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1 Introdu
tionModeling stru
tural shifts in time series has be
ome an issue of 
entral importan
e due tothe massive interventions that o

ur regularly in e
onomi
 systems. In this 
ontext testingfor unit roots in the presen
e of stru
tural shifts has attra
ted 
onsiderable attention inthe re
ent literature (see, e.g., Perron (1989, 1990), Perron & Vogelsang (1992), Banerjee,Lumsdaine & Sto
k (1992), Zivot & Andrews (1992), Amsler & Lee (1995), Leybourne,Newbold & Vougas (1998), Monta~n�es & Reyes (1998)). In some of the literature the timewhere the stru
tural 
hange o

urs is assumed to be known and in other arti
les it is assumedunknown. In this study we assume that the break point is known. In pra
ti
e, su
h anassumption is often reasonable be
ause the timing of many interventions is known when theanalysis is performed. For example, on January 1, 1999, a 
ommon 
urren
y was introdu
edin a number of European 
ountries or the German uni�
ation is known to have o

urred in1990. These events have had an impa
t on some e
onomi
 time series.We will follow Saikkonen & L�utkepohl (1999) (hen
eforth S&L) and 
onsider modelswith very general nonlinear deterministi
 shift fun
tions. These authors propose tests forunit roots based on the idea that the deterministi
 part is estimated in a �rst step and issubtra
ted from the series. Standard unit root tests are then applied to the adjusted series.The purpose of this study is to propose modi�
ations of these tests whi
h are expe
ted towork well in small sample situations and we will perform Monte Carlo 
omparisons of theproperties of the tests. The results lead to useful re
ommendations for applied work.The stru
ture of the study is as follows. The general model is presented in Se
. 2together with the assumptions needed for asymptoti
 derivations. Estimation of the nuisan
eparameters is dis
ussed in Se
. 3 and a range of unit root tests is presented in Se
. 4 in
ludingthe asymptoti
 distributions of the test statisti
s. Sin
e some of the tests have distributionsunder the null hypothesis whi
h are not tabulated, simulated 
riti
al values are presentedin Se
. 5. A small sample 
omparison of the tests based on a Monte Carlo experiment isreported in Se
. 6 and 
on
lusions are given in Se
. 7. The proof of a theorem is providedin the Appendix.In the following the lag and di�eren
ing operators are denoted by L and �, respe
tively.The symbol d! is used to signify 
onvergen
e in distribution. The minimal eigenvalue of amatrix A is denoted by �min(A) and k � k is the Eu
lidean norm.1



2 The ModelWe 
onsider the following general model for a time series variable yt with a possible unitroot and a level shift from S&L:yt = �0 + �1t + ft(�)0
 + xt; t = 1; 2; : : : ; (2:1a)where the s
alars �0 and �1, the (m � 1) ve
tor � and the (k � 1) ve
tor 
 are unknownparameters and ft(�) is a (k� 1) ve
tor of deterministi
 sequen
es depending on the param-eters �. The fun
tional form of ft(�) is assumed to be known. If the sequen
e represents alevel shift the timing of the shift is also known. For example, ft(�) may be thought of as ashift dummy variable whi
h has the value zero before some given break period T1 and thevalue one from then onwards. In that 
ase, the break date T1 is assumed to be known. Mu
hmore general situations are 
overed by our framework, however. Examples are 
onsidered inSe
. 6.The quantity xt represents an unobservable sto
hasti
 error term whi
h is assumed tohave a �nite order AR representation,b(L)(1� �L)xt = "t; (2:1b)where "t � iid(0; �2) and b(L) = 1�b1L�� � ��bpLp is a polynomial in the lag operator withroots bounded away from the unit 
ir
le. More pre
isely, the parameter spa
e is assumed tobe su
h that for some � > 0, b(L) 6= 0 for jLj � 1 + �. This restri
tion will not be taken intoa

ount in the estimation pro
edure, however. Obviously, if � = 1 and, hen
e, the DGP ofxt has a unit root, then the same is true for yt. The initial values of xt (t = �p; : : : ; 0) areassumed to be from some �xed distribution whi
h does not depend on the sample size. Amore detailed dis
ussion of the impli
ations of alternative assumptions regarding the initialvalues may be found in Elliott, Rothenberg & Sto
k (1996).The parameters �0, �1 and 
 in our model are supposed to be unrestri
ted. Conditionsrequired for the parameters � and the sequen
e ft(�) are 
olle
ted in the following set ofassumptions whi
h are partly taken from S&L.Assumption 1(a) The parameter spa
e of �, denoted by �, is a 
ompa
t subset of the m-dimensionalEu
lidean spa
e. 2



(b) For ea
h t = 1; 2; : : :, the fun
tion ft(�) is 
ontinuously di�erentiable in an open set
ontaining the parameter spa
e � and, denoting by Ft(�) the ve
tor of all partialderivatives of ft(�),supT TXt=1 sup�2� k�ft(�)k <1 and supT TXt=1 sup�2� k�Ft(�)k <1where f0(�) = 0 and F0(�) = 0.(
) f1(�) = � � � = fp+1(�) = 0 for all � 2 �. Moreover, de�ning Gt(�) = [ft(�)0 : Ft(�)0℄0for t = 1; 2; : : : ; there exists a real number � > 0 and an integer T� su
h that, for allT � T�, inf�2��min ( TXt=2�Gt(�)�Gt(�)0) � �: 2As mentioned earlier, some of these 
onditions are just repeated from S&L. The extensionsare mostly 
onditions for the partial derivatives of ft(�). They are used here to a

ommodatethe modi�
ations of the estimation pro
edures and unit root tests 
onsidered in the followingse
tions. A 
ompa
t parameter spa
e � and the 
ontinuity requirement in Assumption 1(b)are standard assumptions in nonlinear estimation and testing problems. Furthermore, thesummability 
onditions in Assumption 1(b) are needed for the fun
tion ft(�) and its partialderivatives Ft(�). They hold in the appli
ations we have in mind, if the parameter spa
e �is de�ned in a suitable way. Therefore the 
ondition is not 
riti
al for our purposes. The
onditions in Assumption 1(b) and (
) are formulated for di�eren
es of the sequen
es ft(�)and Gt(�) be
ause our aim is to study unit root tests. Hen
e, estimation of the parameters�; � and 
 is 
onsidered under the null hypothesis that the error pro
ess 
ontains a unit root.EÆ
ient estimation then requires that the variables are di�eren
ed.To understand Assumption 1(
), assume �rst that the value of the parameter � is knownand that the parameters � and 
 are estimated by applying ordinary least squares (OLS)to the di�eren
ed models. Then these assumptions guarantee linear independen
e of theregressors when T is large enough. There is of 
ourse no need to in
lude the in�mum inthe 
ondition of Assumption 1(
) if � is known. It is needed, however, when the value of �is unknown and has to be estimated. We have to impose an assumption whi
h guarantees3



that the above mentioned linear independen
e of regressors holds whatever the value of �be
ause 
onsistent estimation of � is not possible. This is the purpose of Assumption 1(
).The 
ondition f1(�) = � � � = fp+1(�) = 0 is not restri
tive for the situations and fun
tions wehave in mind and whi
h are 
onsidered later. This 
ondition together with the last 
onditionin Assumption 1(
) implies thatinf�2��min8<: TXt=p+2[b(L)�Gt(�)℄[b(L)�Gt(�)0℄9=; � �for T � T� whi
h is needed for some of the estimators used in the following to be well-de�ned.Consistent estimation of � and 
 is not possible be
ause, by Assumption 1(b), the varia-tion of (the di�eren
ed) regressors does not in
rease as T !1. The present formulation ofAssumption 1(b) also applies when the sequen
e ft(�) depends on T whi
h may be 
onve-nient o

asionally. This feature is not made expli
it in stating the assumption be
ause it isnot needed in the present appli
ation of Assumption 1 although it may sometimes be usefulto allow the shift fun
tion to depend on T .In the terminology of Elliott, Rothenberg & Sto
k (1996, Condition B), our assumptionsimply that, for ea
h value of �, the sequen
e ft(�) de�nes a slowly evolving trend, althoughour 
onditions are stronger than those of Elliott et al.. No attempt has been made here toweaken Assumption 1 be
ause it is 
onvenient for our purposes and applies to the models ofinterest in the following. More dis
ussion of Assumption 1 is given in S&L.We 
ompare unit root tests within the model (2.1). More pre
isely, we 
onsider tests ofthe pair of hypotheses H0 : � = 1 vs. H1 : j�j < 1. The idea is to estimate the parametersrelated to the deterministi
 part �rst and then remove the deterministi
 part and performa test on the adjusted series. In the next se
tion we therefore dis
uss estimation of thenuisan
e parameters.3 Estimators of Nuisan
e ParametersSuppose that the pro
ess xt spe
i�ed in (2:1b) is near integrated so that� = �T = 1 + 
T ; (3:1)where 
 � 0 is a �xed real number. The estimation pro
edure proposed by S&L employs anempiri
al 
ounterpart of the parameter 
. This means that we shall repla
e 
 by a 
hosen4



value �
 and pretend that �
 = 
 although we do not assume that this presumption is a
tuallytrue. The idea is to apply a generalized least squares (GLS) pro
edure by �rst transformingthe variables in (2.1) by the �lter 1� ��TL where ��T = 1 + �
T and then applying GLS to thetransformed model. The 
hoi
e of �
 will be dis
ussed later.For 
onvenien
e we will use matrix notation and de�neY = [y1 : (y2 � ��Ty1) : � � � : (yT � ��T yT�1)℄0; (3:2a)Z1 = 264 1 1� ��T � � � 1� ��T1 (2� ��T ) � � � (T � ��T (T � 1)) 3750 (3:2b)and Z2(�) = [f1(�) : f2(�)� ��T f1(�) : � � � : fT (�)� ��T fT�1(�)℄0: (3:2
)Here, for simpli
ity, the notation ignores the dependen
e of the quantities on the 
hosenvalue �
. Using this notation, the transformed form of (2.1) 
an be written asY = Z(�)�+ U; (3:3)where Z(�) = [Z1 : Z2(�)℄, � = [�0 : �1 : 
0℄0 and U = [u1 : � � � : uT ℄0 is an error term su
hthat ut = xt � ��Txt�1 = b(L)�1"t + T�1(
 � �
)xt�1: Our GLS estimation is based on the
ovarian
e matrix resulting from b(L)�1"t, denoted by �2�(b), where b = [b1 : � � � : bp℄0. TheGLS estimators are thus obtained by minimizing the generalized sum of squares fun
tionQT (�; �; b) = (Y � Z(�)�)0�(b)�1(Y � Z(�)�): (3:4)They are denoted as �̂, �̂ and b̂. Assumption 1 ensures that these estimators are well-de�nedfor T large enough (see S&L for details).4 The TestsOn
e the nuisan
e parameters in (2.1) have been estimated one 
an form the residual seriesx̂t = yt � �̂0 � �̂1t� ft(�̂)0
̂ (t = 1; : : : ; T ) and use it to obtain unit root tests. S&L proposeto 
onsider the auxiliary regression modelx̂t = �x̂t�1 + u�t ; t = 2; : : : ; T: (4:1)5



In the previous se
tion it was seen that if x̂t is repla
ed by xt, the 
ovarian
e matrix of theerror term in (4.1) is �2��(b), where ��(b) is a ((T � 1) � (T � 1)) analog of the matrix�(b). Be
ause the parameter ve
tor b is estimated to obtain x̂t it seems reasonable to usethis estimator also here and base a unit root test on (4.1) with � estimated by feasible GLSwith weight matrix ��(b̂)�1. We denote the usual t-statisti
 for testing the null hypothesis� = 1 asso
iated with the feasible GLS estimator of � by �S&L be
ause it is the statisti

onsidered by S&L ex
ept that these authors use residuals x̂t for t = 1; : : : ; T in (4.1) withinitial value x̂0 = 0.The error term in the auxiliary regression model (4.1) also 
ontains estimation errors
aused by repla
ing the nuisan
e parameters �0, �1, � and 
 by their GLS estimators. Be-ing able to allow for the e�e
t of these estimation errors might improve the �nite sampleproperties of the above test and parti
ularly the performan
e of the asymptoti
 size approx-imation. To investigate this issue, 
onsider the spe
ial 
ase where the shift fun
tion is astep dummy variable ft(�) = d1t whi
h is zero up to period T1 � 1 and one from periodT1 onwards. Suppose that the null hypothesis holds. Then it is straightforward to 
he
kthat u�t = �xt � (�̂1 � �1) � �d1t (
̂ � 
) (t = 2; : : : ; T ). Thus, augmenting the auxiliaryregression model (4.1) by an inter
ept term and the impulse dummy �d1t would result inan error term whi
h, under the null hypothesis, would not depend on the errors 
aused byestimating the nuisan
e parameters �1 and 
. It is fairly obvious that the in
lusion of theimpulse dummy �d1t has no e�e
t on the asymptoti
 properties of the GLS estimator of theparameter � and, 
onsequently, on the limiting distribution of the resulting test. Below wewill see that the in
lusion of an inter
ept term results in a di�erent limiting distribution.Therefore, we will 
onsider tests with and without inter
ept in the following.If the step dummy d1t is repla
ed by the general fun
tion ft(�) the above modi�
ationbe
omes slightly more 
ompli
ated. We then haveu�t = �xt � (�̂1 � �1)��ft(�̂)0
̂ +�ft(�)0
= �xt � (�̂1 � �1)��ft(�̂)0(
̂ � 
)� ��ft(�̂)��ft(�)�0 
; t = 2; : : : ; T:(4:2)In the last expression the third term 
an be handled in the same way as in the previously
onsidered 
ase of a step dummy but the fourth term requires additional 
onsiderations. Afairly obvious approa
h is to assume that the fun
tion ft(�) satis�es Assumption 1(b) and6



use the Taylor series approximation �ft(�̂) � �ft(�) � � ��ft(�̂)=��0� (�̂ � �). Instead of(4.1) we then 
onsider the auxiliary regression modelx̂t = �x̂t�1 +�ft(�̂)0�1 +�Ft(�̂)0�2 + uyt ; t = 2; : : : ; T; (4:3)where Ft(�̂) is a (mk � 1) ve
tor 
ontaining the partial derivatives in �ft(�̂)=��. Let �adj bethe usual `t-statisti
' based on the GLS estimation of the parameters in (4.3) with weightmatrix ��(b̂)�1: Here the subs
ript indi
ates that the statisti
 is obtained from the adjustedauxiliary regression model.In these tests we still do not make adjustments for the fa
t that the b parameters arealso estimated. A possible modi�
ation that adjusts for the estimation of b may be obtainedas follows. De�ne wt = b(L)xt so that wt = �wt�1 + "t. Thus, if we 
ondition on y1; : : : ; yp,a version of the test statisti
 �S&L may be obtained from the auxiliary regression modelŵt = �ŵt�1 + errort, (t = p + 1; : : : ; T ), where ŵt = b̂(L)x̂t. Now, to obtain a modi�
ationwhi
h takes into a

ount estimation errors in b̂, 
onsider the identityŵt = wt + b̂(L)x̂t � b(L)xt= wt + b̂(L)(x̂t � xt) + (b̂(L)� b(L))x̂t � (b̂(L)� b(L))(x̂t � xt); t = p+ 1; : : : ; T:Multiplying both sides of this equation by �(L) = 1 � �L and observing that �(L)wt = "tyieldsŵt = �ŵt�1 + �(L)b̂(L)(x̂t � xt) + pXj=1(b̂j � bj)�(L)x̂t�j + rt; t = p+ 2; : : : ; T;where rt = "t � (b̂(L) � b(L))�(L)(x̂t � xt) is an error term. Sin
e we try to improve thesize performan
e of the test statisti
 �S&L we now assume that the null hypothesis holds andrepla
e �(L) on the r.h.s. by �. Thus, we 
onsider the auxiliary regression modelŵt = �ŵt�1 + b̂(L)(�x̂t ��xt) + pXj=1(b̂j � bj)�x̂t�j + rt; t = p+ 2; : : : ; T:Note that estimation errors in rt are expe
ted to be smaller than those in the se
ond andthird terms on the r.h.s. of this equation be
ause, under H0, they are a�e
ted through theprodu
t (b̂(L)�b(L))(�x̂t��xt) only. To be able to use this auxiliary model we still have todeal with the se
ond term on the r.h.s.. This, however, leads to 
onsiderations very similarto those in the previous modi�
ations and expanding the di�eren
e �x̂t � �xt we get the7



auxiliary modelŵt = �ŵt�1+ [b̂(L)�ft(�̂)0℄�1+ [b̂(L)�Ft(�̂)0℄�2+ pXj=1�j�x̂t�j + ryt ; t = p+2; : : : ; T: (4:4)The modi�ed test statisti
 is obtained as the usual t-statisti
 for the hypothesis � = 1 basedon OLS estimation of this model. It will be denoted by �+adj .Be
ause the a
tual mean of the x̂t may be nonzero, it may be reasonable to in
lude aninter
ept term in the previously 
onsidered auxiliary regressions. For instan
e, instead of(4.3) we may 
onsiderx̂t = � + �x̂t�1 +�ft(�̂)0�1 +�Ft(�̂)0�2 + u+t ; t = 2; : : : ; T: (4:5)The relevant unit root t-statisti
 will be denoted by �int, where the subs
ript indi
ates thatan inter
ept is in
luded in the model. Similarly, if an inter
ept term is added to (4.4), theresulting unit root test statisti
 will be denoted by �+int.Moreover, if we have the a priori restri
tion �1 = 0 the estimation pro
edure in Se
tion 3and the de�nition of x̂t are adjusted a

ordingly. Sin
e in this 
ase the limiting distributionsof the 
orresponding unit root tests 
hange, we augment the test statisti
s with a supers
ript0 to distinguish them from the statisti
s whi
h allow for a linear time trend. In other words,the test statisti
s based on the restri
tion �1 = 0 are denoted as � 0S&L, � 0adj , �+0adj , � 0int and�+0int , respe
tively. The limiting null distributions of all the test statisti
s are given in thefollowing theorem whi
h is partly proven in the Appendix and partly reviews results fromthe related literature.Theorem 1.Suppose that Assumption 1 holds and that the matrix Z(�) is of full 
olumn rank for allT � k + 1 and all � 2 �. Then,� 0S&L; � 0adj ; �+0adj d�! �Z 10 B
(s)2ds��1=2 Z 10 B
(s)dB
(s); (4:6)where B
(s) = R s0 expf
(s� u)gdB0(u) with B0(u) a standard Brownian motion,� 0int; �+0int d�! �Z 10 �B
(s)2ds��1=2 Z 10 �B
(s)dB
(s); (4:7)where �B
(s) is the mean-adjusted version of B
(s),�S&L; �adj; �+adj d�! �Z 10 G
(s; �
)2ds��1=2 Z 10 G
(s; �
)dG
(s; �
); (4:8)8



where G
(s; �
) = B
(s)� sK
(�
) withK
(�
) = h(�
)�1 Z 10 (1� �
s)dB0(s) + h(�
)�1(
� �
) Z 10 (1� �
s)B
(s)dsand h(�
) = 1��
+�
2=3. Here the sto
hasti
 integral is a short-hand notation for R 10 G
(s; �
)dB
(s)�K
(�
) R 10 G
(s; �
)ds. Moreover,�int; �+int d�! �Z 10 �G
(s; �
)2ds��1=2 Z 10 �G
(s; �
)dG
(s; �
); (4:9)where �G
(s; �
) is a mean-adjusted version of G
(s; �
). 2Noti
e that for 
 = 0 the null distributions in (4.6) and (4.7) are 
onventional Di
key-Fuller (DF) distributions for unit root tests in models without deterministi
 terms and withinter
ept, respe
tively. The distribution in (4.8) was given by S&L for the statisti
 �S&L inthe form 12 �Z 10 G
(s; �
)2ds��1=2 (G
(1; �
)2 � 1);where G
(s; �
) = B
(s)� s��B
(1) + 3(1� �) Z 10 sB
(s)ds�with � = (1��
)=h(�
). It 
an be shown that this limiting distribution is equivalent to the onein (4.8) (see the Appendix). We use the latter version now be
ause it fa
ilitates a 
omparisonwith the other limiting distributions given in the theorem.The limiting null distribution of the test statisti
s �int and �+int are again obtained bysetting 
 = 0. It is free of unknown nuisan
e parameters but depends on the quantity �
. Itdi�ers from that of �S&L, �adj and �+adj in that G
(s; �
) is repla
ed by a mean-adjusted version.This di�eren
e is due to the inter
ept term in
luded in the auxiliary regression model (4.5).In this sense, for example �int may be 
alled a \mean-adjusted version" of �adj .To the best of our knowledge the asymptoti
 distribution in (4.9) has not been studiedpreviously so that 
riti
al values and suggestions for appropriate values of �
 are not available.Thus, simulations are required to make the test statisti
s �int and �+int appli
able and to studytheir power properties. Even without su
h simulations it is 
lear, however, that in termsof asymptoti
 lo
al power the test statisti
s in (4.9) are inferior to those in (4.8) be
ausethey are not asymptoti
ally equivalent to �S&L and the asymptoti
 lo
al power of �S&L isindistinguishable from optimal. Analogously, � 0S&L, � 0adj and �+0adj have lo
al power whi
h is9



indistinguishable from optimal and, hen
e, the lo
al power of the 
orresponding � 0int and �+0inttests is inferior (see Elliott et al. (1996)). However, sin
e these results are asymptoti
 andbased on assumptions whi
h may be unrealisti
 in some 
ases (see Elliott et al. (1996, pp.819-820)) the performan
e of the �int and � 0int tests may be preferable in �nite samples. Allthe tests 
onsidered in the previous se
tion are summarized in Table 1 for the 
ase whereno a priori restri
tion is available for �1. We will provide 
riti
al values and small sample
omparisons for the tests in the following se
tions.5 Criti
al ValuesIn order to investigate the null distributions and lo
al power of the test statisti
s we havegenerated time seriesxt = �Txt�1 + "t; t = 1; 2; : : : ; T; x0 = 0; �T = 1 + 
=T; "t � iidN(0; 1): (5:1)Thus, p = 0 so that there is no additional dynami
s. Moreover, there is no deterministi
 partand we 
an use the generated series to investigate the tests with and without the restri
tion�1 = 0. For this purpose we use again ��T = 1 + �
=T and 
onsider the following x̂t series:� x̂(0)t = xt � �̂0 (t = 1; : : : ; T ), where �̂0 is obtained from a regression (1 � ��TL)xt =�0z0t + errort (t = 1; : : : ; T ) withz0t = 8><>: 1; t = 1;1� ��T ; t = 2; : : : ; T;� x̂(1)t = xt � �̂0 � �̂1t (t = 1; : : : ; T ), where �̂0 and �̂1 are obtained from a regression(1� ��TL)xt = �0z0t + �1(t� ��T (t� 1)) + errort (t = 1; : : : ; T ).The series x̂(i)t (i = 0; 1) are used to 
ompute t-statisti
s for the null hypothesis � = 1based on the regression model (4.1) and a 
orresponding version with an inter
ept term.For large sample size T and 
 = 0 (i.e., �T = 1) we get realizations of the null distributions
orresponding to (4.6) - (4.9) in this way.Sin
e we did not know whi
h �
 value results in optimal lo
al power of the tests withasymptoti
 distribution (4.9) we �rst investigated that issue. To this end we generated
riti
al values for a 5% signi�
an
e level based on 10 000 drawings with sample size T = 50010



using 
 = 0 and then we simulated lo
al power 
urves. It turned out that the lo
al powerasso
iated with the distribution in (4.9) is almost invariant to the value of �
. Hen
e, �
 = 0may just as well be used. In other words, the deterministi
 terms may be estimated underthe null rather than lo
al alternatives in order to get optimal lo
al power for �int and �+int.Some quantiles obtained from 10 000 drawings for di�erent sample sizes and di�erentvalues of �
 are given in Table 2. In the se
ond and se
ond last panel of the table quantilesare given for nonzero �
 values. They are seen to vary markedly with the sample size. In fa
t,they roughly de
line in absolute value with growing T . For (4.6) the 
riti
al values 
orrespondto the 
riti
al values of a DF t-test without any deterministi
 
omponents in the DGP forlarge T (see, e.g., Fuller (1976, Table 8.5.2)). For smaller sample sizes, however, they di�ersubstantially from the asymptoti
 quantiles be
ause in generating these null distributionswe use an estimator for �0 whi
h is obtained under lo
al alternatives. In this 
ase we used atransformation based on ��T = 1+ �
=T with �
 = �7 be
ause this value was re
ommended byElliott et al. (1996) for pro
esses without deterministi
 trend 
omponent (�1 = 0). Elliottet al. show that this 
hoi
e results in tests with optimal lo
al power properties. Clearly, ifthe asymptoti
 
riti
al values (see T = 1000 in the table) were used when the a
tual samplesize is T = 50, say, the test would reje
t 
onsiderably more often than indi
ated by thesigni�
an
e level 
hosen. For example, the 
riti
al value for a 5% level test for T = 1000 is�1:96 whi
h roughly 
orresponds to the 10% quantile of the distribution for T = 50. Thus,substantial small sample distortions of the sizes of the tests must be expe
ted given that thepresent results are simulated under ideal 
onditions whi
h are not likely to be satis�ed inpra
ti
e. Hen
e, in pra
ti
e, additional sour
es for distortions may be present. The 
riti
alvalues for �
 = 0 are less sensitive to the sample size whi
h may be useful in applied work.In the third panel of the table, for all sample sizes, the quantiles are seen to be 
lose to the
orresponding quantiles of the DF distributions for data generation pro
esses (DGPs) with
onstant term (see again Table 8.5.2 of Fuller (1976)). Similarly, the simulated quantiles inthe �fth panel ((4.8), �
 = �13:5) are very 
lose to those in Table I.C of Elliott et al. (1996)for all sample sizes given in that table.
11



6 Small Sample ComparisonWe have performed some simulations to investigate the performan
e of the tests in smallsamples based on the following pro
esses:yt = d1t + xt; (1� b1L)(1� �L)xt = "t; t = 1; : : : ; T; (6:1)and (1� b1L)yt = d1t + vt; vt = �vt�1 + "t; t = 1; : : : ; T; (6:2)with "t � iidN(0; 1), � = 1; 0:9; 0:8, T = 100; 200. We also generated 100 presample valueswhi
h were dis
arded. Furthermore, we use T1=T = 0:5, that is, the break point is half waythrough the sample. Preliminary simulations indi
ated that the lo
ation of the break pointis not 
riti
al for the results as long as it is not very 
lose to the beginning or the end ofthe sample. Therefore pla
ing it in the middle does not imply a loss of generality for thesituations we have in mind.The pro
ess (6.1) is in line with the model (2.1) with an abrupt shift at time T1 so thatour tests are appropriate. Be
ause we are interested in the situation where the shift is of amore general unknown form, we also 
onsider the DGP (6.2) whi
h generates a smooth shiftin the deterministi
 term. It is sometimes referred to as an innovational outlier model in therelated literature. For nonzero b1 it is not nested in our general model (2.1) although it isvery similar to (6.1) in many respe
ts. To 
apture the smooth transition from one regime toanother in the DGP (6.2), the tests have to be 
ombined with a smooth shift fun
tion. Inthe simulations we use the shift fun
tions f (1)t (�) = d1t,f (2)t (�) = 8><>: 0; t < T11� expf��(t� T1 + 1)g; t � T1and f (3)t (�) = h d1;t1��L ; d1;t�11��L i0. The last two shift fun
tions allow for smooth deterministi
shifts. In the 
ontext of DGP (6.1) they allow us to explore the sensitivity of the tests tounne
essarily 
exible shifts. Note, however, that f (2)t (�) is 
lose to a shift dummy if � islarge and f (3)t (�) represents a one time shift if � is 
lose to zero and the se
ond 
omponentof 
 is zero. Thus, both fun
tions 
an in prin
iple approximate the a
tual shift in (6.1) well.In addition, they may be appropriate for series generated by DGP (6.2) be
ause they 
an
apture the resulting smooth level shift. 12



All three shift fun
tions 
an be shown to satisfy Assumption 1. For some of the teststhe derivatives of the shift fun
tions are needed. Be
ause f (1)t does not depend on �, thederivative F (1)t is zero. Hen
e, no extra terms �F (1)t (�) appear in the auxiliary regressionsfor �adj, �+adj, �int and �+int if they are used with f (1)t . In the simulations we use a rangeof 0 < � < 2 for f (2)t (�) and 0 < � < 0:8 for f (3)t (�) in estimating the parameters of thedeterministi
 term. Although there is no linear trend term in the DGPs we allow for su
h aterm in 
omputing the test statisti
s whi
h a

ount for deterministi
 linear trends.Relative reje
tion frequen
ies from 1000 repli
ations of the experiment are given in Tables3 and 4. In Table 3, a
tual sizes based on the DGP (6.1) are given for tests for whi
hestimation of the deterministi
 part is done under lo
al alternatives (�
 = �7 for � 0S&L, � 0adj ,�+0adj and �
 = �13:5 for �S&L, �adj, �+adj). Thus, in this 
ase the DGP is in line with theoriginal model for whi
h the tests are derived. The nominal signi�
an
e level is 5% in all
ases. Obviously, all tests reje
t too often in some situations. Note that asymptoti
 
riti
alvalues are used so that some overreje
tion was to be expe
ted on the basis of the dis
ussionrelated to Table 2. For some 
ases unexpe
tedly large reje
tion frequen
ies are observed,however. For example, it is seen in Table 3 that �adj reje
ts in more than 30% of the 
ases ifthe shift fun
tion f (3)t is used in the test. Even if T = 200, the empiri
al size is markedly ina

ess of 10% in this 
ase.� Some tests do reasonably well in spe
i�
 situations. For example,�+0adj and �+adj produ
e reje
tion frequen
ies 
lose to 5% when the 
orre
t shift fun
tion f (1)tis used and the same is true for most of the tests when T = 200. Still, none of the testsperforms satisfa
torily for all shift fun
tions and designs for T = 100. Therefore the overallmessage from Table 3 is 
lear: If the shape of the shift is unknown and, hen
e, a 
exible shiftfun
tion is 
onsidered, using nonzero values of �
, that is, estimating under lo
al alternatives,bears the risk of substantially distorted sizes of the tests in samples of size 100. Thus, thesetests 
annot be re
ommended with the nonzero �
 values 
onsidered here. Consequently, thereis no point in exploring their small sample power for these �
 values. Hen
e, in the followingwe fo
us on the tests with �
 = 0, that is, estimation of the nuisan
e parameters is done underthe null hypothesis.Power results are given in Table 4 for sele
ted tests only. The results show that for �
 = 0�The results are not shown to save spa
e. More detailed results may be found in the dis
ussion paperversion of this paper whi
h is available on request. 13



the test sizes are mu
h better in line with the nominal 5% (see � = 1) at least for thosetests presented in the table. In fa
t, for �
 = 0 some tests tend to be 
onservative in spe
i�
situations and in some 
ases very mu
h so (see, e.g., �int in 
ombination with f (1)t ). Most ofthe tests whi
h are not shown in the table tend to be generally 
onservative and thereforedo not have mu
h small sample power. In Table 4 we only show the results for the originaltests � 0S&L and �S&L and those tests whi
h performed overall best in terms of small samplepower within their respe
tive groups, the groups being � 0 tests (� tests without linear trendterm) and � tests (with linear trend). We are only presenting the best tests in the tables toavoid 
overing up the most important �ndings by the large volume of results for all the testsand simulation designs.In the following, we 
onsider only � 0S&L, � 0adj , �+0adj , �S&L, �int and �+int. In the group of � 0tests whi
h ex
lude the deterministi
 trend term, � 0adj and �+0adj were generally best in termsof power, ea
h having advantages in some situations. In the group of � tests whi
h allow fora linear trend term, �int and �+int dominate the other tests. Again there is no 
lear winneramong the two tests. Whereas �int is preferable in 
onjun
tion with shift fun
tion f (3)t , �+intdominates for f (1)t and f (2)t . Both tests are 
learly superior to �S&L.It is also interesting that the results for the two DGPs are quite similar. This may notbe very surprising given that the two models are in some sense quite 
lose. A model of thetype (6.1) with a deterministi
 linear trend and a general shift fun
tion ft(�) has the formyt = �0 + �1t+ ft(�)0
 + xt. Multiplying this equation by 1� b1L yields(1� b1L)yt = �0 + �1t+ ft(�)0(1� b1)
 +�ft(�)0b1
 + vt; t = 2; : : : ; T;where �0 and �1 are fun
tions of �0, �1 and the 
oeÆ
ient b1. Moreover, vt is as in (6:2).This shows that if we 
ondition on y1 in model (6.1) we obtain a model of the form (6.2)ex
ept that the additional regressor �ft(�) is in
luded and nonlinear parameter restri
tionsare involved. By Assumption 1(b) the variables �ft(�) are \asymptoti
ally negligible,"however.The following further 
on
lusions emerge from Table 4. Ex
luding a linear trend termfrom the models when su
h a restri
tion is 
orre
t results in substantially better power.Furthermore, 
hanging b1 from 0.5 to 0.8 has a substantial e�e
t. It implies a sizable de
linein power in most 
ases. This behaviour of the tests may not be too surprising be
ausefor b1 
lose to 1 the pro
esses have two roots 
lose to unity and therefore are diÆ
ult to14



distinguish from unit root pro
esses. The results in Table 4 also show that there are 
aseswhere the tests are not very reliable if time series with T = 100 observations are under
onsideration. Moreover, the performan
e of the tests tends to be inferior if one of the more
ompli
ated shift fun
tions f (2)t or f (3)t is used. We note, however, that the performan
e ofall the tests improved markedly when T was in
reased from 100 to 200. Even in that 
asethe modi�
ations overall dominate the original test versions � 0S&L and �S&L.7 Con
lusions and ExtensionsStandard unit root tests are known to have redu
ed power if they are applied to time serieswith stru
tural shifts. Therefore we have 
onsidered unit root tests that expli
itly allowfor a level shift of a very general, possibly nonlinear form at a known point in time. Wehave argued that knowing the timing of the shift is quite 
ommon in pra
ti
e whereas thepre
ise form of the shift is usually unknown. Therefore, allowing for general and 
exible shiftfun
tions is important. In this study we have fo
used on models where the shift is regardedas part of the deterministi
 
omponent of the DGP. Building on a proposal by S&L, itis suggested to estimate the deterministi
 part in a �rst step by a GLS pro
edure whi
hmay pro
eed under lo
al alternatives or under the unit root null hypothesis. The originalseries is adjusted in a se
ond step by subtra
ting the estimated deterministi
 part. ThenDF type tests are applied to the adjusted series. A number of modi�
ations of previouslyproposed tests of this sort are 
onsidered. In parti
ular, tests are proposed that take intoa

ount estimation errors in the nuisan
e parameters. Small sample properties of the testsare obtained by simulation.The following general results emerge from our study. Some of the suggested modi�
ationswork 
learly better in small samples than the original tests proposed by S&L in that theyhave superior size and power properties. Substantial size distortions may result in smallsamples if the nuisan
e parameters are estimated under lo
al alternatives. Therefore were
ommend estimating the nuisan
e parameters under the null hypothesis.If a deterministi
 linear time trend 
an be ex
luded on a priori grounds, it is re
ommendedto perform tests in models without a linear trend term be
ause ex
luding it may result insizable power gains. Finally, using test versions with the best power properties is of parti
ular15



importan
e in the present 
ontext be
ause in some situations the tests do not perform verywell for samples of size as large as T = 100. Therefore we re
ommend using the modi�ed testversions � 0adj and �+0adj if no deterministi
 linear trend is present be
ause they have overall bestsize and power properties. As none of these tests dominates the other one in all situationsit may be useful to apply both tests jointly and reje
t the unit root hypothesis if one of thetests reje
ts the null hypothesis. If a linear trend term is needed, the modi�ed test versions�int and �+int are re
ommended based on analogous arguments.We have also explored the possibility of using DGPs of the type (6.2) with potentiallymore short-term dynami
s. As mentioned earlier, they a

ount for shifts whi
h are due toinnovational outliers. Models of this type are preferred in parts of the related literature. Inthe 
ontext of these models unit root tests similar to those of S&L were in fa
t 
onsidered byL�utkepohl, M�uller & Saikkonen (2000). Extensions similar to those of the present study arepossible and are presented in the dis
ussion paper version whi
h is available upon request.In that study we have also performed a detailed investigation of other modi�
ations whi
hdid not perform as well as the tests presented here. Therefore they were deleted from thepresent version of the paper.Although we have fo
used on a single shift in a time series, the tests 
an in prin
iple beextended to allow for more than one shift. Of 
ourse, the small sample behaviour may bedi�erent in this 
ase and needs to be explored in the future if applied resear
hers wish touse the tests in this more general 
ontext. In future resear
h it may also be of interest to
onsider the situation where the timing of the shift is unknown and has to be determinedfrom the data. Moreover, a 
omparison with other unit root tests whi
h allow for stru
turalshifts may be worthwhile. We leave these issues for future investigations.Appendix. Proof of Theorem 1In the proof of Theorem 1 we fo
us on the limiting distributions of test statisti
s for modelswhere �1 is not known to be zero a priori. The 
ase where the restri
tion �1 = 0 is imposedfollows by making straightforward modi�
ations to these proofs. We begin with the resultin (4.8).The limiting distribution of �S&L is derived in S&L. In that arti
le it is given in a slightly16



di�erent form, however. To see that the present form is equivalent it may be worth notingthat (A:21) of S&L may be written alternatively asT�1X̂ 0�1�(b̂)�1(X̂ � X̂�1)= T�1PTt=p[b̂(L)x̂t�1℄[b̂(L)�x̂t℄ + op(1)= T�1PTt=p[b(1)fxt�1 � (�̂1 � �1)(t� 1)g℄[b(L)�xt � b(1)(�̂1 � �1)℄ + op(1)d! �2 R 10 G
(s; �
)dB
(s)� �2K
(�
) R 10 G
(s; �
)ds; (A:1)
where the last relation follows from well-known limit theorems by noting that the limitingdistribution of �̂ given in (3.12) of S&L 
an be written alternatively as !K
(�
), where! = �=b(1),K
(�
) = h(�
)�1 Z 10 (1� �
s)dB0(s) + h(�
)�1(
� �
) Z 10 (1� �
s)B
(s)ds (A:2)and h(�
) = 1� �
+ �
2=3. From the representation in (A:1) the limiting distribution in (4.8)follows as in the proof of the asymptoti
 distribution of the test statisti
 in S&L. Thus, toprove (4.8), it remains to show that �adj and �+adj have the same limiting distribution as �S&L.Using T�1=2x̂[Ts℄ d�! !G
(s; �
) (A:3)(see (A:18) of S&L) and the fa
t that ft(�) satis�es Assumption 1(b) it 
an be seen that




T�1 TXt=1 x̂t�1�ft(�̂)




 � T�1 max1�t�T jx̂tj TXt=1 sup�2� k�ft(�)k = Op �T�1=2�and that a similar result also holds with �ft(�̂) repla
ed by �Ft(�̂). Using these fa
tsand arguments similar to those in the proof of Lemma 1 of S&L it 
an be shown that theappropriately standardized moment matrix in the GLS estimation of (4.3) is asymptoti
allyblo
k diagonal and also positive de�nite. Sin
e it is further straightforward to show thatPTt=1�ft(�̂)uyt = Op(1) and similarly with �ft(�̂) repla
ed by �Ft(�̂) it follows that thelimiting distribution of the GLS estimator of � in (4.3) and hen
e that of its t-ratio is thesame as in the 
ase of the auxiliary regression model (4.1). We have thus shown that (4.8)holds for the test statisti
 �adj .As for test statisti
 �+adj, note �rst that the arguments used for �adj above and those inthe proof of Theorem 1 of S&L show that the appropriately standardized moment matrixin the auxiliary regression model used to obtain the test statisti
 �+adj is asymptoti
ally17



positive de�nite and also blo
k diagonal between ŵt�1 and the other regressors. Derivingthe expression of the error term in this auxiliary regression model it is further straightforwardto show that �+adj has the same limiting distribution as �S&L and �adj . Thus, (4.8) is proven.Sin
e the test statisti
s �int and �+int are obtained by augmenting the auxiliary regressionmodels used to obtain test statisti
s �adj and �+adj , respe
tively, by an inter
ept term, (4.9)
an be proven by extending the arguments used above in a standard manner.Referen
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Table 2. Simulated Quantiles of Null Distributions of Test Statisti
s Based on 10 000Repli
ationsDistribution T �0:01 �0:025 �0:05 �0:150 -2.65 -2.26 -1.97 -1.63100 -2.61 -2.25 -1.96 -1.62(4.6) 200 -2.64 -2.26 -1.94 -1.62(�
 = 0) 500 -2.60 -2.25 -1.95 -1.621000 -2.55 -2.24 -1.96 -1.6150 -2.93 -2.56 -2.28 -1.98100 -2.73 -2.41 -2.15 -1.83(4.6) 200 -2.68 -2.34 -2.05 -1.73(�
 = �7) 500 -2.64 -2.30 -2.00 -1.671000 -2.56 -2.22 -1.96 -1.6350 -3.64 -3.28 -2.99 -2.67100 -3.58 -3.22 -2.94 -2.62(4.7) 200 -3.58 -3.22 -2.93 -2.62(�
 = 0) 500 -3.47 -3.17 -2.90 -2.621000 -3.48 -3.15 -2.88 -2.5850 -3.34 -2.96 -2.65 -2.37100 -3.23 -2.90 -2.61 -2.33(4.8) 200 -3.17 -2.91 -2.64 -2.33(�
 = 0) 500 -3.22 -2.92 -2.64 -2.351000 -3.18 -2.86 -2.62 -2.3350 -3.83 -3.48 -3.21 -2.91100 -3.62 -3.30 -3.03 -2.74(4.8) 200 -3.51 -3.24 -2.96 -2.66(�
 = �13:5) 500 -3.43 -3.09 -2.84 -2.571000 -3.40 -3.11 -2.85 -2.5750 -3.81 -3.45 -3.15 -2.86100 -3.73 -3.38 -3.11 -2.80(4.9) 200 -3.64 -3.32 -3.06 -2.77(�
 = 0) 500 -3.62 -3.32 -3.08 -2.791000 -3.55 -3.28 -3.03 -2.76
20



Table 3. Empiri
al Sizes of Tests Based on DGP (6.1), T = 100, T1 = 50, �
 = �7=� 13:5,Nominal Signi�
an
e Level 5%Shift Testfun
tion b1 � 0S&L � 0adj �+0adj �S&L �adj �+adjf (1)t 0.5 0.077 0.076 0.069 0.085 0.087 0.0710.8 0.164 0.165 0.064 0.072 0.073 0.063f (2)t 0.5 0.186 0.223 0.276 0.163 0.252 0.2760.8 0.227 0.301 0.405 0.089 0.155 0.197f (3)t 0.5 0.193 0.269 0.224 0.158 0.360 0.2620.8 0.206 0.533 0.227 0.080 0.501 0.160
Table 4. Relative Reje
tion Frequen
ies of Tests, T = 100, T1 = 50, �
 = 0, NominalSigni�
an
e Level 5%Shift DGP (6.1), b1 = 0:5 DGP (6.1), b1 = 0:8 DGP (6.2), b1 = 0:5 DGP (6.2), b1 = 0:8fun
tion Test � = 1 0.9 0.8 � = 1 0.9 0.8 � = 1 0.9 0.8 � = 1 0.9 0.8f (1)t �0S&L 0.039 0.289 0.533 0.016 0.156 0.314 0.039 0.284 0.524 0.020 0.138 0.275�0adj 0.039 0.291 0.535 0.016 0.156 0.315 0.040 0.285 0.527 0.020 0.140 0.275�+0adj 0.063 0.353 0.590 0.050 0.292 0.436 0.061 0.343 0.575 0.053 0.287 0.382�S&L 0.010 0.054 0.190 0.000 0.006 0.030 0.009 0.050 0.174 0.000 0.005 0.025�int 0.020 0.090 0.302 0.000 0.006 0.034 0.022 0.091 0.305 0.001 0.004 0.029�+int 0.080 0.233 0.526 0.065 0.167 0.286 0.075 0.216 0.499 0.064 0.149 0.262f (2)t �0S&L 0.043 0.235 0.423 0.023 0.123 0.243 0.041 0.231 0.415 0.021 0.129 0.248�0adj 0.064 0.270 0.454 0.045 0.155 0.288 0.065 0.257 0.433 0.037 0.141 0.276�+0adj 0.048 0.254 0.445 0.026 0.142 0.272 0.049 0.246 0.426 0.025 0.140 0.271�S&L 0.014 0.056 0.179 0.000 0.004 0.030 0.010 0.051 0.177 0.000 0.006 0.028�int 0.048 0.146 0.349 0.021 0.033 0.089 0.045 0.131 0.336 0.019 0.029 0.063�+int 0.052 0.167 0.367 0.029 0.045 0.115 0.053 0.151 0.348 0.030 0.039 0.080f (3)t �0S&L 0.047 0.215 0.378 0.020 0.120 0.220 0.044 0.219 0.384 0.022 0.113 0.217�0adj 0.064 0.266 0.417 0.079 0.223 0.302 0.060 0.268 0.426 0.082 0.217 0.293�+0adj 0.059 0.249 0.404 0.037 0.144 0.249 0.056 0.252 0.418 0.036 0.140 0.243�S&L 0.011 0.044 0.173 0.000 0.005 0.024 0.014 0.046 0.165 0.000 0.005 0.022�int 0.060 0.141 0.322 0.074 0.086 0.133 0.062 0.146 0.325 0.072 0.091 0.134�+int 0.048 0.120 0.314 0.016 0.028 0.064 0.052 0.129 0.317 0.014 0.029 0.068
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