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to estimation under local alternatives. This contrasts with results obtained by other authors
for time series without level shifts.
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1 Introduction

Modeling structural shifts in time series has become an issue of central importance due to
the massive interventions that occur regularly in economic systems. In this context testing
for unit roots in the presence of structural shifts has attracted considerable attention in
the recent literature (see, e.g., Perron (1989, 1990), Perron & Vogelsang (1992), Banerjee,
Lumsdaine & Stock (1992), Zivot & Andrews (1992), Amsler & Lee (1995), Leybourne,
Newbold & Vougas (1998), Montaniés & Reyes (1998)). In some of the literature the time
where the structural change occurs is assumed to be known and in other articles it is assumed
unknown. In this study we assume that the break point is known. In practice, such an
assumption is often reasonable because the timing of many interventions is known when the
analysis is performed. For example, on January 1, 1999, a common currency was introduced
in a number of European countries or the German unification is known to have occurred in
1990. These events have had an impact on some economic time series.

We will follow Saikkonen & Liitkepohl (1999) (henceforth S&L) and consider models
with very general nonlinear deterministic shift functions. These authors propose tests for
unit roots based on the idea that the deterministic part is estimated in a first step and is
subtracted from the series. Standard unit root tests are then applied to the adjusted series.
The purpose of this study is to propose modifications of these tests which are expected to
work well in small sample situations and we will perform Monte Carlo comparisons of the
properties of the tests. The results lead to useful recommendations for applied work.

The structure of the study is as follows. The general model is presented in Sec. 2
together with the assumptions needed for asymptotic derivations. Estimation of the nuisance
parameters is discussed in Sec. 3 and a range of unit root tests is presented in Sec. 4 including
the asymptotic distributions of the test statistics. Since some of the tests have distributions
under the null hypothesis which are not tabulated, simulated critical values are presented
in Sec. 5. A small sample comparison of the tests based on a Monte Carlo experiment is
reported in Sec. 6 and conclusions are given in Sec. 7. The proof of a theorem is provided
in the Appendix.

In the following the lag and differencing operators are denoted by L and A, respectively.
The symbol 4 is used to signify convergence in distribution. The minimal eigenvalue of a

matrix A is denoted by A\pin(A) and || - || is the Euclidean norm.



2 The Model

We consider the following general model for a time series variable y; with a possible unit

root and a level shift from S&L:
Yt :M0+M1t+ft(9)lfy+xta l= ]-727"'7 (21@)

where the scalars po and gy, the (m x 1) vector § and the (k x 1) vector v are unknown
parameters and f;() is a (k x 1) vector of deterministic sequences depending on the param-
eters §. The functional form of f;(#) is assumed to be known. If the sequence represents a
level shift the timing of the shift is also known. For example, f;(#) may be thought of as a
shift dummy variable which has the value zero before some given break period 77 and the
value one from then onwards. In that case, the break date 77 is assumed to be known. Much
more general situations are covered by our framework, however. Examples are considered in
Sec. 6.

The quantity z; represents an unobservable stochastic error term which is assumed to

have a finite order AR representation,
b(L)(1 — pL)x;, = ¢4, (2.1b)

where g, ~ iid(0,0?) and b(L) =1—b L —---—b,LP is a polynomial in the lag operator with
roots bounded away from the unit circle. More precisely, the parameter space is assumed to
be such that for some € > 0, b(L) # 0 for |L| < 1+ e. This restriction will not be taken into
account in the estimation procedure, however. Obviously, if p = 1 and, hence, the DGP of
x; has a unit root, then the same is true for y;. The initial values of z; (t = —p,...,0) are
assumed to be from some fixed distribution which does not depend on the sample size. A
more detailed discussion of the implications of alternative assumptions regarding the initial
values may be found in Elliott, Rothenberg & Stock (1996).

The parameters g, ¢ and v in our model are supposed to be unrestricted. Conditions
required for the parameters 6 and the sequence f;(f) are collected in the following set of

assumptions which are partly taken from S&L.

Assumption 1

(a) The parameter space of 6, denoted by ©, is a compact subset of the m-dimensional

Euclidean space.



(b) For each t = 1,2,..., the function f;(f) is continuously differentiable in an open set
containing the parameter space © and, denoting by Fj() the vector of all partial
derivatives of f;(6),

T T
sup > _sup||Afi(f)|| <oco and sup ) sup [|[AF(H)] < oo
T -1 0€0 T -1 0€0

where fy(#) =0 and F,(0) = 0.

(c) fi(0) = --- = fps1(0) = 0 for all # € ©. Moreover, defining G;(0) = [f:(0) : F,(0)")
for t = 1,2,..., there exists a real number ¢ > 0 and an integer 7, such that, for all
T>T1T.,

T
inf A {Z AG(0)AG,(0) } > e.

t=2

As mentioned earlier, some of these conditions are just repeated from S&L. The extensions
are mostly conditions for the partial derivatives of f;(f). They are used here to accommodate
the modifications of the estimation procedures and unit root tests considered in the following
sections. A compact parameter space © and the continuity requirement in Assumption 1(b)
are standard assumptions in nonlinear estimation and testing problems. Furthermore, the
summability conditions in Assumption 1(b) are needed for the function f;(#) and its partial
derivatives F;(f). They hold in the applications we have in mind, if the parameter space ©
is defined in a suitable way. Therefore the condition is not critical for our purposes. The
conditions in Assumption 1(b) and (c) are formulated for differences of the sequences f;(0)
and G(#) because our aim is to study unit root tests. Hence, estimation of the parameters
1, 0 and v is considered under the null hypothesis that the error process contains a unit root.
Efficient estimation then requires that the variables are differenced.

To understand Assumption 1(c), assume first that the value of the parameter # is known
and that the parameters p and v are estimated by applying ordinary least squares (OLS)
to the differenced models. Then these assumptions guarantee linear independence of the
regressors when 7T is large enough. There is of course no need to include the infimum in
the condition of Assumption 1(c) if  is known. It is needed, however, when the value of #

is unknown and has to be estimated. We have to impose an assumption which guarantees



that the above mentioned linear independence of regressors holds whatever the value of 6
because consistent estimation of 6 is not possible. This is the purpose of Assumption 1(c).
The condition fi(f) = --+ = f,+1(#) = 0 is not restrictive for the situations and functions we
have in mind and which are considered later. This condition together with the last condition
in Assumption 1(c) implies that
d !
inf A { X PIAGOINDAG) 1} >

for T > T, which is needed for some of the estimators used in the following to be well-defined.

Consistent estimation of § and + is not possible because, by Assumption 1(b), the varia-
tion of (the differenced) regressors does not increase as T — oo. The present formulation of
Assumption 1(b) also applies when the sequence f;(6) depends on T' which may be conve-
nient occasionally. This feature is not made explicit in stating the assumption because it is
not needed in the present application of Assumption 1 although it may sometimes be useful
to allow the shift function to depend on T

In the terminology of Elliott, Rothenberg & Stock (1996, Condition B), our assumptions
imply that, for each value of 6, the sequence f;(6) defines a slowly evolving trend, although
our conditions are stronger than those of Elliott et al.. No attempt has been made here to
weaken Assumption 1 because it is convenient for our purposes and applies to the models of
interest in the following. More discussion of Assumption 1 is given in S&L.

We compare unit root tests within the model (2.1). More precisely, we consider tests of
the pair of hypotheses Hy : p =1 vs. Hy : |p| < 1. The idea is to estimate the parameters
related to the deterministic part first and then remove the deterministic part and perform
a test on the adjusted series. In the next section we therefore discuss estimation of the

nuisance parameters.

3 Estimators of Nuisance Parameters

Suppose that the process z; specified in (2.1b) is near integrated so that

c
p:pTzl—l—?, (3.1)

where ¢ < 0 is a fixed real number. The estimation procedure proposed by S&L employs an

empirical counterpart of the parameter c¢. This means that we shall replace ¢ by a chosen
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value ¢ and pretend that ¢ = ¢ although we do not assume that this presumption is actually
true. The idea is to apply a generalized least squares (GLS) procedure by first transforming
the variables in (2.1) by the filter 1 — prL where pp =1+ £ and then applying GLS to the
transformed model. The choice of ¢ will be discussed later.

For convenience we will use matrix notation and define

Y =[yi: (y2—pry) - (yr — pryr-1)], (3.2a)
P Lopr (3.2b)
L @—pr) - (T—pr(T—1))
and
Z5(0) = [f1(0) : f2(0) — prfr(0) = -+ fr(0) — prfra(0)]. (3.2¢)

Here, for simplicity, the notation ignores the dependence of the quantities on the chosen

value ¢. Using this notation, the transformed form of (2.1) can be written as
Y=20)p+U, (3.3)

where Z(0) = [Z, : Z5(0)], ¢ = [po - 11 = 7] and U = [uy : --- : up|' is an error term such
that w; = 2, — proy_1 = b(L) ey + T (c — ¢)xy_y. Our GLS estimation is based on the
covariance matrix resulting from b(L) '¢,, denoted by 0?X(b), where b = [by : -+ : b,]". The

GLS estimators are thus obtained by minimizing the generalized sum of squares function

Qr(¢,0,0) = (Y — Z(0)9)'S(b) (Y — Z(0)). (3-4)

They are denoted as ngS, 0 and b. Assumption 1 ensures that these estimators are well-defined

for T large enough (see S&L for details).

4 The Tests

Once the nuisance parameters in (2.1) have been estimated one can form the residual series
Ty =y — flg — i1t — ft(é)’& (t=1,...,T) and use it to obtain unit root tests. S&L propose

to consider the auxiliary regression model

I
\_[\')
N

(4.1)

~ ~ *
Ty = pT—1 + Uy, 3



In the previous section it was seen that if z; is replaced by z;, the covariance matrix of the
error term in (4.1) is 0?Y*(b), where *(b) is a ((T'— 1) x (T — 1)) analog of the matrix
Y.(b). Because the parameter vector b is estimated to obtain ; it seems reasonable to use
this estimator also here and base a unit root test on (4.1) with p estimated by feasible GLS
with weight matrix E*(l;)_l. We denote the usual t-statistic for testing the null hypothesis
p = 1 associated with the feasible GLS estimator of p by 7sg; because it is the statistic
considered by S&L except that these authors use residuals z; for ¢ = 1,...,T in (4.1) with
initial value 2y = 0.

The error term in the auxiliary regression model (4.1) also contains estimation errors
caused by replacing the nuisance parameters pg, (1, @ and v by their GLS estimators. Be-
ing able to allow for the effect of these estimation errors might improve the finite sample
properties of the above test and particularly the performance of the asymptotic size approx-
imation. To investigate this issue, consider the special case where the shift function is a
step dummy variable f;(f) = d;; which is zero up to period 7T; — 1 and one from period
T} onwards. Suppose that the null hypothesis holds. Then it is straightforward to check
that uy = Azxy — (fu — 1) — Ady (¥ — ) (t = 2,...,T). Thus, augmenting the auxiliary
regression model (4.1) by an intercept term and the impulse dummy Ad;; would result in
an error term which, under the null hypothesis, would not depend on the errors caused by
estimating the nuisance parameters p; and v. It is fairly obvious that the inclusion of the
impulse dummy Ad;; has no effect on the asymptotic properties of the GLS estimator of the
parameter p and, consequently, on the limiting distribution of the resulting test. Below we
will see that the inclusion of an intercept term results in a different limiting distribution.
Therefore, we will consider tests with and without intercept in the following.

If the step dummy d;; is replaced by the general function f;(6) the above modification

becomes slightly more complicated. We then have

wi o= Az — (fn —m) — Af0)T+ AL(0)y

= Az~ (ju — ) — ALO) (7 ) — (ALO) — Af(B) 7, t=2...T.
(4.2)

In the last expression the third term can be handled in the same way as in the previously
considered case of a step dummy but the fourth term requires additional considerations. A

fairly obvious approach is to assume that the function f;() satisfies Assumption 1(b) and



use the Taylor series approximation Af,(0) — Af,(0) ~ A (aft(é)/ﬁﬁ’) (0 — 0). Instead of

(4.1) we then consider the auxiliary regression model
ft = p@t,l —+ Aft(é),ﬂ'l + AFt(é)lﬂ-Q —+ U,I, t= 2, [N ,T, (43)

where F(0) is a (mk x 1) vector containing the partial derivatives in df,(0)/d8. Let 7,4 be
the usual ‘t-statistic’ based on the GLS estimation of the parameters in (4.3) with weight
matrix $*(b) . Here the subscript indicates that the statistic is obtained from the adjusted
auxiliary regression model.

In these tests we still do not make adjustments for the fact that the b parameters are
also estimated. A possible modification that adjusts for the estimation of b may be obtained
as follows. Define w, = b(L)x, so that w; = pw;_1 + &;. Thus, if we condition on yi, ..., y,,
a version of the test statistic 7g¢; may be obtained from the auxiliary regression model
Wy = piy_y + errory, (t=p+1,...,T), where w, = B(L)it. Now, to obtain a modification

which takes into account estimation errors in l;, consider the identity

Wy = wy+ b(L)&y — b(L)x,
= w +b(L) (& — ;) + (O(L) — b(L))iy — (b(L) — b(L)) (& — 2,), t=p+1,...,T.

Multiplying both sides of this equation by p(L) = 1 — pL and observing that p(L)w; = &
yields
p ~

Wy = pigy + p(L)b(L) (& — x) + S (b — b)p(L)iy—j +10y  t=p+2,...,T,
j=1

~

where r, = ¢, — (b(L) — b(L))p(L)(&; — x;) is an error term. Since we try to improve the
size performance of the test statistic 7g¢7 we now assume that the null hypothesis holds and
replace p(L) on the r.h.s. by A. Thus, we consider the auxiliary regression model
~ P .
Wy = py—1 + (L) (A — Amy) + ) (bj — bj)Ady_j + 1y, t=p+2,...,T.
j=1
Note that estimation errors in r; are expected to be smaller than those in the second and
third terms on the r.h.s. of this equation because, under Hy, they are affected through the
product (b(L)—b(L))(AZ, — Az;) only. To be able to use this auxiliary model we still have to

deal with the second term on the r.h.s.. This, however, leads to considerations very similar

to those in the previous modifications and expanding the difference Az; — Ax; we get the



auxiliary model
. . . . p
?I)t = pUA)t,I —+ [b(L)Aft(G)']m —+ [b(L)AFt(H),]ﬂ'Q —+ Z OéjA.f}'t,j + 7'2-, t= p—|— 2, e ,T. (44)
7=1
The modified test statistic is obtained as the usual ¢-statistic for the hypothesis p = 1 based
on OLS estimation of this model. It will be denoted by 7.5;.
Because the actual mean of the Z; may be nonzero, it may be reasonable to include an
intercept term in the previously considered auxiliary regressions. For instance, instead of

(4.3) we may consider
ZIZA't =V -+ p@t,l + Aft(é),ﬂ'l + AFt(é),ﬂ'g + U:, t= 2, N ,T. (45)

The relevant unit root t-statistic will be denoted by 7;,;, where the subscript indicates that
an intercept is included in the model. Similarly, if an intercept term is added to (4.4), the

+
Tint:

resulting unit root test statistic will be denoted by

Moreover, if we have the a priori restriction p; = 0 the estimation procedure in Section 3
and the definition of z; are adjusted accordingly. Since in this case the limiting distributions
of the corresponding unit root tests change, we augment the test statistics with a superscript
0 to distinguish them from the statistics which allow for a linear time trend. In other words,

+0 0

the test statistics based on the restriction p; = 0 are denoted as T8y, Tog, Tagi» Tins and

int

i

i, respectively. The limiting null distributions of all the test statistics are given in the

following theorem which is partly proven in the Appendix and partly reviews results from

the related literature.

Theorem 1.
Suppose that Assumption 1 holds and that the matrix Z(#) is of full column rank for all
T>k+1and all # € ©. Then,

1 -1/2
R N ( /0 Bc(s)2d3> /0 B.(s)dB.(s), (4.6)

where B.(s) = [; exp{c(s —u)}dBy(u) with By(u) a standard Brownian motion,

1 _ 12 1
it <5 ([ Buods) [ Bu(s)dBu(s), (4.7)
0 0

where B, (s) is the mean-adjusted version of B.(s),

—~1/2

+ d 1 —\2 1 _ _
TS Tadjs Ty~ ( /0 G.(5:2) ds> /0 G(s:9)dG.(5:7), (4.8)

8



where G.(s;¢) = B.(s) — sK.(¢) with
K.(7) = h(?)"! /01(1 _ &s)dBy(s) + h(3)"\(c — 7) /01(1 _ &5)Bu(s)ds

and h(¢) = 1—c+¢®/3. Here the stochastic integral is a short-hand notation for f; G.(s; ¢)dB,(s)—
K.(¢) [} Ge(s;€)ds. Moreover,

J 1 -1/2 .
Tty T~ ( / Gc(s;6)2d5> / Gl(s5: D)dG(5:7), (4.9)
0 0

where G, (s;¢) is a mean-adjusted version of G,(s;¢). O

Notice that for ¢ = 0 the null distributions in (4.6) and (4.7) are conventional Dickey-
Fuller (DF) distributions for unit root tests in models without deterministic terms and with
intercept, respectively. The distribution in (4.8) was given by S&L for the statistic 75g7, in

the form
1 1 —1/2
> ([ Gusioras) T (@ulnior 1),
0
where

Ge(s;¢) = Be(s) — s ()\Bc(l) +3(1—X) /01 sBc(s)ds>

with A = (1—¢)/h(¢). It can be shown that this limiting distribution is equivalent to the one
in (4.8) (see the Appendix). We use the latter version now because it facilitates a comparison
with the other limiting distributions given in the theorem.

The limiting null distribution of the test statistics 7;,; and 7,5, are again obtained by
setting ¢ = 0. It is free of unknown nuisance parameters but depends on the quantity ¢. It
differs from that of 7g1,, T4¢; and T;;ij in that G,(s; ¢) is replaced by a mean-adjusted version.
This difference is due to the intercept term included in the auxiliary regression model (4.5).
In this sense, for example 7;,; may be called a “mean-adjusted version” of 7,4;.

To the best of our knowledge the asymptotic distribution in (4.9) has not been studied
previously so that critical values and suggestions for appropriate values of ¢ are not available.

Thus, simulations are required to make the test statistics 7;,; and 7/

, applicable and to study
their power properties. Even without such simulations it is clear, however, that in terms
of asymptotic local power the test statistics in (4.9) are inferior to those in (4.8) because
they are not asymptotically equivalent to 7sg 7 and the asymptotic local power of 7g¢z is

indistinguishable from optimal. Analogously, T3, 7oy and 7, have local power which is



indistinguishable from optimal and, hence, the local power of the corresponding 7., and i
tests is inferior (see Elliott et al. (1996)). However, since these results are asymptotic and
based on assumptions which may be unrealistic in some cases (see Elliott et al. (1996, pp.
819-820)) the performance of the 7;,; and 75, tests may be preferable in finite samples. All
the tests considered in the previous section are summarized in Table 1 for the case where
no a priori restriction is available for p;. We will provide critical values and small sample

comparisons for the tests in the following sections.

5 Critical Values

In order to investigate the null distributions and local power of the test statistics we have

generated time series
Ty =pray g +e, t=12....T, =0, pr=1+¢/T, & ~iid N(0,1). (5.1)

Thus, p = 0 so that there is no additional dynamics. Moreover, there is no deterministic part
and we can use the generated series to investigate the tests with and without the restriction

w1 = 0. For this purpose we use again pr = 1+ ¢/T and consider the following z; series:

. a?go) =ux;— f1o (t =1,...,T), where [i is obtained from a regression (1 — prL)z; =

pozor +errory (t=1,...,T) with

1, t=1,
20t =
]_—ﬁT, t:2,...,T,
o :351) =xy — fio — int (t =1,...,T), where fiy and ji; are obtained from a regression

(1 —prL)z; = pozor + i (t — pr(t — 1)) +error, (t=1,...,7T).

The series :%,Ei) (¢ = 0,1) are used to compute t-statistics for the null hypothesis p = 1
based on the regression model (4.1) and a corresponding version with an intercept term.
For large sample size T and ¢ = 0 (i.e., pr = 1) we get realizations of the null distributions
corresponding to (4.6) - (4.9) in this way.

Since we did not know which ¢ value results in optimal local power of the tests with

asymptotic distribution (4.9) we first investigated that issue. To this end we generated

critical values for a 5% significance level based on 10000 drawings with sample size T = 500
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using ¢ = 0 and then we simulated local power curves. It turned out that the local power
associated with the distribution in (4.9) is almost invariant to the value of ¢. Hence, ¢ = 0
may just as well be used. In other words, the deterministic terms may be estimated under
the null rather than local alternatives in order to get optimal local power for 7;,; and 7;,.
Some quantiles obtained from 10000 drawings for different sample sizes and different
values of ¢ are given in Table 2. In the second and second last panel of the table quantiles
are given for nonzero ¢ values. They are seen to vary markedly with the sample size. In fact,
they roughly decline in absolute value with growing T'. For (4.6) the critical values correspond
to the critical values of a DF t-test without any deterministic components in the DGP for
large T (see, e.g., Fuller (1976, Table 8.5.2)). For smaller sample sizes, however, they differ
substantially from the asymptotic quantiles because in generating these null distributions
we use an estimator for yy which is obtained under local alternatives. In this case we used a
transformation based on pr = 14 ¢/T with ¢ = —7 because this value was recommended by
Elliott et al. (1996) for processes without deterministic trend component (1 = 0). Elliott
et al. show that this choice results in tests with optimal local power properties. Clearly, if
the asymptotic critical values (see T'= 1000 in the table) were used when the actual sample
size is T' = 50, say, the test would reject considerably more often than indicated by the
significance level chosen. For example, the critical value for a 5% level test for 7' = 1000 is
—1.96 which roughly corresponds to the 10% quantile of the distribution for 7" = 50. Thus,
substantial small sample distortions of the sizes of the tests must be expected given that the
present, results are simulated under ideal conditions which are not likely to be satisfied in
practice. Hence, in practice, additional sources for distortions may be present. The critical
values for ¢ = 0 are less sensitive to the sample size which may be useful in applied work.
In the third panel of the table, for all sample sizes, the quantiles are seen to be close to the
corresponding quantiles of the DF distributions for data generation processes (DGPs) with
constant term (see again Table 8.5.2 of Fuller (1976)). Similarly, the simulated quantiles in
the fifth panel ((4.8), ¢ = —13.5) are very close to those in Table I.C of Elliott et al. (1996)

for all sample sizes given in that table.
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6 Small Sample Comparison

We have performed some simulations to investigate the performance of the tests in small

samples based on the following processes:
yt:dlt—l-fl?t, (1—blL)(1—pL){L‘t = &y, t= 1,...,T, (61)

and

(1 — blL)yt = dlt —+ Vt, UVt = PU+—1 + Et, t= 1, Ce ,T, (62)

with g, ~ #id N(0,1), p =1,0.9,0.8, T = 100, 200. We also generated 100 presample values
which were discarded. Furthermore, we use 77 /T = 0.5, that is, the break point is half way
through the sample. Preliminary simulations indicated that the location of the break point
is not critical for the results as long as it is not very close to the beginning or the end of
the sample. Therefore placing it in the middle does not imply a loss of generality for the
situations we have in mind.

The process (6.1) is in line with the model (2.1) with an abrupt shift at time 77 so that
our tests are appropriate. Because we are interested in the situation where the shift is of a
more general unknown form, we also consider the DGP (6.2) which generates a smooth shift
in the deterministic term. It is sometimes referred to as an innovational outlier model in the
related literature. For nonzero b it is not nested in our general model (2.1) although it is
very similar to (6.1) in many respects. To capture the smooth transition from one regime to
another in the DGP (6.2), the tests have to be combined with a smooth shift function. In

the simulations we use the shift functions ft(l)(ﬁ) = dyy,

(2) 0, t < Ty
Ji (9) =
l—exp{—0(t—-T'+1)}, t>T
and ft(?’)(e) = [ld_létL, dll_’tg‘Ll]l. The last two shift functions allow for smooth deterministic

shifts. In the context of DGP (6.1) they allow us to explore the sensitivity of the tests to
unnecessarily flexible shifts. Note, however, that ft(Q)(H) is close to a shift dummy if 0 is
large and ft(3)(9) represents a one time shift if § is close to zero and the second component
of 7y is zero. Thus, both functions can in principle approximate the actual shift in (6.1) well.
In addition, they may be appropriate for series generated by DGP (6.2) because they can

capture the resulting smooth level shift.
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All three shift functions can be shown to satisfy Assumption 1. For some of the tests
the derivatives of the shift functions are needed. Because ft(l) does not depend on f, the
derivative Ft(l) is zero. Hence, no extra terms AFt(l)(H) appear in the auxiliary regressions
for Tagi, Tog» Time and 7, if they are used with D In the simulations we use a range
of 0 < 6 < 2 for ft(2)(0) and 0 < 6 < 0.8 for ft(3)(t9) in estimating the parameters of the
deterministic term. Although there is no linear trend term in the DGPs we allow for such a
term in computing the test statistics which account for deterministic linear trends.

Relative rejection frequencies from 1000 replications of the experiment are given in Tables

3 and 4. In Table 3, actual sizes based on the DGP (6.1) are given for tests for which

estimation of the deterministic part is done under local alternatives (¢ = —7 for 7951, Toy,
T;;i? and ¢ = —13.5 for Tsgr, Tagj, T,y). Thus, in this case the DGP is in line with the

original model for which the tests are derived. The nominal significance level is 5% in all
cases. Obviously, all tests reject too often in some situations. Note that asymptotic critical
values are used so that some overrejection was to be expected on the basis of the discussion
related to Table 2. For some cases unexpectedly large rejection frequencies are observed,
however. For example, it is seen in Table 3 that 7,4 rejects in more than 30% of the cases if
the shift function ft(?’) is used in the test. Even if 7" = 200, the empirical size is markedly in
access of 10% in this case.* Some tests do reasonably well in specific situations. For example,
T;:l? and T(;rdj produce rejection frequencies close to 5% when the correct shift function ft(l)
is used and the same is true for most of the tests when 7" = 200. Still, none of the tests
performs satisfactorily for all shift functions and designs for 7" = 100. Therefore the overall
message from Table 3 is clear: If the shape of the shift is unknown and, hence, a flexible shift
function is considered, using nonzero values of ¢, that is, estimating under local alternatives,
bears the risk of substantially distorted sizes of the tests in samples of size 100. Thus, these
tests cannot be recommended with the nonzero ¢ values considered here. Consequently, there
is no point in exploring their small sample power for these ¢ values. Hence, in the following
we focus on the tests with ¢ = 0, that is, estimation of the nuisance parameters is done under

the null hypothesis.

Power results are given in Table 4 for selected tests only. The results show that for ¢ =0

*The results are not shown to save space. More detailed results may be found in the discussion paper

version of this paper which is available on request.

13



the test sizes are much better in line with the nominal 5% (see p = 1) at least for those
tests presented in the table. In fact, for ¢ = 0 some tests tend to be conservative in specific
situations and in some cases very much so (see, e.g., T;p; in combination with ft(l)). Most of
the tests which are not shown in the table tend to be generally conservative and therefore
do not have much small sample power. In Table 4 we only show the results for the original
tests 72¢; and 7ggr and those tests which performed overall best in terms of small sample
power within their respective groups, the groups being 7° tests (7 tests without linear trend
term) and 7 tests (with linear trend). We are only presenting the best tests in the tables to
avoid covering up the most important findings by the large volume of results for all the tests
and simulation designs.

In the following, we consider only T8, Toy, Tag> Tser, Tint and 7,5, In the group of 7°
tests which exclude the deterministic trend term, ngj and T;:l? were generally best in terms
of power, each having advantages in some situations. In the group of 7 tests which allow for

a linear trend term, 7;,; and 7;;, dominate the other tests. Again there is no clear winner

among the two tests. Whereas 7;,,; is preferable in conjunction with shift function ft(3), T

dominates for ft(l) and ft(Z). Both tests are clearly superior to Tsgr -

It is also interesting that the results for the two DGPs are quite similar. This may not
be very surprising given that the two models are in some sense quite close. A model of the
type (6.1) with a deterministic linear trend and a general shift function f;(f) has the form

Y = po + pat + f1(0)'y + z;. Multiplying this equation by 1 — by L yields
(1 =0 L)y; = vo +uvit + f1(0) (1 — b))y + Afe(0)'bry + vy, t=2,...,T,

where 1y and v are functions of p, p; and the coefficient b;. Moreover, v; is as in (6.2).
This shows that if we condition on ; in model (6.1) we obtain a model of the form (6.2)
except that the additional regressor A f;(f) is included and nonlinear parameter restrictions
are involved. By Assumption 1(b) the variables Af;(0) are “asymptotically negligible,”
however.

The following further conclusions emerge from Table 4. Excluding a linear trend term
from the models when such a restriction is correct results in substantially better power.
Furthermore, changing b; from 0.5 to 0.8 has a substantial effect. It implies a sizable decline
in power in most cases. This behaviour of the tests may not be too surprising because

for by close to 1 the processes have two roots close to unity and therefore are difficult to
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distinguish from unit root processes. The results in Table 4 also show that there are cases
where the tests are not very reliable if time series with 7" = 100 observations are under
consideration. Moreover, the performance of the tests tends to be inferior if one of the more
complicated shift functions ft(2) or ft(?’) is used. We note, however, that the performance of
all the tests improved markedly when 7" was increased from 100 to 200. Even in that case

the modifications overall dominate the original test versions 79,; and Tsgr.

7 Conclusions and Extensions

Standard unit root tests are known to have reduced power if they are applied to time series
with structural shifts. Therefore we have considered unit root tests that explicitly allow
for a level shift of a very general, possibly nonlinear form at a known point in time. We
have argued that knowing the timing of the shift is quite common in practice whereas the
precise form of the shift is usually unknown. Therefore, allowing for general and flexible shift
functions is important. In this study we have focused on models where the shift is regarded
as part of the deterministic component of the DGP. Building on a proposal by S&L, it
is suggested to estimate the deterministic part in a first step by a GLS procedure which
may proceed under local alternatives or under the unit root null hypothesis. The original
series is adjusted in a second step by subtracting the estimated deterministic part. Then
DF type tests are applied to the adjusted series. A number of modifications of previously
proposed tests of this sort are considered. In particular, tests are proposed that take into
account estimation errors in the nuisance parameters. Small sample properties of the tests
are obtained by simulation.

The following general results emerge from our study. Some of the suggested modifications
work clearly better in small samples than the original tests proposed by S&L in that they
have superior size and power properties. Substantial size distortions may result in small
samples if the nuisance parameters are estimated under local alternatives. Therefore we
recommend estimating the nuisance parameters under the null hypothesis.

If a deterministic linear time trend can be excluded on a priori grounds, it is recommended
to perform tests in models without a linear trend term because excluding it may result in

sizable power gains. Finally, using test versions with the best power properties is of particular
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importance in the present context because in some situations the tests do not perform very
well for samples of size as large as T' = 100. Therefore we recommend using the modified test
versions ngj and T;;l? if no deterministic linear trend is present because they have overall best
size and power properties. As none of these tests dominates the other one in all situations
it may be useful to apply both tests jointly and reject the unit root hypothesis if one of the
tests rejects the null hypothesis. If a linear trend term is needed, the modified test versions
Tint and 7;1, are recommended based on analogous arguments.

We have also explored the possibility of using DGPs of the type (6.2) with potentially
more short-term dynamics. As mentioned earlier, they account for shifts which are due to
innovational outliers. Models of this type are preferred in parts of the related literature. In
the context of these models unit root tests similar to those of S&L were in fact considered by
Liitkepohl, Miiller & Saikkonen (2000). Extensions similar to those of the present study are
possible and are presented in the discussion paper version which is available upon request.
In that study we have also performed a detailed investigation of other modifications which
did not perform as well as the tests presented here. Therefore they were deleted from the
present version of the paper.

Although we have focused on a single shift in a time series, the tests can in principle be
extended to allow for more than one shift. Of course, the small sample behaviour may be
different in this case and needs to be explored in the future if applied researchers wish to
use the tests in this more general context. In future research it may also be of interest to
consider the situation where the timing of the shift is unknown and has to be determined
from the data. Moreover, a comparison with other unit root tests which allow for structural

shifts may be worthwhile. We leave these issues for future investigations.

Appendix. Proof of Theorem 1

In the proof of Theorem 1 we focus on the limiting distributions of test statistics for models
where ji; is not known to be zero a priori. The case where the restriction u; = 0 is imposed
follows by making straightforward modifications to these proofs. We begin with the result
in (4.8).

The limiting distribution of 7gg, is derived in S&L. In that article it is given in a slightly
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different form, however. To see that the present form is equivalent it may be worth noting

that (A.21) of S&L may be written alternatively as

T X', 2(0) H(X — X_)
=T~V S0, [b(L)2,1][b(L) Ay] + 0,(1)
=T~ S bW {1 — (i — ) (t = DHD(L)Azy — (1) (j1r — p1)] + 0p(1)
% 0 [y Go(s;0)dBe(s) — 02K, () fy Go(s;0)ds,

(A.1)

where the last relation follows from well-known limit theorems by noting that the limiting

distribution of £ given in (3.12) of S&L can be written alternatively as wK,.(¢), where

w = 0o/b(1),
Ko@) = h(?)"! /01(1 _ &s)dBy(s) + h(&) (e —2) /01(1 _Es)Bu(s)ds  (A2)

and h(¢) = 1 — ¢+ */3. From the representation in (A.1) the limiting distribution in (4.8)

follows as in the proof of the asymptotic distribution of the test statistic in S&L. Thus, to

prove (4.8), it remains to show that 7,4 and T;;ij have the same limiting distribution as 7ggr,.
Using

T gy —5 wG.(s;) (A.3)

(see (A.18) of S&L) and the fact that f(0) satisfies Assumption 1(b) it can be seen that

T
< T7' max || Zsug IA£0)] = 0, (T7/?)

<< T e

T
HT—1 > a1 Afi(0)
t=1

and that a similar result also holds with Af,() replaced by AF;(f). Using these facts
and arguments similar to those in the proof of Lemma 1 of S&L it can be shown that the
appropriately standardized moment matrix in the GLS estimation of (4.3) is asymptotically
block diagonal and also positive definite. Since it is further straightforward to show that
ST Afi(B)uf = 0,(1) and similarly with Af,(6) replaced by AF;(d) it follows that the
limiting distribution of the GLS estimator of p in (4.3) and hence that of its ¢-ratio is the
same as in the case of the auxiliary regression model (4.1). We have thus shown that (4.8)
holds for the test statistic 7,4;.

As for test statistic le'dj,

note first that the arguments used for 7,4 above and those in
the proof of Theorem 1 of S&L show that the appropriately standardized moment matrix

in the auxiliary regression model used to obtain the test statistic 7.

; 18 asymptotically
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positive definite and also block diagonal between w; ; and the other regressors. Deriving
the expression of the error term in this auxiliary regression model it is further straightforward

to show that 7,

o has the same limiting distribution as 7ggr, and 7o4. Thus, (4.8) is proven.

Since the test statistics 7;,; and 7;/, are obtained by augmenting the auxiliary regression

models used to obtain test statistics 7,4 and 7.5, respectively, by an intercept term, (4.9)

adj)’

can be proven by extending the arguments used above in a standard manner.
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Table 1. Summary of Tests

Test

statistic | Underlying auxiliary regression
Asymptotic distribution (fol Ge(s; E)st)il/2 ) Geo(s:€)dGy(s;€)

TS&I Ty = pTi—1 + Uy

Tadj Ty = ply_q + Aft(é),ﬂ'l + AFt(é)IM + UI

s o= pios + ALY + BE)AFGY s + S0y 0,88, + 1
Asymptotic distribution (fol G.(s; 6)20!5‘)_1/2 i Ge(s;€)dG,(s;€)

Tint B =v 4 pi g+ A[O)T + AF(0)' T + uf

iy Wy = v+ piy_y + [BL)AF(0) )7y + [B(L)AF(0) |7y + Sy 0 A&y + 1
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Table 2. Simulated Quantiles of Null Distributions of Test Statistics Based on 10000
Replications

‘ Distribution ‘ T ‘ Q.01 0.025 Q.05 Qp.1 ‘

o0 | -2.65 -2.26 -1.97 -1.63
100 | -2.61 -2.25 -1.96 -1.62
.6) 200 | -2.64 -2.26 -1.94 -1.62
=0) 500 | -2.60 -2.25 -1.95 -1.62
1000 | -2.55 -2.24 -1.96 -1.61
o0 | -2.93 -2.56 -2.28 -1.98
100 | -2.73  -2.41 -2.15 -1.83
(4.6) 200 | -2.68 -2.34 -2.05 -1.73
(c=-17) 500 | -2.64 -2.30 -2.00 -1.67
1000 | -2.56 -2.22 -1.96 -1.63
o0 | -3.64 -3.28 -2.99 -2.67
100 | -3.58 -3.22 -2.94 -2.62
) 200 | -3.58 -3.22 -2.93 -2.62
=0) 500 | -3.47  -3.17 -2.90 -2.62
1000 | -3.48 -3.15 -2.88 -2.58
o0 | -3.34 -2.96 -2.65 -2.37
100 | -3.23  -2.90 -2.61 -2.33
) 200 | -3.17 -291 -2.64 -2.33
=0) 500 | -3.22 -2.92 -2.64 -2.35
1000 | -3.18 -2.86 -2.62 -2.33
50 | -3.83 -3.48 -3.21 -2.091
100 | -3.62  -3.30 -3.03 -2.74
(4.8) 200 | -3.51 -3.24 -2.96 -2.66
(¢=-13.5) | 500 |-3.43 -3.09 -2.84 -2.57
1000 | -3.40 -3.11 -2.85 -2.57
o0 | -3.81 -3.45 -3.15 -2.86
100 | -3.73 -3.38 -3.11 -2.80
9) 200 | -3.64 -3.32 -3.06 -2.77
=0) 500 | -3.62 -3.32 -3.08 -2.79
1000 | -3.55 -3.28 -3.03 -2.76
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Table 3. Empirical Sizes of Tests Based on DGP (6.1), T = 100, T = 50, ¢ = =7/ — 13.5,

Nominal Significance Level 5%

Shift Test

funcgion by TSO&L ngj 7'2212 TS&L  Tadj T;;ij

9 10.5]0.077 0076 0.069 0.085 0.087 0.071
0.810.164 0.165 0.064 0.072 0.073 0.063

2 1051018 0.223 0276 0.163 0.252 0.276
0.8 10227 0.301 0405 0.089 0.155 0.197

P 105]0193 0269 0.224 0.158 0.360 0.262
0.8 10206 0.533 0.227 0.080 0.501 0.160

Table 4. Relative Rejection Frequencies of Tests, 7" = 100, T} = 50, ¢ = 0, Nominal

Significance Level 5%

Shift DGP (6.1), b; =0.5 | DGP (6.1), by =0.8 | DGP (6.2), by = 0.5 | DGP (6.2), b = 0.8
function | Test [ p=1 09 08 |p=1 09 08 |p=1 09 08 |p=1 09 08
FU 179 10039 0289 0533]0.016 0156 0.314]0.039 0284 0524 | 0.020 0.138 0.275
7010039 0291 0535|0016 0.156 0.315 | 0.040 0.285 0.527 | 0.020 0.140 0.275
T | 0063 0.353 0.590 | 0.050 0.292 0.436 | 0.061 0.343 0.575 | 0.053 0.287 0.382
Tser | 0.010  0.054 0.190 | 0.000 0.006 0.030 | 0.009 0.050 0.174 | 0.000 0.005 0.025
Tt | 0.020 0.090 0.302 | 0.000 0.006 0.034 | 0.022 0.091 0.305 | 0.001 0.004 0.029
. 10080 0.233 0526 | 0.065 0.167 0.286 | 0.075 0.216 0.499 | 0.064 0.149 0.262
F2 [ 79, 10043 0235 0423 ] 0023 0.123 0243 | 0.041 0231 0415 | 0.021 0.129 0.248
701 0.064 0270 0454 | 0.045 0.155 0.288 | 0.065 0.257 0.433 | 0.037 0.141 0.276
T | 0048 0.254 0445 | 0.026 0.142 0272 | 0.049 0.246 0.426 | 0.025 0.140 0.271
Tser | 0.014  0.056 0.179 | 0.000 0.004 0.030 | 0.010 0.051 0.177 | 0.000 0.006 0.028
Tt | 0.048 0.146 0.349 | 0.021 0.033 0.089 | 0.045 0.131 0.336 | 0.019 0.029 0.063
mho 10052 0167 0.367 | 0.029 0.045 0.115 | 0.053 0.151 0.348 | 0.030 0.039  0.080
B [ 79, [ 0047 0215 0378 [ 0.020 0.120 0.220 | 0.044 0.219 0.384 | 0.022 0.113 0.217
701 0.064 0266 0417 | 0.079 0.223 0.302 | 0.060 0.268 0.426 | 0.082 0.217 0.293
T | 0059 0.249 0.404 | 0.037 0.144 0.249 | 0.056 0.252 0.418 | 0.036 0.140 0.243
Tser | 0.011  0.044 0.173 | 0.000 0.005 0.024 | 0.014 0.046 0.165 | 0.000 0.005 0.022
Tt | 0.060 0.141 0.322 | 0.074 0.086 0.133 | 0.062 0.146 0.325 | 0.072 0.091 0.134
mh, 10048 0120 0.314 | 0.016 0.028 0.064 | 0.052 0.129 0.317 | 0.014 0.029 0.068

int
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