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Abstract

The present article offers an empirical assessment of the degree and the

structure of price dependence between wholesale and retail market levels in

the U.S. beef industry, while accounting for product differentiation. This is

pursued using the statistical tool of copulas and monthly rates of price changes

for different cuts and quality grades of the beef product for the time period

2002–2016. Six wholesale–retail pairs were formed based on different cuts and

quality grades. The empirical results suggest that prices at retail level respond

differently to extreme negative and positive wholesale price shocks. More

specifically, extreme price increases at the wholesale level are transmitted to

the retail level in five out of six pairs whereas extreme price decreases are not

passed from the wholesale to the retail market level in five out of six pairs.

Based on these findings, there is evidence of asymmetric price relationships

between wholesale–retail market levels in the U.S. beef marketing channel,

when quality differences in cuts and grades is considered.
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1 Introduction

Asymmetric price relationships is an increasingly disputed issue in agricultural and

food economics. Increases in farm prices are believed to be transmitted faster at

the retail level, whereas negative price shocks at the farm level take more time to

be passed on to consumers. Downward price stickiness in agri–food supply chains

can be considered as evidence of problems in the flow of information through the

markets, and an indicator of inefficiency. For these reasons it attracts the attention

of researchers and policy makers.

There exists a widespread belief that price transmission in the U.S. beef industry

is asymmetric. These concerns have been validated to some extent in the literature.

Recent evidence by Kuhns and Volpe (2014) for the United States Department of

Agriculture-Economic Research Service reveals that retail beef prices rise rapidly,

but fall slowly in response to price changes in upstream markets. Emmanouilides and

Fousekis (2015) assessed the degree and the structure of price dependence along the

U.S. beef supply chain with the use of the statistical tool of copulas. Their findings

reveal the existence of asymmetric price dependence between wholesale–retail levels.

Goodwin and Holt (1999), estimated a full vector error correction model (VECM)

of beef price relationships at the farm, wholesale and retail levels. The authors

found evidence that the adjustment path towards the equilibrium is asymmetric.

On the other hand, Pozo et al. (2013) with the use of a threshold asymmetric error-

correction model (TAECM) found no evidence of asymmetric price transmissions

(APT) in the response of retail beef prices to changes in upstream prices.

In the majority of the studies, increased concentration in downstream markets
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and input manufacturing has been often pointed out to explain why decreases in

upstream prices are not accompanied by proportional decreases in downstream mar-

kets. The beef packing industry has concentrated a lot of concern over the years

since firms started to concentrate market power due to mergers and acquisitions

(Cai et al., 2009; Love et al., 2009). At wholesale level, the four-firm concentration

ratio (CR4) reached the level of 85 percent in 2010, dropped to 84 percent in 2011,

and raised again to 85 percent in 2012.1 In general, the four-firm concentration

ratio has remained around 80 percent in the last ten years (USDA, Packers and

Stockyards program 2013 Annual Report). At the same time, there are high levels

of concentration at the retail level of the beef industry. At this last stage of the

beef supply chain we find retail grocers, food service providers and restaurants with

significant name recognition and potentially high degree of market power as well

(e.g. McDonald’s, Kroger, Safeway, Costco, Compass Group PLG, etc.).

However, there are other possible explanations for asymmetric price dependence

besides market power. Adjustment costs, inventory management, increasing returns

to scale, exchange rates, transportation costs, menu costs of changing prices and

product differentiation are identified in the literature as some of the sources respon-

sible for the existence of asymmetries in price transmission (Meyer and Cramon-

Taubadel, 2004; Conforti, 2004).

This work investigates if product differentiation could be a source of asymmetric

price relationships between wholesale–retail market levels in the US beef industry.

Beef is sold to consumers as cuts. Different beef cuts exhibit different prices. Cuts

1The top four beef packing operations are: Tyson Foods Inc., Cargill Meat Solutions Corp.,
JBS USA, National Beef Packing Co.,LLC.
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from the middle part of the animal are priced higher than cuts from the ends. Cuts

like ribs, loin, and sirloin are usually priced higher than cuts like round or briskets.

Different cuts do not constitute the only beef attribute to determine consumers’

willingness to pay. Physical intrinsic qualities like tenderness, texture, juiciness, fat

composition, appear to influence consumers’ decisions when purchasing beef (Leick

et al., 2012).

Beef is being inspected and graded before it reaches the retail market. The U.S.

Department of Agriculture (USDA) offers this service since the day the system was

established.2 Till today, no system has proven more reliable operating without bias

under actual commercial conditions (Morris, 1999). There are eight types of quality

grades, but the ones commonly available at the retail level are: i) Prime (highest in

quality and intramuscular fat, amazing tenderness, juiciness, flavor and fine texture,

limited supply, featured at the most exclusive upscale steakhouse restaurants), ii)

Choice (high quality, widely available in food service industry and retail), and iii)

Select (acceptable quality, commonly sold at supermarkets, less juicy and less tender

due to leanness).3 About 3% of carcasses grade as Prime, more than 50% grade as

Choice, and 40% grade as Select. Most of the graded beef sold in supermarkets is

USDA Choice or USDA Select.

In the light of the preceding, there is plenty of evidence suggesting that consumers

perceive beef as a differentiated product. At the same time, the U.S. beef industry

vertically differentiates its product through the USDA grading system. Despite this

2Organized grading of beef dates back to 1923.
3Lower grades are U.S. Standard (lower quality, yet economical, lacking marbling), U.S. Com-

mercial (low quality, lacking tenderness, produced from older animals), U.S. Utility, U.S. Cutter
and U.S. Canner.
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fact, the majority of studies on price transmission along the US beef supply chain

have been carried out considering aggregate commodity prices. This means that the

literature treats beef as an aggregate product when overwhelming evidence suggests

otherwise. As a consequence, potential differences in price adjustments between

different beef cuts and beef quality grades are averaged out when using aggregate

data.

The objective of this study is to empirically examine if the existence of prod-

uct differentiation could be a source of asymmetric price dependence between the

wholesale and the retail levels of the U.S. beef industry, for certain cuts and qual-

ity grades of the beef product. The statistical tool utilized in this study is that

of copulas. Copulas are used for modeling the joint behavior of random variables

during extreme market events, making it possible to assess whether prices move

with the same intensity during market upswings and downswings. Panagiotou and

Stavrakoudis (2015) used the statistical tool of copulas in order to assess the degree

and the structure of price dependence between different cuts and quality grades at

of the U.S. beef industry at retail level. Results indicated that, depending on the

cuts and the grades, there was evidence of asymmetric and non-asymmetric price co-

movements. Fousekis and Grigoriadis (2016) used nonparametric copulas in order to

examine the intensity and the mode of price linkages for quality differentiated coffee

beans. The empirical findings suggested that there is symmetric price co-movement

under positive and negative price shocks; that means, shocks of the same absolute

magnitude but of different sign are transmitted from one coffee market to another

with the same intensity. The transmission of shocks, however, of the same sign but
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of different magnitude is asymmetric. Fousekis et al. (2016) assessed the degree of

integration of the international skim milk powder between the three the EU, the

U.S. and Oceania markets (principal producing regions), with the employment of

nonparametric kernel-based time-varying copulas. Their empirical results indicate

a strong and increasing degree of overall price co-movement along with statistically

significant probabilities for joint price crashes and booms.

Copulas have a wide range of applications in the area of economics. Aloui and

Aı̈ssa (2016) employed a vine copula approach to investigate the dynamic relation-

ship between energy, stock and currency markets. Vine copulas offers a greater

flexibility when modeling complex dependency patterns for high-dimensional dis-

tributions. The authors find evidence of a significant and symmetric relationship

between the three variables. Pérez-Rodŕıguez et al. (2015) used a copula-based

GARCH approach in order to describe the dependence structure between GDP

and tourism receipts growth rates. Two developed economies, United Kingdom

and Spain, and an emerging economy such as Croatia were considered. Empirical

findings indicated that there is a significant, asymmetric and positive dependence

between tourism and GDP growth rates for the three countries studied.

With regard to vertical price relationships along marketing channels, copulas can

reveal the nature of price dependence under extreme price changes (Emmanouilides

and Fousekis, 2015). If prices in different market levels boom and crash together with

the same intensity, there is no evidence of asymmetric price dependence, and this is

an indicator of a well functioning market. If prices in different market levels do not

boom but crash together (and vice versa), then there is evidence of asymmetric price
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relationships. A significant advantage of copulas is that they allow the joint behavior

of random processes to be modeled independently of the marginal distributions,

providing this way considerable flexibility in empirical research (Patton, 2012; Fan

and Patton, 2014).

In the most recent related study, Surathkal et al. (2014) examined the relation-

ship between wholesale and retail beef prices while accounting for product differen-

tiation in cuts and quality grades. The authors estimated threshold autoregressive

(TAR) and momentum-TAR (MTAR) models while testing for the statistical sig-

nificance of threshold effects. The TAR model was a better fit, and the threshold F

test showed that there are significant thresholds effects. Their results revealed the

existence of asymmetric effects, indicating that a decrease or an increase in whole-

sale beef prices tend to have different effects on the retail beef prices. Additionally,

these effects were found to vary across quality grades: superior quality beef tend

to show longer persistence to increase in prices and adjusts at a slower rate than

relatively inferior quality beef.

In conclusion, Panagiotou and Stavrakoudis (2015) used the statistical tool of

copulas in order to assess the degree and the structure of price dependence between

different beef cuts and quality grades, but they focused only at the retail level of

the US beef supply chain. Emmanouilides and Fousekis (2015) employed copulas

in order to assess the structure of price dependence in the U.S. beef marketing

channel during extreme market upswings and downswings, but they used aggregate

commodity prices for the empirical implementation of their study. Lastly, Surathkal

et al. (2014) accounted for product differentiation in cuts and quality grades and

8



investigated the nature of vertical price transmission along the US beef supply chain.

The estimation method was a threshold autoregressive model.

To the best of our knowledge, there has been no published work which has

used the statistical tool of copulas in order to examine empirically the existence

of asymmetric price dependence between wholesale–retail levels of the U.S. beef

industry with the use of data on different beef cuts and quality grades.

The present work is structured as follows: Section 2 contains the methodology.

Section 3 presents the data and empirical models, and Section 4 the results and

discussion. Section 5 offers conclusions.

2 Copula theory

Copula theory dates back to (Sklar, 1959), but only recently copula models have

realized widespread application in empirical models of joint probability distributions

(see Nelsen (2007) for more details). The models use a copula function to tie together

two marginal probability functions that may or may not be related to one another.

A two–dimensional copula, C(u1, u2), is a multivariate distribution function in

the unit hypercube [0, 1]2 with uniform U(0,1) marginal distributions Nelsen (2007).4

As long as the marginal distributions are continuous, a unique copula is associated

with the joint distribution, H, and is described in equation (1). This function consti-

tutes a form of the principal result of copula theory (Sklar’s theorem). It is obtained

as:

4For simplicity we consider the bivariate case. The analysis, however, can be extended to a
p-variate case with p > 2.
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C(u1, u2) = H(H−1
1 (u1), H

−1
2 (u2)) (1)

Similarly, given a two-dimensional copula, C(u1, u2), and two univariate distri-

butions, H1(x) and H2(x), equation 1 is a two-variate distribution function with

marginals H1(x) and H2(x), whose corresponding density function can be written

as:

h(x, y) = c(H1(x), H2(y))h1(x)h2(y), (2)

where the functions h1 and h2 are the densities of the distribution functions H1

and H2 respectively.

The density function of the copula, c, given its existence, can be derived using

equation 1 and marginal density functions, hi:

c(u1, u2) =
h(H−1

1 (u1), H
−1
2 (u2))

h1(H
−1
1 (u1))h2(H

−1
2 (u2))

(3)

A rank based test of functional dependence is Kendall′stau. It provides infor-

mation on co-movement across the entire joint distribution function, both at the

center and at the tails of it. It is calculated from the number of concordant (PN)

and disconcordant (QN) pairs of observations in the following way:

τN =
PN −QN

(

N
2

) =
4PN

N(N − 1)
− 1, (4)

If a copula function (C) is known then τ can be calculated as:
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τ = 1− 4

∫ ∫

[0,1]2

∂C

∂u1

∂C

∂u2

du1 u2 (5)

Often though, information concerning dependence at the tails (at the lowest

and the highest ranks) is extremely useful for economists, managers and policy

makers. Tail (extreme) co-movement is measured by the upper, λU , and the lower,

λL, dependence coefficients, such that λU , λL ∈ [0, 1], which are defined as

λU = lim
u↑1

prob(U1 > u|U2 > u) = lim
u→1

1− 2u+ C(u, u)

1− u
(6)

λL = lim
u↓0

prob(U1 < u|U2 < u) = lim
u→0

C(u, u)

u
(7)

where, given the random vector (X,Y) with marginal distribution, U1 for X and

U2 for Y, λU measures the probability that X is above a high quantile given that Y

is also above that high quantile, while λL measures the probability that X is below

a low quantile given that Y is also below that low quantile. In order to have upper

or lower tail dependence, λU or λL need to be strictly positive. Otherwise, there

is upper or lower tail independence. Hence, the two measures of tail dependence

provide information about the likelihood for the two random variables to boom and

to crash together. For example, in our work, positive upper and zero lower tail

dependence estimates would provide evidence that big increases in wholesale prices

are matched at the retail level, whereas extreme negative shocks at the wholesale

level are less likely to be transmitted to the retail level.
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This study considers a range of bivariate copula specifications. All of them are

members of the elliptical copulas and Archimedean copulas, since they permit con-

siderable flexibility in capturing price dependence between different cuts of beef be-

tween wholesale and retail level in the US beef industry. Elliptical and Archimedean

copulas are the two of the most commonly used copula families. The elliptical cop-

ulas that we evaluate are the Gaussian (or Normal) and Student–t. Among the one

parameter Archimedean copulas we consider there are the Clayton, Gumbel, Frank,

and Joe. Clayton-Gumbel, Joe-Gumbel, Joe-Clayton and the Joe-Frank are among

the two-parameter Archimedean copulas we examine.

Table 1 presents the copulas under consideration in our study, their respective

dependence parameters, their relationship to Kendall′s τ as well as to λU and λL

(upper and lower dependence coefficients). From the elliptical copulas, the Gaus-

sian copula is symmetric and exhibits zero tail dependence. Thus, irrespective of the

degree of the overall dependence, extreme changes in one random variable are not

associated with extreme changes in the other random variable. The t-copula exhibits

symmetric non-zero tail dependence (joint booms and crashes have the same prob-

ability of occurrence). From the one parameter Archimedean copulas, the Clayton

copula exhibits only left co-movement (lower tail dependence). The Gumbel and

the Joe copulas exhibit only right co-movement (upper tail dependence). The Frank

copula has zero tail dependence. From the two- parameter Archimedean copulas,

the Gumbel-Clayton and the Joe-Clayton allow for potentially asymmetric upper

and lower co-movement. The Joe-Gumbel exhibits only right co-movement while

the Joe-Frank exhibits zero tail dependence.
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Table 1: Copula functions, parameters, Kendall’s tau, tail dependence (∗)

Copulas Parameters Kendall’s tau Tail dependence
(λL, λU)

1) Gaussian (N) θ ∈ (−1, 1) 2
π arcsin(θ) (0,0)

2) Student-t (t) θ ∈ (−1, 1) 2
π arcsin(θ) 2tν+1(−

√
ν + 1

√

1−θ
1+θ ),

ν > 2 2tν+1(−
√
ν + 1

√

1−θ
1+θ )

3) Clayton (C) θ > 0 θ
θ+2 (2

−1

θ , 0)

4) Gumbel (G) θ ≥ 1 1- 1
θ (0, 2 - 2

1

θ )

5) Frank (F) θ ∈ R\{0} 1− 4
θ + 4D(θ)

θ withD(θ) =
∫ θ
0

x/θ

exp(x)− 1
dx (0,0)

6) Joe (J) θ ≥ 1 1+ 4
θ2

∫ 1
0 t log(t)(1− t)2(1−θ)/θ dt (0, 2 - 2

1

θ )

7) Clayton-Gumbel (BB1) θ1 > 0, θ2 ≥ 1 1 - 2
θ2(θ1+2) (2

−1

θ1θ2 , 2 - 2
1

θ2 )

8) Joe-Gumbel (BB6) θ1 ≥ 1, θ2 ≥ 1 1+ 4
θ1θ2

∫ 1
0 (− log(1− (1− t)θ1) (0, 2 - 2

1

θ1θ2 )

×(1− t)(1− (1− t)−θ1)) dt

9) Joe-Clayton (BB7) θ1 ≥ 1, θ2 > 0 1+ 4
θ1θ2

∫ 1
0 (−(1− (1− t)θ1)θ2+1 (2

−1

θ2 , 2 - 2
1

θ1 )

× (1−(1−t)θ1 )−θ2−1

(1−t)θ2−1
)dt

10) Joe-Frank (BB8) θ1 ≥ 1, θ2 ∈ (0, 1] 1+ 4
θ1θ2

∫ 1
0 (− log( (1−tθ2)θ1−1

(1−θ2)θ1−1
) (0, 0)

×(1− tθ2)(1− (1− tθ2)
−θ1)) dt

(∗) Table adapted from Joe (2014) and Schepsmeier et al. (2016).
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3 Data and Empirical Models

3.1 Data

The data for the empirical analysis are monthly wholesale and retail beef prices on

certain cuts for the quality grades of choice and select.5 Prime quality grade has not

been taken into account in our study because it comprises a negligible share. The

cuts examined are: chuck roast, steak round and sirloin steak. We use specific cuts

for two reasons. The first one is for data availability. The second one is for com-

parison between the two quality grades as well as between the wholesale and retail

market levels. Observations refer to the period 2002:1–2016:8. Wholesale data were

collected from the USDA-AMS Weekly Beef Archive (United States Department of

Agriculture-Agricultural Marketing Service, 2016). Retail level data were collected

from the Bureau of Labor Statistics (2016) and from the United States Department

of Agriculture-Economic Research Service (2016). Our final data consist of twelve

time series (beef cuts) with 176 observations in each one.6 At retail level we have

three time series (one for each cut) for the choice quality grade and three time series

(one for each cut) for the select quality grade. The same holds for the data on

quality grades and cuts at wholesale level. Summary statistics for the different cuts

of choice and select quality grades are provided in Table 2. Figure 1 presents the

price series for each one of the different cuts of choice and select quality grades, at

wholesale and retail levels, respectively. As we can observe, it both market levels the

5We consider the BLS description ”graded and ungraded, excluding USDA Prime and Choice”
as representative of Select quality grade.

6For the sirloin steak cut of the select quality grade at the retail level, the last observation
reported is August 2013.
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higher quality grade, Choice, receives a higher price than the lower quality grade,

Select.

In what follows, we describe the procedure in order to estimate the nature of

price dependence for the six wholesale–retail pairs of beef cuts of choice and select

quality grades.
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Figure 1: Time series of beef cuts prices. Notation of price series data:
w=wholesale, r=retail, CPC=choice chuck roast, CPR=choice steak round,
CPL=choice sirloin steak, SPC=select chuck roast, SPR=select steak round,
SPL=select sirloin steak.
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Table 2: Summary statistics of beef cuts prices. Notation of price series
data: w=wholesale, r=retail, CPC=choice chuck roast, CPR=choice steak round,
CPL=choice sirloin steak, SPC=select chuck roast, SPR=select steak round,
SPL=select sirloin steak.

Mean Std.Dev. Min Max Skewness Kurtosis

CPCw 1.327 0.369 0.770 2.237 0.707 2.543
CPCr 3.923 0.861 2.632 5.704 0.610 2.242
CPRw 1.459 0.348 0.899 2.402 0.886 3.154
CPRr 4.527 0.761 3.309 6.261 0.975 2.993
CPLw 2.383 0.432 1.589 3.766 0.634 2.951
CPLr 6.488 0.958 5.121 8.864 1.104 3.276
SPCw 1.317 0.362 0.774 2.217 0.742 2.642
SPCr 3.685 0.770 2.432 5.368 0.699 2.640
SPRw 1.448 0.352 0.887 2.415 0.867 3.105
SPRr 4.435 0.797 3.246 6.256 0.812 2.684
SPLw 2.142 0.411 1.399 3.412 0.836 3.160
SPLr 5.244 0.434 4.221 6.257 -0.244 2.214

3.2 ARMA–GARCH filtering and residual analysis

In order to obtain the copula data which will be employed for the empirical analysis

of the study, we follow the semi-parametric approach proposed by Chen and Fan

(2006). The approach involves three steps:

1. An ARMA–GARCH model is fit to the rates of price change for each of the

series.

2. The obtained residuals are standardized (filtered data), creating this way the

copula data on (0,1). Copula data are then used to calculate the respective

empirical distribution functions.

3. The estimation of copula models is conducted by applying the maximum like-

lihood (ML) estimator to the copula data (Canonical ML).
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Table 3 presents the p-values resulting from the application of the Lung-Box and

the auto-regressive conditional heteroskedasticity–Lagrange multiplier (ARCH–LM)

tests to the filtered data at various lag lengths. Lag order is indicated in parenthesis.

Following the literature (Emmanouilides and Fousekis, 2015), in order to obtain the

filtered rates of price change an ARMA(2,1)–GARCH(1,1) model has been fitted to

each of the innovation series. Results in Table 2 indicate that the filtered data are

free from autocorrelation and from ARCH effects.
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Table 3: Residual diagnostics test results. Notation of price series data: w=wholesale, r=retail, CPC=choice chuck roast,
CPR=choice steak round, CPL=choice sirloin steak, SPC=select chuck roast, SPR=select steak round, SPL=select sirloin steak.

Mean Var Kurt. Skew. KS CvM LB(1) LB(5) LB(9) AR(3) AR(5) AR(7)

CPCw -0.001 1.005 3.756 0.453 0.000 0.000 0.800 0.965 0.383 0.685 0.842 0.942
CPCr 0.017 1.038 4.347 0.226 0.000 0.000 0.821 0.993 0.844 0.105 0.310 0.490
CPRw 0.023 0.996 4.362 0.636 0.000 0.000 0.724 1.000 0.347 0.841 0.676 0.630
CPRr 0.016 1.033 3.441 0.271 0.000 0.000 0.877 1.000 0.998 0.644 0.775 0.884
CPLw -0.014 1.067 2.770 0.009 0.000 0.000 0.843 0.052 0.001 0.922 0.217 0.315
CPLr 0.029 1.058 4.922 0.350 0.000 0.000 0.474 1.000 0.903 0.964 0.766 0.616
SPCw -0.013 1.003 3.855 0.479 0.000 0.000 0.826 1.000 0.654 0.588 0.751 0.880
SPCr -0.094 1.034 3.221 0.091 0.000 0.000 0.514 1.000 0.994 0.795 0.922 0.796
SPRw -0.007 1.003 4.396 0.803 0.000 0.000 0.653 1.000 0.266 0.976 0.802 0.722
SPRr 0.012 1.086 4.060 0.408 0.000 0.000 0.893 0.852 0.774 0.697 0.921 0.932
SPLw 0.014 1.012 2.881 -0.056 0.000 0.000 0.642 0.979 0.015 0.891 0.492 0.446
SPLr 0.057 0.980 3.121 0.270 0.000 0.000 0.541 1.000 0.928 0.420 0.580 0.652
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The semi-parametric approach exploits the fact that the copula and the margins

can be estimated separately using potentially different methods. The Canonical ML

copula estimator is consistent but less efficient relative to the fully parametric one.

Hence, the asymptotic distributions of the copula parameters and the dependence

measures, such as the Kendall’s tau and the tail coefficients, are approximated using

resampling methods ((Choroś et al., 2010; Gaißer et al., 2010)). All estimations,

testing, and resampling in this study have been carried out using R (version 3.1.2,

R Core Team (2014)).

3.3 Copula stability

Random processes can be influenced by the presence of extreme market conditions.

Thus, before selecting the appropriate functional form for a copula, we need to test

for time–varying dependence. If the copula parameters are constant over the period

of time examined in this study then we can proceed with the selection of the empir-

ical copula. On the other hand, if the parameters are influenced by breaks and/or

persistent shifts, then it is possible that more than one copula families might be

selected in order to describe the nature of price dependence between the two market

levels. Copula stability was tested with the employment of the Busetti–Harvey test.

Table 4 presents the values of the constancy test for the three quantiles of the bi-

variate empirical copulas (0.25, 0.5 and 0.75). The values of the statistics are in all

cases below the 5 per cent critical value (0.461), suggesting that the null hypothesis

of constancy is consistent with the data. Hence, there is not sufficient statistical

evidence for breaks and/or persistent shifts in the empirical copulas examined in
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this study.

Table 4: Buseti-Harvey test statistics.

τ = 0.25 τ = 0.50 τ = 0.75

CPC 0.081 0.055 0.133
CPR 0.105 0.134 0.061
CPL 0.199 0.332 0.068
SPC 0.075 0.056 0.135
SPR 0.180 0.167 0.208
SPL 0.293 0.334 0.203

(∗) Critical values are 0.743, 0.461 and 0.347 for the
1, 5 and 10 per cent levels of significance, respectively.

3.4 Copula selection procedure

We applied the Clarke (2007) and Vuong (1989) tests for copula selection. Clarke

and Vuong tests are nested tests that compare two models in order to find which

one is the best. If two models (model1 and model2 for example) are compared, then

a score is assigned:

1. +1, if model1 is better than model2

2. -1, if model2 is better than model1

3. 0, if the test cannot discriminate between two models.

If one has to choose between N copula families then each family is tested against all

remaining (N-1) families. We tested all possible combinations with Akaike and with

Schwarz corrections. This procedure produced four possible combinations of test

scores. The scores among all pairs were summed up. The copula with the highest

combined score was selected as the best fitted copula family. The final scores are
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reported in Table 5. Appendix A presents all the scores produced from testing each

copula family against the remaining nine copula families, for each wholesale–retail

pair of different cuts and quality grades.

Although the Clarke and the Vuong tests are easy to implement and quite

straightforward, there are two main problems when someone compares a large set

of copula families (10 in this work):

• In some cases the same score might be assigned in two or more than two

models.

• One model (m1) can actually have a higher score than another model (m2),

but when directly comparing these two models the test cannot distinguish

between them. Thus the results depend on the family set that has been used

and not on the direct comparison between two models.

In both cases one needs to use other options as well, such as goodness of fit

procedures, log likelihood, AIC or BIC. Various goodness of fit tests have been

applied in order to select the right copula family (Genest et al., 2009; Kojadinovic

et al., 2011; Berg, 2009; Okhrin et al., 2016).

In order to obtain to obtain p-values we used the bootstrap method. We per-

formed 1000 repetitions.

Table 5 lists the results obtained by applying Vuong and Clarke tests. For each

pair of variables (wholesale and retail) we applied the Vuong and Clarke tests using

three variations of correction: a) no correction, b) Akaike and c) Schwarz, for the ten

copula families reported in Table 1. The test result is an integer number stating how

many times a specific copula scores better than all the remaining others. Possible
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outcomes (for 10 copula families) can be in the range of [-9,9]. Although Table 5

lists results with no correction for comparison with other cases, we did not took

in consideration these results. Scores taken with Akaike (AIC) or Schwarz (BIC)

correction from both Vuong and Clarke tests were summed up and this total score

(Sum row at Table 5) was used as final selection criterion: the copula family with

the highest score was selected as most suitable.

Tables A1–A6 in Appendix A present analytically the Vuong and Clarke test

scores for each one of the six wholesale–retail beef cuts examined in this work.

Appendix B offers a comparison of the Vuong and Clarke selection criterion with

some of the most commonly used copula selection criteria (logL, AIC, BIC).
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4 Results and discussion

There is considerable empirical evidence in favor of uni–directional causality from

upstream to downstream market levels in the US beef industry.7 A research report

by the United States Department of Agriculture-Economic Research Service (2011)

under the title “How Retail Beef and Bread Prices Respond to Changes in Ingredient

and Input Costs”, summarizes the findings of these studies. Results indicate that it

takes on average one to two months for prices to transmit from wholesale level to

retail level. The empirical results of this study were obtained while accounting for

the existence of one lag in price transmission between wholesale and retail levels in

the US beef industry.

Table 6 presents the parameter(s), Kendall’s tau (τ) and the lower and upper

tail dependence coefficients (λL, λU) for the selected copula families for each one

of the six wholesale–retail pairs of the choice and select quality grades. The selec-

tion procedure was described in section 3. Standard errors (in parentheses) were

obtained with the bootstrap method. We performed 1000 repetitions. All estimates

are statistically significant at the 1% level of significance or lower.8

In the case of the Choice quality grade three different copula families were se-

lected for each cut. The Student–t copula was selected for the chuck roast cut (CPC),

suggesting that price booms and price crashes at wholesale level will be transmitted

at retail level with the same probability (10.3%), since the lower and upper tail

7The nature of direction has been examined using Granger causality tests as well as tests of
weak exogenecity (Emmanouilides and Fousekis, 2015).

8Parameters τ , λL and λU are also significantly different than zero, since their values are
produced from the statistically significant estimates of the family parameter θ (Table 1).
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dependence coefficients assume the same value (λL = λU = 0.103). The degrees of

freedom are approximately 7.2 (well below 30), suggesting a strong departure from

normality.

The Normal copula was selected for the steak round cut (CPR). The value of the

upper tail dependence coefficient (λU) is 0.323, indicating that with a probability of

32.3% a strongly positive rate of price change at the wholesale level will be matched

with a strongly positive rate of price change at the retail level. On the other hand,the

value of the lower tail dependence coefficient (λL) is zero, suggesting that extreme

price decreases at wholesale level will not be transmitted at retail level.

The Normal copula was selected for the sirloin steak cut (CPL). The specific

copula family suggests that both tail dependence coefficients (λL,λU) are no different

than zero. Accordingly, a price crash (boom) at the wholesale level will not be

associated with a price crash (boom) at the retail level, since the probability of

transmission is no different than zero.

Kendall’s tau (τ) estimates are 0.276, 0.254, and 0.279, for the chuck roast, the

steak round and the sirloin steak cuts, respectively. The low values for the Kendall’s

τ indicate that overall dependence is not that strong in all three pairs of the higher

quality grade.

The Gumbel copula was selected for all three different cuts of the Select quality

grade (SPC, SPR and SPL). The Gumbel copula suggests that prices booms are

transmitted between wholesale–retail levels whereas price crashes are not. More

specifically, in all three cuts, the lower tail dependence coefficients are no different

than zero, indicating that extreme price decreases at wholesale level are not matched
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by extreme price decreases at retail level. On the other hand, the upper tail depen-

dence coefficients are statistically different than zero, providing this way evidence

that price booms at the wholesale market level will be associated with price booms

at the retail market level with a probability of 24.8%, 29.1% and 22.4%, for the

chuck roast, the steak round and the sirloin steak cuts, respectively. A comparison

of the values of the lower and upper tail dependence coefficients, for all six differ-

ent pairs of Choice and Select quality grades, reveals that extreme positive price

increases are more likely to be transmitted from wholesale to retail market level

in the case of the inferior quality grade than they are in the case of the superior

quality grade. The latter verifies, to a certain extent, the findings by Surathkal et al.

(2014). In their study the authors concluded that the superior beef quality tends to

show longer persistence to increase in prices and adjusts at a slower rate than the

relatively inferior beef quality.

Kendall’s tau (τ) estimates for the Select quality grade assume values between

0.171 and 0.227, indicating that overall dependence is not very strong. As one can

observe, overall dependence between the three pairs of the Choise quality grade is

(a little) stronger than overall dependence between the three pairs of the Select

quality grade. This finding suggests that price changes (not booms or crashes) at

wholesale level are more likely to be passed to the retail level in the case of the

higher quality grade than it is for the lower quality grade. In general, the low values

for the estimates of the overall dependence (Kendall’s τ) in both the superior and

the inferior quality grades, suggest that there is rather a very weak tendency of price

changes (not extreme ones) to co-move between wholesale and retail levels.
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The empirical findings of zero values for the lower tail dependence coefficients

and non–zero values for the upper tail dependence coefficients, in five out of six

pairs in this study, could be an indication of asymmetric price dependence between

wholesale–retail market levels in the U.S. beef marketing channel. Asymmetric

price relationships between the two market levels could suggest that retailers adopt

different pricing strategies when extreme market conditions occur at the wholesale

level: retailers’ reaction is different under extreme price increases than it is under

extreme price decreases. Results indicate that retailers do not respond to price

crashes at the wholesale level in five out of six pairs examined in this study. The

only exception is the chuck roast cut of the Choice quality grade, where extreme

positive and extreme negative price changes at wholesale level are equally likely to

be passed to the retail level. On the other hand, retailers respond to price booms

at wholesale level and with a statistical significant probability this extreme price

increase will be passed to the retail market level as well. The only exception is the

sirloin cut of the choice quality grade where extreme price changes at wholesale level

are not transmitted to the retail level.

The findings of this work could be another indication that in last stage of the beef

supply chain there are firms (retail grocers, food service providers, restaurants) with

some significant degree of market power. Under perfect competition, price changes

upstream (wholesale in this study) would be transmitted downstream (retail). The

findings of this work do not point towards that direction, but suggest in most of the

cases extreme price decreases at wholesale level are not transmitted to retail level.

We should note here that the findings of (a)symmetric price dependence based
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on the values of the tail dependence coefficients of two price series (residuals) are not

equivalent to (a)symmetric price changes. Although these two are intuitively linked,

they are quite different concepts because: i) price dependence is on the distribution

level, transmission is for specific price levels, and ii) price transmission can take

place not only at low and high prices (tails), but also intermediate levels of prices.

Finally, it is worth noting that the observations we have at our disposal are at

a national level and not at a local level. As Richards and Pofahl (2010) point out,

the CR4 for retail food markets is about 50% at national level but rises to 80% at

local level, since most food markets are local.

Estimation parameters and the values of different selection criteria are reported

analytically in appendix B for each one of the six pairs investigated in this study.

5 Conclusions

There exists a growing literature on the structure of price relationships in agricul-

tural and food economics. The ability of the vertical market structure to transmit

price signals up and down the distribution system is a reflection of market perfor-

mance. Evidence of downward price stickiness in agri–food supply chains can be

considered as an indicator of inefficiency, and as such they attract the attention of

economists and policy makers.

In the U.S. beef industry, there is a widespread belief that vertical price relation-

ships are asymmetric. Empirical investigation on this issue has been conducted with

a variety of quantitative tools such as copulas, VECM and threshold asymmetric

vector correction models. As a rule, price increases upstream have been found to be
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transmitted downstream faster and/or more fully than price decreases. However, the

majority of studies on price transmission in the US beef industry have been carried

out considering aggregate commodity prices, when there is overwhelming evidence

that beef should be examined as a differentiated product.

In this context, this study empirically examined if product differentiation could

be a source of asymmetric price dependence along the U.S. beef marketing channel.

The statistical tool used is that of copulas, since copula techniques provides us with

useful extensions of conventional approaches for modeling asymmetric transmissions

processes on the degree of market integration as well as evaluating responses to price

shocks in the presence of extreme market conditions.

Results indicate that there is evidence of asymmetric price dependence between

wholesale and retail market levels, for the different beef cuts of superior and inferior

quality grades. We arrived at this conclusion because, in five out of six pairs, price

booms are transmitted from wholesale to retail market level with a statistically

significant probability whereas the transmission probability of a price crash from

wholesale to retail level is zero.

The findings of this work verify, to a certain extent, the results of the studies by

Emmanouilides and Fousekis (2015) and by Surathkal et al. (2014). The empirical

results in both articles indicated that a decrease or an increase in wholesale beef

prices tend to have different effects on the retail beef prices. The main difference

is that the former study employed aggregate beef data while the latter work used

different beef cuts and quality grades for the empirical analysis.

Asymmetric price relationships between the two market levels could suggest that
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retailers adopt different pricing strategies when extreme market conditions occur at

the wholesale level: their reaction is different under extreme price increases than it

is under extreme price decreases. This might be another indication that in the last

stage of the beef supply chain there are firms with some significant degree of market

power.

Lastly, asymmetric price dependence based on the values of the tail dependence

coefficients are not equivalent to asymmetric price transmission. Price transmission

can take place at not only low and high prices (tails), but also intermediate levels

of prices. The findings of this study refer to the degree and the structure of price

dependence between wholesale–retail levels when price booms and/or price crashes

take place at wholesale level.

One would like to examine for the existence of asymmetries in price transmission

from farm level to retail level, while accounting for product differentiation. Unfor-

tunately, data on cuts and quality grades at farm level don’t exist. Meat inspection

and grading starts at wholesale level. A possible avenue for future research can in-

clude data from prime quality grade and/or more cuts from choice and select quality

grades.
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Table 5: Vuong and Clarke test results with Akaike and Schwarz corrections. No-
tation of pair series data (wholesale/retail): CPC=choice chuck roast, CPR=choice
steak round, CPL=choice sirloin steak, SPC=select chuck roast, SPR=select steak
round, SPL=select sirloin steak.

pair correction test 1 2 3 4 5 6 7 8 9 10

CPC none Vuong 0 0 0 1 0 -2 0 1 0 0
Clarke -4 8 -5 0 2 -8 5 -2 4 0

Akaike Vuong 1 0 0 2 1 -1 0 -1 0 -2
Clarke -3 7 -4 1 3 -8 5 -3 3 -1

Schwarz Vuong 1 0 0 3 1 -1 0 -1 0 -3
Clarke 0 6 -4 3 4 -8 3 -4 2 -2

Sum -1 13 -8 9 9 -18 8 -9 5 -8

CPR none Vuong 2 2 -5 2 -5 0 2 0 2 0
Clarke -5 -4 -9 4 -5 2 4 4 5 4

Akaike Vuong 3 0 -3 3 -2 0 -1 0 0 0
Clarke -4 -6 -9 6 -5 4 3 3 4 4

Schwarz Vuong 3 -2 -2 6 -2 1 -1 -1 -1 -1
Clarke -4 -6 -9 8 -4 7 2 2 3 1

Sum -2 -14 -23 23 -13 12 3 4 6 4

CPL none Vuong 5 5 0 0 -2 -6 1 -2 1 -2
Clarke 0 5 -5 1 -1 -7 7 -1 4 -3

Akaike Vuong 6 2 0 1 0 -3 0 -3 0 -3
Clarke 3 2 -3 3 2 -7 4 -2 3 -5

Schwarz Vuong 7 1 0 1 0 -2 -1 -3 0 -3
Clarke 4 1 -2 5 3 -6 3 -5 3 -6

Sum 20 6 -5 10 5 -19 6 -13 7 -17

SPC FALSE Vuong 1 1 0 0 -2 0 0 0 0 0
FALSE Clarke -2 -1 -6 5 -4 -4 4 5 5 -2
Akaike Vuong 2 -1 0 1 -1 1 0 -1 0 -1
Akaike Clarke 2 -3 -6 6 -1 0 2 2 2 -4
Schwarz Vuong 2 -1 0 2 -1 1 0 -1 0 -2
Schwarz Clarke 4 -4 -3 8 -1 0 -1 1 1 -5
Sum 10 -7 -9 17 -4 2 1 -1 3 -12

SPR FALSE Vuong 0 0 0 1 0 -2 0 1 0 0
FALSE Clarke -5 7 -5 2 -2 -5 3 2 4 -1
Akaike Vuong 0 0 0 2 1 -1 0 -1 0 -1
Akaike Clarke -4 5 -5 4 0 -4 3 1 2 -2
Schwarz Vuong 2 0 0 2 1 -1 0 -2 0 -2
Schwarz Clarke 0 4 -5 6 1 -2 0 -1 1 -4
Sum -2 9 -10 15 3 -8 3 -3 2 -9

SPL FALSE Vuong 0 0 0 0 0 0 0 0 0 0
FALSE Clarke -5 6 -3 1 -2 -4 4 1 5 -3
Akaike Vuong 0 0 0 1 1 0 0 -1 0 -1
Akaike Clarke -1 3 -1 4 0 -2 1 -1 3 -6
Schwarz Vuong 1 0 0 2 1 0 0 -1 0 -3
Schwarz Clarke 0 3 1 4 0 -1 0 -2 2 -7
Sum 0 6 0 11 2 -3 1 -5 5 -17
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Table 6: Copula estimation results and test statistics

pair family θ θ2 τ λL λU p-val logL AIC BIC

CPC t 0.420 ν=7.249 0.276 0.103 0.103 0.718 17.115 -30.23 -23.912
(0.068) (5.724)

CPR G 1.341 0.254 0.000 0.323 0.720 15.877 -29.754 -26.595
(0.077)

CPL N 0.425 0.279 0.000 0.000 0.290 15.974 -29.947 -26.788
(0.059)

SPC G 1.237 0.191 0.000 0.248 0.240 9.699 -17.398 -14.238
(0.068)

SPR G 1.294 0.227 0.000 0.291 0.020 11.278 -20.556 -17.397
(0.075)

SPL G 1.206 0.171 0.000 0.224 0.200 5.814 -9.628 -6.693
(0.077)
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Appendices

Appendix A Vuong and Clarke test results

Each table below has two parts. The upper triangle shows the results of Vuong test

(index number of selected copula) between each pair of copula families (1 to 10).

The last column shows the total score of the corresponding copula. The copula with

the highest score is selected as the best. The lower triangle shows the results of

Clarke test (index number of selected copula) between each pair of copula families

(1 to 10). The last row shows the total score of the corresponding copula. The

copula the highest score is selected as the best.

For the calculation of the total score a value of -1, 0, 1 is assigned to each pair

comparison and subsequently these values are summed up. For N copula families

the total score is in the range of [-N+1, N-1], for example if N=10 as in this case

the total score can be between -9 and 9.

We performed this type of calculation twice, one time with the Akaike correction

and another time with the Schwarz correction. The combined results using both

tests and both correction methods (four scores) were used in order to select the best

fitted copula family.
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Table A1: CPC Vuong/Clarke test results with Akaike correction

1 2 3 4 5 6 7 8 9 10 Vuong

1 0 0 0 0 0 0 0 0 1 1
2 2 0 0 0 0 0 0 0 0 0
3 0 2 0 0 0 0 0 0 0 0
4 4 2 0 0 4 0 4 0 0 2
5 0 0 5 0 0 0 0 0 5 1
6 1 2 0 4 5 0 0 0 0 -1
7 7 0 7 7 0 7 0 0 0 0
8 0 2 0 4 0 8 7 0 0 -1
9 9 2 9 0 0 9 0 9 0 0
10 0 2 0 0 5 10 0 0 0 -2

Clarke -3 7 -4 1 3 -8 5 -3 3 -1

Table A2: CPC Vuong/Clarke test results with Schwarz correction

1 2 3 4 5 6 7 8 9 10 Vuong

1 0 0 0 0 0 0 0 0 1 1
2 0 0 0 0 0 0 0 0 0 0
3 0 2 0 0 0 0 0 0 0 0
4 4 2 0 0 4 0 4 0 4 3
5 0 0 5 0 0 0 0 0 5 1
6 1 2 0 4 5 0 0 0 0 -1
7 0 0 7 0 0 7 0 0 0 0
8 0 2 0 4 5 8 7 0 0 -1
9 0 2 9 0 0 9 0 9 0 0
10 0 2 0 4 5 10 0 0 0 -3

Clarke 0 6 -4 3 4 -8 3 -4 2 -2

Table A3: CPR Vuong/Clarke test results with Akaike correction

1 2 3 4 5 6 7 8 9 10 Vuong

1 1 1 0 1 0 0 0 0 0 3
2 1 2 0 0 0 0 0 0 0 0
3 1 2 4 0 0 0 0 0 0 -3
4 4 4 4 4 0 4 0 0 0 3
5 0 0 5 4 0 0 0 0 0 -2
6 6 6 6 0 6 0 0 0 0 0
7 7 7 7 4 7 0 0 0 0 -1
8 8 8 8 4 8 0 0 0 0 0
9 9 9 9 0 9 0 0 0 0 0
10 10 10 10 0 10 0 0 0 0 0

Clarke -4 -6 -9 6 -5 4 3 3 4 4
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Table A4: CPR Vuong/Clarke test results with Schwarz correction

1 2 3 4 5 6 7 8 9 10 Vuong

1 1 1 0 1 0 0 0 0 0 3
2 1 0 4 0 0 0 0 0 0 -2
3 1 2 4 0 0 0 0 0 0 -2
4 4 4 4 4 0 4 4 4 0 6
5 0 0 5 4 0 0 0 0 0 -2
6 6 6 6 0 6 0 0 0 6 1
7 7 7 7 4 7 6 0 0 0 -1
8 8 8 8 4 8 6 0 0 0 -1
9 9 9 9 4 9 0 0 0 0 -1
10 10 10 10 4 0 6 0 0 0 -1

Clarke -4 -6 -9 8 -4 7 2 2 3 1

Table A5: CPL Vuong/Clarke test results with Akaike correction

1 2 3 4 5 6 7 8 9 10 Vuong

1 1 0 1 1 1 0 1 0 1 6
2 1 0 0 0 2 0 2 0 2 2
3 0 0 0 0 0 0 0 0 0 0
4 0 0 4 0 4 0 4 0 0 1
5 0 0 0 0 0 0 0 0 5 0
6 1 2 0 4 5 0 0 9 0 -4
7 0 0 7 0 0 7 0 0 0 0
8 0 2 0 4 0 8 7 0 0 -3
9 0 0 9 0 0 9 0 0 0 1
10 1 2 0 0 5 0 7 0 9 -3

Clarke 3 2 -3 3 2 -7 4 -2 3 -5

Table A6: CPL Vuong/Clarke test results with Schwarz correction

1 2 3 4 5 6 7 8 9 10 Vuong

1 1 0 1 1 1 1 1 0 1 7
2 1 0 0 0 0 0 2 0 2 1
3 0 0 0 0 0 0 0 0 0 0
4 0 4 4 0 4 0 4 0 0 1
5 0 0 0 0 0 0 0 0 5 0
6 1 2 0 4 5 0 0 0 0 -2
7 0 0 0 0 0 7 0 0 0 -1
8 1 2 0 4 5 0 7 0 0 -3
9 0 0 9 0 0 9 0 0 0 0
10 1 2 0 4 5 0 7 0 9 -3

Clarke 4 1 -2 5 3 -6 3 -5 3 -6
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Appendices

Appendix B Copula estimation results

Tables B1 to B6 report the parameter estimates for each one of the ten copula

families for each wholesale-retail pair. The estimated p-values are from the Cramer

von Mises goodness of fit test. Log Likehood, Akaike and Bayesean criteria statistics

are also provided.

Asterisk in the first column denotes the selected copula family according to

Clarke/Vuong procedure, as presented in the main body of this article. Maximum

(p-value, logL) or minimum (AIC, BIC) values of respective criteria are also denoted

with column asterisks for comparison.

Tables B1–B3 report the results for the different cuts of the choice quality grade

between wholesale–retail market levels.

For the chuck roast cut (CPC), the Log Likehood test and the AIC selected the

Joe-Clayton (BB7) as the best fitted copula indicating that price booms and price

crashes are passed with different probabities from wholesale level to retail level. The

Cramer von Mises goodness of fit test picked the Joe copula family suggesting that

only extreme price increases transmit between the two market levels. In the first

column, the Clarke/Vuong procedure selected the Student–t copula. Hence, four out

of five copula selection criteria indicate that price booms are transmitted between

wholesale–retail market levels and three out five criteria indicate that both price

booms and price crashes are passed between the two market levels.

For the streak round cut (CPR), the AIC and the BIC selected the Gumbel
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copula family, as the Clarke/Vuong procedure in the main body of the study did,

suggesting this way that only price booms, with a probability of 32.3%, are passed

from wholesale to retail level. The Cramer von Mises and the Log Likehood tests

picked the Joe-Clayton(BB7) as the best fitted copula indicating that price booms

and price crashes are passed between the two market levels, but with different prob-

abities.

Lastly, for the sirloin cut of the higher quality grade (CPL), the Log Likehood

test, the Akaike and the Bayesean information criteria selected the Normal family

of copulas. The Clarke/Vuong procedure in the main body of this article selected

the Normal copula as well, suggesting this way that price booms and price crashes

are not transmitted between wholesale–retail market levels. The Cramer von Mises

test picked the Joe as the best fitted copula, indicating that only price booms are

transmitted. Thus, five out of five copula selection criteria indicate that price crashes

do not transmit from the wholesale level to the retail level and four out five criteria

indicate that price booms are not passed between the two market levels. These

results are another indication that for the sirloin cut of the choice quality grade

price booms and price crashes at the wholesale level of the beef supply chain are not

transmitted to the retail level, as it was presented in the main body of the text.

Tables B4–B6 report the results for the different cuts of the select quality grade

between wholesale–retail market levels.

For the chuck roast cut (SPC), the Clarke/Vuong procedure selected the Gumbel

copula suggesting that only price booms transmit from wholesale level to retail level.

The Cramer von Mises goodness of fit test and the Log Likehood test selected the
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Joe-Clayton (BB7) as the best fitted copula indicating that price booms and price

crashes are passed, with different probabities, from wholesale level to retail level.

The probalities are 24.3% and 6.3% for extreme price increases and extreme price

decreases, respectively. Lastly, the AIC and the BIC picked the Normal copula

suggesting that price booms and prices crashes do not tranmit from the wholesale

lelel to the retail level. Thus, three out of five copula selection criteria indicate

that price crashes are not transmitted between wholesale–retail market levels. The

remaining two copula selection criteria indicate that price crashes are passed from

the wholesale level to the retail level, but with a very low probability (6.3%). On

the other hand, price booms are transmitted from the wholesale level to the retail

level according to four out of five selection criteria, with almost the same probability

of transmission (24%). These findings are an indication that the Gumbel copula, as

selected by the Clarke/Vuong procedure in the main body of this work, describes

quite well the nature of price dependence between the two market levels for the case

of the chuck roast cut of the lower quality grade.

For the round roast cut (SPR), the Clarke/Vuong procedure selected the Gumbel

copula and the Cramer von Mises goodness of fit test selected the Joey copula.

These two copula families indicate that only extreme price increases are passed

from wholesale to retail level while extreme price decreases are not. The AIC and

the Log Likehood test selected the Joe-Clayton (BB7) as the best fitted copula

suggesting this way that price booms and price crashes are passed with different

probabities from wholesale level to retail level. Lastly, the BIC picked the Normal

copula suggesting that price booms and prices crashes do not tranmit from the
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wholesale lelel to the retail level. Hence, three out of five copula selection criteria

indicate that price crashes are not transmitted between wholesale and retail market

levels. The remaining two copula selection criteria indicate that price crashes are

passed between the two market levels but with a relatively low probability (12.8%).

On the other hand, price booms are transmitted between the two market levels

according to four out of five selection criteria. These findings are an indication that

the Gumbel copula, as selected by the Clarke/Vuong procedure in the main body

of this work, captures quite well the nature of price dependence between the two

market levels for the chuck roast cut of the select quality grade.

Lastly, in the case of the sirloin cut (SPL), the Clarke/Vuong procedure selected

the Gumbel copula indicating that only extreme price increases are passed from

wholesale level to retail level. The Cramer von Mises goodness of fit test selected

the Joe-Clayton (BB7) as the best fitted copula suggesting this way that price booms

and price crashes are transmitted with different probabities between the two market

levels. The AIC and the Log Likehood test selected the Student–t copula which

indicates that price booms and price crashes are passed with the same probability

from wholesale level to retail level. Lastly, the BIC picked the Clayton copula

indicating that only price crashes are transmitted between the two market levels.

Thus, in the case of the sirloin cut of the select quality grade, price booms and

price crashes appear to trasmit between the two market levels. More specifically,

four out of five copula selection criteria indicate that price booms are transmitted

between wholesale and retail market levels and only one selection criterion suggests

that price booms do not trasmit (or the probability of trasnmission is zero). Four
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out five selection criteria also suggest that price crashes are passed between the two

market levels with probabilities ranging from 0.126 to 0.186. The fact that price

crashes tranmit between wholesale–retail market levels is in contrast with the zero

probability of tranmission as suggested by the Clarke/Vuong procedure in the main

body of the article, even though these probabilities are not particularly high.
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Table B1: CPC copula estimation (empirical τ = 0.276)

family θ θ2 τ λL λU p-value logL AIC BIC

1 - N 0.427 0.281 0.000 0.566 16.166 ❂30.331 ❂27.172*
2 - t * 0.420 7.249 0.276 0.103 0.103 0.682 17.115 ❂30.230 ❂23.912
3 - C 0.591 0.228 0.310 0.000 0.563 13.925 ❂25.850 ❂22.691
4 - G 1.348 0.258 0.327 0.035 15.349 ❂28.698 ❂25.539
5 - F 2.610 0.272 0.000 0.159 14.253 ❂26.507 ❂23.348
6 - J 1.433 0.196 0.378 0.951* 11.640 ❂21.280 ❂18.121
7 - BB1 0.298 1.207 0.279 0.145 0.224 0.610 17.460 ❂30.920 ❂24.602
8 - BB6 1.001 1.347 0.258 0.000 0.328 0.031 15.343 ❂26.686 ❂20.368
9 - BB7 1.270 0.456 0.273 0.219 0.274 0.594 17.644* ❂31.289* ❂24.971
10 - BB8 6.000 0.379 0.265 0.000 0.000 0.065 13.867 ❂23.734 ❂17.416

Table B2: CPR copula estimation (empirical τ = 0.260)

family θ θ2 τ λL λU p-value logL AIC BIC

1 - N 0.402 0.263 0.000 0.000 0.349 14.097 ❂26.193 ❂23.034
2 - t 0.396 30.000 0.260 0.001 0.001 0.182 14.073 ❂24.146 ❂17.828
3 - C 0.417 0.172 0.189 0.000 0.144 7.713 ❂13.426 ❂10.267
4 - G * 1.341 0.000 0.254 0.000 0.323 0.726 15.877 ❂29.754* ❂26.595*
5 - F 2.214 0.235 0.000 0.000 0.191 10.711 ❂19.423 ❂16.264
6 - J 1.509 0.222 0.000 0.417 0.565 15.493 ❂28.985 ❂25.826
7 - BB1 0.023 1.329 0.256 0.000 0.315 0.625 15.897 ❂27.794 ❂21.476
8 - BB6 1.159 1.218 0.247 0.000 0.366 0.709 16.000 ❂28.000 ❂21.682
9 - BB7 1.449 0.175 0.253 0.019 0.387 0.879* 16.669* ❂29.339 ❂23.021
10 - BB8 1.628 0.980 0.237 0.000 0.000 0.353 15.899 ❂27.798 ❂21.480

Table B3: CPL copula estimation (empirical τ = 0.275)

family θ θ2 τ λL λU p-value logL AIC BIC

1 - N * 0.427 0.281 0.000 0.000 0.265 16.126* ❂30.252* ❂27.093*
2 - t 0.420 30.000 0.276 0.001 0.001 0.391 15.883 ❂27.766 ❂21.447
3 - C 0.584 0.226 0.305 0.000 0.701 14.570 ❂27.140 ❂23.981
4 - G 1.302 0.232 0.000 0.297 0.012 11.985 ❂21.970 ❂18.811
5 - F 2.391 0.252 0.000 0.000 0.012 12.435 ❂22.871 ❂19.711
6 - J 1.356 0.168 0.000 0.333 0.929* 7.979 ❂13.958 ❂10.799
7 - BB1 0.396 1.126 0.259 0.211 0.150 0.574 15.843 ❂27.686 ❂21.368
8 - BB6 1.001 1.302 0.232 0.000 0.298 0.009 11.977 ❂19.953 ❂13.635
9 - BB7 1.175 0.495 0.256 0.247 0.196 0.678 15.873 ❂27.746 ❂21.428
10 - BB8 6.000 0.352 0.244 0.000 0.000 0.010 12.044 ❂20.089 ❂13.771
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Table B4: SPC copula estimation (empirical τ = 0.217)

family θ θ2 τ λL λU p-value logL AIC BIC

1 - N 0.344 0.224 0.000 0.000 0.589 10.057 ❂18.114* ❂14.955*
2 - t 0.334 30.000 0.217 0.000 0.000 0.423 9.774 ❂15.547 ❂9.229
3 - C 0.375 0.158 0.157 0.000 6.692 ❂11.385 ❂8.226
4 - G * 1.235 0.191 0.000 0.247 0.283 9.582 ❂17.163 ❂14.004
5 - F 1.686 0.182 0.000 0.000 0.216 6.619 ❂11.238 ❂8.079
6 - J 1.317 0.153 0.000 0.308 8.246 ❂14.491 ❂11.332
7 - BB1 0.147 1.170 0.203 0.018 0.191 0.600 10.252 ❂16.504 ❂10.186
8 - BB6 1.001 1.235 0.190 0.000 0.248 0.274 9.579 ❂15.159 ❂8.841
9 - BB7 1.229 0.251 0.203 0.063 0.243 0.704* 10.623* ❂17.246 ❂10.928
10 - BB8 1.317 1.000 0.153 0.000 0.308 0.027 8.246 ❂12.491 ❂6.173

Table B5: SPR copula estimation (empirical τ = 0.246)

family θ θ2 τ λL λU p-value logL AIC BIC

1 - N 0.374 0.244 0.000 0.000 0.136 12.049 ❂22.098 ❂18.939*
2 - t 0.377 8.167 0.246 0.072 0.072 0.319 13.055 ❂22.110 ❂15.792
3 - C 0.516 0.205 0.261 0.000 0.162 11.309 ❂20.618 ❂17.459
4 - G * 1.294 0.227 0.000 0.291 0.019 11.259 ❂20.518 ❂17.359
5 - F 2.280 0.241 0.000 0.000 0.012 11.239 ❂20.478 ❂17.319
6 - J 1.364 0.171 0.000 0.338 0.883* 8.089 ❂14.179 ❂11.020
7 - BB1 0.291 1.158 0.246 0.128 0.180 0.139 13.296* ❂22.591* ❂16.273
8 - BB6 1.001 1.293 0.227 0.000 0.291 0.017 11.253 ❂18.506 ❂12.188
9 - BB7 1.205 0.409 0.241 0.183 0.223 0.188 13.279 ❂22.559 ❂16.241
10 - BB8 6.000 0.342 0.236 0.000 0.000 0.012 11.004 ❂18.007 ❂11.689

Table B6: SPL copula estimation (τ = 0.162)

family θ θ2 τ λL λU p-value logL AIC BIC

1 - N 0.290 0.187 0.000 0.000 0.638 5.461 ❂8.922 ❂5.988
2 - t 0.250 3.529 0.161 0.166 0.166 0.440 8.032* ❂12.064* ❂6.195
3 - C 0.413 0.171 0.186 0.000 6.084 ❂10.169 ❂7.234*
4 - G * 1.206 0.171 0.000 0.224 0.211 5.814 ❂9.628 ❂6.693
5 - F 1.526 0.166 0.000 0.000 0.219 4.031 ❂6.063 ❂3.128
6 - J 1.253 0.126 0.000 0.261 4.485 ❂6.970 ❂4.035
7 - BB1 0.266 1.102 0.199 0.094 0.124 0.758 7.501 ❂11.002 ❂5.134
8 - BB6 1.001 1.206 0.171 0.000 0.224 0.197 5.810 ❂7.621 ❂1.752
9 - BB7 1.151 0.334 0.201 0.126 0.174 0.791* 7.834 ❂11.668 ❂5.799
10 - BB8 6.000 0.247 0.162 0.000 0.000 0.173 3.936 ❂3.872 1.997
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Appendices

Appendix C Copula plots

Left panel

Plots in the left on the panel displays the copula data (dark gray) on the [0, 1]2 space,

as well as contour lines of the corresponding copula family. Moreover 1000 simulated

data of the same family and estimated parameters (Table 6) are also displayed with

light gray.

Right panel

Right plot on the panel displays the χ−plot, which is based on the following two

quantities:

χi =
F̂U1,U2

(ui,1, ui,2)− F̂U1
(ui,1)F̂U2

(ui,2)

F̂U1
(ui,1)(1− F̂U1

(ui,1))F̂U2
(ui,2)(1− F̂U2

(ui,2))

λi = 4sgn(F̃U1
(ui,1), F̃U2

(ui,2)) ·max(F̃U1
(ui,1)

2, F̃U2
(ui,2)

2)

where:

• F̂ , empirical distribution function.

• λi is a measure of the distance between a data point (ui,1, ui,2) and the center

of the bivariate data set.
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• χ corresponds to correlation coefficient between U1 and U2.

• Under independence:

χi ∼ N (0, 1/N)

λi ∼ U [−1, 1]

Points colored in blue represent pairs of u1, u2 with values less than the mean of

u1, u2 respectively, where points colored in red represent pairs of u1, u2 with values

bigger than the mean of u1, u2 respectively.

Under independence, points on the χ−plot are scattered relatively horizontally,

otherwise they follow a different pattern depending on the copula family and pa-

rameters.
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Figure C1: CPC copula plot
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Figure C2: CPR copula plot
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Figure C3: CPL copula plot
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Figure C4: SPC copula plot
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Figure C5: SPR copula plot
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Figure C6: SPL copula plot
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