x)
estimators B MSE B MSE B MSE B MSE

f̂1 0.086 0.002 0.101 0.003 0.114 0.004 0.111 0.004

m = 0 f̂2 0.075 0.002 0.095 0.003 0.107 0.003 0.116 0.004

f̂3 0.077 0.001 0.093 0.003 0.107 0.003 0.123 0.004

f̂4 0.077 0.001 0.094 0.002 0.106 0.003 0.128 0.005

f̂8 0.075 0.001 0.097 0.003 0.106 0.003 0.130 0.005

f̂1 0.159 0.007 0.267 0.020 0.385 0.043 0.459 0.065

m = 1 f̂2 0.142 0.005 0.242 0.016 0.334 0.031 0.538 0.085

f̂3 0.138 0.005 0.246 0.016 0.343 0.032 0.585 0.099

f̂4 0.136 0.005 0.240 0.015 0.346 0.033 0.629 0.115

f̂8 0.132 0.006 0.238 0.015 0.350 0.032 0.681 0.135

f̂1 0.343 0.032 0.848 0.194 1.621 0.741 2.840 2.421

m = 2 f̂2 0.317 0.027 0.880 0.164 1.514 0.640 3.353 3.252

f̂3 0.305 0.024 0.773 0.160 1.480 0.604 4.068 4.688

f̂4 0.326 0.027 0.775 0.151 1.570 0.679 4.924 7.040

f̂8 0.322 0.025 0.791 0.165 1.534 0.651 5.472 8.532
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n = 600 f1(x) f2(x) f3(x) f4(x)
estimators B MSE B MSE B MSE B MSE

f̂1 0.072 0.002 0.086 0.002 0.098 0.003 0.103 0.003

m = 0 f̂2 0.069 0.001 0.083 0.002 0.091 0.002 0.102 0.003

f̂3 0.064 0.001 0.081 0.002 0.089 0.002 0.101 0.003

f̂4 0.065 0.001 0.080 0.002 0.091 0.002 0.106 0.003

f̂8 0.061 0.001 0.079 0.002 0.090 0.002 0.109 0.004

f̂1 0.148 0.006 0.240 0.016 0.348 0.036 0.414 0.050

m = 1 f̂2 0.129 0.004 0.210 0.013 0.302 0.025 0.457 0.060

f̂3 0.124 0.004 0.209 0.012 0.309 0.026 0.501 0.072

f̂4 0.130 0.004 0.206 0.011 0.305 0.024 0.547 0.084

f̂8 0.116 0.003 0.205 0.010 0.312 0.027 0.574 0.096

f̂1 0.326 0.030 0.802 0.183 1.471 0.621 2.506 1.976

m = 2 f̂2 0.293 0.022 0.695 0.132 1.350 0.508 2.986 2.579

f̂3 0.271 0.018 0.684 0.126 1.359 0.497 3.475 3.624

f̂4 0.281 0.019 0.677 0.120 1.329 0.474 4.029 4.733

f̂8 0.279 0.020 0.687 0.129 1.365 0.519 4.715 6.450
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Appendix - Lemmas and proofs

Lemma 1. a) Let γi =
k
∑

s=−k

ck,ss
i for i = 0, · · · , 2k. Then, γ0 = · · · = γ2k−1 = 0, γ2k = (−1)2k(2k)!;

b) Suppose K has finite moments αl(K) of orders l ≤ 2k. Then Mk has moments αl(Mk) = 0, l < 2k,

α2k(Mk) = − γ2k

ck,0
α2k(K).

Proof. a) The function φq(x) = (1 − x)q vanishes at x = 1 together with all its derivatives of orders l < q.

For the qth derivative, we have φ
(q)
q (x) =

(

d
dx

)q
[φq(x)] = (−1)qq!. Now, consider the linear operator

(

x d
dx

)

.

By induction, for l < q we have
(

x d
dx

)l
[φq(x)] =

∑l
j=1 aj,lx

jφ
(j)
q (x), where aj,l are constants and al,l = 1.

Now it is easy to see that
(

x
d

dx

)l

[φq(x)]|x=1 =

{

0 if l < q
(−1)qq! if l = q

. (18)

Note that by the binomial theorem, φq(x) =
∑q

m=0(−1)mxmCm
q and we see that

(

x
d

dx

)l

[φq(x)] =

q
∑

m=0

(−1)mmlxmCm
q . (19)

Comparing (18) and (19) we have

q
∑

m=0

(−1)mmlCm
q =

{

0 if l < q
(−1)qq! if l = q

. (20)

By the definition of ck,s and replacing s+ k with m, we have

γi =

k
∑

s=−k

(−1)s+kCs+k
2k si =

2k
∑

m=0

(−1)mCm
2k(m− k)i =

2k
∑

m=0

(−1)mCm
2k

i
∑

j=0

Cj
im

j(−k)i−j

=

i
∑

j=0

Cj
i (−k)i−j

2k
∑

m=0

(−1)mCm
2km

j .

This identity and (20) prove statement a).3 b) Replacing x/s = t we have

∫

R

Mk(x)x
ldx = − 1

ck,0

k
∑

|s|=1

ck,s
|s| s

l

∫

R

K
(x

s

)(x

s

)l

dx = − 1

ck,0

k
∑

|s|=1

slck,s

∫

R

K (t) tldx

= − 1

ck,0

k
∑

s=−k

slck,sαl(K) = − 1

ck,0
γlαl(K)

which completes the proof.

3This proof extends the arguments from (Besov et al., 1975, p.254).
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Lemma 2. Let I(x, g) = 1
(2k)!

x
∫

x0

(x− t)2kg(t)dt denote the (2k + 1)-fold integration operator for some fixed

x0 and Assumption 1 hold.4 If the density f has an absolutely continuous derivative f (m+2k), then the bias

of f̂ (m)(x) has the representation

B(f̂ (m)(x)) = − γ2k
ck,0

f (m+2k)(x0)

(2k)!
h2kα2k(K)− 1

ck,0

∫

R

K(t)∆2k
htI(x, f

(m+2k+1))dt (21)

where α2k(K) =
∫

R

K(t)t2kdt and x0 is arbitrary.

Proof. If g(2k) is absolutely continuous, then g(2k+1) is summable and by Taylor’s theorem with remainder

in integral form one has g(x) =
2k
∑

i=0

g(i)(x0)
i! (x− x0)

i + 1
(2k)!

x
∫

x0

(x− t)2kg(2k+1)(t)dt.

Applying this formula to g = f (m) and recalling our notation for the integration operator, we get

f (m)(x) =
2k
∑

i=0

f (m+i)(x0)

i!
(x− x0)

i + I(x, f (m+2k+1)).

In view of (26), we need to consider

∆2k
htf

(m)(x) =

2k
∑

i=0

f (m+i)(x0)

i!
∆2k

ht (x− x0)
i +∆2k

htI(x, f
(m+2k+1)) (22)

where the difference is applied with respect to the variable x, x0 being fixed. By Lemma 1

∆2k
ht (x− x0)

i =

k
∑

s=−k

ck,s(x+ sht− x0)
i =

k
∑

s=−k

ck,s

i
∑

j=0

Cj
i (x− x0)

i−j(sht)j

=

i
∑

j=0

Cj
i (x− x0)

i−j(ht)j
k
∑

s=−k

ck,ss
j =







0, i < 2k

γ2k(ht)
2k, i = 2k

(23)

Under Assumption 1, combining (26), (22) and (23) we finish the proof of (21):

B(f̂ (m)(x)) = − 1

ck,0

∫

R

K(t)

[

f (m+2k)(x0)

(2k)!
γ2k(ht)

2k +∆2k
htI(x, f

(m+2k+1))

]

dt

= − γ2k
ck,0(2k)!

f (m+2k)(x0)h
2k

∫

R

K(t)t2kdt− 1

ck,0

∫

R

K(t)∆2k
htI(x, f

(m+2k+1))dt.

Theorem 1. Under Assumption 1, we show that max
{

|K(s)|, |K(1)(s)|, ..., |K(m−1)(s)|
}

= o
(

1
|s|

)

as |s| →

∞. Let s > 0. It is well-known that the Sobolev spaceWm
1 [0, 1] is embedded in Cj [0, 1] for j = 0, 1, ...,m−1,

4Note that since x0 and 2k are fixed, the operator acts on the function g and the result is a function of x.
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that is, with some constant c independent of K one has ‖K(j)‖C[0,1] ≤ c
1
∫

0

(

|K(t)|+ |K(m)(t)|
)

dt. Applying

this bound to the segment [s, s+ 1] and using the fact that |t/s| ≥ 1 for t ∈ [s, s+ 1] we get

max
j

|K(j)(s)| ≤ c

s+1
∫

s

(

|K(t)|+ |K(m)(t)|
)

dt ≤ c

|s|

s+1
∫

s

(

|K(t)|+ |K(m)(t)|
)

|t|dt.

The case of s < 0 is treated similarly.

Under Assumption 1
∣

∣K(j)(t)f (m−1−j)(x− shnt)
∣

∣ = o
(

1
|t|

)

O(|x − shnt|) = o
(∣

∣

x−shnt
t

∣

∣

)

= o(1), as

|t| → ∞ for j = 0, ...,m − 1, hn > 0. Therefore, we can integrate by parts, and from (5) and a change of

variables, we obtain

E(f̂
(m)
k (x)) = E(u1) =

1

hm+1
n

+∞
∫

−∞

M
(m)
k

(

x− t

hn

)

f(t)dt =
1

hmn

+∞
∫

−∞

M
(m)
k (l)f(x− hnl)dl

= − 1

ck,0

k
∑

|s|=1

ck,s
|s|smhmn

+∞
∫

−∞

K(m)

(

l

s

)

f(x− hnl)dl

= − 1

ck,0

k
∑

|s|=1

ck,s
|s|sm





s

hmn
K(m−1)

(

l

s

)

f(x− hnl)|+∞
−∞ +

s

hm−1
n

+∞
∫

−∞

K(m−1)

(

l

s

)

f (1)(x− hnl)dl





= − 1

ck,0

k
∑

|s|=1

ck,s
|s|sm





s2

hm−1
n

K(m−2)

(

l

s

)

f ′(x− hnl)|+∞
−∞ +

s2

hm−2
n

+∞
∫

−∞

K(m−2)

(

l

s

)

f (1)(x− hnl)dl



 = · · ·

= − 1

ck,0

k
∑

|s|=1

ck,s
|s|sm





sm

hn
K

(

l

s

)

f (m−1)(x− hnl)|+∞
−∞ +

sm

hn
hn

+∞
∫

−∞

K

(

l

s

)

f (m)(x− hnl)dl





= − 1

ck,0

k
∑

|s|=1

ck,s
|s|

+∞
∫

−∞

K

(

l

s

)

f (m)(x− hnl)dl

= − 1

ck,0





−1
∑

s=−k

ck,s
−s (−s)

+∞
∫

−∞

K(−t)f (m)(x+ shnt)dt+

k
∑

s=1

ck,s
s
s

+∞
∫

−∞

K(−t)f (m)(x+ shnt)dt





= − 1

ck,0

k
∑

|s|=1

ck,s

+∞
∫

−∞

K(−t)f (m)(x+ shnt)dt. (24)

Hence, from (1), (2) and (24) we obtain

B(f̂ (m)(x)) = − 1

ck,0





−1
∑

s=−k

ck,s

+∞
∫

−∞

K(−t)f (m)(x+ shnt)dt+

k
∑

s=1

ck,s

+∞
∫

−∞

K(−t)f (m)(x+ shnt)dt





− ck,0
ck,0

f (m)(x)

(25)
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= − 1

ck,0





k
∑

|s|=1

ck,s

+∞
∫

−∞

K(−t)f (m)(x+ shnt)dt+ ck,0

+∞
∫

−∞

K(−t)f (m)(x+ 0hnt)dt





= − 1

ck,0

+∞
∫

−∞

K(−t)∆2k
hntf

(m)(x)dt = − 1

ck,0

+∞
∫

−∞

K(t)∆2k
hntf

(m)(x)dt, (26)

where the last equality follows from the symmetry of K.

Theorem 2. a) We denote ψj =
x−Xj

hn
, then we can rewrite (4) as f̂

(m)
k (x) = 1

n

∑n
j=1

1
hm+1
n

M
(m)
k (ψj) and

using (5), we get

M
(m)
k (ψj) = − 1

ck,0

k
∑

|s|=1

ck,s
|s|smK

(m)

(

ψj

s

)

. (27)

Under Assumption 2 a) the inversion theorem for Fourier transforms gives

K(m)

(

ψj

s

)

=
(−i)(m)

2π

∫

R

exp

{−itψj

s

}

tmφK(t)dt. (28)

Using (4), (5), (27) and (28) and by changing variables of integration we have

f̂
(m)
k (x) =

1

nhm+1
n

n
∑

j=1

M
(m)
k

(

x−Xj

hn

)

=
1

nhm+1
n

n
∑

j=1

M
(m)
k (ψj)

= − (−i)(m)

2πck,0

n
∑

j=1

1

nhm+1
n

k
∑

|s|=1

ck,s
|s|sm

∫

R

exp

{−itψj

s

}

tmφK(t)dt

= − (−i)(m)

2πck,0

n
∑

j=1

1

nhm+1
n

k
∑

|s|=1

ck,s
|s|sm

∫

R

exp

{

−it
(

x−Xj

sh

)}

tmφK(t)dt

= − (−i)(m)

2πck,0

n
∑

j=1

1

n

k
∑

|s|=1

ck,s

∫

R

exp{−iγx} exp{iγXj}γmφK(shnγ)dγ

= − (−i)(m)

2πck,0

∫

R

exp{−iγx}
n
∑

j=1

1

n
exp{iγXj}

k
∑

|s|=1

ck,sγ
mφK(shnγ)dγ

= − (−i)(m)

2πck,0

∫

R

exp{−iγx}φ̂n(γ)∆(γ)dγ

where φ̂n(γ) =
∑n

j=1
1
n exp{iγXj} is an unbiased estimator for the characteristic function φf (t) of f and

∆(γ) =
∑k

|s|=1 ck,sγ
mφK(shnγ). Thus,

E(f̂
(m)
k (x)) = − (−i)(m)

2πck,0

∫

R

exp{−iγx}Eφ̂n(γ)∆(γ)dγ = − (−i)(m)

2πck,0

∫

R

exp{−iγx}φf (γ)∆(γ)dγ
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so that |f̂ (m)
k (x)− E(f̂

(m)
k (x))| ≤ c

∫

R

|φ̂n(γ)− φf (γ)|| exp{−iγx}||∆(γ)|dγ. But since | exp{−iγx}| = 1,

sup
x∈R

|f̂ (m)
k (x)− E(f̂

(m)
k (x))| ≤ c

∫

R

|φ̂n(γ)− φf (γ)||∆(γ)|dγ.

with no sup on the right-hand side because it does not depend on x. It follows from Lemma 2.1 of Jennrich

(1969) that sup | · | is measurable, its expectation is well defined and

E

(

sup
x∈R

|f̂ (m)
k (x)− Ef̂

(m)
k (x)|

)

≤ c

∫

R

E
∣

∣

∣φ̂n(γ)− φf (γ)
∣

∣

∣ |∆(γ)|dγ.

Now,

E
(

|φ̂n(γ)− φf (γ)|
)

= E(| 1
n

n
∑

j=1

exp{iγXj} − E(exp{iγXj})|)

= E(|Y1 + iY2|) = E|Y1|+ E|Y2| = E[(Y 2
1 + Y 2

2 )]
1
2 ≤ [E(Y 2

1 + Y 2
2 )]

1
2 ≤ (EY 2

1 )
1
2 + (EY 2

2 )
1
2

where














Y1 = 1
n

n
∑

j=1

(cos(γXj)− E(cos(γXj)))

Y2 = 1
n

n
∑

j=1

(sin(γXj)− E(sin(γXj))).

Using the i.i.d assumption, it is easy to see that

EY 2
1 =

1

n2

n
∑

j=1

[

E cos2(γXj)− (E cos(γXj))
2
]

=
1

n2

n
∑

j=1

V (cos(γXj)) =
1

n
[V (cos(γX1)]

EY 2
2 =

1

n2

n
∑

j=1

[

E sin2(γXj)− (E sin(γXj))
2
]

=
1

n2

n
∑

j=1

V (sin(γXj)) =
1

n
[V (sin(γX1)]

Consequently, (EY 2
1 )

1
2+(EY 2

2 )
1
2 =

(

1
nV (cos(γX1)

)
1
2+
(

1
nV (sin(γX1)

)
1
2 since E cos2(γX1) ≤ 1 and E sin2(γX1) ≤

1, V (cos(γX1))
1
2 ≤

[

E cos2(γX1) + (E cos(γX1))
2
]

1
2 ≤

[

E cos2(γX1) + E cos2(γX1)
]

1
2 ≤

√
2 V (sin(γX1))

1
2 ≤

[

E sin2(γX1) + (E sin(γX1))
2
]

1
2 ≤

[

E sin2(γX1) + E sin2(γX1)
]

1
2 ≤

√
2 (EY 2

1 )
1
2 + (EY 2

2 )
1
2 = 2

√
2√
n
. Hence,

E
(∣

∣

∣φ̂n(γ)− φf (γ)
∣

∣

∣

)

≤ 2
√
2√
n

and

∫

R

|∆(γ)|dγ ≤
k
∑

|s|=1

|ck,s|
∫

R

|γm||φK(shnγ)|dγ ≤ 1

hm+1
n

k
∑

|s|=1

|ck,s|
sm+1

∫

R

|tmφK(t)|dt = c

hm+1
n

∫

R

|tmφK(t)|dt.
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Finally, E
(

supx∈R |f̂ (m)
k (x)− Ef̂

(m)
k (x)|

)

≤ c
hm+1
n

√
n

∫

R

|tmφK(t)|dt which tends to zero as n → ∞ under

Assumption 2 c) (nh2m+2
n → ∞). Further, by Markov’s inequality

P

(

sup
x

|f̂ (m)
k (x)− E(f̂

(m)
k (x))| > ε

)

→ 0 (29)

as n→ ∞ for all ε > 0. Therefore, supx∈R |f̂ (m)
k (x)− Ef̂

(m)
k (x)| p→ 0. Note that

sup
x∈R

|f̂ (m)
k (x)− f (m)(x)| ≤ sup

x∈R
|f̂ (m)

k (x)− Ef̂
(m)
k (x)|+ sup

x∈R
|Ef̂ (m)

k (x)− f (m)(x)|.

The first term on the right-hand side of the inequality is uniformly op(1) from (29). The second term tends

to zero by (24), Assumption 2 b) and Theorem 5 (for the case where m = 0) in Mynbaev and Martins-Filho

(2010). We have limn→∞ supx∈R |f̂ (m)
k (x)−f (m)(x)| = 0. Consequently, f̂

(m)
k (x) is uniformly consistent.

Theorem 3. Assumption 3 c) implies for any N > 0

∫

|t|>N

|K(t)| dt ≤
∫

|t|>N

|K(t)|
∣

∣

∣

∣

t

N

∣

∣

∣

∣

2k

dt ≤ N−2k

∞
∫

−∞

|K(t)| t2kdt. (30)

Then, using (26) and Assumption 3 b), we have

∣

∣

∣B(f̂
(m)
k (x))

∣

∣

∣ =

∣

∣

∣

∣

1

ck,0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∞
∫

−∞

K(t)∆2k
hntf

(m)(x)dt

∣

∣

∣

∣

∣

∣

≤ c1







∫

|hnt|≤ε2k(x)

+

∫

|hnt|>ε2k(x)






|K(t)||∆2k

hntf
(m)(x)|dt

≤ c2






H2k,m(x)

∫

|hnt|≤ε2k(x)

|K(t)|(hnt)2kdt+ sup
x∈R

|f (m)(x)|
∫

|hnt|>ε2k(x)

|K(t)|dt






.

It remains to apply (30) and (8) to obtain (9).

Now, we proceed with derivation of (11). According to (7) we need to evaluate E(u21) and E(u1)
2. By

(6) and (9),

Eu1 = E(f̂
(m)
k (x)) = f (m)(x) +B(f̂

(m)
k (x)) = f (m)(x) +R2k(x, hn,m) (31)

where R2k(x, hn) satisfies (12). Now, E(u21) =
(

1
hm+1
n

)2
∫

R

[

M
(m)
k

(

x−t
hn

)]2

f(t)dt = 1
h2m+1
n

∫

R

[

M
(m)
k (t)

]2

f(x−

hnt)dt. Consider

∫

R

[

M
(m)
k (t)

]2

f(x− hnt)dt− f(x)

∫

R

[

M
(m)
k (t)

]2

dt =

∫

R

[

M
(m)
k (t)

]2

[f(x− hnt)− f(x)] dt
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Then, similarly to (30), we have

∫

|t|>N

∣

∣

∣M
(m)
k (t)

∣

∣

∣

2

dt ≤
∫

|t|>N

∣

∣

∣M
(m)
k (t)

∣

∣

∣

2
∣

∣

∣

∣

t

N

∣

∣

∣

∣

dt ≤ N−1

∞
∫

−∞

∣

∣

∣M
(m)
k (t)

∣

∣

∣

2

|t|dt. (32)

Using (10) and (32), we have

∣

∣

∣

∣

∣

∣

∞
∫

−∞

(

M
(m)
k (t)

)2

(f(x− hnt)− f(x))dt

∣

∣

∣

∣

∣

∣

≤







∫

|hnt|≤ε1(x)

+

∫

|hnt|>ε1(x)







∣

∣

∣M
(m)
k (t)

∣

∣

∣

2

|f(x− hnt)− f(x)| dt

≤ H1(x)

∫

|hnt|≤ε1(x)

∣

∣

∣M
(m)
k (t)

∣

∣

∣

2

|(hnt)|dt+ sup
x∈R

|f(x)|
∫

|hnt|>ε1(x)

∣

∣

∣M
(m)
k (t)

∣

∣

∣

2

dt.

Then using (10), we get

∫

R

[

M
(m)
k (t)

]2

f(x− hnt)dt = f(x)

∫

R

[

M
(m)
k (t)

]2

dt+R1(x, hn) (33)

where R1(x, hn) satisfies (12).

Now we show that
∫

R

[

M
(m)
k (t)

]2

dt < ∞. From (5), we have M
(m)
k (x) =

∑k
|s|=1 asK

(m)
(

x
s

)

, where

as = − 1
ck,0

ck,s

|s| s
(−m). Hence, by Hölder’s inequality

∫

R

(

M
(m)
k (x)

)2

dx =

∫

R

k
∑

|s|,|t|=1

asatK
(m)
(x

s

)

K(m)
(x

t

)

dx ≤
k
∑

|s|,|t|=1

|asat|
∫

R

∣

∣

∣K(m)
(x

s

)∣

∣

∣

∣

∣

∣K(m)
(x

t

)∣

∣

∣ dx

≤
k
∑

|s|,|t|=1

|asat|





∫

R

∣

∣

∣K(m)
(x

s

)∣

∣

∣

2

dx





1
2




∫

R

∣

∣

∣K(m)
(x

t

)∣

∣

∣

2

dx





1
2

= c1





∫

R

∣

∣

∣K(m)(t)
∣

∣

∣

2

dt



 <∞

because K(m) ∈ L2(R).

Note that (11) is a consequence of (31) and (33). In addition, if f(x) 6= 0 and for small hn we can rewrite

(11) as

V (f̂k
(m)

(x)) =
1

nh2m+1
n



f(x)

∫

R

(

M
(m)
k (t)

)2

dt+O(hn)



 . (34)

Theorem 4. By equation (7) in Mynbaev and Martins-Filho (2010)
∣

∣∆2k
h g(x)

∣

∣ ≤ h2k sup|x−t|≤k|h| |g(2k)(t)|. It

is easy to verify that
(

d
dx

)2k
I(x, g) =

x
∫

x0

g(t)dt. Hence, using the last equation and the preceding inequality,
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we have

∣

∣

∣
∆2k

htI(x, f
(m+2k+1))

∣

∣

∣
≤ (ht)2k sup

|x−y|≤k|ht|

∣

∣

∣

∣

∣

(

d

dy

)2k

I(y, f (m+2k+1))

∣

∣

∣

∣

∣

= (ht)2k sup
|x−y|≤k|ht|

∣

∣

∣

∣

∣

∣

y
∫

x0

f (m+2k+1)(z)dz

∣

∣

∣

∣

∣

∣

.

Next, given that x0 is arbitrary, we set x0 = x and use (23) and Assumption 4 b) to obtain

∣

∣

∣∆2k
htI(x, f

(m+2k+1))
∣

∣

∣ ≤ (ht)2k sup
|x−y|≤k|ht|

∣

∣

∣f (m+2k)(y)− f (m+2k)(x)
∣

∣

∣

≤
{

|ht|2k+1kH1,m(x) if k|ht| ≤ ε(x),

2(ht)2k‖f (m+2k)‖C if k|ht| > ε(x).

It follows that

∣

∣

∣

∣

∣

∣

∫

R

K(t)∆2k
htI(x, f

(m+2k+1))dt

∣

∣

∣

∣

∣

∣

≤ kh2k+1
n H1,m(x)

∫

k|ht|≤ε(x)

|K(t)||t|2k+1dt+ 2h2kn ‖f (m+2k)‖C

×
∫

k|ht|>ε(x)

|K(t)|t2kdt.

In the first integral on the right expand the domain of integration; in the second one use the inequality

1 < k|ht|/ε(x) and then expand the domain. The outcome is

∣

∣

∣

∣

∣

∣

∫

R

K(t)∆2k
htI(x, f

(m+2k+1))dt

∣

∣

∣

∣

∣

∣

≤ kh2k+1
n H1,m(x)β2k+1(K) + 2kh2k+1

n ‖f (m+2k)‖C
1

ε(x)
β2k+1(K)

≤ kh2k+1
n β2k+1(K)

[

H1,m(x) +
2‖f (m+2k)‖C

ε(x)

]

.

This equation and (21) prove the theorem.

Theorem 5. Under the conditions imposed, (34) implies

∫

R

V (f̂ (m)(x))dx =
1

nh2m+1
n





∫

R

f(x)dx‖M (m)
k ‖2L2

+O(hn)



 ,

while (14) gives
∫

R

[

B(f̂ (m)(x))
]2

dx = h4k
[

c2‖f (m+2k)‖2L2
+O(h)

]

. Summing the last two equations we get

(15). The rest is obvious and

hopt =

{

2m+ 1

4knγ22k

∫

[M
(m)
k (t)]2dt

∫

[f (m+2k)]2dt(
∫

K(t)t2kdt)2

(

(2k)!

k!

)4} 1
4k+2m+1

. (35)
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