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Abstract

Various papers have presented folk theorem results for repeated games with private monitoring that

rely on belief-free equilibria. I show that these equilibria are not robust against small perturbations in

the behavior of potential opponents. Specifically, I show that essentially none of the belief-free equilibria

is evolutionarily stable, and that in generic games none of these equilibria is neutrally stable. Moreover,

in a large family of games (which includes many public good games), the belief-free equilibria fail to

satisfy even a very mild stability refinement.

JEL Classification: C73, D82. Keywords: Belief-free equilibrium, evolutionary stability, private

monitoring, repeated Prisoner’s Dilemma, communication.

1 Introduction

The theory of repeated games provides a formal framework to explore the possibility of cooperation in long-

term relationships, such as collusion between firms. The various folk theorem results (e.g., Fudenberg and

Maskin, 1986; Fudenberg, Levine, and Maskin, 1994) have established that efficiency can be achieved under

fairly general conditions when players observe commonly shared information about past action profiles.

In many real-life situations players privately observe imperfect signals about past actions. For example,

each firm in a cartel privately observes its own sales, which contain imperfect information about secret price

cuts that its competitors offer to some of their customers. Formal analysis of private monitoring began with

the pioneering work of Sekiguchi (1997). Since then, several papers have presented various folk theorem

results that have shown that efficiency can be achieved also with private monitoring (see Kandori, 2002;

Mailath and Samuelson, 2006, for surveys of this literature).

The most commonly used equilibrium in the literature on private monitoring is the belief-free equilibrium

in which the continuation strategy of each player is a best reply to his opponent’s strategy at every private

history. These equilibria are called “belief-free” because a player’s belief about his opponent’s history is not

needed to compute a best reply. Piccione (2002) and Ely and Välimäki (2002) present folk theorem results

for the repeated Prisoner’s Dilemma using belief-free equilibria under the assumptions that the monitoring

∗Email: yuval.heller@biu.ac.il. A previous version of this manuscript was entitled “Instability of Equilibria with Private
Monitoring.” I would like to express my deep gratitude to Mehmet Ekmekci, Peter Eso, Michihiro Kandori, Erik Mohlin,
Thomas Norman, Ron Peretz, Satoru Takahashi, Jorgen Weibull, Yuichi Yamamoto, the associate editor, and the referees, for
many helpful comments. I am grateful to the European Research Council for its financial support (starting grant #677057).
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technology is almost perfect and the players are sufficiently patient. Ely, Hörner, and Olszewski (2005),

Miyagawa, Miyahara, and Sekiguchi (2008), and Yamamoto (2009, 2014) extend the folk theorem results

that rely on belief-free equilibria to general repeated games and to costly observability. Kandori and Obara

(2006) study a setup of imperfect public monitoring and show that belief-free private strategies can improve

efficiency relative to the maximal efficiency obtained by public strategies. Takahashi (2010) applies the

belief-free equilibria to obtain folk theorem results for repeated games in which the players are randomly

matched with a new opponent in each round.

The results of the present paper show that belief-free equilibria are not robust against small perturbations

in the behavior of potential opponents, and that this instability is extreme in a family of games that include

many public good games, the Prisoner’s Dilemma, and coordination games.

Instability of Belief-free Equilibria One of the leading justifications for using a Nash equilibrium

to predict behavior is its interpretation as being a stable convention in a population of potential players.

Suppose that individuals in a large population are repeatedly drawn to play a game, and that initially all

individuals play the strategy s∗ but occasionally a small group of agents may experiment with a different

strategy s′. If this induces the experimenting agents to gain more than the incumbents, then the population

will move away from s∗ toward s′. Thus, strategy s∗ is evolutionarily (neutrally) stable (Maynard-Smith and

Price, 1973) if (1) it is a best reply to itself (i.e., it is a symmetric Nash equilibrium),1 and (2) it achieves a

strictly (weakly) higher payoff against any other best-reply strategy s′: U (s∗, s′) > U (s′, s′). For example,

the strategy of always playing a strict symmetric equilibrium of the one-shot game regardless of the history

is neutrally stable, and, moreover, it is evolutionarily stable if the signal distribution has full support.

A belief-free equilibrium is trivial if it induces the play of a Nash equilibrium in all periods. My first

result (Proposition 1) shows that only trivial belief-free equilibria may satisfy evolutionary stability. My

second result (Proposition 2) makes two mild assumptions on the environment: (1) the underlying game

is generic, and (2) the signal a player observes in each round is not completely uninformative about the

partner’s action. Under these mild assumptions, I show that only trivial belief-free equilibria may satisfy

neutral stability.

The intuition of these results is as follows. As observed by Ely, Hörner, and Olszewski (2005, Section 2.1),

in each period t the set of optimal actions in a belief-free equilibrium is independent of the private history.

This implies that mutants who play a symmetric Nash equilibrium in an auxiliary game in which players

are allowed to choose only from the set of optimal actions weakly outperform the incumbents. Moreover,

if the signal of each player contains some information about the partner’s action, the players can use the

actions each of them played and the private signals that each of them observed in some period in the past,

to induce a correlation between their mixed actions in a later period. In a generic game, inducing either a

negative or a positive correlation in the mixed action profile of the later round allows the mutants to strictly

outperform the incumbents.

Refinement of Weak Stability The existing notions of stability, namely, evolutionary and neutral sta-

bility, are arguably too-strong refinements, as demonstrated in the rock-paper-scissors game (see Section 2.3)

that admits a unique Nash equilibrium that is not neutrally stable, but that is a plausible prediction of the

1To simplify the exposition I focus in the body of the paper on symmetric equilibria in symmetric games, and I extend the
analysis to general equilibria and asymmetric games in the appendix.

2



long-run average behavior in the population (see, e.g., Benaïm, Hofbauer, and Hopkins, 2009). Motivated by

this, I present a novel, and very mild, notion of stability. I say that a strategy s is vulnerable to strategy s′ if

agents who follow strategy s′ achieve a strictly higher payoff in any heterogeneous population in which some

agents follow strategy s and some follow strategy s′. The definition implies that a small group of mutants

who play strategy s′ will take over a population that initially plays strategy s. I say that a symmetric

Nash equilibrium s∗ is weakly stable if there does not exist a finite sequence of strategies (s1, ..., sK), such

that: (1) strategy s∗ is vulnerable to s1, (2) each strategy sk is vulnerable to sk+1, and (3) strategy sK is

evolutionarily stable.2

The definition implies that any symmetric game admits a weakly stable strategy, and that if s∗ is not

weakly stable, then it is not a plausible prediction of long-run behavior. This is because as soon as a small

group of agents experiments with playing s1, the population diverges to s1. If this is followed by an invasion

of a small group of agents who play s2, then the population diverges to s2, and after a finite number of such

sequential invasions, the population diverges to sK , and it will remain in sK in the long run (due to sK

being evolutionarily stable).3 A simple example of a non-weakly stable equilibrium is a mixed equilibrium in

a coordination game, for which every small perturbation takes the population to one of the pure equilibria.

Weak Stability of Belief-free Equilibria I say that a symmetric game is recursively strict, if, for any

subset of actions, the game in which each player is restricted to choosing an action from the subset admits a

strict symmetric equilibrium. Examples of this family of games include the Prisoner’s Dilemma, the Traveler’s

Dilemma, symmetric coordination games, and many public good games. My next result (Proposition 3)

focuses on this family of games, and shows that only trivial belief-free equilibria satisfy the mild refinement

of weak stability. The intuition for the Prisoner’s Dilemma is that any belief-free equilibrium is vulnerable to

a deterministic strategy s′ in which the players defect in each period in which defection is an optimal action

with respect to the belief-free equilibrium, and this strategy s′ is vulnerable to the evolutionarily stable

strategy of always defecting. Remark 3 sketches how to extend this result to the larger set of belief-free

review-strategy equilibria (Matsushima, 2004; Yamamoto, 2007; Deb, 2012; Yamamoto, 2012).

The Hawk-Dove game, which is a common application of belief-free equilibria, does not admit a strict

symmetric equilibrium, and thus the results so far only show that non-trivial belief-free equilibria are not

neutrally stable. The main difficulty in analyzing weak stability in Hawk-Dove games is that, in general, it is

an open question whether a repeated game with private monitoring admits an evolutionarily stable strategy

when the underlying game does not admit a strict symmetric equilibrium. My next result (Proposition 4)

shows that a belief-free equilibrium in the repeated Hawk-Dove game is weakly stable if and only if the

monitoring structure is such that the repeated game does not admit evolutionarily stable strategies. The

“only if” side of the result shows that if an evolutionarily stable strategy exists, then there must be a sequence

of strategies, each of which is vulnerable to its successor, that starts with the belief-free equilibrium and

ends in an evolutionarily stable strategy. The “if” side of this result is trivial: if the repeated game does

not admit any evolutionarily stable strategy, then there cannot be a sequence of strategies ending in an

evolutionarily stable strategy, and, as a result, any Nash equilibrium is weakly stable.

2Remark 6 discusses the relation between weak stability and the structurally similar notion of “robustness against indirect
invasions” of Van Veelen (2012).

3I assume that these experimentations are infrequent enough that strategies that are outperformed following the entry of
a group of experimenting agents become sufficiently rare before a new group of agents starts experimenting with a different
behavior.
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An important alternative approach to belief-free equilibria in the literature on private monitoring is the

“belief-based” equilibrium. Bhaskar and Obara (2002) define these equilibria and apply them to the repeated

Prisoner’s Dilemma. My final result (Claim 1) shows that the particular “belief-based” equilibria that are

presented in Bhaskar and Obara (2002) do not satisfy weak stability.

1.1 Related Literature and Contribution

Conditionally Correlated Signals A few papers in the literature yield stable cooperation if the private

signals are sufficiently correlated conditional on the action profile. Mailath and Morris (2002, 2006), Hörner

and Olszewski (2009), and Mailath and Olszewski (2011) show that when the private signals are almost

perfectly correlated conditional on the action profile (i.e., when there is almost public monitoring), then any

sequential equilibrium of the nearby public monitoring game with bounded memory remains an equilibrium

also with almost public monitoring. Some of these equilibria are evolutionarily stable, and, in particular,

cooperation can be the outcome of an evolutionarily stable strategy.

Kandori (2011) presents the notion of weakly belief-free equilibria, in which the strategy of each player is

a best reply to any private history of the opponent up to the actions of the previous round. Unlike standard

belief-free equilibria, players need to form the correct beliefs about the signal obtained by the opponent

in the previous round. Kandori (2011) demonstrates that if there is sufficient correlation between private

signals (conditional on the action profile), then the game admits a strict, weakly belief-based equilibrium

that yields substantial cooperation. The strictness of the equilibrium implies that it satisfies the refinement

of evolutionary stability. In the discussion paper version of his paper Kandori (2009) points out that the

specific non-trivial belief-free equilibria of Ely and Välimäki (2002) do not satisfy evolutionary stability in

the repeated Prisoner’s Dilemma. The present paper substantially strengthens Kandori’s observation in at

least two important ways: (1) I show that any non-trivial belief-free equilibrium of any underlying game is

not evolutionarily stable, and, moreover, it is not neutrally stable under the mild assumptions that the game

is generic and the monitoring structure has a grain of informativeness, and (2) I show that in the large family

of recursively strict games, any non-trivial belief-free equilibrium fails to satisfy the very mild refinement of

weak stability.

Communication and Conditionally Independent Signals Compte (1998), Kandori and Matsushima

(1998), and Obara (2009) present folk theorem results that rely on (noiseless) communication between the

players at each stage of the repeated game. The players use this communication to publicly report (possibly

with some delay) the private signals they obtain. These equilibria are constructed such that the players have

strict incentives while playing, and such that they are always indifferent between reporting the truth and

lying regardless of the reporting strategy of the opponent. One can show that this property implies that

these equilibria are neutrally stable, and hence also weakly stable.4

The present paper shows that all the mechanisms in the existing literature can yield only defection as the

outcome of a weakly stable equilibrium in the repeated Prisoner’s Dilemma with conditionally independent

4The argument for neutral stability is sketched as follows. Having strict incentives while playing implies that any best-reply
strategy induces the same play on the equilibrium path, and differs from the incumbent strategy only by sending false reports.
The fact that players are always indifferent between reporting the truth and lying implies that any such best-reply strategy
yields the same payoff as the incumbent strategy (both when the opponent is an incumbent as well as when he is a mutant who
follows a best-reply strategy).
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imperfect monitoring. I leave for future research the open question whether any new mechanism may yield

cooperation as a stable outcome with conditionally independent private monitoring. This open question

has interesting implications for antitrust laws. If the answer to this question is negative, then it would

suggest that communication between players is critical to obtaining collusive behavior whenever the private

imperfect monitoring between the firms is such that the conditional correlation between the private signals

is sufficiently low.5,6

One promising direction toward the solution of this open question might rely on the methods developed

in Heller and Mohlin (2015) for the related setup of random matching and partial observation of the partner’s

past behavior. In that setup, Heller and Mohlin (2015) characterize conditions under which only defection is

stable, and construct novel mechanisms for sustaining stable cooperative equilibria whenever these conditions

are not satisfied.

Robustness Sugaya and Takahashi (2013) show that “generically” only belief-free equilibria are robust

against small perturbations in the monitoring structure. Our main result shows that belief-free equilibria

(except for defection) are not robust against small perturbations in the behavior of the potential opponents.

Taken together, the two results suggest that defection is the unique equilibrium outcome of the repeated

Prisoner’s Dilemma that is robust against both kinds of perturbations.7

Structure The model is described in Section 2. Section 3 presents the results for symmetric games. The

appendix extends the analysis to asymmetric games.

2 Model

2.1 Games with Private Monitoring

I analyze a two-player δ-discounted repeated game with private monitoring. I use the index i ∈ {1, 2} to refer

to one of the players, and −i to refer to the opponent. Each player i has a finite action set Ai and a finite

set of signals Σi. An action profile is an element of A1 × A2. I use ∆W to represent the set of probability

distributions over a finite set W . Let ∆Ai and ∆A1 × ∆A2 represent respectively the set of mixed actions

5This empirical prediction can be tested experimentally by comparing how subjects play the repeated Prisoner’s Dilemma
with private monitoring and conditionally independent signals with and without the ability to communicate by exchanging
“cheap talk” messages. Matsushima, Tanaka, and Toyama (2013) experimentally study this setup without communication, and
their findings suggest that the subjects’ behavior is substantially different from the predictions of the belief-free equilibria (in
particular, subjects retaliate more severely when monitoring is more accurate). I am not aware of any experiment that studies
this setup with communication.

6See also the recent related result of Awaya and Krishna (2016), which deals with sequential equilibria of oligopolies under
some plausible private monitoring structures, and shows that cheap talk communication allows one to achieve a higher level of
collusion relative to the maximal level that one can achieve without communication.

7Two existing papers present related anti–folk theorem results. Matsushima (1991) shows that defection is the unique pure

equilibrium in the repeated Prisoner’s Dilemma in which signals are conditionally independent and Nash equilibria are restricted
to being independent of payoff-irrelevant private histories. As demonstrated by the “belief-based” equilibria of Bhaskar and
Obara (2002), the uniqueness result does not hold for mixed equilibria (the mixed “belief-based” equilibria achieve cooperation
even though the behavior of the players is independent of payoff-irrelevant private histories, and signals may be conditionally
independent). Peski (2012) studies repeated games with private monitoring. He assumes that strategies have a finite past, in
each period players’ preferences over actions are modified by smooth idiosyncratic shocks, the monitoring structures includes
infinitely many signals, and the signals are sufficiently connected. Under these assumptions, Peski (2012) shows that all
equilibria of the repeated game are trivial, in the sense that each period’s play is an equilibrium of the stage game.
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for player i and mixed action profiles. For each player i let ui : A1 × A2 → R denote the payoff function,

which is extended to mixed actions in the standard (linear) way.

For each possible action profile (a1, a2) ∈ A1 ×A2, the monitoring distribution m (·|a1, a2) specifies a joint

probability distribution over the set of signal profiles Σ1 × Σ2. When action profile a is played and signal

profile (σ1, σ2) is realized, each player i privately observes his corresponding signal σi. Let mi (·|a1, a2) be

the marginal probability distribution over the signal of player i: mi (σi|a1, a2) =
∑

σ−i∈Σ−i
m (σi, σ−i|a1, a2).

Letting ũi (ai, σi) denote the payoff to player i from action ai and signal σi, I can represent stage payoffs as

a function of mixed action profiles only:

ui (α1, α2) =
∑

(a1,a2)∈A1×A2

∑

σi∈Σi

α1 (a1) · α2 (a2) · mi (σi|a1, a2) · ũ (ai, σi) .

To simplify the presentation of the results, I assume that the marginal distribution of signals of each

player has a full support, i.e., that each signal is observed with a positive probability after each action profile.

Formally:8

Assumption 1. The monitoring structure has full support: mi (σi|a1, a2) > 0 for each action profile

(a1, a2) ∈ A1 × A2 , each player i, and each signal σi ∈ Σi.

One example of a monitoring structure with full support is the conditionally independent ǫ-perfect moni-

toring in which each player privately observes his opponent’s last action with probability 1 − ǫ and observes

the opposite action with the remaining probability ǫ.

A t-length private history of player i (abbr., history) is a sequence that includes the action played by the

player and the observed signal in each of the previous t rounds of the game. Each player’s initial history is

the null history, denoted by φ. Let Ht
i := (Ai × Σi)

t denote the set of all t-length histories of player i, and

let Hi = ∪tH
t
i the set of all histories of player i. A history profile, (ht

1, ht
2) ∈ Ht

1 × Ht
2, is a pair of t-length

histories, one belonging to each player.

2.2 Belief-free Equilibria

A repeated-game (behavior) strategy of player i is a mapping si : Hi → ∆ (Ai). Let Si denote the set of all

strategies of player i. For history ht
i , let si|ht

i
denote the continuation strategy derived from si following

history ht
i. Specifically, if hiĥi denotes the concatenation of the two histories hi and ĥi, then si|ht

i
is the

strategy defined by si|ht
i

(

ĥi

)

= si

(

hiĥi

)

. Given a strategy profile −→s = (s1, s2), let Bi

(−→s |ht
−i

)

denote the

set of continuation strategies of i that are best replies to s−i|ht
−i

.

Definition 1 (Ely, Hörner, and Olszewski 2005). A strategy profile −→s ∗ = (s∗
1, s∗

2) is belief-free if for every

history profile (ht
1, ht

2), s∗
i |ht

i
∈ Bi

(−→s ∗|ht
−i

)

for i ∈ {1, 2}.

The condition characterizing a belief-free strategy profile is stronger than that characterizing a sequential

equilibrium. In a sequential equilibrium, a player’s continuation strategy is the player’s best reply given his

8The results can be adapted to a setup in which the monitoring structure does not have full support. The adaptation
requires changing two definitions (and related minor adaptations to the proofs): (1) extending the set of of trivial belief-free
equilibria in Definition 2, such that it relates only to histories that occur with positive probability, and (2) refining Definition 6
of weak stability by allowing the strategy s′ to be neutrally stable, rather than evolutionarily stable (because if the monitoring
structure does not have full support, then no strategy is evolutionarily stable).
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belief about his opponent’s continuation strategy, that is, given a unique probability distribution over the

opponent’s private histories. In a belief-free strategy profile, a player’s continuation strategy is his best reply

to his opponent’s continuation strategy at every private history. In other words, a sequential equilibrium is

a belief-free strategy profile if it has the property that a player’s continuation strategy is still the player’s

best reply when he secretly learns about his opponent’s private history.

A simple kind of a belief-free equilibrium, is a strategy profile in which the players play a Nash equilibrium

of the underlying game in all periods, and this equilibrium is independent of the history of play. I call such

belief-free equilibria trivial. Formally, let NE ((A1, A2) , (u1, u2)) denote the set of Nash equilibria of the

underlying game. Let πt
si,s−i

∈ ∆ (Ht
i ) denote the probability that a player who follows strategy si observes

history ht
i, conditional on the opponent following strategy s−i (and the monitoring structure m).

I say that history ht
i ∈ Ht

i is feasible given strategy si if there exists strategy s−i such that πt
si,s−i

(ht
i) > 0.

For example, if sa∗ is the strategy that induces player i to always play action a∗ regardless of the history,

then a history of player i is feasible iff all the actions of player i in the previous rounds have been a∗. I say

that history profile (ht
1, ht

2) is feasible given strategy profile (s1, s2) if each ht
i is feasible given strategy si.

Definition 2. A belief-free equilibrium (s1, s2) is trivial if for every two feasible history profiles (ht
1, ht

2) ,
(

h̃t
1, h̃t

2

)

of length t:
(

si

(

ht
i

)

, s−i

(

ht
−i

))

=
(

si

(

h̃t
i

)

, s−i

(

h̃t
−i

))

∈ NE ((A1, A2) , (u1, u2)) .

A trivial equilibrium is pure if the Nash equilibrium played in each round is pure (i.e, |supp (si (ht
i))| = 1 for

each player i, period t, and feasible history profile (ht
1, ht

2).).

2.3 Evolutionary Stability in Symmetric Games

In what follows, I study evolutionary stability in symmetric games. I focus on symmetric games because they

are the most popular setup in the evolutionary game theory literature. Appendix A extends the analysis to

asymmetric games.

In the setup of symmetric games I omit the index i (e.g., A := Ai, u := ui, m := mi, Ht := Ht
i , and

ht := ht
i). I say that a strategy s is a symmetric Nash (belief-free) equilibrium if the symmetric strategy

profile (s, s) is a Nash (belief-free) equilibrium.

I present a refinement of a symmetric Nash equilibrium that requires robustness against a small group of

agents who experiment with a different behavior (see Weibull, 1995, for an introductory textbook). Suppose

that individuals in a large population (technically, a continuum) are repeatedly drawn to play a two-person

symmetric game, and that there is an underlying dynamic process of social learning in which more successful

strategies (which induce higher average payoffs) become more frequent. Suppose that initially all individuals

play the equilibrium strategy s∗. Now consider a small group of agents (called mutants) who play a different

strategy s′. If s′ is not a best reply to s∗, then if the mutants are sufficiently rare they will be outperformed.

If s′ is a best reply to s∗, then the relative success of the incumbents and the mutants depends only on the

average payoff they achieve when matched against a mutant opponent. If the incumbents achieve a higher

payoff when matched against the mutants, then the mutants are outperformed. Otherwise, the mutants

outperform the incumbents, and their strategy gradually takes over the population.

The formal definitions are as follows. I say that two strategies are outcome-equivalent if they always

induce the same behavior regardless of the opponent’s strategy. Arguably, two outcome-equivalent strategies

7



should be considered as two different ways to represent of the same strategy.

Definition 3. Strategies s, s′ are outcome-equivalent if: (1) their sets of feasible histories coincide (i.e., ht is

feasible given s iff it is feasible given s′), and (2) they coincide after each feasible history (i.e., s (ht) = s′ (ht)

for each feasible history ht). Given a strategy s, let [s] denote its equivalent set (i.e., the set of strategies

that are outcome-equivalent to s).9

Remark 1. Observe that:

1. In a game in which each player acts once, any equivalence set is a singleton.

2. In infinitely repeated games the equivalence set [s] is a singleton iff strategy s is totally mixed (i.e., it

assigns a positive probability to each action after each history).

3. Let sa be the strategy that plays action a after any history. The equivalence set [sa] is the set of

strategies that induce a player (Alice) to play action a in the first round, and after any history in

which Alice has always played a.

Let U (s, s′) denote the expected discounted payoff to a player following strategy s and facing an opponent

who plays strategy s′.

Definition 4 (Maynard-Smith and Price, 1973; Maynard-Smith, 1982). A symmetric Nash equilibrium s∗

is neutrally (evolutionarily) stable if U (s∗, s′) ≥ U (s′, s′) (U (s∗, s′) > U (s′, s′)) for each strategy s′ ∈

B (s∗) \ [s∗].

Remark 2. It is more common in the evolutionary game theory literature to define an evolutionarily stable

strategy as a strategy that satisfies the above inequality for any s′ ∈ B (s∗) \ {s∗}. Both definitions coincide

when dealing with one-shot games. This alternative definition is arguably too strict when dealing with

repeated games, as it can never be satisfied unless the strategy is totally mixed. Observe that strategy s

is an evolutionarily stable strategy (according to Definition 4) iff its equivalence set [s] is an evolutionarily

stable set à la Thomas (1985), which implies that such a strategy is asymptotically stable in the standard

replicator dynamics.

Example 1. Consider an underlying game G = (A, u) and a subset of actions A′ ⊆ A that satisfy that

(a′, a′) is a strict equilibrium for each a′ ∈ A′. Let (at)t be an arbitrary sequence of actions in A′ (i.e., at ∈ A′

for each period t). Observe that the pure strategy that plays action at in each period t is neutrally stable

for any monitoring structure, and it is evolutionarily stable if the monitoring structure has full support.

The key difference between evolutionary stability and neutral stability is whether the mutants are allowed

to obtain the same payoff as incumbents in the post-entry population. As a result neutrally stable strategies

(which are not evolutionarily stable) may be vulnerable to a random drift of the population away from the

initial state. The existing literature typically uses evolutionary stability as a strong refinement of stability,

and neutral stability as a mild refinement.

9The equivalence set [s] is the set of all strategies that have the same reduced strategy à la Osborne and Rubinstein (1994,
p. 94).
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2.4 Weak Stability in Symmetric Games

One may argue that neutral stability is still “too strong” a refinement because: (1) some games do not

admit any neutrally stable strategies, and (2) some equilibria that are not neutrally stable are plausible

predictions of the time-average behavior in the game. This is demonstrated in the rock-paper-scissors game

in Table 1 (left side). The unique symmetric equilibrium is
(

1
3 , 1

3 , 1
3

)

, which is not neutrally stable (because

R ∈ B
(

1
3 , 1

3 , 1
3

)

and U
((

1
3 , 1

3 , 1
3

)

, R
)

= − 1
3 < U (R, R) = 0. One can show that although

(

1
3 , 1

3 , 1
3

)

is not

neutrally stable, still, under mild assumptions on the dynamics, the time average of the aggregate play

converges to
(

1
3 , 1

3 , 1
3

)

(Benaïm, Hofbauer, and Hopkins, 2009).

Table 1: Examples of Symmetric Games

R P S

R 0
0

−2
1

1
−2

P 1
−2

0
0

−2
1

S −2
1

1
−2

0
0

Rock-Paper-Scissors.

a b

a 1
1

0
0

b 0
0

1
1

2 × 2 Coordination Game

c d

c 1
1

l
1+g

d 1+g
l

0
0

Prisoner’s Dilemma (g > 0 > l)

Hawk-Dove Game (g, l > 0)

This motivates me to present a much weaker stability refinement. Strategy s∗ is vulnerable to strategy

s′ if strategy s′ achieves a weakly better payoff against both s∗ and s′, and a strictly better payoff against

one of these strategies. Formally:

Definition 5. Strategy s∗ is vulnerable to strategy s′ if U (s′, s∗) ≥ U (s∗, s∗), U (s′, s′) ≥ U (s∗, s′), and at

least one of these inequalities is strict.

Definition 5 is equivalent to requiring that for any 0 < β < 1 and any heterogeneous population in which

β of the agents follow strategy s′ and 1 − β of the agents follow strategy s∗, the agents following strategy s′

achieve a strictly higher payoff. The definition implies that ǫ mutants who follow strategy s′ will take over

a population that initially plays s∗ under any dynamic process in which more successful strategies become

more frequent. Observe that a neutrally stable strategy is not vulnerable to any other strategy.

A symmetric Nash equilibrium s∗ is weakly stable if there does not exist a finite sequence of strategies

that starts at s∗, that ends in an evolutionarily stable strategy, and each of whose strategies is vulnerable

to its successor. Formally:

Definition 6. A symmetric Nash equilibrium s∗ is weakly stable if there does not exist a finite non-empty

sequence of strategies
(

s1, ..., sK
)

such that: (1) strategy s∗ is vulnerable to s1, (2) for each 1 ≤ k < K

strategy sk is vulnerable to sk+1, and (3) strategy sK is evolutionarily stable.

I conclude this section with a few observations on Definition 6:

1. Any neutrally stable strategy is weakly stable.

2. Any game admits a weakly stable strategy.

3. The notion of weak stability is able to strictly refine Nash equilibrium only if the game admits an

evolutionarily stable strategy.

9



4. If strategy s∗ is not weakly stable, then it is not a plausible prediction of long-run behavior in the

population. Even if the population initially plays s∗, as soon as a small group of agents experiments

with playing s̃, the population will diverge to s̃. If this is followed by another small group of agents who

play s′, then the population will converge to s′, and will remain there in the long run. Note that our

argument relies on the assumption that these experimentations are infrequent enough that strategies

that are outperformed following the entry of a group of experimenting agents become sufficiently rare

before a new group of agents starts experimenting with a different behavior.

5. Definition 6 allows vulnerability to an evolutionarily stable strategy through an arbitrary number of

sequential invasions (denoted by K). As shown in the proof of our main result on weak stability

(Proposition 3), the maximal number of required invasions is K ≤ |A|. Moreover, if we focus on

the existing belief-free equilibria for the repeated Prisoner’s Dilemma in the literature (e.g., Ely and

Välimäki, 2002; Piccione, 2002), then most of them are seen to be directly vulnerable to an invasion

by players who always defect (i.e., K = 1).

6. Definition 6 is structurally similar to Van Veelen’s (2012) notion of robustness against indirect invasions.

A strategy s∗ is robust against indirect invasions if there does not exist a sequence of strategies

(s1, ..., sn) , such that s∗ is weakly vulnerable to s1 (i.e., s1 ∈ B (s∗) and U (s∗, s1) ≤ U (s1, s1)), each

sk is weakly vulnerable to sk+1, and sK−1 is (strictly) vulnerable to sK . Note that Van Veelen’s notion

of robustness refines neutral stability (i.e., it is between evolutionary stability and neutral stability),

while weak stability weakens neutral stability (i.e., weak stability is between neutral stability and a

symmetric Nash equilibrium).

3 Results

Ely, Hörner, and Olszewski (2005) characterize the set of belief-free equilibrium payoffs, and show that such

strategies support a large set of payoffs. In what follows, I show that only trivial belief-free equilibria may

satisfy: (1) evolutionary stability in all games, (2) neutral stability in generic games, and (3) weak stability

in the large family of recursively strict games. Next, I strengthen the instability result for Hawk-Dove games,

and I sketch why belief-based equilibria (à la Bhaskar and Obara, 2002) do not satisfy weak stability.

3.1 Evolutionary Stability in All Games

My first result shows that any evolutionarily stable belief-free equilibrium must be trivial. The sketch of the

proof is as follows. Ely, Hörner, and Olszewski (2005, Section 2.1) show that the set of optimal actions in each

period t is independent of the history. This implies that mutants who play a symmetric Nash equilibrium

in an auxiliary game in which players are only allowed to choose from the set of optimal actions weakly

outperform the incumbents. If the belief-free equilibrium is non-trivial, then the mutants’ play differs from

the incumbents’ play, which implies that the belief-free equilibrium is not evolutionarily stable.

Proposition 1. Let s∗ be a symmetric belief-free equilibrium that is also evolutionarily stable. Then s∗ is

trivial.
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Proof. A continuation strategy zi is a belief-free sequential best reply to s∗ starting from period t if

zi|h
t̃
i∈Bi(s

∗|ht̃
−i) ∀t̃≥t and ht̃ ∈ H t̃;

the set of belief-free sequential best replies beginning from period t is denoted by Bt
i (s∗). Following Ely,

Hörner, and Olszewski’s (2005) definition, let

At
i =

{

a ∈ A|∃zi ∈ Bt
i (s∗), ∃ht

i such that zi

(

ht
i

)

(ai) > 0
}

;

denote the set of actions in the support of some belief-free sequential best reply starting from period t (also

called the regime in period t). Ely, Hörner, and Olszewski (2005, Section 2.1) show that ∃ht
i can be replaced

with ∀ht
i, because if zi is a belief-free sequential best reply to s−i and every continuation strategy zi|h

t
i gets

replaced with the strategy zi|h̃
t
i for a given h̃t

i, then the strategy zi so obtained is also a belief-free sequential

best reply to s−i. Note that the symmetry of the profile (s∗, s∗) implies that At := At
i = At

j .

For each period t, let αt ∈ ∆ (At) be a symmetric Nash equilibrium in the symmetric game (At, u)

in which players are restricted to choosing actions only in At ⊆ A. Let s′ be the strategy in which each

player plays the mixed action αt in each period t. The definition of the regimes (At)t implies that a mutant

player who follows strategy s′ best-replies to an incumbent who follows s∗, i.e., U (s′, s∗) = U (s∗, s∗). The

definition of αt implies that a mutant achieves a weakly higher payoff relative to the incumbents when facing

another mutant: U (s′, s′) ≥ U (s∗, s′). This implies that s∗ can be evolutionarily stable only if s′ = s∗,

which implies that s∗ is trivial.

3.2 Neutral Stability in Generic Games

As evolutionary stability is a strong refinement, it is desirable to show that belief-free equilibria also fail

to satisfy weaker notions of stability. In this subsection, I show that non-trivial belief-free equilibria fail

to satisfy the weaker notion of neutral stability under two mild assumptions: (1) the underlying game is

generic, and (2) the monitoring structure has a grain of informativeness.

I begin by defining the notions of a generic game and a grain of informativeness. Fix a set of actions A.

Consider a random process in which each payoff u (a, a′) for each pair of actions a, a′ ∈ A is independently

chosen at random from an arbitrary continuous (atomless) distribution. In what follows I require two

properties, both of which, hold with probability one in such a process. The first requirement is that the

same payoff not appear twice in the payoff matrix. The second requirement is that for each two actions

a, a′ in the support of a mixed equilibrium, the average payoff conditional on both players playing the same

action in {a, a}′
should not be exactly the same as the average payoff conditional on each player playing a

different action in {a, a}′
. I say that games that satisfy these two properties are generic games. Formally:

Definition 7. Symmetric normal-form game G = (A, u) is generic if it satisfies the following two properties:

1. u (a, a′) 6= u (â, a′) for any actions a 6= â, a′ ∈ A.

2. For each non-empty subset of actions A′ ⊆ A, each symmetric equilibrium α ∈ ∆ (A′) of the restricted
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game (A′, u) , and each two different actions a 6= a′ ∈ supp (α), the following inequality holds:

(α (a))
2 · u (a, a) + (α (a′))

2 · u (a′, a′)

(α (a))
2

+ (α (a′))
2 6= 0.5 · (u (a, a′) + u (a′, a)) . (1)

I say that a monitoring structure has a grain of informativeness if for any mixed action played by the

players, the joint distribution of action played and signal observed by each player can be used as a (possibly

weak) correlation device between the players. Formally:

Definition 8. Fix a symmetric game G = (A, u). A symmetric monitoring structure m has a grain of

informativeness if for each mixed action α ∈ ∆ (A) with a non-trivial support (|supp (α)| > 1), there exist

functions f+, f− : A × Σ → {0, 1}, such that if each player i chooses action ai according to the distribution

α, and at the end of the round observes signal σi, and calculates the values of f+ (ai, σi) and f− (ai, σi),

then the players’ values of f+ (f−) are positively (negatively) correlated, i.e.,

Pr
(

f+ (a1, σ1) = f+ (a2, σ2) = 1
)

=
∑

(a,a′)∈A2

α (a) · α (a′) ·
∑

(σ,σ′)∈Σ2

m (σ, σ′|a, a′) · f+ (a, σ) · f+ (a′, σ′)

>





∑

(a,a′)∈A2

α (a) · α (a′) ·
∑

(σ,σ′)∈Σ2

m (σ, σ′|a, a′) · f+ (a, σ)





2

= Pr
(

f+ (a1, σ1)
)

· Pr
(

f+ (a2, σ2)
)

,

and

Pr
(

f− (a1, σ1) = f− (a2, σ2) = 1
)

=
∑

(a,a′)∈A2

α (a) · α (a′) ·
∑

(σ,σ′)∈Σ2

m (σ, σ′|a, a′) · f− (a, σ) · f− (a′, σ′)

<





∑

(a,a′)∈A2

α (a) · α (a′) ·
∑

(σ,σ′)∈Σ2

m (σ, σ′|a, a′) · f− (a, σ)





2

= Pr
(

f− (a1, σ1)
)

· Pr
(

f− (a2, σ2)
)

.

Intuitively, the mild requirement of a grain of informativeness is satisfied whenever the signal a player

obtains (combined with his own action) is not completely uninformative about the partner’s action. The

following example shows how to explicitly construct f+ and f− for conditionally independent signals.

Example 2. Consider a game with two actions A = {c, d} and a monitoring structure with two signals

Σ = {C, D}, such that player i observes signal C with probability 1 − ǫ (ǫ) if the partner plays c (d) for

some ǫ < 0.5. Let the functions f+ and f− be defined as follows: f+ (c, C) = f+ (d, D) = 0, f+ (c, D) =

f+ (d, C) = 1, f− (c, D) = 1, f− (c, C) = f− (d, D) = f− (d, C) = 0. The values of f+ are positively

correlated between the two players because these values differ only if there has been an observation error

(a probability that is strictly less than 50%). The values of f− are negatively correlated between the two

players, because they coincide with the value of 1 only if there have been two observation errors (which

happens with a small probability of O
(

ǫ2
)

).

The following result shows that if the game is generic and the monitoring structure has a grain of

informativeness, then no non-trivial belief-free equilibrium satisfies neutral stability.

Proposition 2. Assume that G = (A, u) is a generic game and the monitoring structure has a grain of

informativeness. Let s∗ be a symmetric belief-free equilibrium that is also neutrally stable. Then s∗ is trivial.
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Proof. Let γt = γt (s∗) ∈ ∆ (At) be the marginal distribution of actions played by each player in period t in

the belief-free symmetric equilibrium s∗. Let T be the sequence of periods in which the support of γt includes

at least two actions, i.e., {t ∈ N| |supp (γt)| > 1}). If T = ∅, then both players play a pure equilibrium in

each period, and s∗ is trivial. If T =
{

t̄
}

, then the fact that |γt| = 1 for every t /∈ T , implies that both

players play a pure equilibrium in each period t /∈ T , and that the players myopically best-reply to each

other in round t̄. Due to the fact that s∗ is a belief-free equilibrium, this implies that each action a ∈ At̄ is

a myopic best reply against the partner for any possible history of length t̄, which implies that the players

play a Nash equilibrium of the stage game (which is independent of the observed history) in round t̄, and

that s∗ is trivial.

Next assume that there exists t̂ ∈ T , such that the restricted normal-form game
(

supp
(

γ t̂
)

, u
)

admits

a symmetric pure equilibrium. This equilibrium must be strict due to the game being generic. Let s′ be the

strategy that induces mutants to play in each period t 6= t̂ a symmetric mixed equilibrium (which depends

on the period, but not on the observed history) in the restricted normal-form game (supp (γt) , u), and to

play a strict symmetric equilibrium in the restricted game
(

supp
(

γ t̂
)

, u
)

in period t̂. The definition of s′

and the fact that s∗ is belief-free imply that U (s′, s∗) = U (s∗, s∗), and that U (s∗, s′) < U (s′, s′). The latter

inequality holds because the mutants achieve a strictly higher payoff in round t̂ and a weakly higher payoff

against other mutants in all other rounds. This contradicts the assumption that s∗ is neutrally stable.

Thus, we are left with the case in which there exist t1 < t2 ∈ T , such that the restricted normal-form

game (supp (γt1) , u) ((supp (γt2) , u)) admits a symmetric non-pure equilibrium α1 (α2), i.e., |supp (α1)| > 1

(|supp (α2)|>1). Assume first that the LHS of (1) is greater than the RHS. Let f+ be the function defined

in Definition 8 with respect to the mixed action α1. Let s+ (s̃+) be the strategy that induces an agent who

follows it (1) to play the mixed action α1 in round t1, (2) to play a symmetric equilibrium in the restricted

game (supp (γt) , u) in each round t 6= t1, t2, and (3) to play on the marginal the mixed equilibrium α2 in

round t2, but to condition his play on the values of a1 (his own action in round t1) and σ1 (the signals he

observed in round t1); specifically, the agent is more (less) likely to play action a and less (more) likely to

play action a′ when f+
(

ak, σk
)

= 1 . These changes in the probabilities of playing actions a and a′ are

determined, such that, after each history ht2 of length t2, the mixture of the mixed action played by an

agent who follows strategy s+ and the mixed action played by an agent who follows strategy s̃+ is α2, i.e.,

for each action â ∈ A, 0.5 · s+ (ht2) (â) + 0.5 · s̃+ (ht2) (â) = α2 (â).

Observe that the strategies s+ and s̃+ induce the same behavior in all rounds t 6= t2. Let smix be the

mixture of the strategies s+ and s̃+; i.e., smix ≡ α2 in round t2, and smix coincides with s+ and s̃+ in

each round t 6= t2. Observe that smix induces an agent who follows it to play symmetric mixed equilibria

in all rounds. This implies that U (s∗, smix) ≤ U (smix, smix). The fact that smix is a mixture of s+ and

s̃+ (and that the three strategies coincide in all rounds t 6= t2) implies that U (s∗, smix) = 0.5 · U (s∗, s+) +

0.5 · U (s∗, s̃+). This implies that either U (s∗, s+) ≤ U (smix, smix) or U (s∗, s̃+) ≤ U (smix, smix). Assume

without loss of generality that U (s∗, s+) ≤ U (smix, smix).

Consider a homogeneous group of mutants, each following strategy s+. The definition of s+ and the fact

that s∗ is belief-free imply that U (s+, s∗) = U (s∗, s∗), and that U (s+, s+) > U (smix, smix) ≥ U (s∗, s+).

The inequality U (s+, s+) > U (smix, smix) holds because strategy s+ coincides with strategy smix in any

period t 6= t2. In period t2 agents who follow strategy s+ achieve a higher expected payoff when being

matched with other agents who follow strategy s+ because when these agents are matched they induce a
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positive correlation in their random play of the actions a and a′, which increases their average payoff, due to

the LHS of (1) being greater than the RHS, relative to the uncorrelated profile played by agents who follow

the strategy smix. This implies that s∗ is not neutrally stable.

If the LHS of (1) is less than the RHS, then we define analogous strategies s−and s̃− with respect to the

function f−, and use an analogous argument to the one above where s−(s̃−) replaces s+ (s̃+) and negative

correlation replaces positive correlation in the random play of the mutants in round t2.

3.3 Weak Stability in Recursively Strict Symmetric Games

Although neutral stability is considered to be a mild evolutionary refinement, the arguments presented in

Section 2.3 suggest that in some setups it may be too strong, and it would be desirable to extend the

instability result to a weaker evolutionary refinement. In what follows I study the family of recursively strict

games, and show that within this family any weakly stable belief-free equilibrium is trivial.

I say that a symmetric game is recursively strict, if all the symmetric games induced by restricting both

players to choosing actions from a given subset of actions admit a strict symmetric equilibrium. Formally:

Definition 9. A symmetric normal-form game G = (A, u) is recursively strict if for any non-empty subset

of actions A′ ⊆ A, the game G = (A′, u), in which players are restricted to choose actions from A′, admits

a strict symmetric equilibrium (i.e., there is a ∈ A′ such that u (a, a) > u (a′, a) for each a′ 6= a ∈ A′).

A few examples of recursively strict games are:

1. The Prisoner’s Dilemma (as described in Table 1).

2. Symmetric coordination games, which satisfy that (a, a) is a strict equilibrium for each action a ∈ A.

3. Games with an ordered set of actions A = {a1, ..., an}, which satisfy that u (ak, ak) > u (al, ak) for

each 1 ≤ k < l ≤ n. In particular, such games include:

(a) Traveler’s Dilemma game (Basu, 1994). The set of actions is A = {2, ..., 100} (interpreted as

evaluations of the value of one of two lost identical suitcases), both players get a payoff equal to

the minimal evaluation, and, in addition, if the evaluations differ, then the player who wrote the

lower (higher) evaluation gets a bonus (malus) of 2 to his payoff.

(b) Public good games. The index 1 ≤ k ≤ n is interpreted as the level of contribution to a public

good. The payoff for a player who plays ak and whose partner plays al is f (k, l)−g (k), where the

function f is symmetric, strictly supermodular, and increasing in both parameters, the function

g is strictly increasing and convex, and f (k + 1, k) − g (k + 1) < f (k, k) − g (k) for each k < n.

Our next result shows that only trivial and pure belief-free equilibria satisfy the mild refinement of weak

stability if the underlying stage game is recursively strict. In particular, the symmetric Prisoner’s Dilemma

game admits a unique weakly stable belief-free equilibrium in which both players defect in all periods.

Proposition 3. Assume that the symmetric underlying game G = (A, u) is recursively strict. Let s∗ be a

symmetric belief-free equilibrium. If s∗ is weakly stable, then it is trivial and pure.
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Proof. Let γt = γt (s∗) ∈ ∆ (At) be the marginal distribution of actions played by each player in period

t in the belief-free symmetric equilibrium s∗. Assume first that γt is pure in all periods t. This implies

that s∗ induces a deterministic play that is independent of the observed signals. Thus a player’s best reply

coincides with his myopic best reply, which implies that the pure action profile played in each period must

be an equilibrium of the underlying game (i.e., s∗ is trivial and pure).

Otherwise, there exists time t such that |supp (γt (s∗))| > 1. For each period t, let at
1 ∈ supp (γt (s∗))

be a strict symmetric equilibrium in the symmetric game (supp (γt (s∗)) , u) in which players are restricted

to choosing actions only in supp (γt (s∗)). Let s1 be the strategy in which each player chooses action at
1

in each period t. The definition of the regimes (At)t implies that a mutant player who follows strategy

s1 best-replies to an incumbent who follows s∗, i.e., U (s1, s∗) = U (s∗, s∗). The definition of at
1 implies

that a mutant achieves a strictly higher payoff relative to the incumbents when facing another mutant:

U (s1, s1) > U (s∗, s1).

For each 1 ≤ k, define At
k+1 = argmaxa∈Au (a, at

k) as the set of pure best replies against at
k. Let at

k+1

be a strict symmetric equilibrium in the symmetric game
(

At
k+1, u

)

. Observe that there exists a minimal

1 ≤ k̄ ≤ |A| such that for each t, At
k̄

= At
k̄+1

=
{

at
k̄

}

is a singleton, which implies that action at
k̄

is a strict

equilibrium of the unrestricted game (A, u). This is because otherwise the sequence of actions
(

at
1, ..., at

|A|+1

)

must include a non-trivial cycle, which contradicts the fact that there exists an action â ∈
{

at
1, ..., at

|A|+1

}

that is a strict equilibrium in the restricted game
({

at
1, ..., at

|A|+1

}

, u
)

.

For each 2 ≤ k ≤ k̄, let sk be the strategy in which each player chooses action at
k in each period t. The

definitions of the strategies {s1, ..., sk̄} imply that (1) each strategy sk is vulnerable to the strategy sk+1,

i.e., sk+1 ∈ B (sk), and U (sk+1, sk+1) > U (sk, sk+1), and (2) sk̄ is a pure strategy in which the players play

a strict symmetric equilibrium of the underlying (unrestricted) game in each round t, which implies that sk̄

is evolutionarily stable, and that s∗ is not weakly stable.

Remark 3 (Instability of Belief-free Review-strategy Equilibria). Matsushima (2004), Yamamoto (2007,

2012), and Deb (2012) use the notion of a belief-free review-strategy equilibrium (also called block equilibrium)

in which (1) the infinite horizon is regarded as a sequence of review phases such that each player chooses

a constant action throughout a review phase, and (2) at the beginning of each review phase, a player’s

continuation strategy is a best reply regardless of the history. A simple adaptation of the proof of Proposition

3 show that defection is the unique weakly stable symmetric belief-free review-strategy equilibrium.10

The sketch of the adaptation of the proof is as follows. Let s∗ be a symmetric belief-free review-strategy

equilibrium. Let (tl)
∞
l=1

be the increasing sequence of starting times for the review phases. The strategy s1

is adapted such that it is defined in each round tl that begins a review process in an analogous way to the

definition given in Proposition 3, and it induces agents who follow it to play the same action up to the end

of the l-th review phase. The remaining strategies {s2, ..., sk̄} are defined in the same way as in the proof of

Proposition 3, and analogous arguments show that s∗ is not weakly stable (unless it is is trivial and pure).

10Similarly, one can further adapt the proof to show the instability of Sugaya’s (2015) equilibria, in which each review phase
is divided into several sub-phases, and players may switch their action at the beginning of each sub-phase.
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3.4 Weak Stability in Hawk-Dove Games

The Hawk-Dove game (see the payoff matrix in Table 1) is a common application of belief-free equilibria.

This game does not admit a strict symmetric equilibrium, and thus the general results above show only that

non-trivial belief-free equilibria are not neutrally stable.11 The main difficulty in analyzing weak stability of

belief-free in Hawk-Dove games is that, in general, it is an open question whether a repeated game without

strict symmetric equilibria admits an evolutionarily stable strategy. In this subsection I show that any

belief-free equilibrium in the repeated Hawk-Dove game is weakly stable iff the monitoring structure is such

that the game admits evolutionarily stable strategies.

The one-shot Hawk-Dove game admits a unique symmetric equilibrium, which is also an evolutionarily

stable strategy. Analogous arguments to those appearing in the proof of Proposition 2 show that the trivial

belief-free equilibrium in which the players keep playing the symmetric equilibrium of the one-shot game

is not neutrally stable in the repeated games if the monitoring structure has a grain of informativeness

(because mutants can use past history to induce a negative correlation between their played actions and

thus outperform the incumbents).

A repeated Hawk-Dove game with imperfect public monitoring (with full support) admits evolutionarily

stable strategies. One example of an evolutionarily stable strategy is the one according to which each agent

mixes in the first round with some distribution (α (c) , α (d)), which is chosen such that each player is indiffer-

ent between the two actions. If the public signal σ that is observed at the end of the first round is such that the

action profile (c, d) is more (less) likely than (d, c), conditional on observing σ, then the players play in all the

remaining rounds the deterministic sequence ((d, c) , (c, d) , (d, c) , (c, d) , ...) (((c, d) , (d, c) , (c, d) , (d, c) ...)). If

both asymmetric action profiles have the same posterior probability conditional on observing σ, then the

players randomize according to (α (c) , α (d)) in the next round, and repeat the same procedure described

above.

It is an open problem, which is left for future research, whether a repeated Hawk-Dove game with private

monitoring admits an evolutionarily (or neutrally) stable strategy. The following result shows that a belief-

free equilibrium is weakly stable iff the monitoring structure is such that the repeated Hawk-Dove game does

not admit an evolutionarily stable strategy.

Proposition 4. Let the underlying game G = ({c, d} , u) be a Hawk-Dove game. Assume that the monitoring

structure has a grain of informativeness. Let s∗ be a belief-free equilibrium of the repeated game. Then s∗ is

weakly stable iff the repeated game does not admit an evolutionarily stable strategy.

Proof. If the repeated game does not admit an evolutionarily stable strategy, then it is immediate from the

definition of weak stability that s∗ is weakly stable. Otherwise, let ŝ be an evolutionarily stable strategy of

the repeated game. Let γt = γt (s∗) ∈ ∆ (At) be the marginal distribution of actions played by each player

in period t in the belief-free symmetric equilibrium s∗.

Let T be the sequence of periods in which both actions are played with positive probability, i.e.,

{t ∈ N|supp (γt) = {c, d}}). Assume first that T is finite, and let t̄ = max (T ) be the last element in

T . Observe, that for every t > t̄, both players play deterministically, and at each such period they choose

11One can show that any Hawk-Dove game is generic according to Definition 7. Specifically, the LHS of (1) is always smaller

than the RHS because the unique mixed equilibrium (α̃ (c) = l
l+g

) yields an expected payoff of
l·(1+g)

l+g
, which is strictly less

than the average payoff of the agents conditional on playing different actions (1+g+l). Thus, the result holds for any monitoring
structure with a grain of informativeness.
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the same action. However, this implies s∗ is not a Nash equilibrium, as one of the players can achieve a

strictly higher payoff by choosing the opposite action at each period t > t̄.

Next, assume that T = N. The fact that both actions are best replies at all periods implies that

U (ŝ, s∗) = U (s∗, s∗), and because ŝ is evolutionarily stable this equality implies that U (s∗, ŝ) < U (ŝ, ŝ).

Thus, s∗ is vulnerable to ŝ, which implies that s∗ is not weakly stable.

Thus, we are left with the case in which |T | = ∞ and N\T̂ 6= ∅. Let α̃ be the unique symmetric

equilibrium of the (unrestricted) stage game. Given two periods tk < tl ∈ T , let s′
(tk,tl) be a strategy

that induces the mutants to play in each round t 6= tl a symmetric equilibrium in the restricted game

(supp (γt) , u). Observe that the mutants who follow s′
(tk,tl) play the mixed equilibrium α̃ in each round

t 6= tl ∈ T . Let ak be the action the agent played at time tk and let σk be the signal he observed at the end

of round tk. In period tl an agent who follows strategy s′ plays on the marginal the mixed equilibrium α̃,

but he conditions his play on the values of ak and σk. Specifically, the agent is more likely to play action c

and less likely to play action d when f−
(

ak, σk
)

= 1.

Let t0 ∈ N\T . The fact that T is infinite implies that for any ǫ > 0, there exist tk < tl ∈ T such that (1)

the probability that an agent plays action c at time tl changes by at most ǫ conditional on the the value of

f−
(

ak, σk
)

when the agent follows strategy s∗ and faces a partner who follows strategy s′
(tk,tl), and (2) the

myopic gain from playing α instead of s∗ (t0) in period t0 outweighs the maximal possible discounted loss in

period tl, i.e.,

u (α̃, s∗ (t0)) − u (s∗ (t0) , s∗ (t0)) > δtl−t0 · max (g, l) .

Let tk < tl ∈ T be two periods that satisfy these conditions for a sufficiently small ǫ. The def-

inition of s′
(tk,tl) and the fact that s∗ is belief-free implies that U

(

s′
(tk,tl), s∗

)

= U (s∗, s∗), and that

U
(

s′
(tk,tl), s′

(tk,tl)

)

> U
(

s∗, s′
(tk,tl)

)

. The latter inequality holds due to the same argument as in the proof

of Proposition 2 (see also footnote 11). This implies that s∗ is vulnerable to s′
(tk,tl).

Let sα̃ be the strategy that plays the mixed equilibrium α̃ at all periods (regardless of the observed his-

tory). The second condition in the definition of s′
(tk,tl) above implies that U

(

sα̃, s′
(tk,tl)

)

> U
(

s′
(tk,tl), s′

(tk,tl)

)

because the two strategies have the same expected payoff when facing a partner who follows s′
(tk,tl) in all

periods in T \ {tl}, and the higher payoff that sα̃ yields in each period in N\T̂ outweighs the lower payoff in

period tl.The definition of sα̃ implies that U (sα̃, sα̃) = U
(

s′
(tk,tl), sα̃

)

. Thus, strategy s′
(tk,tl) is vulnerable

to sα̃.

The definition of sα̃ implies that U (sα̃, sα̃) = U (ŝ, sα̃), and because ŝ is evolutionarily stable this equality

implies that U (sα̃, ŝ) < U (ŝ, ŝ). Thus, sα̃ is vulnerable to ŝ, which implies that s∗ is not weakly stable.

An immediate corollary of Proposition 4 is that repeated Hawk-Dove games with public imperfect moni-

toring do not admit any weakly stable belief-free equilibria (see Kandori and Obara, 2006, for an application

of belief-free equilibria with public imperfect monitoring).

3.5 Instability of the Belief-based Equilibria of Bhaskar and Obara (2002)

Proposition 3 shows that non-trivial belief-free equilibria do not satisfy weak stability in the repeated Pris-

oner’s Dilemma. The literature on the repeated Prisoner’s Dilemma with private monitoring also includes

another approach to induce cooperation, namely, the belief-based equilibria of Bhaskar and Obara (2002).
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In what follows I sketch why these particular belief-based equilibria also fail to satisfy weak stability.

Bhaskar and Obara (2002) (extending Sekiguchi, 1997) present a folk theorem result for the repeated

Prisoner’s Dilemma that does not rely on belief-free equilibria. Instead, the best reply of each player depends

on his belief about the private history of the opponent (“belief-based equilibria”). Bhaskar and Obara (2002)

consider a symmetric signaling structure with two signals Σi = {C, D}, where C (resp., D) is more likely

when the opponent plays c (resp., d). Given any action profile, there is a probability of ǫ > 0 that exactly one

player receives a wrong signal, and a probability of ξ > 0 that both players receive wrong signals. Bhaskar

and Obara present for each 0 < x < 1 a symmetric sequential equilibrium sx that yields a payoff of at least

x whenever ǫ and ξ are sufficiently small. This construction is the key element in their folk theorem result.

In what follows I sketch this equilibrium sx, and then show that it is not weakly stable.

Let sT be the trigger strategy: cooperate as long as all observed signals are C-s, and defect in the

remaining game if signal D is ever observed. The strategy sx divides the set of periods into disjoint sequences

(say, into n sequences, (T1, ..., Tn), where sequence Tk includes the periods that are equal to k modulo n),

and the play in each sequence is independent of the other sequences. Each player mixes in the first round

of each sequence: he plays sT (trigger strategy) with probability π and plays sd (always defect) with the

remaining probability. Bhaskar and Obara show that there exist a division into sequences and a mixing

probability π such that (1) the expected discounted symmetric payoff of the game is at least x, and (2)

strategy sx is a sequential equilibrium.12

Claim 1. The symmetric sequential equilibrium sx is not weakly stable.

Sketch of Proof. The fact that sx mixes between sd and sT at the beginning of each sequence Tk implies

that sd is a best reply to sx. Recall that sd is evolutionarily stable and the unique best reply to itself. These

observations immediately imply that sx is not weakly stable.

A Analysis of Asymmetric Games

The main text analyzes stability of symmetric equilibria in symmetric games, as this is the setup analyzed

in most of the evolutionary game theory literature. In many applications, there are observable differences

between the agents (e.g., age, sex, and status), which can be perceived by both agents and upon which be-

havior can be conditioned. When these differences are payoff-relevant (or monitoring-relevant), the repeated

game is asymmetric, and when the differences are payoff-irrelevant, the underlying game is symmetric, but

agents can still condition their play on these observable differences. For brevity, we will use the notion of

asymmetric games to refer to both situations. The appendix adapts the notions of stability and extends the

main results to deal with asymmetric games.

A.1 Definitions of Stability in Asymmetric Games

In this subsection I adapt the notions of stability to the setup of asymmetric games (see Weibull, 1995,

Chapter 2.7 and Van Damme, 1991, Sections 9.5–9.8, for introductory textbooks.) I consider a large popu-

lation of agents (technically, a continuum) in which agents are drawn to play a two-person repeated game,

12As observed by Bhaskar (2000) and Bhaskar, Mailath, and Morris (2008), these belief-based equilibria can be purified à la
Harsanyi (1973) in a simple way (while this is not the case for belief-free equilibria). Nevertheless, I show that they still do not
satisfy weak stability.
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and at the beginning of each such repeated interaction, nature randomly determines who will be player 1

and who will be player 2, such that each agent has a probability of 50% of being in each role.

Each agent in the population follows a strategy profile (s1, s2), where each si describes the behavior of

the agent when he is assigned to play the role of player i. The (ex-ante) expected payoff of an agent who

follows strategy profile (s1, s2) and is matched with a partner who follows strategy profile (s′
1, s′

2) is

Ū ((s1, s2) , (s′
1, s′

2)) :=
1

2
· U1 (s1, s′

2) +
1

2
· U2 (s′

1, s2) ,

which is the average agent’s payoff in each of the two possible roles.

A strategy profile (s∗
1, s∗

2) is a Nash equilibrium if it is the best reply against itself, i.e.,:

Ū ((s∗
1, s∗

2) , (s∗
1, s∗

2)) ≥ Ū ((s′
1, s′

2) , (s∗
1, s∗

2)) ∀ (s′
1, s′

2) ∈ S1 × S2 ⇔

U1 (s∗
1, s∗

2) ≥ U1 (s′
1, s∗

2) ∀s′
1 ∈ S1 and U2 (s∗

1, s∗
2) ≥ U2 (s∗

1, s′
2) ∀s′

2 ∈ S2.

Let B (s∗
1, s∗

2) denote the set of strategy profiles that are best replies against the strategy profile (s∗
1, s∗

2), i.e.,

B (s∗
1, s∗

2) = argmax(s1,s2)∈S1×S2

(

Ū ((s1, s2) , (s∗
1, s∗

2))
)

.

Recall that πt
si,s−i

∈ ∆ (Ht
i ) denotes the probability that a player who follows strategy si observes history

ht
i, conditional on the opponent following s−i, and recall that history ht

i ∈ Ht
i is feasible given strategy ŝi

if there exists strategy s−i ∈ S−i such that πt
ŝi,s−i

(ht
i) > 0. Two strategy profiles are outcome-equivalent if

they always induce the same behavior regardless of the opponent’s strategy profile. Formally:

Definition 10. Strategy profiles (s1, s2) and (s′
1, s′

2) are outcome-equivalent if: (1) their sets of feasible

histories coincide (i.e., for each role i, history ht
i is feasible given si iff it is feasible given s′

i), and (2) they

coincide after each feasible history (i.e., si (ht
i) = s′

i (ht
i) for each player i and for each feasible history ht

i).

Given a strategy profile (s1, s2), let [(s1, s2)] denote its equivalent set (i.e., the set of strategies that are

outcome-equivalent to (s1, s2)).

A Nash equilibrium (s∗
1, s∗

2) is evolutionarily stable if the incumbents (who follow (s∗
1, s∗

2)), achieve a

higher payoff against any best-replying mutants (who follow strategy profile (s′
1, s′

2)). Formally:

Definition 11 (Taylor, 1979; Weibull, 1995, Chapter 5.1). A Nash equilibrium (s∗
1, s∗

2) is neutrally (evo-

lutionarily) stable if Ū ((s∗
1, s∗

2) , (s′
1, s′

2)) ≥ Ū ((s′
1, s′

2) , (s′
1, s′

2)) (Ū ((s∗
1, s∗

2) , (s′
1, s′

2)) > Ū ((s′
1, s′

2) , (s′
1, s′

2))),

for each best-reply strategy profile (s′
1, s′

2) ∈ B (s∗
1, s∗

2) \ [(s∗
1, s∗

2)].

In what follows I adapt the notion of weak stability to the setup of asymmetric games. Strategy profile

(s∗
1, s∗

2) is vulnerable to (s′
1, s′

2) if the former induces a strictly higher payoff in any heterogeneous population

in which some of the agents follow (s∗
1, s∗

2) and the others follow (s′
1, s′

2) . Formally:

Definition 12. Strategy profile (s∗
1, s∗

2) is vulnerable to (s′
1, s′

2) if Ū ((s∗
1, s∗

2) , (s∗
1, s∗

2)) ≤ Ū ((s′
1, s′

2) , (s∗
1, s∗

2)),

Ū ((s∗
1, s∗

2) , (s′
1, s′

2)) ≤ Ū ((s′
1, s′

2) , (s′
1, s′

2)), and at least one of these inequalities is strict.

Note that a neutrally stable equilibrium is not vulnerable to any strategy profile.
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A Nash equilibrium is weakly stable if there does not exist a sequence of strategy profiles, starting with

this equilibrium and ending with an evolutionarily stable equilibrium, such that each profile in the sequence

is vulnerable to its successor. Formally:

Definition 13. A Nash equilibrium (s∗
1, s∗

2) is weakly stable if there does not exist a finite non-empty

sequence of strategy profiles
((

s1
1, s1

2

)

, ...,
(

sK
1 , sK

2

))

such that: (1) strategy profile (s∗
1, s∗

2) is vulnerable to
(

s1
1, s1

2

)

, (2) for each 1 ≤ k < K, strategy profile
(

sk
1 , sk

2

)

is vulnerable to
(

sk+1
1 , sk+1

2

)

, and (3) strategy

profile
(

sK
1 , sK

2

)

is evolutionarily stable.

It is well known (Weibull, 1995, Chapter 2.7 ) that a strategy profile is evolutionarily stable iff it is a

strict equilibrium. This immediately implies that only trivial belief-free equilibria may be evolutionarily

stable.

Fact 1. Let (s∗
1, s∗

2) be a belief-free equilibrium that is also evolutionarily stable. Then (s∗
1, s∗

2) is trivial and

pure.

A.2 Result for Generic Asymmetric Games

In this subsection I show how to adapt Proposition 2 to deal with asymmetric games. I say that a game is

generic if: (1) the same number does not appear twice in the same column of the payoff matrix of player i,

and (2) for each two pairs of actions {(a1, a2) , (a′
1, a′

2)} in the support of a mixed equilibrium, the average

payoff conditional on the players playing either of these action profiles is not exactly the same as the average

payoff conditional on the players playing either of the “crossed” action profiles {(a1, a′
2) , (a′

1, a2)}. Both

properties hold with probability one if each payoff is independently distributed from a continuous (atomless)

distribution. Formally, for each action profile (a1, a2) ∈ A1×A2 let ū (a1, a2) := 0.5·(u1 (a1, a2) + u2 (a1, a2))

denote the average payoff of two players who follow the action profile (a1, a2).

Definition 14. A normal-form game G = ((A1, A2) , u) is generic if it satisfies the following two conditions:

1. For any player i and any actions ai 6= a′
i ⊆ Ai and a−i ∈ A−i, the following inequality holds:

ui (ai, a−i) 6= ui (a′
i, a−i).

2. For any pair of non-empty subsets of actions A′
1 ⊆ A1 and A′

2 ⊆ A2, any equilibrium (α1, α2) ∈

∆ (A′
1) × ∆ (A′

2) of the restricted game ((A′
1, A′

2) , u), and any two pairs of actions a1 6= a′
1 ∈ supp (α1)

and a2 6= a′
2 ∈ supp (α2), the following inequality holds:

α1 (a1) · α2 (a2) · ū (a1, a2) + α1 (a′
1) · α2 (a′

2) · ū (a′
1, a′

2)

α1 (a1) · α2 (a2) + α1 (a′
1) · α2 (a′

2)
6=

α1 (a1) · α2 (a′
2) · ū (a1, a′

2) + α1 (a′
1) · α2 (a2) · ū (a′

1, a2)

α1 (a1) · α2 (a′
2) + α1 (a′

1) · α2 (a2) .
(2)

Observe that the first requirement implies that if in a Nash equilibrium, one of the players plays a pure

action, then it must be that the equilibrium is pure (for both players) and strict.

I say that a monitoring structure has a grain of informativeness if for any mixed action played by the

players, the joint distribution of the action played and the signal observed by each player can be used as a

(possibly weak) correlation device between the players. Formally:
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Definition 15. Fix a normal-form game G = ((A1, A2) , u). A monitoring structure m has a grain of

informativeness if for each profile of mixed actions (α1 ∈ ∆ (A1) , α2 ∈ ∆ (A2)) with a non-trivial support

(|supp (αi)| > 1 for each i), there exists a pair of functions
(

f+
1 : A1 × Σ1 → {0, 1} , f+

2 : A2 × Σ2 → {0, 1}
)

,

such that when each player i chooses action ai according to distribution αi, observes signal σi, and calculates

the values of f+
i (ai, σi), then the players’ values of f+

1 and f+
2 are positively correlated, i.e.,

Pr
(

f+
1 (a1, σ1) = f+

2 (a2, σ2) = 1
)

=
∑

(a1,a2)∈A1×A2
α1 (a1) · α2 (a2) ·

∑

(σ1,σ2)∈Σ1×Σ2
m (σ1, σ2|a1, a2) · f+

1 (a1, σ1) · f+
2 (a2, σ2) >

∏

i∈{1,2}

(

∑

(a1,a2)∈A1×A2
α1 (a1) · α2 (a2) ·

∑

(σ1,σ2)∈Σ1×Σ2
m (σ1, σ2|a1, a2) · f+

i (ai, σi)
)

=

Pr
(

f+
1 (a1, σ1) = 1

)

· Pr
(

f+
2 (a2, σ2) = 1

)

.

Intuitively, the mild requirement of grain of informativeness is satisfied whenever the signal each player

obtains (combined with his own action) is not completely uninformative about the partner’s action.

The following result shows that if the game is generic and the monitoring structure has a grain of

informativeness, then no non-trivial belief-free equilibrium satisfies neutral stability.

Proposition 5. Assume that G = (A, u) is a generic game, and the monitoring structure has a grain of

informativeness. Let (s∗
1, s∗

2) be a belief-free equilibrium that is also neutrally stable. Then (s∗
1, s∗

2) is trivial.

Proof. Let γt
i = γt

i (s∗) ∈ ∆ (At) be the marginal distribution of actions played by each player i at period t

in the belief-free symmetric equilibrium (s∗
1, s∗

2). Let T be the sequence of periods in which the support of

either players includes at least two actions, i.e., {t ∈ N|max (|supp (γt
1) , | |supp (γt

2)|) > 1}.

If T = ∅, then both players play a pure equilibrium in each period, and (s∗
1, s∗

2) is trivial. If T =
{

t̄
}

,

then the fact that |γt
i | = 1 for every t /∈ T , implies that both players play a pure equilibrium in each period

t /∈ T , and that the players myopically best-reply to each other in round t̄. Due to the fact that (s∗
1, s∗

2) is a

belief-free equilibrium, this implies that each action ai ∈ At̄
i is a myopic best reply against the partner for

any possible history of length t̄, which implies that the players play a Nash equilibrium of the stage game

(which is independent of the observed history) in round t̄, and that (s∗
1, s∗

2) is trivial.

Next, assume that there exists t̂ ∈ T such that the restricted game
((

supp
(

γ t̂
1

)

, supp
(

γ t̂
2

))

, u
)

admits

an equilibrium in which either of the players plays a pure action. Due to the game being generic, this implies

that this equilibrium,
(

at̂
1, at̂

2

)

, is pure (for both players) and strict. For each period t 6= t̂, let (αt
1, αt

2) ∈

∆ (supp (γt
1)) × ∆ (supp (γt

2)) be an equilibrium of the restricted game
((

supp
(

γ t̂
1

)

, supp
(

γ t̂
2

))

, u
)

. Let

(s′
1, s′

2) be the strategy profile in which each player i plays mixed action αt
i in each period t 6= t̂ (regard-

less of the observed history) and plays action at̂
i in period t̂. The fact that (s∗

1, s∗
2) is belief-free and the

definition of (s′
1, s′

2) imply that (1) (s′
1, s′

2) is a best reply against (s∗
1, s∗

2), and (2) Ū ((s∗
1, s∗

2) , (s′
1, s′

2)) <

Ū ((s′
1, s′

2) , (s′
1, s′

2)). These implications contradict the assumption that (s∗
1, s∗

2) is neutrally stable.

Thus, we are left with the case in which there exist t1 < t2 ∈ T , such that the restricted normal-form game
((

supp
(

γt1
1

)

, supp
(

γt1
2

))

, u
)

(
((

supp
(

γt2
1

)

, supp
(

γt2
2

))

, u
)

) admits equilibrium β = (β1, β2) (α = (α1, α2))

in which both players mix. Assume first that the LHS of (2) is greater than the RHS. Let f+
1 and f+

2 be the

functions defined in Definition 15 with respect to the mixed actions α1 and α2. Let s+
i (s̃+

i ) be the strategy

that induces an agent who follows it (when acting in the role of player i) (1) to play the mixed action βi in
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round t1, (2) to play his part of an arbitrary equilibrium in the restricted game ((supp (γt
1) , supp (γt

2)) , u)

in each round t /∈ {t1, t2}, and (3) to play on the marginal the mixed equilibrium αi in round t2, but

to condition his play on the values of ai (his own action in round t1) and σi (the signal he observed in

round t1); specifically, the agent is more (less) likely to play action ai and less (more) likely to play action

a′
i when f+

i

(

ak, σk
)

= 1 . These changes in the probabilities of playing actions ai and a′
i are adjusted,

such that, after each history ht2
i , the mixture of the mixed action played by an agent who follows strategy

s+
i and the mixed action played by an agent who follows strategy s̃+

i is αi, i.e., for each action â ∈ A,

0.5 · s+
i

(

ht2
i

)

(â) + 0.5 · s̃+
i

(

ht2
i

)

(â) = αi (â).

Observe that the strategies s+
i and s̃+

i induce the same behavior in all rounds t 6= t2. Let smix
i be the

mixture of the strategies s+
i and s̃+

i ; i.e., smix
i ≡ αi in round t2, and smix

i coincides with s+
i and s̃+

i in each

round t 6= t2. Observe that smix
i induces an agent who follows it to play mixed equilibria in all rounds. This

implies that Ū
(

(s∗
1, s∗

2) ,
(

smix
1 , smix

2

))

≤ Ū
((

smix
1 , smix

2

)

,
(

smix
1 , smix

2

))

. The fact that smix
i is a mixture of s+

i

and s̃+
i (and that the three strategies coincide in all rounds t 6= t2) implies that Ū

(

(s∗
1, s∗

2) ,
(

smix
1 , smix

2

))

=

0.5 · Ū
(

(s∗
1, s∗

2) ,
(

s+
1 , s+

2

))

+ 0.5 · Ū
(

(s∗
1, s∗

2) ,
(

s̃+
1 , s̃+

2

))

. This implies that either Ū
(

(s∗
1, s∗

2) ,
(

s+
1 , s+

2

))

≤

Ū
((

smix
1 , smix

2

)

,
(

smix
1 , smix

2

))

or Ū
(

(s∗
1, s∗

2) ,
(

s̃+
1 , s̃+

2

))

≤ Ū
((

smix
1 , smix

2

)

,
(

smix
1 , smix

2

))

. Assume without

loss of generality that Ū
(

(s∗
1, s∗

2) ,
(

s+
1 , s+

2

))

≤ Ū
((

smix
1 , smix

2

)

,
(

smix
1 , smix

2

))

.

Consider a homogeneous group of mutants, each following strategy
(

s+
1 , s+

2

)

. The definition of
(

s+
1 , s+

2

)

and the fact that (s∗
1, s∗

2) is belief-free imply that Ū
((

s+
1 , s+

2

)

, (s∗
1, s∗

2)
)

= Ū ((s∗
1, s∗

2) , (s∗
1, s∗

2)), and that

Ū
((

s+
1 , s+

2

)

,
(

s+
1 , s+

2

))

> Ū
((

smix
1 , smix

2

)

,
(

smix
1 , smix

2

))

≥ Ū
(

(s∗
1, s∗

2) ,
(

s+
1 , s+

2

))

.

The inequality Ū
((

s+
1 , s+

2

)

,
(

s+
1 , s+

2

))

> Ū
((

smix
1 , smix

2

)

,
(

smix
1 , smix

2

))

holds because strategy s+
i coin-

cides with strategy smix
i in any period t 6= t2. In period t2 agents who follow strategy

(

s+
1 , s+

2

)

achieve a

higher expected payoff when being matched with other agents who follow strategy s+ because when the

former agents are matched they induce a positive correlation in their random play of the actions ai and

a′
i, which increases their average payoff, due to the LHS of (2) being greater than the RHS, relative to the

uncorrelated profile played by agents who follow the strategy
(

smix
1 , smix

2

)

. This implies that (s∗
1, s∗

2) is not

neutrally stable.

If the LHS of (2) is less than the RHS, then we define analogous strategies s−
i and s̃−

i with respect to the

functions f−
1 and f−

2 , and we use an analogous argument to the one above where s−
i (s̃−

i ) replaces s+
i (s̃+

i )

and negative correlation replaces positive correlation in the random play of mutants in round t2.

A.3 Result for Recursively Strict Asymmetric Games

I conclude by extending Proposition 3 to the asymmetric setup. I say that a game is recursively strict, if

all the games induced by restricting each player to choosing actions from a given subset of actions admit a

strict equilibrium. Formally:

Definition 16. A normal-form game G = ((A1, A2) , u) is recursively strict if for any non-empty subset of

actions A′
1 ⊆ A1 and A′

2 ⊆ A2, the game G = ((A′
1, A′

2) , u), in which each player i is restricted to choosing

actions from A′
i, admits a strict equilibrium.

A couple of examples of recursively strict games are: (1) the (possibly asymmetric) Prisoner’s Dilemma,

(2) the (possibly asymmetric) public good game, (3) the (possibly asymmetric) Hawk-Dove game. Observe

that a symmetric Hawk-Dove game is recursively strict in the current setup (in which players can condition
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their play on their role in the game), even though it is not recursively strict in the setup of symmetric games

in which players cannot condition their play on their role in the game (see Section 3.4 above).

My last result shows that if the underlying game is recursively strict, then any belief-free equilibrium

that satisfies weak stability is trivial and pure.

Proposition 6. Assume that the underlying game G = ((A1, A2) , u) is recursively strict. Let (s∗
1, s∗

2) be a

belief-free equilibrium. If (s∗
1, s∗

2) is weakly stable, then it is trivial and pure.

Proof. Let γt
i = γt

i (s∗
1, s∗

2) ∈ ∆ (Ai) be the marginal distribution of actions played by player i in period t

in the belief-free equilibrium (s∗
1, s∗

2). Assume first that γt
i (s∗) is pure for each player i and each period t.

This implies that (s∗
1, s∗

2) induces a deterministic play that is independent of the observed signals. Thus a

player’s best reply coincides with his myopic best reply, which implies that the pure action profile played in

each period must be an equilibrium of the underlying game (i.e., (s∗
1, s∗

2) is trivial and pure).

Otherwise, there exists period t such that |supp (γt
i (s∗

1, s∗
2))| > 1 for some player i. For each period t,

let
(

at
1,1, at

2,1

)

∈ A1 × A2 be a strict equilibrium in the game ((supp (γt
1 (s∗

1, s∗
2)) , supp (γt

2 (s∗
1, s∗

2))) , u). Let

(s1,1, s2,1) be the mutant strategy profile in which a mutant agent in the role of player i chooses action

at
i,1 in each period t. The fact that (s∗

1, s∗
2) is belief-free equilibrium implies that mutants who follow

strategy profile (s1,1, s2,1) best reply against (s∗
1, s∗

2). The fact that each
(

at
1,1, at

2,1

)

is a strict equilibrium in

supp (γt
1 (s∗

1, s∗
2)) ×supp (γt

2 (s∗
1, s∗

2)) implies that a mutant achieves a strictly higher expected payoff relative

to the incumbents when facing another mutant, i.e., Ū ((s1,1, s2,1) , (s1,1, s2,1)) > Ū ((s∗
1, s∗

2) , (s1,1, s2,1)),

which implies that (s∗
1, s∗

2) is vulnerable to (s1,1, s2,1).

For each odd k ≥ 1, let at
k+1,2 be the unique best reply against at

k,1 (the best reply is unique due to the

assumption that the game is recursively strict), and let at
k+1,1 = at

k,2. For each even k ≥ 2, let at
k+1,1 be the

unique best reply against at
k,2 and let at

k+1,2 = at
k,1. Observe that there exists a minimal 1 ≤ k̄ ≤ n2 + 1,

such that for each period t and each player i,
(

at
k̄,1

, at
k̄,2

)

is a strict equilibrium of the unrestricted game

((A1, A2) , u). The proof of this observation is as follows. If such a minimal k̄ does not exist, then there is

a period t and a sequence of actions
(

(

at
1,1, at

1,2

)

, ...,
(

at
n2+1,1, at

n2+1,2

))

that includes a non-trivial cycle.

Let (a′
1, a′

2) be a strict equilibrium in the restricted game
((

{

at
1,1, ..., at

n+1,1

}

,
{

at
1,2, ..., at

n2+1,2

})

, u
)

. The

definition of the sequence
(

(

at
1,1, at

1,2

)

, ...,
(

at
n2+1,1, at

n2+1,2

))

implies that either there is an odd k such

that at
k,1 = a′

1 or there is an even k such that at
k,2 = a′

2. In both cases, the definition of (a′
1, a′

2) implies

that the sequence must continue to action profile (a′
1, a′

2) and hence cannot move from (a′
1, a′

2) to any other

action profile in the domain
{

at
1,1, ..., at

n+1,1

}

×
{

at
1,2, ..., at

n+1,2

}

, which contradicts the fact that there is a

non-trivial cycle.

For each 2 ≤ k ≤ k̄, let (sk,1, sk,2) be the strategy profile in which each agent in the role of player i

chooses action at
k,i in each period t. The definitions of the strategies

{

(s1,1, s1,2) , ...,
(

sk̄,1, sk̄,2

)}

imply that

(1) each strategy profile (sk,1, sk,2) is vulnerable to the strategy profile (sk+1,1, sk+1,2), and (2) strategy

profile
(

sk̄,1, sk̄,2

)

is a pure strategy profile in which the players play a strict equilibrium of the underlying

(unrestricted) game in each period t, which implies that
(

sk̄,1, sk̄,2

)

is evolutionarily stable, and that (s∗
1, s∗

2)

is not weakly stable.
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