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Abstract

Benchmark crude oils exhibited dramatic fluctuations in price spreads in the recent

decade, a phenomenon that rarely occurred in earlier decades. This paper develops

a rational expectations two-period model of spatial price equilibrium, and departs

from standard models by assuming increasing marginal costs of transportation and

storage. We econometrically validate our model using a dataset that covers an extended

time period. The model allows us to determine the underlying causes of the unique

phenomenon of drastically changing crude oil price spreads over the past decade.

∗We are grateful to Andrew Atkeson, Pablo Fajgelbaum, Sebastian Galiani, François Geerolf, Bruce

Petersen, Dorothy Petersen, George S. Tolley, Pierre-Olivier Weill, and seminar participants at Chicago, UCLA,

and WUSTL for helpful comments. An earlier version of the paper was circulated under the title “Spatial

Price Equilibrium with Convex Marginal Costs of Transportation: Applications to the Brent-WTI Spread.”
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1. Introduction

C
rude oil is critically important for the world economy. To the average consumer

of oil, however, it’s often easy to get the impression that there is a single global

market for crude oil. In reality, there are many different types of crude oil,

and there are benchmark oils that serve as references for buyers and sellers of crude oil

around the world. Two primary global benchmark oils are West Texas Intermediate (WTI)

and Brent Blend. WTI is priced in Cushing, Oklahoma and used primarily in the U.S.,

whereas Brent is priced in the United Kingdom and used primarily in Europe but also

all around the world. In addition, there is another major benchmark oil in the U.S. called

Light Louisiana Sweet (LLS), which is priced in St. James, Louisiana near the Gulf Coast.

The most easily refined crude oil, and thus the most valuable, is light sweet crude.

WTI, Brent, and LLS are all light sweet crude oils, and are almost identical in physical

composition. As such, any substantial deviation in price between these crude oils can only

be a consequence of spatial price equilibrium and not differences in intrinsic value.

Historically, Brent, LLS, and WTI have traded with very small price differentials (see

Figure 1). Prior to 2011, the price differential between WTI and Brent had never been

greater than $5 dollars-per-barrel. Arbitrage between the two markets seemed to ensure

that localized supply and demand shocks affected each price relatively equally: “world”

oil prices moved in tandem. However, in the beginning of 2011, the Brent-WTI and

LLS-WTI spreads started to increase dramatically, and in the months that followed the

Brent-WTI spread widened to as much as $25 per barrel, while the Brent-LLS remained

relatively small. The dramatic increase in Brent-WTI spread generated a great deal of

median attention, most notably because its cause was so unclear. Many media describe

this as a result of the “bottleneck” problem in Cushing, OK, which is consistent with some

academic studies such as Buyuksahin et al. (2013), but the actual source of shocks that

induced the bottleneck problem has not been convincingly identified.

The decoupling of Brent and LLS from WTI is of practical concern for two reasons.
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Figure 1: Price Spreads
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(a) Quarterly Brent, WTI, and LLS spot prices from 1986Q1 to 2016Q1. 1986 is the
first year Bloomberg reports data for all three spot prices.
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First, market participants in the petroleum industry peg crude oil prices to benchmarks,

and if one benchmark is an inaccurate or unrepresentative gauge of the oil prices then

it ceases to be useful. Second, WTI and Brent are the underlying crude oils for the New

York Mercantile Exchange (NYMEX) and Intercontinental Exchange (ICE) crude oil futures

contracts, which are by far the largest crude oil futures markets and are used by economic

agents around the world to hedge their exposure to the price fluctuations of oil. If either

WTI or Brent ceases to be a good indicator of oil prices, then economic agents will be

hindered in their ability to effectively hedge themselves.

Unfortunately, dramatic changes in spatial price spreads of tradable commodities

(e.g. oil) cannot be readily explained with standard models in the economic literature.

The literature on spatial price equilibrium, whereby no-arbitrage conditions are applied

to geographic price differentials of a homogenous commodity, has generally used the

existence of transportation costs to rationalize price spreads. Standard models in this

literature assume that the marginal cost of transportation is constant. However, for the

purposes of this paper, we reevaluate and modify three aspects of the standard: (i) choosing

a geographic region where the no-arbitrage condition is applicable; (ii) tying together

transportation and storage in the context of the crude oil markets; and (iii) assessing the

assumption of the constant marginal cost of transportation.

Applicability of the no-arbitrage condition. The no-arbitrage condition, or the law of

one price, should not be taken for granted in the commodities markets. After all, the

commodities market has its own idiosyncratic characteristics that may cause the no-

arbitrage conditions to fail. Ardeni (1989) uses tests of nonstationarity and co-integration

for a group of commodities and show that the law of one price fails as a long-run

relationship. He argues that the failure of the law of one price can be rationalized with

two factors, namely high costs of arbitrage and institutional barriers.

Other papers have shown results consistent with the arguments of Ardeni (1989). With

regard to the costs of arbitrage, Fattouh (2010) studies the dynamics of crude oil price

differentials and concludes that crude oil prices are linked and at the general level, the
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oil market is “one great pool.” However, he contends that oil markets are not necessarily

integrated in every time period, in the sense that costly and risky arbitrage may cause

decoupling of crude oil prices. With regard to institutional barriers, Richardson (1978)

documents that the law of one price fails uniformly for commodities arbitrage between

the U.S. and Canada. A more recent paper, however, seems to suggest new and extensive

interactions of commodity price formulation among different countries. Olsen, Mjelde

and Bessler (2015) study the law of one price for 11 natural gas market prices of the U.S.

and Canada. They find out that markets geographically adjacent to each other tend to

be more highly integrated than markets separated by distance. This higher degree of

integration among some cross-border commodity markets can be attributed to deregulation,

technological advances, and trade agreements. Such convergence is well documented

in other industries for other regions, such as the European car market as discussed in

Goldberg and Verboven (2005). Nevertheless, a common theme in the literature is that

institutional barriers, especially such factors as exchange rates, still cause the no-arbitrage

condition to fail in the commodity markets.

As a result, we would like to focus on geographically adjacent regions within the United

States in order to ensure the applicability of the no-arbitrage condition. Importantly, Werner

(1987) proves that the existence of a price system that admits no arbitrage opportunity for

all consumers is sufficient for the existence of an equilibrium, which serves as an additional

assurance for our careful selection of geography as we develop a spatial price equilibrium

model. Although the Brent-WTI spread has been the core topic of media attention as

discussed earlier, the economically interesting spread in this paper is actually the LLS-WTI

spread. Since LLS is unquestionably priced at an intermediate step in the transportation

between Brent and WTI, the Brent-WTI spread can be looked at as the summation of the

Brent-LLS spread and the LLS-WTI spread. In light of this, we notice from Figure 1b that

the Brent-LLS spread (arbitrage between the Gulf Coast and Europe) has been largely

unchanged except for a few short time periods, whereas in sharp contrast the LLS-WTI

spread (arbitrage between Cushing and the Gulf Coast) widened by $25 dollars-per-barrel
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between 2011 and 2013. Clearly, the widening of the Brent-WTI spread was due to the

widening of the LLS-WTI spread and thus a change in crude oil’s transportation and

storage mechanisms from Cushing to St. James.

Tying together transportation and storage in the context of the crude oil markets. Classic

models of spatial price equilibrium, as exemplified by Samuelson (1952), directly solve

for spatial price relations based on localized supply and demand in the presence of

transportation. In addition, seminal work by Deaton and Laroque (1992, 1996) lays out the

foundation for analyzing commodity price dynamics with competitive storage motives.

More recently, Knittel and Pindyck (2016) builds a simple supply and demand model

that incorporates storage to study speculation in the crude oil market, in order to check

whether speculators are to blame for the wild fluctuations in crude oil prices. These papers,

though, do not incorporate both transportation and storage into their models at the same

time. For our purposes, it is important to tie together both transportation and storage in

order to fully characterize the behavior of the price spread of benchmark crude oils.

Williams and Wright (1991) include storage into a spatial price equilibrium model.

This is integral because having the option to store a commodity makes possible a role for

expectations, and transportation can be characterized through the spatial price equilibrium.

Their approach provides some guidance for studying commodity price spread taking into

consideration both transportation and storage.

There are two distinct kinds of transportation “costs” that are described in the literature:

traditional costs of transport and time costs of transport. Models with instantaneous trans-

portation can rationally exhibit spatial price differentials without violating no-arbitrage

assumptions because of transportation costs; an uncontroversial result of such a model

is that locational price spreads are bounded by transportation costs (see Williams and

Wright, 1991). A second type of cost, as described by Coleman (2009), arises from the time

that transportation takes. Coleman (2009) explains how unbounded price differentials

can exist in the short-run without violating no-arbitrage assumptions if transportation is

non-instantaneous. However, in the context of the LLS-WTI spread, the applicability of a

6



non-instantaneous transportation model is limited: St. James and Cushing are merely 650

miles apart, and thus the delay in transportation is minimal. We will therefore describe

the price spread in the context of an instantaneous transportation model. As such, in our

model we are constrained by the no-arbitrage condition that the price spread is bounded

by the cost of transportation (see Williams and Wright, 1991).

Assessing the assumptions of the constant marginal costs of transportation and storage. Unlike

previous models of instantaneous transport, we will assume that the marginal costs of

transportation and storage are not constant, which allows for the possibility of rapidly

rising spreads in response to changes in the supply of a commodity. As we argue in

this paper, the assumptions of constant marginal costs of transportation and storage

greatly restrict their applicability to many spatial price phenomena (most notably, the

widening of the LLS-WTI spread in the recent decade) and strongly deviate from the actual

marginal cost curves of transportation and storage in many contexts. Furthermore, these

assumptions conceals potential determinants of a spatial price spread.

For example, we will show in Section 3.2 that if the marginal cost of transportation is

truly constant, then the only explanation of a widening spread is an exogenous upward

shift in the marginal cost curve of transportation. This could occur for many reasons, such

as the transportation market becoming less competitive, energy becoming more expensive,

or transportation infrastructure depreciating and becoming unusable. However, as we

will demonstrate in this paper, an exogenous upward shift in the marginal cost curve

would cause the observed quantity of transportation between pricing points to decrease,

but in regards to the LLS-WTI spread, the quantity of transportation between the regions

actually increased along with increases in LLS-WTI spread, contradicting the predictions

derived from a model that assumes constant marginal cost of transportation. Furthermore,

We will go on to include the possibility of storage which will illuminate the endogeneity

of the current spread to expected future costs of transportation, a relationship that has

not yet been described in the literature. In sum, there is a theoretical and empirical gap

in the literature that we seek to fill: we will build and validate a model of spatial price

7



equilibrium with increasing marginal costs of transportation and storage. Our empirical

strategy for validating our theoretical model involves exploiting the autocorrelations of

the time series data to address endogeneity in the regressions.

In the end, we would like to apply our theory to identify the dramatic changes of

the LLS-WTI spread seen in Figure 1. News centers such as the Wall Street Journal and

Bloomberg have written numerous articles regarding the causes of the 2011-2013 widening

of the Brent-WTI spread. The articles, often quoting analysis performed by financial

institutions and energy consultants, largely describe two hypotheses regarding the causes

of the spread:

(1) The widening of the Brent-WTI spread was caused by a negative production shock

in the Middle East. In particular, Arab Spring and loss of Libyan Oil put upward pressure

on Brent prices while transportation constraints between the Cushing and Europe isolated

WTI from this effect.

(2) The widening of the Brent-WTI spread was caused by a positive production shock

in the Midwest of the United States, specifically Cushing, Oklahoma. In early 2011,

new pipelines were built bringing more Canadian oil into Cushing, and transportation

constraints between the Cushing and Europe isolated Brent from this effect.

Our model will provide a direct way to test the efficacy of each of these hypotheses

as well as other potential causes of the widening spread.The empirical strategy involves

exploiting the observed relationships among inventories, transportation, and the LLS-WTI

spread (see Figure 3).

The rest of the paper is organized as follows: Section 2 provides background informa-

tion on the U.S. crude oil market, with a particular focus on the oil markets at Cushing,

Oklahoma, the price settlement point for WTI. Some time series evidence is also presented

to characterize the dynamic relationships among spread, storage, and transportation.

Section 3 builds a model of spatial price equilibrium that incorporates increasing marginal

costs of transportation and storage, starting from a simple baseline model generalized

from the standard literature. We then come up with a list of testable predictions, as well
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as identify potential causes of a changing price spread and their respective impacts on

transportation and storage. In Section 4, we describe our dataset, and test the model

predictions in order to validate our theory. In Section 5, we apply our theory to identify the

causes of the changing LLS-WTI spread over time. Section 6 contains some final remarks.
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2. U.S. Crude Oil Market Facts

2.1. Oil markets at Cushing, OK

Cushing, Oklahoma is the delivery point for the NYMEX oil futures contract and therefore

refineries, storage facilities, and pipelines have all developed substantial infrastructure

in the periphery of the city. As of 2011, it is estimated that storage capacity at Cushing

is around 48 million barrels of crude oil, and as much as 600 thousand barrels flow into

Cushing daily.

Figure 2: Geographic separation of LLS and WTI

We will use the model developed in this paper to examine the spatial price spread

between crude oil at Cushing, Oklahoma (known as West Texas Intermediate or WTI) and

that at St. James, Louisiana (known as Light Louisiana Sweet or LLS). As seen in Figure

2, the two locations are approximately 650 miles apart. The transportation infrastructure

between Cushing and St. James primarily consists of pipelines. Most pipelines transport

liquid at a speed of approximately 3 to 13 miles-per-hour; therefore it should only take

between two and nine days to transport crude oil from Cushing to St. James. There are,

however, additional modes of transportation between Cushing and St. James: notably, rail

and trucking. Transportation from Cushing to St. James is estimated to cost between $7

to $10 per barrel by rail and between $11 and $15 per barrel by trucking, which is much

more expensive than the estimated $2 per barrel by pipeline.1 As noted above, a constant

marginal cost curve of transportation has been the standard assumption in the literature,

1CommodityOnline, quoting analysis by Bank of American Merrill Lynch.
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which is clearly at odds with transportation costs of oil from Cushing to the Gulf Coast if

pipeline capacity is insufficient and therefore some oil must be shipped by other, more

expensive, modes of transportation.

In late 2010 and early 2011, two large new pipelines that directed oil from Canada to

Cushing went online, substantially increasing the availability of crude in Cushing. This

occurred over the backdrop of steadily increasing production of crude oil in the Midwest

over the past decade. These two forces dramatically increased the quantity of crude

flowing into Cushing. Models of spatial price equilibrium with a constant marginal cost

of transportation would suggest that this would have no effect on the LLS-WTI spread,

as the additional oil would be immediately directed towards the coast via transportation

infrastructure. However, we will argue in the model that because of rising marginal costs,

a positive supply shock at Cushing is a theoretically sound explanation for the widening

of the LLS-WTI spread.

In November 2011, months after the spread initially widened past $10 dollars, a

Canadian pipeline company announced that it would reverse a pipeline that transported

oil from the Gulf Coast to Cushing.2 The reversal process can take months, and therefore

the announcement represented a decrease in expected future costs of transportation.

Nevertheless, the announcement was followed by a $10 dollar decline in the LLS-WTI

spread. Previous models cannot rationalize the role of expectations on a spatial price

spread. In this paper we will include a storage market to explicitly derive a relationship

between the current spatial price spread and expected future costs of transportation. The

result will rationalize the empirical behavior of the LLS-WTI spread in response to the

change in expectations.

2.2. Time series evidence

We use the impulse response analysis to provide some reduced-form empirical evidence

about the dynamic relationships among spread, storage and transportation. In order to

2Enbridge was the company that announced it would purchase a pipeline between Cushing and the Coast,
and subsequently reverse its flow
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do so, we construct a standard orthogonalized VAR system, with quarterly data over the

entire sample period from 1986Q1 to 2016Q1. The original VAR includes, in the following

order, the LLS-WTI spread, storage in PADD2, storage in the rest of the U.S., and transport

from PADD2 to the rest of the U.S., while controlling for exogenous variables including

productions and net imports in PADD2 and the rest of the U.S. Section 4.1 has a thorough

discussion about the data set that we use, but essentially PADD2 is a proxy for Cushing,

Oklahoma, and the rest of the US is a proxy for the Gulf Coast. All the variables in the

model are expressed in levels. The VAR is estimated with one lag, chosen according to the

Lutkepohl (2005) version of Schwarz’ Bayesian Information Criterion (SBIC).

Figure 3 reports the main results of the analysis in the form of dynamic impulse

responses over a time period of 10 quarters. A positive shock in the storage levels

in Cushing, Oklahoma widens the LLS-WTI spread (Figure 3a), possibly because the

WTI oil price becomes depressed as storage builds up in Cushing. A positive shock in

transportation from Cushing to the Gulf Coast narrows the LLS-WTI spread (Figure 3b),

suggesting that as more oil flows from Cushing to the Gulf Coast, the price levels at

the two locations becomes more equalized. On the other hand, a positive shock in the

LLS-WTI spread increases the transportation level from Cushing to the Gulf Coast (Figure

3c), suggesting that the presence of higher price spread induces arbitrageurs to engage in

more transportation activities. These empirical regularities are consistent with economic

intuitions and will guide the construction of the theoretical model in this paper.
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Figure 3: Dynamic relationships among spread, storage, and transport
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3. A Model of Spatial Price Equilibrium

We start with a baseline model that assumes constant marginal cost of transportation

and no storage. Then we twist the model by adding in increasing marginal costs of

transportation and storage one at a time – two desirable features that build up our new

model of spatial price equilibrium. We present several key predictions of the new model,

which will be tested against real data and help us eventually identify the causes of the

changing LLS-WTI spread.

3.1. The baseline model

Before building a model with increasing marginal costs of transportation and storage, let

us first build intuition by describing a model where the marginal cost of transportation

between A and B is constant and where there is no option to store commodity x from

period t to period t+ 1. These are the assumptions in the standard spatial price equilibrium

models pioneered by Samuelson (1952) and Takayama and Judge (1964).

Consider a non-perishable and non-depreciating commodity, called “x”, that trades in

two locations, point A and point B. Production of x at both A and B during a given period

t, denoted QA
t and QB

t respectively, is assumed to be given as exogenous to arbitrageurs.

This is consistent with a commodity whose production occurs in earlier periods, such as

oil, or commodities that have perfectly inelastic supply curves. The corresponding price of

x at each point is denoted pA
t , pB

t . In this model, arbitrageurs are risk-neutral and have the

opportunity to transport commodity x from point A to point B at marginal cost kT
t,AB, or

from point B to point A at marginal cost kT
t,BA.

Assumption 1. Assume, in the baseline model, that the marginal cost of transportation is constant,

such that kT
t,AB = k̄T

t,AB and kT
t,BA = k̄T

t,BA.

It is clear that in order to maintain no-arbitrage, the spatial price spread, given by

σt ≡ pB
t − pA

t must be bounded by the marginal costs of transportation. Explicitly the
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no-arbitrage condition specifies that

−k̄T
t,BA ≤ σt ≤ k̄T

t,AB. (1)

Within these bounds, transportation will only occur from A to B if σt = k̄T
t,AB and

transportation will only occur from B to A if σt = −k̄T
t,BA. If the spread lies within these

bounds then transportation between A and B will yield negative profits, and therefore

transportation in either direction will not occur.

No-arbitrage condition (1) is well understood in the literature and is the baseline

description of the relationship between the spatial price spread and the marginal cost of

transportation. However, it says nothing about the quantity of transportation that will

occur. In order to understand this we must understand the direct effect that transportation

has on the spatial price spread.

We begin by describing the determinants of the absolute price of x at each point. The

price of x at point A is given by economic agents’ demand for consumption of x at point A.

The demand curve for x at A will be denoted by DA(NA
t ), where NA

t is the quantity of x

available at A for consumption during period t. We will maintain the standard assumption

for normal goods that the demand curve is downward sloping. Although the production

of x at A during period t is exogenous, the quantity available for consumption is not;

arbitrageurs have the option to pull x out of the market at A to transport it to B. This gives

a relationship described by NA
t = Q̄A

t − Tt, where Tt is the quantity of x transported from

point A to point B. Arbitrageurs at point A will optimally transport commodity x while

reacting to their activities’ effect on the price of x at A. It follows that the equilibrium

price of x at A would endogenously satisfy3:

pA
t = DA(Q̄A

t − Tt). (2)

3Note for the sake of notational cleanness, we don’t add ∗ on pA
t and Tt to indicate equilibrium. This will

be the case many times in this paper, and readers should be aware of this notational choice.
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The market for x at B is different from the market at A only in that transportation

increases the quantity of x available at B, whereas transportation decreases the quantity

available at A. Specifically, the quantity of x available at B, denoted NB
t , is given by the

relation NB
t = Q̄B

t + Tt. Furthermore, just as with the market at A, we assume the demand

function is downward sloping. It then follows that the equilibrium price of x at B would

satisfy:

pB
t = DB(Q̄B

t + Tt). (3)

Therefore the equilibrium spatial price spread is determined by what we will refer to

as the “spread function,” denoted σt(Tt, Q̄A
t , Q̄B

t ):

σt(Tt, Q̄A
t , Q̄B

t ) = DB(Q̄B
t + Tt)− DA(Q̄A

t − Tt). (4)

The spread function is simply the difference in the equilibrium prices of x in the two

regions, given supply levels and transportation between the regions. This representation

of the spread function illuminates that increases in transportation directly decreases the

spatial price spread, holding production exogenous.

We can now explicitly describe the equilibrium level of transportation between A and B.

If the spatial price spread without transportation would exceed the constant marginal cost

of transportation, then arbitrageurs will increase transportation until the spread decreases

to σt = k̄T
t,AB. Additionally, if the spatial price spread without transportation is within the

band of marginal costs of transportation between points A and B, then there will be no

transportation because it would provide arbitrageurs with negative profits. We formalize

this characterization through the following theorem:

Theorem 1. Under Assumption 1 and the no storage assumption, the spatial price equilibrium is

given by the following conditions:

(i) If σt(Tt, ...)|Tt=0 ≥ k̄T
t,AB, then T∗

t ∈ R
+ is such that DB(Q̄B

t + T∗
t )− DA(Q̄A

t − T∗
t ) =

k̄T
t,AB;
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(ii) If −k̄T
t,BA < σt(Tt, ...)|Tt=0 < k̄T

t,AB, then T∗
t = 0.

Figure 4 graphs the equilibrium as described by Theorem 1. Note that supply shocks

in either point A or B fail to sufficiently explain the widening of the price spread in

the context of the model described here: given that σt(Tt, ...)|Tt=0 ≥ k̄T
t,AB, changes in

production levels can only shift the spread function in or out, after which the quantity of

transportation will simply adjust to ensure that the spatial price spread stays at k̄T
t,AB (for

an example, see Figure 5a). Therefore, in this model the only way the spatial price spread

can increase beyond the initial k̄T
t,AB is if there is an exogenous increase in the marginal

cost of transportation (Figure 5b).

Figure 4: Equilibrium with constant marginal cost of transportation

(a) Graph of condition (i) of Theorem 1.
Equilibrium quantity of transportation
when σt(Tt, ...)|Tt=0 > k̄T

t,AB.

(b) Graph of condition (ii) of Theorem 1.
Equilibrium quantity of transportation
when −k̄T

t,BA < σt(Tt, ...)|Tt=0 <

k̄T
t,AB.

Clearly, Theorem 1 implies that the level of transportation is endogenous to the produc-

tion levels at both A and B, and furthermore, if the marginal cost curve of transportation

doesn’t shift, the equilibrium spread will never exceed k̄T
t,AB.

3.2. Increasing marginal costs of transportation

Introducing increasing marginal costs of transportation changes the economic story and

makes it possible for supply shocks at either point A or point B to influence the equilib-
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Figure 5: Illustrations of what can and cannot change the equilibrium price spread in the baseline model

(a) The spread function can shift out due to
a change in production, but equilibrium
price spread doesn’t change.

(b) An exogenous increase in the marginal
cost of transportation can increase the
equilibrium price spread.

rium spatial price spread beyond the initial marginal cost of transportation. We adapt

Assumption 1 and instead assume increasing marginal cost of transportation as follows:

Assumption 2. Assume now that the marginal cost of transportation is endogenous to and

increasing in the level of transportation. Specifically, kT
t,AB = kT

t,AB(Tt) such that ∂kT
t,AB(Tt)/∂Tt >

0.

Admittedly, in the real world it is likely that the marginal cost curve of transportation

is instead piecewise. There would likely be an initial flat region until the cheapest mode

of transportation has reached capacity, and then a jump and another flat region at the

second cheapest mode of transportation, and so on, until capacity is reached for all modes

of transportation, at which point the marginal cost curve should be perfectly inelastic.

However, in order to approximate the effect of multiple modes of transportation we will

simply assume that the curve is increasing. This simplifying approximation makes the

mathematics easier to deal with, and does not affect the key results of the paper.

The no-arbitrage condition (1), briefly restated, becomes −kT
t,BA(Tt,BA) ≤ σt(Tt, Q̄A

t , Q̄B
t ) ≤

kT
t,AB(Tt,AB), where we will just refer to Tt,AB, the quantity of transportation from A to B,

as Tt. The equilibrium conditions in Theorem 1 are no longer based on constant marginal

costs of transportation, and instead are described by the following conditional statements
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Theorem 2. Under Assumption 2 and the no storage assumption, the spatial price equilibrium is

given by the following conditions:

(i) If σt(Tt, ...)|Tt=0 ≥ kT
t,AB(0), then T∗

t ∈ R
+ is such that DB(Q̄B

t + T∗
t )− DA(Q̄A

t − T∗
t ) =

kT
t,AB(T

∗
t );

(ii) If −kT
t,BA(0) < σt(Tt, ...)|Tt=0 < kT

t,AB(0), then T∗
t = 0.

Theorem 2 says that no transportation occurs if and only if the spatial price spread is

less than the cost of transporting the first unit of x.

Figure 6: Equilibrium With Increasing Marginal Costs of Transportation

0

(a) Equilibrium quantity of transportation
and spatial price spread

(b) Effects of an increase in QA
t or a de-

crease in QB
t

The key difference in the results of a model with increasing marginal costs of trans-

portation is the relationship between the equilibrium level of transportation and spatial

price spread. Specifically, as shown in Figure ??, production shocks at both A and B

can now directly push the equilibrium spatial price spread above the original marginal

cost of transportation. We should note, however, that in reality the price spread and

transportation may move to the new equilibrium in different rates, and due to the existence

of expectations to be discussed in the next section, the price spread may very well move

ahead of transportation. We will exploit this feature in Section 4.3 when we test the shape

19



of the marginal cost curve of transportation.

3.3. Storage

The inclusion of a storage market for commodity x significantly complicates the model.

The possibility of intertemporal transferring of commodity x makes the spread function

sensitive to arbitrageurs’ expectations of the future. Although there are a plethora of

reasons why economic agents would want to store a commodity, for the sake of the analysis

here, we wish to focus on the intertemporal transferring of x performed by speculators

planning on taking advantage of the spatial price spread in the future.

A storage market allows a speculator to purchase a unit of x during period t and store

it until period t + 1 at the marginal cost of storage kS
t . Assume that the marginal cost of

storage is as follows:

Assumption 3. Assume that the marginal cost of storage kS
t = kS

t (St) is increasing in the storage

level, such that ∂kS
t (St)/∂St > 0.

The increasing nature of the marginal cost curve of storage is regularly described in

the storage literature. The economic theory suggests that infrastructure constraints make

the marginal cost of storage increase as the quantity of storage approaches capacity.

The first way the storage market enters our model is by changing the spread function.

As speculators increase storage at A, they directly take units of x out of the market at

A, holding all else equal. It follows that the availability of x at A, denoted NA
t , now

equals Q̄A
t − ∆St − Tt, where the change in storage from period t − 1 to t is denoted as

∆St = St − St−1. Our new and final spread function is characterized in Proposition 1.

Proposition 1 (Spread function). The spread function is σt = DB(Q̄B
t + Tt)− DA(Q̄A

t + St−1 −

St − Tt). Let NA
t = Q̄A

t + St−1 − St − Tt and NB
t = Q̄B

t + Tt be the total available commodity at

A and B, respectively, at time t, then ∂σt/∂NA
t > 0 and ∂σt/∂NB

t < 0.

The statement of Proposition 1 follows directly from the standard assumption that

demand curves are downward sloping. It is more important to point out that the statement
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is consistent with economic intuition: when there is increasing amount of commodity

available at A, the price at A becomes depressed due to the abundance of the commodity

there, thus enlarging the price spread; likewise for location B. Note that the variables

NA
t and NB

t each represent the availability of a commodity at each point, and in some

contexts should be exactly equal to consumption at each point. The variables Q̄B
t and Q̄A

t ,

although defined as “production”, can be more generally thought of as supply in a region

derived by means other than drawing down storage and transporting to or from the other

considered region, and could thus include net imports into the region.

Risk-neutral speculators seeking to benefit from expectations about the spread in the

future will engage in storage if the net present value of the following risk-free transaction

is non-negative: buying x at A at price pA
t , storing it from period t to t + 1 at marginal cost

kS
t (St), transporting it to point B at the expected future marginal cost of transportation

E[kT
t+1], and selling the unit of x at the expected future price of x at B during period t + 1,

denoted E[pB
t+1]. The net present value of this storage transaction, denoted πS, is given by

πS = 1
1+r E[pB

t+1]−
1

1+r E[kT
t+1]− kS

t (St)− pA
t (Q̄

A
t , St, Tt),

where r is the 1-period risk-free interest rate. The no-arbitrage hypothesis suggests that

the net present value of this risk-free transaction must be non-positive.4

Therefore, given small enough values of the first unit of storage kS
t (0), arbitrageurs

will store positive levels of x at A up until they no longer perceive that act of storage to be

a positive net present value transaction. This leaves us with the following no-arbitrage

condition

1
1+r E[pB

t+1] =
1

1+r E[kT
t+1] + kS

t (St) + DA(Q̄A
t + St−1 − St − Tt).

We can now describe general equilibrium in this model with increasing marginal costs

4In other words, the following condition must hold: 1
1+r E[pB

t+1] ≤
1

1+r E[kT
t+1] + kS

t (St) + DA(Q̄A
t + St−1 −

St − Tt)
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of transportation and storage.

Theorem 3. Under Assumptions 2 and 3, and given sufficient differentials in Q̄A
t and Q̄B

t such that

both transportation and storage are positive, the equilibrium quantities of storage and transportation

are characterized by the following two conditions:

(i) No-arbitrage condition in the transportation market: σ∗
t = DB(Q̄B

t + T∗
t ) − DA(Q̄A

t +

St−1 − S∗
t − T∗

t ) = kT
t (T

∗
t );

(ii) No-arbitrage condition in the storage market: 1
1+r E[pB

t+1] =
1

1+r E[kT
t+1]+ kS

t (S
∗
t )+DA(Q̄A

t +

St−1 − S∗
t − T∗

t ).

The no-arbitrage condition in the transportation market in Theorem 3 suggests that,

holding constant the storage levels, we can identify the relationship between equilibrium

spread and transportation, which should be increasing along the marginal cost curve of

transportation. We formalize this idea as follows:

Proposition 2 (Shape of the marginal cost curve of transportation). Because σ∗
t = kT

t (T
∗
t )

and given Assumption 2, this model predicts that ∂σ∗
t /∂Tt > 0, holding constant storage St.

Again, because of the existence of expectations, transportation is likely to move to the

new equilibrium slower than the spread, such that the relationship is in fact ∂σ∗
t−j/∂Tt > 0

for some j > 0. Graphically, the inclusion of a storage market can influence the shape

and magnitude of the slope of the spread function, but will not change the sign of its

slope. Most importantly however, the storage market adds two exogenous expectational

determinants of the spread function: expected future costs of transportation and the

expected future price of x at B. This can be seen by combining the two conditions in

Theorem 3:

σ∗
t = 1

1+r E[kT
t+1] + kS

t (S
∗
t ) + DB(Q̄B

t + T∗
t )−

1
1+r E[pB

t+1]. (5)

Given equation (5), we should observe a positive relationship between expected future

costs of transportation between a region and the current spatial price spread. We have
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not found this relationship in the literature: as expectations of future transportation costs

decrease, the current spatial price spread falls. The intuition is relatively simple: if you

think that future transportation costs will be low, then you will see more of a benefit

from storing during period t and shipping during period t + 1 than transporting during

t; therefore you will decrease transportation during period t, which will drive down

the cost of transportation during period t. A supporting evidence for this result is the

announcement that Enbridge made in November 2011, when they planned on adding to

the pipeline capacity out of Cushing, which should have decreased expected future costs

of transportation. Indeed, this announcement drove down the LLS-WTI shortly after.

3.4. Implications for changes in spread

So far, other than the exceptational cause of the change in spread as discussed in the end of

Section 3.3, we’ve identified three key causes for the change in the commodity price spread:

(i) a positive supply shock at A, namely an increase in QA
t ; (ii) a negative supply shock at

B, namely a decrease in QB
t ; and (iii) an upward shift in the price spread function kT

t,AB(Tt).

Figure 6b has illustrated that both a positive supply shock at A and a negative supply

shock at B will similarly increase the equilibrium price spread and transportation, but

we’d like to look further into how the two supply shocks affect the equilibrium quantities

of storage at A. We first state the following theorem:

Theorem 4. Under certain regularity condition, positive supply shocks at A or B will both

weakly increase the equilibrium quantities of storage at the exporting region A. In other words,

∂S∗
t /∂QA

t ≥ 0 and ∂S∗
t /∂QB

t ≥ 0.

In order to prove Theorem 4, we first need to clarify the regularity condition as stated

in the theorem. The regularity condition requires that the supply shock at B should have

limited impacts on storage at A, which conforms to intuition. Formally,
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Assumption 4. Assume that QB
t has limited impact on S∗

t , such that

∣

∣

∣

∣

∂S∗
t

∂QB
t

∣

∣

∣

∣

≤

∣

∣

∣

∣

∂T∗
t /∂QB

t

∂T∗
t /∂QA

t

∣

∣

∣

∣

With Assumption 4, we can prove Theorem 4, as follows:

Proof. The sensitivity of storage to the exogenous productions at both points can be seen

by examining equilibrium condition (i) of Theorem 3:

DB(QB
t + T∗

t )− DA(QA
t + St−1 − S∗

t − T∗
t ) = kT

t (T
∗
t ). (6)

For notational convenience, recall NA
t = QA

t + St−1 − S∗
t − T∗

t and NB
t = QB

t + T∗
t . If we

totally differentiate equation (6) with respect to QB
t , we have

∂DB(NB
t )

∂NB
t

(

1 +
∂T∗

t

∂QB
t

)

−
∂DA(NA

t )

∂NA
t

(

−
∂S∗

t

∂QB
t

−
∂T∗

t

∂QB
t

)

=
∂kT

t (T
∗
t )

∂T∗
t

∂T∗
t

∂QB
t

. (7)

Note that ∂St−1/∂QB
t = 0 since St−1 is realized before time t; ∂QA

t /∂QB
t = 0 since

production at A is exogenously given and thus there is no contemporaneous effect of a

change in QB
t on QA

t . After re-arranging equation (7) we get

∂S∗
t

∂QB
t

=

∂kT
t (T

∗
t )

∂T∗
t

−
∂DB(NB

t )

∂NB
t

−
∂DA(NA

t )

∂NA
t

∂DA(NA
t )

∂NA
t

∂T∗
t

∂QB
t

(8)

≥ 0 (9)

The inequality in (9) follows because
∂DB(NB

t )

∂NB
t

and
∂DA(NA

t )

∂NA
t

are weakly negative due to

demand curve sloping downward,
∂kT

t (T
∗
t )

∂T∗
t

≥ 0 based on Assumption 2, and we already

know that
∂T∗

t

∂QB
t
≤ 0.

On the other hand, if we totally differentiate equation (6) with respect to QA
t , we have

∂DB(NB
t )

∂NB
t

∂T∗
t

∂QA
t

−
∂DA(NA

t )

∂NA
t

(

1 −
∂S∗

t

∂QA
t

−
∂T∗

t

∂QA
t

)

=
∂kT

t (T
∗
t )

∂T∗
t

∂T∗
t

∂QA
t

. (10)
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After re-arranging equation (10) we get

1 −
∂S∗

t

∂QA
t

=

∂DB(NB
t )

∂NB
t

+
∂DA(NA

t )

∂NA
t

−
∂kT

t (T
∗
t )

∂T∗
t

∂DA(NA
t )

∂NA
t

∂T∗
t

∂QA
t

(11)

If we combine (8) and (11), we get

(

1 −
∂S∗

t

∂QA
t

)

/ ∂T∗
t

∂QA
t

+
∂S∗

t

∂QB
t

/ ∂T∗
t

∂QB
t

= 0 (12)

Re-arranging equation (12) gives us

∂S∗
t

∂QA
t

= 1 +
∂S∗

t

∂QB
t

∂T∗
t /∂QA

t

∂T∗
t /∂QB

t

(13)

Assumption 4 together with inequality (9) and the fact that ∂T∗
t /∂QB

t < 0 and ∂T∗
t /∂QA

t >

0 gives us the following relation:

0 ≤
∂S∗

t

∂QB
t

≤ −
∂T∗

t /∂QB
t

∂T∗
t /∂QA

t

. (14)

Re-arranging the second inequality of (14) gives

∂S∗
t

∂QB
t

∂T∗
t /∂QA

t

∂T∗
t /∂QB

t

≥ −1 (15)

If we plug (15) into (13), we get

∂S∗
t

∂QA
t

= 1 +
∂S∗

t

∂QB
t

∂T∗
t /∂QA

t

∂T∗
t /∂QB

t

≥ 0. (16)

Hence the proof, given (9) and (16).

It follows from Theorem 4 that although a positive supply shock at A or a negative

supply shock at B will both similarly increase the price spread, they will have opposite

effects on equilibrium quantities of storage: a positive supply shock at A should increase
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the equilibrium quantity of storage, and a negative supply shock at B should decrease the

equilibrium quantity of storage.

As a result, the model allows us to identify different causes of a widening spread by

examining distinct relationships among spread, storage, and transportation. The results

are summarized in Proposition 3. We will apply this proposition in Section 5 to identify

causes of the changing LLS-WTI spread.

Proposition 3 (Causes of a widening spread). This model predicts generally distinct combi-

nations of effects on equilibrium transportation and storage, given three possible causes of the

widening commodity price spread, as follows:

(i) The first possible cause is an increase in QA
t , which will increase both T∗

t and S∗
t ;

(ii) The second possible cause is a decrease in QB
t , which will increase T∗

t and decrease S∗
t ;

(iii) The third possible cause is an upward shift of the kT
t,AB(Tt) curve, which will increase T∗

t and

have an ambiguous effect on S∗
t .
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4. Testing the Theory

4.1. Data

As discussed in the introduction, to be accurate with our analysis we will use the LLS-WTI

spread as the relevant price spread instead of the Brent-WTI spread in order to isolate an

individual transportation market.

If we are to apply our model, we must first specify what we mean by “point A” and

“point B” in the context of the LLS-WTI spread. Crude oil data from the U.S. Energy

Information Administration (EIA) are arguably the most comprehensive and detailed. The

EIA reports production, import and export, storage, and transportation data for PADDs,

which are five subregions of the United States. PADDs, or Petroleum Administration

for Defense Districts, were delineated during World War II to facilitate oil allocation.

Since then, they have been used to describe intra-country information on the US crude

oil industry. Figure 7 shows the borders of each of the five PADD districts. PADD2

encompasses Cushing, Oklahoma, and therefore is the best proxy for point A, which in

the model was the exporting region. LLS is likely a proxy for oil prices in the rest of the

United States, and therefore we will use the summations of data for the other four PADDs

(or the rest of the US excluding PADD2) as point B, which in the model was the importing

region. For brevity, we will henceforth call the regions encompassed by all the PADDs

other than PADD2 simply the “US”.

Our dataset spans from 1986Q1 to 2016Q1. We compile daily spot prices of Brent, WTI,

and LLS from Bloomberg, and then convert them to quarterly time series by computing

the average prices within the quarter. 1986 is the first year all three spot prices are reported

through Bloomberg, so our dataset covers the most extended time period. We compile the

rest of our data from the U.S. Energy Information Administration. ProPADD2
t and ProUS

t

denote crude oil productions in PADD2 and the rest of the U.S. at time t, respectively.

StoPADD2
t and StoUS

t denote total commercial crude oil stocks in PADD2 and and the rest

of the U.S. at time t, respectively. We should note that StoUS
t only measures commercial
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Figure 7: Petroleum Administration for Defense Districts (PADD) Map
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crude oil stock and thus excludes the U.S. Strategic Petroleum Reserve (SPR) maintained

in PADD3. Instead, SPRt denotes the stock of Strategic Petroleum Reserve at time t.

ImpPADD2
t and ExpPADD2

t denote imports and exports in and out of PADD2 at time t;

likewise, ImpUS
t and ExpUS

t represent the same variables for the rest of the U.S. Lastly, we

also compile detailed crude oil movement data among PADDs. All raw data compiled

from the EIA are monthly. We convert them into quarterly data by computing, within the

quarter, the averages for the stock variables StoPADD2
t , StoUS

t and SPRt, and the sums for

all the other flow variables.

For our empirical analysis, we need to construct a number of variables based on the

raw data. The Spreadt variable is calculated as the difference between LLS and WTI spot

prices. Changes in the stock of commercial crude oil in PADD2 and the rest of the U.S. are

defined as:

∆StoPADD2
t = StoPADD2

t − StoPADD2
t−1 , (17)

∆StoUS
t = StoUS

t − StoUS
t−1. (18)

In addition, the variable Transt, which in the model represents transportation from
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point A (PADD2) to point B (rest of the U.S.), is computed as the sum of all modes of

transportation from PADD2 to the rest of the U.S. at time t. In addition, we define net

imports for PADD2 and the rest of the U.S. as

NetImpPADD2
t = ImpPADD2

t − ExpPADD2
t , (19)

NetImpUS
t = ImpUS

t − ExpUS
t − ∆SPRt. (20)

In essence, net imports are simply defined as the difference between imports and exports,

but for NetImpUS
t we also subtract out increases (or add back decreases) in the stock of

Strategic Petroleum Reserve maintained in the region, since changes in the stock of SPR

should not be accounted for in the commercial crude oil activities.

Table 1 lists summary statistics for key variables of the data set we compile. The table

provides means of variables from 1986Q1 to 2016Q1, separated by four time periods based

on observations of the LLS-WTI spread time series showed in Figure 1b. The following

trends are immediately apparent from Table 1. The LLS-WTI has historically been very

low from 1998 to 2005, but started to increase from 2006 to 2010; it saw a huge spike from

2011 to 2013, and tapered off from 2014 but remained quite large by historical standards.

Transportation, and storage in both PADD2 and the rest of the U.S. increased consistently

over time. It should be noted that net imports to PADDs other than PADD2 dropped off

sharply starting from 2011, which potentially supports the hypothesis that there was a

negative supply shock abroad. Contrastingly however, field productions, particularly that

in PADD2, increased substantially from 2011. This leaves room for the possibility that a

positive domestic supply shock contributed to the widening LLS-WTI spread. We will

econometrically determine the significance of the relationships among these variables in

the context of the model developed in this paper, as a two-step process: we shall first

validate our theory in Sections 4.2 and 4.3, and then apply our theory to identify the causes

of the changing LLS-WTI spread in Section 5.
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Table 1: Summary Statistics of Time-Series Data

This table presents summary statistics for our quarterly crude oil data set. A number of variables are constructed from the raw data, as
discussed in Section 4.1. The Spreadt is constructed based on the raw LLS and WTI spot prices data from Bloomberg; all other variables
come from the the U.S. Energy Information Administration (EIA) or are constructed based on the raw data from the agency. Variable
superscripts, when applicable, represents the corresponding geographic region. “US” is short for all PADDs other than PADD2. All units
are in millions of barrels unless otherwise noted. Data reported in this table are the means of the variables in the time period given in the
column titles.

Variable Description 1986-2005 2006-2010 2011-2013 2014-2016Q1

Spreadt LLS-WTI spread (in dollars) 0.1 2.6 14.8 3.5

Transt Transport from PADD2 to the rest of the U.S. 7.2 13.2 65.1 147.1

StoPADD2
t Storage in PADD2 68.5 76.1 106.1 122.7

StoUS
t Storage in the rest of the U.S., excluding SPR 253.5 257.6 259.6 311.8

SPRt Storage of Strategic Petroleum Reserve 579.0 705.5 701.6 693.2

ProPADD2
t Field production in PADD2 55.4 50.5 101.2 162.4

ProUS
t Field production in the rest of the U.S. 554.0 424.2 494.4 665.9

NetImpPADD2
t Net imports to PADD2 66.0 104.8 150.8 195.7

NetImpUS
t Net imports to the rest of the U.S. 604.7 769.5 611.1 442.9
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4.2. Testing the spread function

We will first test the relationship described by the spread function as in Proposition 1,

which in our context states that the LLS-WTI spread should be increasing in the amount

of available oil in Midwest (PADD2) and decreasing in the amount of available oil in the

rest of the US. For testing purposes, we define the two variables denoting the availability

of crude oil in PADD2 and the rest of the U.S. at time t as

NPADD2
t = ProPADD2

t + NetImpPADD2
t − Transt − ∆StoPADD2

t , (21)

NUS
t = ProUS

t + NetImpUS
t + Transt − ∆StoUS

t . (22)

We include ∆StoUS
t because although we assumed away storage at point B for simplicity

in the theoretical section of this paper, the assumption departs from the empirics of the US

oil market. The inclusion of storage at B simply changes the spread function as seen in the

specification above. NetImpPADD2
t and NetImpUS

t are included because the US is such a

large importer of oil that field production and imports together make up what should be

considered exogenous supply of crude oil available for consumption.

The econometric model for the spread function can be written as

Spreadt = β0 + β1NPADD2
t + β2NUS

t + ∑
q

δq I
q
t + εt, (23)

where NPADD2
t and NUS

t are defined by equations (21) and (22), and I
q
t is an indicator

variable for quarter q. By including a set of quarter indicator variables we are controlling

for the potential seasonal effects of the LLS-WTI spread.

In estimation, we are concerned about the endogeneity of the regressors NPADD2
t and

NUS
t , which if exists would render parameter estimates inconsistent. Endogeneity typically

arises as a result of measurement errors, omitted variables, or simultaneity. Although

simultaneity might be less of a concern if we trust the structural model built in Section

3, measurement errors and omitted variables do pose challenges to the consistency of

our estimates. For example, we should note that our data on crude oil movements only
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includes movements reported to the EIA, and therefore may underestimate the actual

crude oil movement activities across PADDs, which would cause NPADD2
t and NUS

t to be

mismeasured; furthermore, NPADD2
t and NUS

t are likely not sufficient to fully characterize

factors that determine the LLS-WTI spread, so the model as specified in (23) may have the

issue of omitted variables. To overcome these potential contaminations, we employ IV to

estimate the causal relationships.

To illustrate how we shall implement our IV strategy, we consider the model (23) with

the omitted variables problem. The problem of the measurement error, if present, can be

tackled in a similar fashion. Because of omitted variables, we interpret the error term εt

in equation (23) as including the omitted variables. The lagged regressors are often used

as potentially valid instruments, since by construction they are not correlated with the

contemporaneous error term, but are correlated with the endogenous regressors if the

regressors are autocorrelated. However, with time series data, the no serial correlation

assumption can often be violated, and the validity of lagged regressors as instruments

should be assessed with scrutiny in the presence of serial correlation. Suppose that

the error term in our model follows a conventional AR(1) process. In other words,

εt = ρεt−1 + ut. We should note that the serial correlation could be induced or exacerbated

by the autocorrelations of the omitted variables. One conventional strategy is to transform

the model in order to correct for serial correlation. However, it is important to point out

that a transformation of the model may be able to remove the serial correlation in the

error term, but will not remove the contamination. It is therefore still necessary to find

proper instruments for endogenous regressors in the transformed models, which can be

challenging. We shall discuss the estimation challenges of the transformed models in some

more detail.
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There are two typical ways of transforming a model like (23). The first is

Spreadt = β0(1 − ρ) + ρSpreadt−1 + β1NPADD2
t − β1ρNPADD2

t−1

+ β2NUS
t − β1ρNUS

t−1 + ∑
q

δq I
q
t − ∑

q

δqρI
q
t−1 + ut. (24)

For this transformed model to be estimated consistently, the variables Spreadt−1,

NPADD2
t , NPADD2

t−1 , NUS
t , NUS

t−1 all need to be instrumented. Such a model with many

endogenous variables are difficult to identify, and having correspondingly too many

instruments can even be dangerous for inference (Roodman, 2009). In addition, given the

transformed model, we need to impose constraints on the relationships among coefficients.

For instance, the product of the parameter estimates on Spreadt−1 and NPADD2
t plus the

parameter estimates on NPADD2
t−1 needs to be zero by construction. These constraints on

parameters will further undermine the identification of the model.

Another approach is to write out the transformed model in quasi-differenced form:

˜Spreadt = β0(1 − ρ) + β1ÑPADD2
t + β2ÑUS

t + ∑
q

δq Ĩ
q
t + ut, (25)

where x̃t = xt − ρxt−1, with xt representing any variable in general. In this transformed

model, an instrument that itself is in a quasi-differenced form would only work if the

original error εt is uncorrelated with the instrument at times t, t − 1, and t + 1. This rules

out first lagged regressors at IVs. The second lagged regressors may work as instruments,

only if the quasi-differenced regressors and the second lagged quasi-differenced regressors

still have correlations strong enough, because otherwise we would run into weak instru-

ment problems. However, quasi-differencing the regressors typically take out most of the

autocorrelation in the transformed regressors by construction, and it would be quite rare

to see the quasi-differenced regressors having strong autocorrelations at the second order.

In sum, it would be very difficult to justify lagged regressors as proper instruments in this

type transformed models.
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As a result, we shall not conduct our IV estimation through the transformed models.

Instead, we resort to IV estimation technique that is robust to serial correlation and that

does not require transforming the model. Building upon the works of heteroskedasticity

and autocorrelation (HAC) consistent estimation, such as Newey and West (1987), Andrews

(1991) and Smith (2005), we can correct for serial correlation by generating an estimate for

the covariance matrix using the Bartlett kernel function and an appropriate selection of

bandwidth. Baum, Schaffer and Stillman (2003, 2007) have detailed discussions on how an

HAC consistent IV estimation should be implemented.

In conclusion, our final model for testing the spread function remains in its original

form, as in equation (23):

Spreadt = β0 + β1NPADD2
t + β2NUS

t + ∑
q

δq I
q
t + εt,

but in light of the concerns of the endogeneity of NPADD2
t and NUS

t , we use the method

of instrumental variables. Potentially valid instruments include NPADD2
t−j and NUS

t−j, where

j = 1, 2, 3, .... In practice, we conduct a series of tests to select an optimal set of valid

instruments. Specifically, we start with a set of eight potentially valid instruments, namely

NPADD2
t−j and NUS

t−j, where j = 1, 2, 3, 4. We test the these instruments one at a time

for redundancy. After dropping all the redundant instruments, we also test the set of

remaining instruments to avoid possibility of weak identification or underidentification. In

the end, we conclude that NPADD2
t and NUS

t should be optimally instrumented by NPADD2
t−1 ,

NPADD2
t−3 , NUS

t−1, and NUS
t−2.

After we come up with the optimal set of instruments, we also conduct endogeneity

tests of regressors NPADD2
t and NUS

t . The endogeneity tests suggest that, statistically,

NPADD2
t and NUS

t can be treated as exogenous. As a result, in addition to running

regressions where NPADD2
t and NUS

t are instrumented, we also run additional regressions

where one or neither of NPADD2
t and NUS

t is instrumented.

To address concerns of heteroskedasticity and serial correlation, we run all the afore-
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mentioned tests in two versions, one with heteroskedasticity and serial correlation robust

standard errors and one without. In all regressions that are not HAC robust, homoskedas-

ticity and serial independence are checked to be violated. As a result, all our reported

results are HAC robust. In doing the HAC robust estimations, we use the Bartlett ker-

nel function with a bandwidth of 5 that is optimally chosen based on the number of

observations in our data set.

The regression results of key specifications are presented in Table 2.

The table reports three types of regressions: OLS, 2S GMM, and LIML. OLS regressions

are run when neither NPADD2
t nor NUS

t is instrumented. When any of the regressor is

instrumented, we use two-step feasible and efficient GMM (2S GMM) estimator instead of

2SLS because GMM is more efficient when heteroskedasticity is present (Baum, Schaffer

and Stillman, 2003). We also use the limited information maximum likelihood (LIML)

estimator, first derived by Anderson and Rubin (1949), to replicate all regression speci-

fications under the 2S GMM estimator. This is because even though LIML provides no

asymptotic efficiency gains over 2S GMM, recent research suggests that their finite-sample

performance may be superior, for example in the presence of weak instruments (Hahn,

Hausman and Kuersteiner, 2004).

The regression results indicate that the estimates on NPADD2
t and NUS

t are largely

consistent across specifications, regardless of whether regressors are instrumented or

quarter dummies are included, and across estimators used. In all the regressions where

instrumental variables are used, our selected set of instruments are shown to be valid with

no concerns of underidentification, weak identification, or overidentification, as can be seen

from the test statistics for instrument validity reported in the last three lines of the table.

In particular, the null hypothesis test for the underidentification test is that the model is

underidentified; the weak identification test reports an F statistic that can be compared

to critical values compiled by Stock and Yogo (2005), but the rule of thumb is that the F

statistic needs to be greater than 10 not to have concerns about weak identification; the null

hypothesis for the overidentification test is that the instruments are valid instruments, i.e.,
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Table 2: Testing the Spread Function, Full Sample

This table presents IV regression results for the testing the spread function on the full sample from 1986Q1 to 2016Q1. The dataset consists
of 121 quarterly observations. All regressions reported in this table are heteroskedasticity and serial correlation robust, using Bartlett kernel
function with a bandwidth of 5. Depending on the specification, NPADD2

t and NUS
t are only instrumented in certain cases. When they are

instrumented, the corresponding instrumental variables for NPADD2
t are NPADD2

t−1 and NPADD2
t−3 ; the corresponding instrumental variables for

NUS
t are NUS

t−1 and NUS
t−2. Section 4.2 has full discussions on the test procedures. Asterisks indicate statistical significance at 1%***, 5%**, and

10%* levels.

Dependent Variable: LLS-WTI Spread, Spreadt

OLS 2S GMM LIML

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Coefficient estimates for regressor NPADD2
t :

Non-instrumented 0.1041*** 0.1033*** 0.1041*** 0.1077*** 0.1040***

(0.0365) (0.0365) (0.0362) (0.0359) (0.0367)

Instrumented 0.1099*** 0.1112*** 0.1138*** 0.1099*** 0.1107*** 0.1113***

(0.0365) (0.0377) (0.0374) (0.0380) (0.0380) (0.0377)

Coefficient estimates for regressor NUS
t :

Non-instrumented −0.0128** −0.0123** −0.0155** −0.0144** −0.0155**

(0.0059) (0.0052) (0.0066) (0.0058) (0.0066)

Instrumented −0.0147** −0.0134** −0.0166** −0.0155** −0.0147** −0.0134**

(0.0067) (0.0063) (0.0071) (0.0071) (0.0067) (0.0065)

Quarter dummies? yes no yes yes yes no no no yes yes yes

R2 0.44 0.44 0.44 0.45 0.44 0.44 0.44 0.44 0.44 0.45 0.44

Adj R2 0.54 0.54 0.55 0.55 0.55 0.54 0.54 0.54 0.55 0.55 0.55

Test statistics for instruments validity (p-values for underidentification and overidentification tests, F-statistic for weak identification test)

Underidentification − − 0.00 0.00 0.02 0.00 0.00 0.02 0.00 0.00 0.02

Weak identification − − 276 766 440 162 233 404 276 766 440

Overidentification − − 1.00 1.00 0.94 0.85 0.61 0.70 1.00 1.00 0.94
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uncorrelated with the error term, and that the excluded instruments are correctly excluded

from the estimated equation.

Column (3) reports results obtained from our preferred specification estimated using

2S GMM. In this specification, both NPADD2
t and NUS

t are instrumented with the selected

set of instruments, and quarter dummies are included to control for seasonal effects. Based

on the results of this regression, a ten-million barrel per quarter increase in total available

crude oil in PADD2 is estimated to cause a $1.099 increase in LLS-WTI spread, and the

estimate is statistically significant at the 1% level; a ten-million barrel per quarter increase

in total available crude oil in the rest of the U.S. is estimated to cause a $0.147 decrease in

LLS-WTI spread, and the estimate is statistically significant at the 5% level.

For comparison purposes, we take the means of the estimates across all columns (1) to

(11). The means of the estimates suggest the following: a ten-million barrel per quarter

increase in total available crude oil in PADD2 is estimated to cause a $1.082 increase in

LLS-WTI spread, and a ten-million barrel per quarter increase in total available crude oil

in the rest of the U.S. is estimated to cause a $0.144 decrease in LLS-WTI spread. These

results are very close to those from our preferred regression in column (3).

Because the LLS and WTI spot prices only started to show noticeable divergence from

2006, we also repeat our regressions on the subset that covers 2006Q1-2016Q1. All the

regression specifications are kept the same as in the full sample regressions, in order

to make sure that the results are comparable. In other words, the set of instruments is

not re-optimized for the subsample. Table 3 presents the regression results based on the

subsample. Because we do not re-optimize the set of instruments, the first point worth

discussing is the tests on instrument validity, reported in the last three lines in the table. As

we can see, the test statistics indicate that the instruments are valid in various dimensions,

therefore we put away concerns about instruments validity even though they are not

re-optimized specifically for the subsample.

Our preferred specification in column (3) reports that for the time period from 2006Q1

to 2016Q1, when LLS-WTI spread departed from historical levels, a ten-million barrel
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per quarter increase in total available crude oil in PADD2 is estimated to cause a $0.704

increase in LLS-WTI spread, and a ten-million barrel per quarter increase in total available

crude oil in the rest of the U.S. is estimated to cause a $0.996 decrease in LLS-WTI spread.

These two estimates are statistically significant at 5% and 1% levels, respectively.

In comparison, the means for all estimates suggest the following: a ten-million barrel

per quarter increase in total available crude oil in PADD2 is estimated to cause a $0.786

increase in LLS-WTI spread, and a ten-million barrel per quarter increase in total available

crude oil in the rest of the U.S. is estimated to cause a $0.801 decrease in LLS-WTI spread.

Again, just like the full sample, these results are not far away from those of our preferred

specification.

To sum up, in this section we test the spread function as in Proposition 1, and the

results are consistent with the predictions of our theoretical model: an increase in the

amount of available oil in the Midwest (PADD2) and in the rest of the U.S. enlarges and

narrows, respectively, the LLS-WTI spread. This holds true regardless whether we use the

full sample that covers three decades, or the subsample that covers the past decade when

the LLS-WTI spread became elevated.

4.3. Testing the marginal cost curve of transportation

Proposition 2 predicts that the short-run equilibrium relation between spread and transport

is captured by a strictly increasing marginal cost curve of transportation kT
t (·), controlling

for storage. We should note that Section 3.3 argues that transportation is likely to move to

the new equilibrium slower than the spread. From Figure 3c we can see that if we were to

allow spread to move ahead of transportation, then the optimal lag choice for spread is 4

quarters. Therefore, we can directly test Proposition 2 using the following model:

Transt = β0 + β1Spreadt−4 + ∑
q

δq I
q
t + γ1Sto2

t + γ2Sto3
t + εt. (26)

In order to estimate model (26), we are concerned about the endogeneity of Transt
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Table 3: Testing the Spread Function, Subsample

This table presents IV regression results for the testing the spread function on the subsample from 2006Q1 to 2016Q1. The dataset consists
of 41 quarterly observations. The specifications are exactly the same as corresponding specifications in Table 2. All regressions reported
in this table are heteroskedasticity and serial correlation robust, using Bartlett kernel function with a bandwidth of 4. Depending on the
specification, NPADD2

t and NUS
t are only instrumented in certain cases. When they are instrumented, the corresponding instrumental

variables for NPADD2
t are NPADD2

t−1 and NPADD2
t−3 ; the corresponding instrumental variables for NUS

t are NUS
t−1 and NUS

t−2. Asterisks indicate
statistical significance at 1%***, 5%**, and 10%* levels.

Dependent Variable: LLS-WTI Spread, Spreadt

OLS 2S GMM LIML

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Coefficient estimates for regressor NPADD2
t :

Non-instrumented 0.0782** 0.0772** 0.0587** 0.0772** 0.0804**

(0.0353) (0.0379) (0.0300) (0.0374) (0.0358)

Instrumented 0.0704** 0.0914** 0.775* 0.0756* 0.0896** 0.0885**

(0.0296) (0.0367) (0.0398) (0.0410) (0.0384) (0.0385)

Coefficient estimates for regressor NUS
t :

Non-instrumented −0.0805*** −0.0651*** −0.0820*** −0.0606*** −0.0812***

(0.0309) (0.0227) (0.0307) (0.0215) (0.0309)

Instrumented −0.0996*** −0.0978*** −0.0582*** −0.0652*** −0.0953*** −0.0951***

(0.0359) (0.0365) (0.0195) (0.0234) (0.0364) (0.0368)

Quarter dummies? yes no yes yes yes no no no yes yes yes

R2 0.40 0.34 0.38 0.37 0.39 0.31 0.31 0.34 0.38 0.39 0.39

Adj R2 0.70 0.67 0.69 0.69 0.70 0.66 0.65 0.67 0.69 0.69 0.70

Test statistics for instruments validity (p-values for underidentification and overidentification tests, F-statistic for weak identification test)

Underidentification − − 0.07 0.03 0.02 0.08 0.04 0.03 0.07 0.03 0.02

Weak identification − − 38 65 183 59 40 157 38 65 183

Overidentification − − 0.53 0.27 0.81 0.31 0.15 0.52 0.53 0.27 0.81
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similar to when we test for the spread function in Section 4.2. As a result, we apply a

similar instrument variable strategy that is heteroskedasticity and serial correlation robust.

Using the same test procedures as in Section 4.2, we find that the optimal instrument

for Spreadt−4 is Spreadt−5. Table 4 reports regression results based on both the full

sample that covers 1986Q1-2016Q1 and the subsample that covers 2006Q1-2016Q1. Several

observations are immediately clear from the table. First, including quarter dummies

or not does not significantly change the coefficient estimate on Spreadt−4, but it does

make a major difference whether or not we include the control variables Sto2
t and Sto3

t .

In particular, the R2 and Adj R2 drop substantially if we leave out the control variables.

This is an indication that the control variables should be included, as consistent with

the prediction of Proposition 2. Such an observation provides further support for our

theoretical model. Second, the test statistics for instrument validity reported in the last

two lines of the table suggest that the instrument that we optimally choose is indeed valid

in the regressions. Notice that there is no overidentification test here, because there is only

one instrument so the model is exactly identified.

Both full sample and subsample results confirm that equilibrium price spread and

transportation have a strictly increasing relationship, corroborating Proposition 2. In

particular, the full sample result indicates that a $1 increase in Spreadt−4 would cause

Transt to increase by 2.98 million barrels, according to our preferred specification (1) that

includes both quarter dummies and control variables. On the other hand, the subsample

result indicates that a $1 increase in Spreadt−4 would cause Transt to increase by 3.92

million barrels, according to our preferred specification (3) that includes both quarter

dummies and control variables. These translate into an elasticity of transportation to price

spread of 0.27 for the full sample and 0.43 for the subsample5, suggesting that starting

from 2006, the LLS-WTI spread not only becomes elevated, but its increase also is able to

induce a larger amount of transportation activities from the Midwest (PADD2) to the rest

of the U.S. compared to earlier decades.

5The means for transportation are 24.35 and 57.77 million barrels for the full sample and subsample,
respectively. The means for price spread are $2.24 and $6.38 for the full sample and subsample, respectively.
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Table 4: Testing the Marginal Cost Curve of Transportation

This table presents IV regression results for the testing the marginal cost curve of transportation. The full sample consists of 121 quarterly
observations; the subsample consists of 41 quarterly observations. All regressions are heteroskedasticity and serial correlation robust with
the Bartlett kernel function. The instrumental variable for Spreadt−4 is optimally chosen to be Spreadt−5. Section 4.3 has full discussions on
the test procedures. Asterisks indicate statistical significance at 1%***, 5%**, and 10%* levels.

Dependent Variable: Transport from PADD2 to the rest of the U.S., Transt

Full Sample, 1986Q1-2016Q1 Subsample, 2006Q1-2016Q1

(1) (2) (3) (4) (5) (6) (7) (8)

Spreadt−4 (instrumented) 2.98* 2.93* 6.11*** 6.11*** 3.92*** 3.78*** 4.72*** 4.73***

(1.59) (1.59) (1.34) (1.33) (1.20) (1.10) (1.42) (1.42)

Control variables:

StoPADD2
t 1.01** 1.05** 0.25 0.38

(0.49) (0.50) (0.43) (0.38)

StoUS
t 0.40 0.34 1.43*** 1.26***

(0.31) (0.30) (0.43) (0.35)

Quarter dummies? yes no yes no yes no yes no

R2 0.75 0.74 0.36 0.36 0.78 0.75 0.14 0.13

Adj R2 0.82 0.81 0.53 0.53 0.89 0.88 0.58 0.58

Test statistics for instruments validity (p-value for underidentification test, F-statistic for weak identification test)

Underidentification 0.03 0.03 0.08 0.08 0.05 0.05 0.06 0.06

Weak identification 135 134 188 189 96 108 168 171
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5. Identifying Causes of the Changing LLS-WTI Spread

Now that we’ve validated our model in Section 4, we would like to apply our model to

identify causes of the changing LLS-WTI over time, particularly over the past decade.

Proposition 3 states three possible causes of a changing commodity price spread. In our

context, each of the three causes represents the following: an change in QA
t represents a

production shock in the Midwest; a change in QB
t represents a production shock abroad; a

shift of the kT
t,AB(Tt) represents a structural change in the marginal cost of transportation.

These three causes imply different relationships among equilibrium spread, transportation,

and storage. Therefore, if spread and transportation are negatively correlated, i.e. ρσt,Tt ≤ 0,

then the changing price spread should be attributed to a structural change in the marginal

cost of transportation. On the other hand, if spread and transportation are positively

correlated, i.e. ρσt,Tt ≥ 0, then there are two further possibilities: if spread and storage

are positively correlated, i.e. ρσt,St
≥ 0, then the changing spread should be attributed to

a production shock in the Midwest; if spread and storage are negatively correlated, i.e.

ρσt,St
≤ 0, then the changing spread should be attributed to a production shock abroad. I

summarize these results in Table 5, assuming a widening price spread. The results for a

narrowing price spread are similar.

Given these model implications, we can use correlations to determine if the changing

spread was due to a production shock abroad, a production shock in the Midwest, or

a structural change in the the marginal cost of transportation. We compute rolling

correlations between transportation and the LLS-WTI spread as well as between storage

and the LLS-WTI spread. The rolling correlations are computed using a 28-quarter rolling

window. The rolling window is chosen in a balanced way, so that it is long enough to

uncover patterns in the data and make correlations valid, but also short enough to capture

any instability in the rolling correlation trends. We should note that making reasonable

changes to the width of the rolling window does not have an impact on our conclusions.

In order to make inferences based on the rolling correlations, we’d like to bound the
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Table 5: Implied relationships among spread, transportation, and storage

This table relates model predictions to the context of the LLS-WTI price spread. Proposition 3 discusses three causes of the changing
price spread. Each of the three causes represents different shocks in the U.S. crude oil market. The last two columns summarize the
implied correlations among spread, transportation, and storage based from different causes. Section 5 has a full discussion on these implied
correlations.

Cause of widening spread Model interpretation
Implied correlation between...

Spread and transportation Spread and storage

Positive production shock in Midwest Increase in QA
t ρσt ,Tt

≥ 0 ρσt ,St
≥ 0

Negative production shock abroad Decrease in QB
t ρσt ,Tt

≥ 0 ρσt ,St
≤ 0

Structural increase in MC of transportation Upward shift of kT
t,AB(Tt) curve ρσt ,Tt

≤ 0 ambiguous
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correlations by confidence intervals. Unlike confidence intervals around means, confidence

intervals around Pearson r’s are not symmetrical. We shall very briefly review how to

construct a confidence interval on a correlation coefficient estimate ρ. The Fisher’s r-to-z

transformation gives an expectation of the z statistic of

z′ =
1

2
ln

(

1 + ρ

1 − ρ

)

, (27)

with a standard deviation of σz′ =
√

1/(n − 3), where n is the sample size. Then a

confidence interval in the z-space is simply

z′ ± (Z score)× σz′ , (28)

where the Z score for a 95% confidence interval, for example, is 1.96. Denote the upper

and lower bounds of the confidence interval in the z-space as z+ and z−. Then the upper

and lower bounds of the confidence interval, ρ+ and ρ−, in the r-space are calculated as

ρ+ =
e(2z+ − 1)

e(2z+ + 1)
(29)

ρ− =
e(2z− − 1)

e(2z− + 1)
(30)

Figure 8 shows the rolling correlations between LLS-WTI spread and transport, and

between LLS-WTI spread and storage in the Midwest (PADD2), with 95% confidence

intervals, starting from 2005. As we can see, before 2013 the rolling correlations between

LLS-WTI spread and transport, and between LLS-WTI spread and storage in the Midwest

(PADD2), are both positive, suggesting that the increase in price spread during the period

should be attributed to positive production shocks in the Midwest. From 2013 and onward,

we can see from Figure 8 that both correlations start to turn negative. This is evidence that

the dominating cause of the narrowing of the price spread is a structural decrease in the

marginal cost of transportation, although a positive production shock abroad could also

possibly be a secondary cause that contributes to the negative correlations between spread

and storage.
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Figure 8: Rolling correlations among spread, transportation, and storage

These figures present rolling correlations between the LLS-WTI price spread and transportation
from PADD2 to the rest of the U.S., and between the LLS-WTI price spread and storage in PADD2,
from 2005. The rolling regression window is chosen to be 28 quarters. The shaded areas indicate
95% confidence intervals.
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In sum, we have been able to depict a complete story for the dramatic changes in

LLS-WTI price spread over the past decade. From 2006 to 2013, LLS-WTI increased from

being almost zero to as high as $25 per barrel, due to a positive production shock in the

Midwest. Starting from 2013, the LLS-WTI spread started to narrow, fluctuating around

$3.5 per barrel, which was much lower than the peak but remained quite high by historical

standards. The primary cause for the narrowing of the spread during the period was a

structural decrease in the marginal cost of transportation out of Midwest to the rest of the

U.S., possibly due to such factors as new pipeline capacities. A positive production shock

abroad, such as the Middle East, was likely a secondary cause for the narrowing of the

price spread in recent years, too.

46



6. Conclusion

Dramatic price spreads among benchmark crude oils is a phenomenon that emerged in

the commodities market in the past decade. While this phenomenon has generated a great

deal of media attention, there has not been rigorous studies that attempt to identify the

causes of the changing price spreads.

The addition that this paper provides to the economic literature is both theoretical

and empirical. On the theoretical side, the framework of analysis presented here is a

generalized and much clearer version of the standard spatial price equilibrium model

first pioneered by Samuelson (1952). We explicitly define a spread function and consider

the equilibrium level of transportation as the intersection between the spread function

and the marginal cost curve of transportation. This perspective makes clear the key

differences between a model with constant marginal costs of transportation versus one

with increasing marginal costs of transportation. The addition of storage further allows us

to draw predictions from the model that help identify unique causes of the changing price

spread.

On the empirical side, we construct a dataset that covers an extended time period of

three decades. This comprehensive dataset allows us to uncover patterns of the crude oil

market over a long time horizon, which in a way ensures the robustness of our results. We

econometrically validate our model using several testable model predictions, and identify

the causes of the changing price spread over the past decade by exploiting the relationships

among crude oil price spreads, transportation across regions, and crude oil storage levels.

In sum, this paper provides a necessary generalization of the literature that addresses

the interconnectedness of spatially separated commodity markets. In fact, the applicability

of the generalized model presented here is likely not limited to the LLS-WTI spread, and

further research should be performed on the applicability of this model to other spatial

price spreads that exhibited similarly abrupt changes.
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