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Abstract

Stochastic random phenomena considered in von Neumann –Morgenstern util-

ity theory constitute only a part of all possible random phenomena (Kolmogorov

(1986)). We show that any sequence of observed consequences generates a cor-

responding sequence of frequency distributions, which in general does not have

a single limit point but a non-empty closed limit set in the space of finitely

additive probabilities. This approach to randomness allows to generalize the

expected utility theory in order to cover decision problems under nonstochas-

tic random events. We derive the maxmin expected utility representation for

preferences over closed sets of probability measures. The derivation is based

on the axiom of preference for stochastic risk, i.e. the decision maker wishes

to reduce a set of probability distributions to a single one. This complements

Gilboa and Schmeidler’s (1989) consideration of the maxmin expected utility

rule with objective treatment of multiple priors.
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1. Introduction

The expected utility theory of von Neumann and Morgenstern (1947) con-

siders situations of objective risk relying on the frequentist notion of probability.

Namely, the probability of an event is defined as its relative frequency in a large

number of trials.5

The problem arises when event’s relative frequency do not tend to a limit

(Borel (1956)). In Kolmogorov (1986) we read “Speaking of randomness in the

ordinary sense of this word, we mean those phenomena in which we do not find

regularities allowing us to predict their behavior. Generally speaking, there are

no reasons to assume that random in this sense phenomena are subject to some10

probabilistic laws. Hence, it is necessary to distinguish between randomness in

this broad sense and stochastic randomness (which is the subject of probability

theory)”. We shall say that random in a broad sense phenomena is nonstochastic

if it is not “the subject of probability theory”.

The problem of revealing regularities of nonstochastic phenomena, as well as15

corresponding decision rules, becomes more and more important nowadays. In

particular, this is true for complex social and economic systems, e.g. financial

markets (Lux (1998); Chian et al. (2006); Miller and Ratti (2009); Ivanenko and

Pasichnichenko (2014)).

Some non-probabilistic mathematical formalism has been used for these pur-20

poses (see for example, Dubois and Prade (1989)). However, we shall use the

extension of the standard notions of probability theory given by the theory

of statistical regularities (Ivanenko (2010); Ivanenko and Labkovsky (2015)).

Namely, every mass phenomenon (random or deterministic) is characterized by

its statistical regularity, i.e. a weak* closed set of finitely additive probability25

distributions. The statistical regularity of a stochastic phenomenon is a single-

ton.

This approach to randomness makes it possible to extend the domain of the

expected utility theory to cover decision problems under nonstochastic random

events. This paper proposes an axiomatic foundation of the maxmin expected30
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utility decision rule in the statistical regularities framework.

Closed sets of probability measures are already being used in decision the-

ory yet not in the sense of laws, i.e. regularities, of random phenomena. For

instance, families of a priori distributions result from axioms of rational choice

(Ivanenko and Labkovsky (1986); Gilboa and Schmeidler (1989); Maccheroni35

et al. (2006); Chateauneuf and Faro (2009); Pasichnichenko (2016)). In partic-

ular, Gilboa and Schmeidler (1989) assume that the decision maker has a set of

priors, and each decision is valuated according to its minimal expected utility.

While the family of distributions in their model is usually considered as subjec-

tive, we offer a natural frequentist interpretation of such uncertainty situations.40

Jaffray (1989) studied decision situations, in which a unique true probability is

known up to a set of measures. On the contrary, it is impossible to distinguish

a unique true probability in a statistical regularity.

This paper is organized as follows. In the next section, we derive the sta-

tistical regularities of mass phenomena. Then Section 3 states the main result.45

Finally, Section 4 provides summary and conclusions.

2. Statistical regularities

Suppose X is a nonempty set, Σ is an algebra of subsets of X, and XN is

the set of all sequences that take values in X.

Definition 1. Two sequences x̄(1), x̄(2) ∈ XN are called statistically equivalent

(S-equivalent) if for any m ∈ N and any bounded measurable functions γi : X →

R (i = 1,m) the sequences ȳ(1) and ȳ(2) have the same set of limit points (in

R
m), where γ = (γ1, . . . , γm) and

y(k)n =
1

n

n
∑

i=1

γ
(

x
(k)
i

)

for all n ∈ N and k ∈ {1, 2}.50

In other words, S-equivalent sequences are indistinguishable with respect to

a limiting average. For the next definition, consider the partition of XN into

equivalence classes.
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Definition 2. A class A of S-equivalent sequences is called a simple mass phe-

nomenon.55

Let P be the set of all finitely additive probability measures on Σ endowed

with the weak* topology. Recall that a base of the topology consists of sets

{

p ∈ P :
∣

∣

∫

fi(x) dp−
∫

fi(x) dp0
∣

∣ < ε, i = 1, n
}

,

where fi : X → R are bounded measurable functions, p0 ∈ P, ε > 0, and n ∈ N.

To each x̄ ∈ XN assign the sequence p̄ of measures pn ∈ P defined by

pn(A) =
1

n

n
∑

i=1

1A(xi) (1)

for all A ∈ Σ, where 1A is the indicator of a set A. Equivalently, pn is the

frequency distribution of the number of hits in the sets A ∈ Σ of the first

n terms of the sequence x̄. Since P is a compact space, we know that the

sequence p̄ has a non-empty closed set of limit points.60

Definition 3. The set of limit points of the sequence p̄ is called the statistical

regularity of the sequence x̄ and is denoted by P (x̄).

In general, P (x̄) is not a singleton even for finite X as it was shown by

Zorich et al. (2000). The following theorem justifies Definition 3.

Theorem 1.65

1. Suppose x̄ ∈ XN, m ∈ N, γi : X → R (i = 1,m) is a bounded measurable

mapping, and

yn =
1

n

n
∑

i=1

γ (xi)

for all n ∈ N, where γ = (γ1, . . . , γm). Then the set of limit points of the

sequence ȳ coincides with

{∫

γ(x) dp : p ∈ P (x̄)
}

.

2. Two sequences x̄(1), x̄(2) ∈ XN are S-equivalent if and only if P
(

x̄(1)
)

=

P
(

x̄(2)
)

.
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In other words, the statistical regularity P (x̄) contains all information about

the limiting average for any characteristic γ. The proof of Theorem 1 is in

Appendix A. Statement 2 allows the following definition.70

Definition 4. The set P (x̄) is called a statistical regularity of a simple mass

phenomenon A if x̄ ∈ A.

The connection between the notions introduced above and probabilistic no-

tions follows directly from the strong law of large numbers (Lemma 1).

Lemma 1. Suppose X is a finite set, µ is a probability distribution on X, and75

{ξn} is a sequence of independent random elements taking values in X with the

distribution µ. Then with probability 1 the statistical regularity P ({ξn}) consists

of the only element µ.

Thus, if X is finite, then the regularity of a stochastic phenomenon is a

singleton.80

Note that the regularity of a sequence is concentrated on a countable subset

of X. A more general notion of a mass phenomenon is derived using sampling

nets (Ivanenko and Labkovsky (2015)).

Definition 5. A function ϕ from a directed set Λ to the sampling space X∞ =
⋃

∞

n=1 X
n is called a sampling net in X.85

First, generalize the notion of S-equivalence and define a (non-simple) mass

phenomenon as a class of S-equivalent sampling nets. Namely, two sampling

nets ϕ(1) and ϕ(2) in X, such that

ϕ
(k)
λ =

(

x
(k)
λ1 , . . . , x

(k)

λn
(k)
λ

)

for all λ ∈ Λ and k ∈ {1, 2}, are called statistically equivalent if the nets y(1)

and y(2) defined by

y
(k)
λ =

1

n
(k)
λ

n
(k)
λ
∑

i=1

γ
(

x
(k)
λi

)

(2)

have the same set of limit points. Then define the statistical regularity of a

sampling net ϕ as the set of limit points of the net p : Λ → P, where pλ is the
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frequency distribution of the sample ϕλ = (xλ1, . . . , xλnλ
) defined by

pλ(A) =
1

nλ

nλ
∑

i=1

1A(xλi)

for all A ∈ Σ.

For example, let the directed set be the set R+ of non-negative real numbers.

Then the number pt(A) could be interpreted as the frequency of the number of

hits in A of the observations (xt1, . . . , xtnt
) that are performed at time t ∈ R+.

Theorem 1 remains true (Ivanenko and Labkovsky (2015)) if we replace90

sequences with sampling nets and define a net y by an equation similar to (2).

Moreover, the following is also true: if P is a non-empty closed subset of the

space P, then P is a statistical regularity of some sampling net in X. In other

words, every non-empty closed set of finitely additive probabilities on (X,Σ) can

be interpreted as a set of limit points related to some sampling net. The proof95

stems from the fact that the set of all simple probability measures with rational

values is dense in P. This consideration leads to the following definition.

Definition 6. A set P ⊆ P is a regularity on X if it is nonempty and closed.

To sum up, statistical regularities provide an extension of probability the-

ory to statistically unstable random phenomena. An arbitrary random mass100

phenomenon is characterized by a weak* closed set of probability distributions,

generally not a singleton. The approach is also appropriate for deterministic

phenomena if we are interested in their average characteristics.

3. Nonstochastic risk

A situation of nonstochastic risk is a decision-making situation such that105

the outcome of each decision is described by a regularity on the set X of conse-

quences.

Let R be the set of all regularities on X. We identify a probability measure p

with the singleton {p} and thereby consider P as a subset ofR. For all α ∈ [0, 1],

let the convex combination of regularities P ∈ R and q ∈ P be defined by

αP + (1− α) q = {αp+ (1− α) q : p ∈ P} , (3)
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while convex combinations in P are performed pointwise. The following lemma

shows that the set R is closed under operation (3).

Lemma 2. For all P ∈ R, q ∈ P and α ∈ [0, 1], the set αP + (1− α) q is a110

regularity on X.

Proof. According to Definition 6 we must prove that αP + (1− α) q is closed.

The case α = 0 is trivial. Otherwise, consider the mapping π : P → P defined

by

π (p) = αp+ (1− α) q

for all p ∈ P . We shall prove that it is continuous. We claim that for any

p, p0 ∈ P, ε > 0, and any bounded measurable function f : X → R the inequality

∣

∣

∫

f(x) dp−
∫

f(x) dp0
∣

∣ < ε
α

implies
∣

∣

∫

f(x) dπ(p)−
∫

f(x) dπ(p0)
∣

∣ < ε.

Indeed,

∣

∣

∫

f(x) d (αp+ (1− α)q)−
∫

f(x) d (αp0 + (1− α)q)
∣

∣

= α
∣

∣

∫

f(x) dp−
∫

f(x) dp0
∣

∣ < ε.

Thus, for any neighborhood A of the point π(p0) there is a neighborhood of the

point p0 with the image in A. Therefore, the mapping π is continuous and the

set αP + (1− α)q is closed being the image of the compact set P .

Let R0 be a subset of R such that P ⊆ R0 and R0 is closed under convex115

combinations (3). Suppose there is a decision maker’s preference relation � on

R0.

Some structural assumptions should be imposed on Σ. First, assume that

Σ contains the singleton subset {x} for each x ∈ X. Denote δx the one-point

measure: δx ({x}) = 1. A set A ⊆ X is a preference interval if x, y ∈ A120

implies {z ∈ X : δx � δz � δy} ⊆ A. The second assumption is that Σ contains

all preference intervals.

Consider the following properties.
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1. (Weak Order) The relation (�,R0) is complete and transitive.

2. (Continuity) For any P,Q ∈ R0 and r ∈ P the sets {α : αP + (1− α) r � Q}125

and {α : Q � αP + (1− α) r} are closed.

3. (Independence) For any p, q, r ∈ P and α ∈ (0; 1) if p � q, then αp+ (1−

α)r � αq + (1− α)r.

4. (Dominance) For any p, q, r ∈ P and A ∈ Σ

if p(A) = 1 and q � δx for any x ∈ A, then q � p;130

if p(A) = 1 and δx � r for any x ∈ A, then p � r;

5. (Monotonicity) For any P ∈ R0 and q ∈ P if q � p for any p ∈ P , then

q � P .

6. (Preference for Stochastic Risk) P � 1
2P + 1

2p for any P ∈ R0 and p ∈ P .

Weak Order assumption is common. To understand assumptions 2 and 6,135

let us interpret convex combination (3) as a “two-step lottery” similarly to con-

vex combinations of measures in the expected utility theory (see Appendix B).

Here Continuity axiom of the expected utility theory is extended to convex

combinations of regularities, while the Independence axiom is left unchanged.

Dominance axiom is used to obtain the expected utility representation for non-140

simple probability measures. Note that the latter two assumptions refer only to

preferences among measures. Monotonicity axiom links the preference relation

on regularities with the one on probability measures. Assumption 6 should be

understood as follows: the decision maker would not refuse a 50-50 chance to

exchange the nonstochastic outcome described by a regularity P for a stochastic145

outcome described by a probability measure p ∈ P , i.e. to reduce nonstochastic

risk to stochastic. Compare this with Uncertainty Aversion axiom of Gilboa

and Schmeidler (1989) and Principle of Guaranteed Result in Ivanenko and

Labkovsky (1986).

Our main result is the following.150

Theorem 2. The preference relation (�,R0) satisfies assumptions 1 – 6 if and
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only if there exists a utility function U : R0 → R of the form

U(P ) = min
p∈P

∫

u(x) dp, P ∈ R0, (4)

where u : X → R is a bounded measurable function. Furthermore, the mapping

V : R0 → R is also a utility function of the form (4) if and only if there are

a, b ∈ R, a > 0, such that V (P ) = aU(P ) + b.

Proof. Due to assumptions 1, 2, and 3 the induced preference relation (�,P)

satisfies the Herstein and Milnor (1953) conditions. Therefore, there exists a

linear utility function U : P → R, which is unique up to a positive linear trans-

formation. Assumption 4 of Fishburn (1982) implies that there is a bounded

measurable function u : X → R such that

U (p) =

∫

u(x) dp

for all p ∈ P.

Fix an arbitrary P ∈ R0. Since the mapping U is continuous on the compact

set P , it follows that there exists p0 ∈ P such that

U (p0) = min
p∈P

U (p) .

Then assumption 5 implies p0 � P . On the other hand, by assumption 6 we have

P � 1
2P + 1

2p0. Since p0 ∈ 1
2P + 1

2p0, the repeated application of assumption

6 gives 1
2P + 1

2p0 � 1
4P + 3

4p0. Continuing in the same way, we obtain the

sequence of regularities such that

P �
1

2n
P +

(

1−
1

2n

)

p0.

Since 1
2n → 0 as n → ∞, from assumption 2 it follows that P � p0. Now put155

U (P ) = U (p0) and extend U to R0. Obviously, U is a utility function of the

form (4).

The necessity of assumptions 2 and 6 follows from the linearity of U , i.e.

U (αP + (1− α) q) = αU (P ) + (1− α)U (q)

for all P ∈ R0, q ∈ P, and α ∈ [0, 1].
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4. Conclusion

Theorem 2 provides an axiomatic foundation of the maxmin expected utility160

rule for decision problems under nonstochastic risk. In such problems the choice

is made among weak* closed sets of probability measures.1 This reflects the fact

that a random phenomenon is generally described by a specific set of probability

distributions (Theorem 1). If a random phenomenon is stochastic and the set of

outcomes is finite, then this set is a singleton. Correspondingly, if R0 = P, then165

Theorem 2 degenerates into the expected utility theorem of von Neumann and

Morgenstern. The main assumption that we use is the following: the decision

maker wishes to reduce the set of probability distributions to a single one.
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Appendix A

The proof of Theorem 1 rests on the following general lemma.

Lemma 3. Suppose Y is a compact space, f : Y → R
m is a continuous mapping,

and {xn} is a sequence in Y . Then

LIM {f(xn)} = f (LIM {xn}) ,

where by LIM {xn} we denote the set of limit points of a sequence {xn}.175

Proof. Suppose x ∈ LIM {xn} and y = f(x). For any neighborhood B of y

there exists a neighborhood A of x such that f(A) ⊆ B. Since the sequence

1Some decision makers may think of averaging a statistical regularity to a single distribution

and then calculating vNM expected utility.
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{xn} infinitely many times hits A, it follows that the same is true for {f(xn)}

and B. Hence, y ∈ LIM {f(xn)}.

If y ∈ LIM {f(xn)}, then f (xnk
) → y as k → ∞ for some subsequence180

{xnk
}. From compactness of X it follows that the sequence {xnk

} has a limit

point x ∈ LIM {xn}. Let us assume that ‖f(x)− y‖ = ε > 0. Then starting

from some k0 ∈ N we have ‖f(xnk
)− y‖ < ε

2 . On the other hand, the ε
2 -

neighborhood of the point f(x) contains the image of some neighborhood A of

x. Since there is an xnk
in A after k0, we arrive at a contradiction. Therefore,185

f(x) = y.

Proof of Theorem 1. 1) Let the sequence {pn} correspond to x̄ in the sense of

(1) and πγ : P → R
m be defined by

πγ(p) =

∫

γ(x) dp.

Since the mapping πγ is continuous, the application of Lemma 3 yields

LIM {πγ(pn)} = πγ (LIM {pn}) .

By rewriting both sides of the previous equation

πγ(pn) =

∫

γ(x) dpn =
1

n

n
∑

i=1

γ (xi) = yn

LIM {pn} = P (x̄)

we obtain

LIM {yn} = πγ (P (x̄)) .

2) Assume that the sequences x̄(1) and x̄(2) are S-equivalent and there exists a

point p0 ∈ P
(

x̄(1)
)

\ P
(

x̄(2)
)

. Since P
(

x̄(2)
)

is closed, there is a neighborhood

A of p0 such that P
(

x̄(2)
)

∩ A = ∅. Equivalently, there exist a real number

ε > 0 and bounded measurable functions fi : X → R (i = 1,m) such that for

any p ∈ P
(

x̄(2)
)

we have

∣

∣

∫

fi(x) dp−
∫

fi(x) dp0
∣

∣ ≥ ε
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for some i ∈ 1,m. If γ = (f1, . . . , fm), then the vector
∫

γ(x) dp0 is not in

{∫

γ(x) dp : p ∈ P
(

x̄(2)
)}

.

Hence, the first part of the theorem implies that the sequences x̄(1) and x̄(2) are

not S-equivalent, which is a contradiction. Therefore, P
(

x̄(1)
)

= P
(

x̄(2)
)

.

The converse follows from the first part of the theorem.

Appendix B190

Suppose P ∈ R is the statistical regularity of a phenomenon A and q ∈ P

is the statistical regularity of a phenomenon B. The phenomenon C is repre-

sented by the following sampling net ϕ : Λ → X∞: for all λ ∈ Λ before each

observation there is a chance α to observe A and a complementary chance to

observe B. By rλ denote the frequency distribution of a sample ϕλ. If the

sample is big enough, then approximately α percentage of observations belongs

to A. This observations constitute the sample from A with some distribution

pλ. Similarly, by qλ denote the distribution of observations that belong to B.

Then the following equalities hold (the first holds approximately):

rλ = αpλ + (1− α) qλ, P = LIM(pλ) , q = LIM(qλ) .

The following lemma implies that the statistical regularity LIM (rλ) of the phe-

nomenon C coincides with αP + (1− α) q.

Lemma 4. If Λ is a directed set, pλ, qλ ∈ P for all λ ∈ Λ, α ∈ [0, 1], and

LIM (qλ) is a singleton, then

LIM (αpλ + (1− α) qλ) = αLIM (pλ) + (1− α) LIM (qλ) .

Proof. Let us fix p ∈ LIM (pλ), q ∈ LIM (qλ), λ0 ∈ Λ, and show that αpλ +

(1− α) qλ is in the (f1, . . . , fn, ε)-neighborhood of αp+(1− α) q for some λ ≥ λ0.

Since P is compact, it follows that q is a limit of the net (qλ) and there exists

λ1 ∈ Λ such that for all λ ≥ λ1 the probability qλ is in the (f1, . . . , fn, ε)-

neighborhood of q. On the other hand, there exists λ2 ∈ Λ such that λ2 ≥ λ0,

12



λ2 ≥ λ1, and pλ2 is in the (f1, . . . , fn, ε)-neighborhood of p. Then

∣

∣

∫

fi(x) d (αp+ (1− α) q)−
∫

fi(x) d (αpλ2
+ (1− α) qλ2

)
∣

∣

≤ α
∣

∣

∫

fi(x) dp−
∫

fi(x) dpλ2

∣

∣

+(1− α)
∣

∣

∫

fi(x) dq −
∫

fi(x) dqλ2

∣

∣ < ε

for each i = 1, n.

To prove the converse inclusion, take r ∈ LIM (αpλ + (1− α) qλ). Let M be

the directed set of pairs (λ,A), such that λ ∈ Λ, A is a neighborhood of r, and

αpλ + (1− α) qλ ∈ A. By definition, (λ1, A1) ≥ (λ0, A0) if and only if λ1 ≥ λ0

and A1 ⊆ A0. For each µ ∈ M put

rµ = αpλ + (1− α) qλ, pµ = pλ, qµ = qλ

when µ = (λ,A). Clearly, (rµ), (pµ), and (qµ) are subnets of (αpλ + (1− α) qλ),

(pλ), and (qλ) respectively. Moreover, lim (rµ) = r. Since P is compact, it195

follows that (pµ) has a limit point p ∈ LIM (pλ). We will show that r =

αp+ (1− α) q.

For any µ ≥ µ1 rµ is in the (f, ε)-neighborhood of r and qµ is in the (f, ε)-

neighborhood of q. On the other hand, there is a µ2 ≥ µ1 such that pµ2
is in

the (f, ε)-neighborhood of p. Then

∣

∣

∫

f(x) dr −
∫

f(x) d (αp+ (1− α) q)
∣

∣

≤
∣

∣

∫

f(x) dr −
∫

f(x) d (rµ2)
∣

∣

+
∣

∣

∫

f(x) d (αpµ2
+ (1− α) qµ2

)−
∫

f(x) d (αp+ (1− α) q)
∣

∣

< ε+ αε+ (1− α) ε = 2ε.

Since f and ε are arbitrary, we have r = αp+ (1− α) q.
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