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1 IntrodutionModeling strutural shifts in time series has beome an issue of entral importane due tothe massive interventions that our regularly in eonomi systems. In this ontext testingfor unit roots in the presene of strutural shifts has attrated onsiderable attention inthe reent literature (see, e.g., Perron (1989, 1990), Perron & Vogelsang (1992), Banerjee,Lumsdaine & Stok (1992), Zivot & Andrews (1992), Amsler & Lee (1995), Leybourne,Newbold & Vougas (1998), Monta~n�es & Reyes (1998)). In some of the literature the timewhere the strutural hange ours is assumed to be known and in other artiles it is assumedunknown. In this study we assume that the break point is known. In pratie, suh anassumption is often reasonable beause the timing of many interventions is known when theanalysis is performed. For example, on January 1, 1999, a ommon urreny was introduedin a number of European ountries or the German uni�ation is known to have ourred in1990. These events have had an impat on some eonomi time series.We will follow Saikkonen & L�utkepohl (1999) (heneforth S&L) and onsider modelswith very general nonlinear deterministi shift funtions. These authors propose tests forunit roots based on the idea that the deterministi part is estimated in a �rst step and issubtrated from the series. Standard unit root tests are then applied to the adjusted series.The purpose of this study is to propose modi�ations of these tests whih are expeted towork well in small sample situations and we will perform Monte Carlo omparisons of theproperties of the tests. The results lead to useful reommendations for applied work.The struture of the study is as follows. The general model is presented in Se. 2together with the assumptions needed for asymptoti derivations. Estimation of the nuisaneparameters is disussed in Se. 3 and a range of unit root tests is presented in Se. 4 inludingthe asymptoti distributions of the test statistis. Sine some of the tests have distributionsunder the null hypothesis whih are not tabulated, simulated ritial values are presentedin Se. 5. A small sample omparison of the tests based on a Monte Carlo experiment isreported in Se. 6 and onlusions are given in Se. 7. The proof of a theorem is providedin the Appendix.In the following the lag and di�erening operators are denoted by L and �, respetively.The symbol d! is used to signify onvergene in distribution. The minimal eigenvalue of amatrix A is denoted by �min(A) and k � k is the Eulidean norm.1



2 The ModelWe onsider the following general model for a time series variable yt with a possible unitroot and a level shift from S&L:yt = �0 + �1t + ft(�)0 + xt; t = 1; 2; : : : ; (2:1a)where the salars �0 and �1, the (m � 1) vetor � and the (k � 1) vetor  are unknownparameters and ft(�) is a (k� 1) vetor of deterministi sequenes depending on the param-eters �. The funtional form of ft(�) is assumed to be known. If the sequene represents alevel shift the timing of the shift is also known. For example, ft(�) may be thought of as ashift dummy variable whih has the value zero before some given break period T1 and thevalue one from then onwards. In that ase, the break date T1 is assumed to be known. Muhmore general situations are overed by our framework, however. Examples are onsidered inSe. 6.The quantity xt represents an unobservable stohasti error term whih is assumed tohave a �nite order AR representation,b(L)(1� �L)xt = "t; (2:1b)where "t � iid(0; �2) and b(L) = 1�b1L�� � ��bpLp is a polynomial in the lag operator withroots bounded away from the unit irle. More preisely, the parameter spae is assumed tobe suh that for some � > 0, b(L) 6= 0 for jLj � 1 + �. This restrition will not be taken intoaount in the estimation proedure, however. Obviously, if � = 1 and, hene, the DGP ofxt has a unit root, then the same is true for yt. The initial values of xt (t = �p; : : : ; 0) areassumed to be from some �xed distribution whih does not depend on the sample size. Amore detailed disussion of the impliations of alternative assumptions regarding the initialvalues may be found in Elliott, Rothenberg & Stok (1996).The parameters �0, �1 and  in our model are supposed to be unrestrited. Conditionsrequired for the parameters � and the sequene ft(�) are olleted in the following set ofassumptions whih are partly taken from S&L.Assumption 1(a) The parameter spae of �, denoted by �, is a ompat subset of the m-dimensionalEulidean spae. 2



(b) For eah t = 1; 2; : : :, the funtion ft(�) is ontinuously di�erentiable in an open setontaining the parameter spae � and, denoting by Ft(�) the vetor of all partialderivatives of ft(�),supT TXt=1 sup�2� k�ft(�)k <1 and supT TXt=1 sup�2� k�Ft(�)k <1where f0(�) = 0 and F0(�) = 0.() f1(�) = � � � = fp+1(�) = 0 for all � 2 �. Moreover, de�ning Gt(�) = [ft(�)0 : Ft(�)0℄0for t = 1; 2; : : : ; there exists a real number � > 0 and an integer T� suh that, for allT � T�, inf�2��min ( TXt=2�Gt(�)�Gt(�)0) � �: 2As mentioned earlier, some of these onditions are just repeated from S&L. The extensionsare mostly onditions for the partial derivatives of ft(�). They are used here to aommodatethe modi�ations of the estimation proedures and unit root tests onsidered in the followingsetions. A ompat parameter spae � and the ontinuity requirement in Assumption 1(b)are standard assumptions in nonlinear estimation and testing problems. Furthermore, thesummability onditions in Assumption 1(b) are needed for the funtion ft(�) and its partialderivatives Ft(�). They hold in the appliations we have in mind, if the parameter spae �is de�ned in a suitable way. Therefore the ondition is not ritial for our purposes. Theonditions in Assumption 1(b) and () are formulated for di�erenes of the sequenes ft(�)and Gt(�) beause our aim is to study unit root tests. Hene, estimation of the parameters�; � and  is onsidered under the null hypothesis that the error proess ontains a unit root.EÆient estimation then requires that the variables are di�erened.To understand Assumption 1(), assume �rst that the value of the parameter � is knownand that the parameters � and  are estimated by applying ordinary least squares (OLS)to the di�erened models. Then these assumptions guarantee linear independene of theregressors when T is large enough. There is of ourse no need to inlude the in�mum inthe ondition of Assumption 1() if � is known. It is needed, however, when the value of �is unknown and has to be estimated. We have to impose an assumption whih guarantees3



that the above mentioned linear independene of regressors holds whatever the value of �beause onsistent estimation of � is not possible. This is the purpose of Assumption 1().The ondition f1(�) = � � � = fp+1(�) = 0 is not restritive for the situations and funtions wehave in mind and whih are onsidered later. This ondition together with the last onditionin Assumption 1() implies thatinf�2��min8<: TXt=p+2[b(L)�Gt(�)℄[b(L)�Gt(�)0℄9=; � �for T � T� whih is needed for some of the estimators used in the following to be well-de�ned.Consistent estimation of � and  is not possible beause, by Assumption 1(b), the varia-tion of (the di�erened) regressors does not inrease as T !1. The present formulation ofAssumption 1(b) also applies when the sequene ft(�) depends on T whih may be onve-nient oasionally. This feature is not made expliit in stating the assumption beause it isnot needed in the present appliation of Assumption 1 although it may sometimes be usefulto allow the shift funtion to depend on T .In the terminology of Elliott, Rothenberg & Stok (1996, Condition B), our assumptionsimply that, for eah value of �, the sequene ft(�) de�nes a slowly evolving trend, althoughour onditions are stronger than those of Elliott et al.. No attempt has been made here toweaken Assumption 1 beause it is onvenient for our purposes and applies to the models ofinterest in the following. More disussion of Assumption 1 is given in S&L.We ompare unit root tests within the model (2.1). More preisely, we onsider tests ofthe pair of hypotheses H0 : � = 1 vs. H1 : j�j < 1. The idea is to estimate the parametersrelated to the deterministi part �rst and then remove the deterministi part and performa test on the adjusted series. In the next setion we therefore disuss estimation of thenuisane parameters.3 Estimators of Nuisane ParametersSuppose that the proess xt spei�ed in (2:1b) is near integrated so that� = �T = 1 + T ; (3:1)where  � 0 is a �xed real number. The estimation proedure proposed by S&L employs anempirial ounterpart of the parameter . This means that we shall replae  by a hosen4



value � and pretend that � =  although we do not assume that this presumption is atuallytrue. The idea is to apply a generalized least squares (GLS) proedure by �rst transformingthe variables in (2.1) by the �lter 1� ��TL where ��T = 1 + �T and then applying GLS to thetransformed model. The hoie of � will be disussed later.For onveniene we will use matrix notation and de�neY = [y1 : (y2 � ��Ty1) : � � � : (yT � ��T yT�1)℄0; (3:2a)Z1 = 264 1 1� ��T � � � 1� ��T1 (2� ��T ) � � � (T � ��T (T � 1)) 3750 (3:2b)and Z2(�) = [f1(�) : f2(�)� ��T f1(�) : � � � : fT (�)� ��T fT�1(�)℄0: (3:2)Here, for simpliity, the notation ignores the dependene of the quantities on the hosenvalue �. Using this notation, the transformed form of (2.1) an be written asY = Z(�)�+ U; (3:3)where Z(�) = [Z1 : Z2(�)℄, � = [�0 : �1 : 0℄0 and U = [u1 : � � � : uT ℄0 is an error term suhthat ut = xt � ��Txt�1 = b(L)�1"t + T�1( � �)xt�1: Our GLS estimation is based on theovariane matrix resulting from b(L)�1"t, denoted by �2�(b), where b = [b1 : � � � : bp℄0. TheGLS estimators are thus obtained by minimizing the generalized sum of squares funtionQT (�; �; b) = (Y � Z(�)�)0�(b)�1(Y � Z(�)�): (3:4)They are denoted as �̂, �̂ and b̂. Assumption 1 ensures that these estimators are well-de�nedfor T large enough (see S&L for details).4 The TestsOne the nuisane parameters in (2.1) have been estimated one an form the residual seriesx̂t = yt � �̂0 � �̂1t� ft(�̂)0̂ (t = 1; : : : ; T ) and use it to obtain unit root tests. S&L proposeto onsider the auxiliary regression modelx̂t = �x̂t�1 + u�t ; t = 2; : : : ; T: (4:1)5



In the previous setion it was seen that if x̂t is replaed by xt, the ovariane matrix of theerror term in (4.1) is �2��(b), where ��(b) is a ((T � 1) � (T � 1)) analog of the matrix�(b). Beause the parameter vetor b is estimated to obtain x̂t it seems reasonable to usethis estimator also here and base a unit root test on (4.1) with � estimated by feasible GLSwith weight matrix ��(b̂)�1. We denote the usual t-statisti for testing the null hypothesis� = 1 assoiated with the feasible GLS estimator of � by �S&L beause it is the statistionsidered by S&L exept that these authors use residuals x̂t for t = 1; : : : ; T in (4.1) withinitial value x̂0 = 0.The error term in the auxiliary regression model (4.1) also ontains estimation errorsaused by replaing the nuisane parameters �0, �1, � and  by their GLS estimators. Be-ing able to allow for the e�et of these estimation errors might improve the �nite sampleproperties of the above test and partiularly the performane of the asymptoti size approx-imation. To investigate this issue, onsider the speial ase where the shift funtion is astep dummy variable ft(�) = d1t whih is zero up to period T1 � 1 and one from periodT1 onwards. Suppose that the null hypothesis holds. Then it is straightforward to hekthat u�t = �xt � (�̂1 � �1) � �d1t (̂ � ) (t = 2; : : : ; T ). Thus, augmenting the auxiliaryregression model (4.1) by an interept term and the impulse dummy �d1t would result inan error term whih, under the null hypothesis, would not depend on the errors aused byestimating the nuisane parameters �1 and . It is fairly obvious that the inlusion of theimpulse dummy �d1t has no e�et on the asymptoti properties of the GLS estimator of theparameter � and, onsequently, on the limiting distribution of the resulting test. Below wewill see that the inlusion of an interept term results in a di�erent limiting distribution.Therefore, we will onsider tests with and without interept in the following.If the step dummy d1t is replaed by the general funtion ft(�) the above modi�ationbeomes slightly more ompliated. We then haveu�t = �xt � (�̂1 � �1)��ft(�̂)0̂ +�ft(�)0= �xt � (�̂1 � �1)��ft(�̂)0(̂ � )� ��ft(�̂)��ft(�)�0 ; t = 2; : : : ; T:(4:2)In the last expression the third term an be handled in the same way as in the previouslyonsidered ase of a step dummy but the fourth term requires additional onsiderations. Afairly obvious approah is to assume that the funtion ft(�) satis�es Assumption 1(b) and6



use the Taylor series approximation �ft(�̂) � �ft(�) � � ��ft(�̂)=��0� (�̂ � �). Instead of(4.1) we then onsider the auxiliary regression modelx̂t = �x̂t�1 +�ft(�̂)0�1 +�Ft(�̂)0�2 + uyt ; t = 2; : : : ; T; (4:3)where Ft(�̂) is a (mk � 1) vetor ontaining the partial derivatives in �ft(�̂)=��. Let �adj bethe usual `t-statisti' based on the GLS estimation of the parameters in (4.3) with weightmatrix ��(b̂)�1: Here the subsript indiates that the statisti is obtained from the adjustedauxiliary regression model.In these tests we still do not make adjustments for the fat that the b parameters arealso estimated. A possible modi�ation that adjusts for the estimation of b may be obtainedas follows. De�ne wt = b(L)xt so that wt = �wt�1 + "t. Thus, if we ondition on y1; : : : ; yp,a version of the test statisti �S&L may be obtained from the auxiliary regression modelŵt = �ŵt�1 + errort, (t = p + 1; : : : ; T ), where ŵt = b̂(L)x̂t. Now, to obtain a modi�ationwhih takes into aount estimation errors in b̂, onsider the identityŵt = wt + b̂(L)x̂t � b(L)xt= wt + b̂(L)(x̂t � xt) + (b̂(L)� b(L))x̂t � (b̂(L)� b(L))(x̂t � xt); t = p+ 1; : : : ; T:Multiplying both sides of this equation by �(L) = 1 � �L and observing that �(L)wt = "tyieldsŵt = �ŵt�1 + �(L)b̂(L)(x̂t � xt) + pXj=1(b̂j � bj)�(L)x̂t�j + rt; t = p+ 2; : : : ; T;where rt = "t � (b̂(L) � b(L))�(L)(x̂t � xt) is an error term. Sine we try to improve thesize performane of the test statisti �S&L we now assume that the null hypothesis holds andreplae �(L) on the r.h.s. by �. Thus, we onsider the auxiliary regression modelŵt = �ŵt�1 + b̂(L)(�x̂t ��xt) + pXj=1(b̂j � bj)�x̂t�j + rt; t = p+ 2; : : : ; T:Note that estimation errors in rt are expeted to be smaller than those in the seond andthird terms on the r.h.s. of this equation beause, under H0, they are a�eted through theprodut (b̂(L)�b(L))(�x̂t��xt) only. To be able to use this auxiliary model we still have todeal with the seond term on the r.h.s.. This, however, leads to onsiderations very similarto those in the previous modi�ations and expanding the di�erene �x̂t � �xt we get the7



auxiliary modelŵt = �ŵt�1+ [b̂(L)�ft(�̂)0℄�1+ [b̂(L)�Ft(�̂)0℄�2+ pXj=1�j�x̂t�j + ryt ; t = p+2; : : : ; T: (4:4)The modi�ed test statisti is obtained as the usual t-statisti for the hypothesis � = 1 basedon OLS estimation of this model. It will be denoted by �+adj .Beause the atual mean of the x̂t may be nonzero, it may be reasonable to inlude aninterept term in the previously onsidered auxiliary regressions. For instane, instead of(4.3) we may onsiderx̂t = � + �x̂t�1 +�ft(�̂)0�1 +�Ft(�̂)0�2 + u+t ; t = 2; : : : ; T: (4:5)The relevant unit root t-statisti will be denoted by �int, where the subsript indiates thatan interept is inluded in the model. Similarly, if an interept term is added to (4.4), theresulting unit root test statisti will be denoted by �+int.Moreover, if we have the a priori restrition �1 = 0 the estimation proedure in Setion 3and the de�nition of x̂t are adjusted aordingly. Sine in this ase the limiting distributionsof the orresponding unit root tests hange, we augment the test statistis with a supersript0 to distinguish them from the statistis whih allow for a linear time trend. In other words,the test statistis based on the restrition �1 = 0 are denoted as � 0S&L, � 0adj , �+0adj , � 0int and�+0int , respetively. The limiting null distributions of all the test statistis are given in thefollowing theorem whih is partly proven in the Appendix and partly reviews results fromthe related literature.Theorem 1.Suppose that Assumption 1 holds and that the matrix Z(�) is of full olumn rank for allT � k + 1 and all � 2 �. Then,� 0S&L; � 0adj ; �+0adj d�! �Z 10 B(s)2ds��1=2 Z 10 B(s)dB(s); (4:6)where B(s) = R s0 expf(s� u)gdB0(u) with B0(u) a standard Brownian motion,� 0int; �+0int d�! �Z 10 �B(s)2ds��1=2 Z 10 �B(s)dB(s); (4:7)where �B(s) is the mean-adjusted version of B(s),�S&L; �adj; �+adj d�! �Z 10 G(s; �)2ds��1=2 Z 10 G(s; �)dG(s; �); (4:8)8



where G(s; �) = B(s)� sK(�) withK(�) = h(�)�1 Z 10 (1� �s)dB0(s) + h(�)�1(� �) Z 10 (1� �s)B(s)dsand h(�) = 1��+�2=3. Here the stohasti integral is a short-hand notation for R 10 G(s; �)dB(s)�K(�) R 10 G(s; �)ds. Moreover,�int; �+int d�! �Z 10 �G(s; �)2ds��1=2 Z 10 �G(s; �)dG(s; �); (4:9)where �G(s; �) is a mean-adjusted version of G(s; �). 2Notie that for  = 0 the null distributions in (4.6) and (4.7) are onventional Dikey-Fuller (DF) distributions for unit root tests in models without deterministi terms and withinterept, respetively. The distribution in (4.8) was given by S&L for the statisti �S&L inthe form 12 �Z 10 G(s; �)2ds��1=2 (G(1; �)2 � 1);where G(s; �) = B(s)� s��B(1) + 3(1� �) Z 10 sB(s)ds�with � = (1��)=h(�). It an be shown that this limiting distribution is equivalent to the onein (4.8) (see the Appendix). We use the latter version now beause it failitates a omparisonwith the other limiting distributions given in the theorem.The limiting null distribution of the test statistis �int and �+int are again obtained bysetting  = 0. It is free of unknown nuisane parameters but depends on the quantity �. Itdi�ers from that of �S&L, �adj and �+adj in that G(s; �) is replaed by a mean-adjusted version.This di�erene is due to the interept term inluded in the auxiliary regression model (4.5).In this sense, for example �int may be alled a \mean-adjusted version" of �adj .To the best of our knowledge the asymptoti distribution in (4.9) has not been studiedpreviously so that ritial values and suggestions for appropriate values of � are not available.Thus, simulations are required to make the test statistis �int and �+int appliable and to studytheir power properties. Even without suh simulations it is lear, however, that in termsof asymptoti loal power the test statistis in (4.9) are inferior to those in (4.8) beausethey are not asymptotially equivalent to �S&L and the asymptoti loal power of �S&L isindistinguishable from optimal. Analogously, � 0S&L, � 0adj and �+0adj have loal power whih is9



indistinguishable from optimal and, hene, the loal power of the orresponding � 0int and �+0inttests is inferior (see Elliott et al. (1996)). However, sine these results are asymptoti andbased on assumptions whih may be unrealisti in some ases (see Elliott et al. (1996, pp.819-820)) the performane of the �int and � 0int tests may be preferable in �nite samples. Allthe tests onsidered in the previous setion are summarized in Table 1 for the ase whereno a priori restrition is available for �1. We will provide ritial values and small sampleomparisons for the tests in the following setions.5 Critial ValuesIn order to investigate the null distributions and loal power of the test statistis we havegenerated time seriesxt = �Txt�1 + "t; t = 1; 2; : : : ; T; x0 = 0; �T = 1 + =T; "t � iidN(0; 1): (5:1)Thus, p = 0 so that there is no additional dynamis. Moreover, there is no deterministi partand we an use the generated series to investigate the tests with and without the restrition�1 = 0. For this purpose we use again ��T = 1 + �=T and onsider the following x̂t series:� x̂(0)t = xt � �̂0 (t = 1; : : : ; T ), where �̂0 is obtained from a regression (1 � ��TL)xt =�0z0t + errort (t = 1; : : : ; T ) withz0t = 8><>: 1; t = 1;1� ��T ; t = 2; : : : ; T;� x̂(1)t = xt � �̂0 � �̂1t (t = 1; : : : ; T ), where �̂0 and �̂1 are obtained from a regression(1� ��TL)xt = �0z0t + �1(t� ��T (t� 1)) + errort (t = 1; : : : ; T ).The series x̂(i)t (i = 0; 1) are used to ompute t-statistis for the null hypothesis � = 1based on the regression model (4.1) and a orresponding version with an interept term.For large sample size T and  = 0 (i.e., �T = 1) we get realizations of the null distributionsorresponding to (4.6) - (4.9) in this way.Sine we did not know whih � value results in optimal loal power of the tests withasymptoti distribution (4.9) we �rst investigated that issue. To this end we generatedritial values for a 5% signi�ane level based on 10 000 drawings with sample size T = 50010



using  = 0 and then we simulated loal power urves. It turned out that the loal powerassoiated with the distribution in (4.9) is almost invariant to the value of �. Hene, � = 0may just as well be used. In other words, the deterministi terms may be estimated underthe null rather than loal alternatives in order to get optimal loal power for �int and �+int.Some quantiles obtained from 10 000 drawings for di�erent sample sizes and di�erentvalues of � are given in Table 2. In the seond and seond last panel of the table quantilesare given for nonzero � values. They are seen to vary markedly with the sample size. In fat,they roughly deline in absolute value with growing T . For (4.6) the ritial values orrespondto the ritial values of a DF t-test without any deterministi omponents in the DGP forlarge T (see, e.g., Fuller (1976, Table 8.5.2)). For smaller sample sizes, however, they di�ersubstantially from the asymptoti quantiles beause in generating these null distributionswe use an estimator for �0 whih is obtained under loal alternatives. In this ase we used atransformation based on ��T = 1+ �=T with � = �7 beause this value was reommended byElliott et al. (1996) for proesses without deterministi trend omponent (�1 = 0). Elliottet al. show that this hoie results in tests with optimal loal power properties. Clearly, ifthe asymptoti ritial values (see T = 1000 in the table) were used when the atual samplesize is T = 50, say, the test would rejet onsiderably more often than indiated by thesigni�ane level hosen. For example, the ritial value for a 5% level test for T = 1000 is�1:96 whih roughly orresponds to the 10% quantile of the distribution for T = 50. Thus,substantial small sample distortions of the sizes of the tests must be expeted given that thepresent results are simulated under ideal onditions whih are not likely to be satis�ed inpratie. Hene, in pratie, additional soures for distortions may be present. The ritialvalues for � = 0 are less sensitive to the sample size whih may be useful in applied work.In the third panel of the table, for all sample sizes, the quantiles are seen to be lose to theorresponding quantiles of the DF distributions for data generation proesses (DGPs) withonstant term (see again Table 8.5.2 of Fuller (1976)). Similarly, the simulated quantiles inthe �fth panel ((4.8), � = �13:5) are very lose to those in Table I.C of Elliott et al. (1996)for all sample sizes given in that table.
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6 Small Sample ComparisonWe have performed some simulations to investigate the performane of the tests in smallsamples based on the following proesses:yt = d1t + xt; (1� b1L)(1� �L)xt = "t; t = 1; : : : ; T; (6:1)and (1� b1L)yt = d1t + vt; vt = �vt�1 + "t; t = 1; : : : ; T; (6:2)with "t � iidN(0; 1), � = 1; 0:9; 0:8, T = 100; 200. We also generated 100 presample valueswhih were disarded. Furthermore, we use T1=T = 0:5, that is, the break point is half waythrough the sample. Preliminary simulations indiated that the loation of the break pointis not ritial for the results as long as it is not very lose to the beginning or the end ofthe sample. Therefore plaing it in the middle does not imply a loss of generality for thesituations we have in mind.The proess (6.1) is in line with the model (2.1) with an abrupt shift at time T1 so thatour tests are appropriate. Beause we are interested in the situation where the shift is of amore general unknown form, we also onsider the DGP (6.2) whih generates a smooth shiftin the deterministi term. It is sometimes referred to as an innovational outlier model in therelated literature. For nonzero b1 it is not nested in our general model (2.1) although it isvery similar to (6.1) in many respets. To apture the smooth transition from one regime toanother in the DGP (6.2), the tests have to be ombined with a smooth shift funtion. Inthe simulations we use the shift funtions f (1)t (�) = d1t,f (2)t (�) = 8><>: 0; t < T11� expf��(t� T1 + 1)g; t � T1and f (3)t (�) = h d1;t1��L ; d1;t�11��L i0. The last two shift funtions allow for smooth deterministishifts. In the ontext of DGP (6.1) they allow us to explore the sensitivity of the tests tounneessarily exible shifts. Note, however, that f (2)t (�) is lose to a shift dummy if � islarge and f (3)t (�) represents a one time shift if � is lose to zero and the seond omponentof  is zero. Thus, both funtions an in priniple approximate the atual shift in (6.1) well.In addition, they may be appropriate for series generated by DGP (6.2) beause they anapture the resulting smooth level shift. 12



All three shift funtions an be shown to satisfy Assumption 1. For some of the teststhe derivatives of the shift funtions are needed. Beause f (1)t does not depend on �, thederivative F (1)t is zero. Hene, no extra terms �F (1)t (�) appear in the auxiliary regressionsfor �adj, �+adj, �int and �+int if they are used with f (1)t . In the simulations we use a rangeof 0 < � < 2 for f (2)t (�) and 0 < � < 0:8 for f (3)t (�) in estimating the parameters of thedeterministi term. Although there is no linear trend term in the DGPs we allow for suh aterm in omputing the test statistis whih aount for deterministi linear trends.Relative rejetion frequenies from 1000 repliations of the experiment are given in Tables3 and 4. In Table 3, atual sizes based on the DGP (6.1) are given for tests for whihestimation of the deterministi part is done under loal alternatives (� = �7 for � 0S&L, � 0adj ,�+0adj and � = �13:5 for �S&L, �adj, �+adj). Thus, in this ase the DGP is in line with theoriginal model for whih the tests are derived. The nominal signi�ane level is 5% in allases. Obviously, all tests rejet too often in some situations. Note that asymptoti ritialvalues are used so that some overrejetion was to be expeted on the basis of the disussionrelated to Table 2. For some ases unexpetedly large rejetion frequenies are observed,however. For example, it is seen in Table 3 that �adj rejets in more than 30% of the ases ifthe shift funtion f (3)t is used in the test. Even if T = 200, the empirial size is markedly inaess of 10% in this ase.� Some tests do reasonably well in spei� situations. For example,�+0adj and �+adj produe rejetion frequenies lose to 5% when the orret shift funtion f (1)tis used and the same is true for most of the tests when T = 200. Still, none of the testsperforms satisfatorily for all shift funtions and designs for T = 100. Therefore the overallmessage from Table 3 is lear: If the shape of the shift is unknown and, hene, a exible shiftfuntion is onsidered, using nonzero values of �, that is, estimating under loal alternatives,bears the risk of substantially distorted sizes of the tests in samples of size 100. Thus, thesetests annot be reommended with the nonzero � values onsidered here. Consequently, thereis no point in exploring their small sample power for these � values. Hene, in the followingwe fous on the tests with � = 0, that is, estimation of the nuisane parameters is done underthe null hypothesis.Power results are given in Table 4 for seleted tests only. The results show that for � = 0�The results are not shown to save spae. More detailed results may be found in the disussion paperversion of this paper whih is available on request. 13



the test sizes are muh better in line with the nominal 5% (see � = 1) at least for thosetests presented in the table. In fat, for � = 0 some tests tend to be onservative in spei�situations and in some ases very muh so (see, e.g., �int in ombination with f (1)t ). Most ofthe tests whih are not shown in the table tend to be generally onservative and thereforedo not have muh small sample power. In Table 4 we only show the results for the originaltests � 0S&L and �S&L and those tests whih performed overall best in terms of small samplepower within their respetive groups, the groups being � 0 tests (� tests without linear trendterm) and � tests (with linear trend). We are only presenting the best tests in the tables toavoid overing up the most important �ndings by the large volume of results for all the testsand simulation designs.In the following, we onsider only � 0S&L, � 0adj , �+0adj , �S&L, �int and �+int. In the group of � 0tests whih exlude the deterministi trend term, � 0adj and �+0adj were generally best in termsof power, eah having advantages in some situations. In the group of � tests whih allow fora linear trend term, �int and �+int dominate the other tests. Again there is no lear winneramong the two tests. Whereas �int is preferable in onjuntion with shift funtion f (3)t , �+intdominates for f (1)t and f (2)t . Both tests are learly superior to �S&L.It is also interesting that the results for the two DGPs are quite similar. This may notbe very surprising given that the two models are in some sense quite lose. A model of thetype (6.1) with a deterministi linear trend and a general shift funtion ft(�) has the formyt = �0 + �1t+ ft(�)0 + xt. Multiplying this equation by 1� b1L yields(1� b1L)yt = �0 + �1t+ ft(�)0(1� b1) +�ft(�)0b1 + vt; t = 2; : : : ; T;where �0 and �1 are funtions of �0, �1 and the oeÆient b1. Moreover, vt is as in (6:2).This shows that if we ondition on y1 in model (6.1) we obtain a model of the form (6.2)exept that the additional regressor �ft(�) is inluded and nonlinear parameter restritionsare involved. By Assumption 1(b) the variables �ft(�) are \asymptotially negligible,"however.The following further onlusions emerge from Table 4. Exluding a linear trend termfrom the models when suh a restrition is orret results in substantially better power.Furthermore, hanging b1 from 0.5 to 0.8 has a substantial e�et. It implies a sizable delinein power in most ases. This behaviour of the tests may not be too surprising beausefor b1 lose to 1 the proesses have two roots lose to unity and therefore are diÆult to14



distinguish from unit root proesses. The results in Table 4 also show that there are aseswhere the tests are not very reliable if time series with T = 100 observations are underonsideration. Moreover, the performane of the tests tends to be inferior if one of the moreompliated shift funtions f (2)t or f (3)t is used. We note, however, that the performane ofall the tests improved markedly when T was inreased from 100 to 200. Even in that asethe modi�ations overall dominate the original test versions � 0S&L and �S&L.7 Conlusions and ExtensionsStandard unit root tests are known to have redued power if they are applied to time serieswith strutural shifts. Therefore we have onsidered unit root tests that expliitly allowfor a level shift of a very general, possibly nonlinear form at a known point in time. Wehave argued that knowing the timing of the shift is quite ommon in pratie whereas thepreise form of the shift is usually unknown. Therefore, allowing for general and exible shiftfuntions is important. In this study we have foused on models where the shift is regardedas part of the deterministi omponent of the DGP. Building on a proposal by S&L, itis suggested to estimate the deterministi part in a �rst step by a GLS proedure whihmay proeed under loal alternatives or under the unit root null hypothesis. The originalseries is adjusted in a seond step by subtrating the estimated deterministi part. ThenDF type tests are applied to the adjusted series. A number of modi�ations of previouslyproposed tests of this sort are onsidered. In partiular, tests are proposed that take intoaount estimation errors in the nuisane parameters. Small sample properties of the testsare obtained by simulation.The following general results emerge from our study. Some of the suggested modi�ationswork learly better in small samples than the original tests proposed by S&L in that theyhave superior size and power properties. Substantial size distortions may result in smallsamples if the nuisane parameters are estimated under loal alternatives. Therefore wereommend estimating the nuisane parameters under the null hypothesis.If a deterministi linear time trend an be exluded on a priori grounds, it is reommendedto perform tests in models without a linear trend term beause exluding it may result insizable power gains. Finally, using test versions with the best power properties is of partiular15



importane in the present ontext beause in some situations the tests do not perform verywell for samples of size as large as T = 100. Therefore we reommend using the modi�ed testversions � 0adj and �+0adj if no deterministi linear trend is present beause they have overall bestsize and power properties. As none of these tests dominates the other one in all situationsit may be useful to apply both tests jointly and rejet the unit root hypothesis if one of thetests rejets the null hypothesis. If a linear trend term is needed, the modi�ed test versions�int and �+int are reommended based on analogous arguments.We have also explored the possibility of using DGPs of the type (6.2) with potentiallymore short-term dynamis. As mentioned earlier, they aount for shifts whih are due toinnovational outliers. Models of this type are preferred in parts of the related literature. Inthe ontext of these models unit root tests similar to those of S&L were in fat onsidered byL�utkepohl, M�uller & Saikkonen (2000). Extensions similar to those of the present study arepossible and are presented in the disussion paper version whih is available upon request.In that study we have also performed a detailed investigation of other modi�ations whihdid not perform as well as the tests presented here. Therefore they were deleted from thepresent version of the paper.Although we have foused on a single shift in a time series, the tests an in priniple beextended to allow for more than one shift. Of ourse, the small sample behaviour may bedi�erent in this ase and needs to be explored in the future if applied researhers wish touse the tests in this more general ontext. In future researh it may also be of interest toonsider the situation where the timing of the shift is unknown and has to be determinedfrom the data. Moreover, a omparison with other unit root tests whih allow for struturalshifts may be worthwhile. We leave these issues for future investigations.Appendix. Proof of Theorem 1In the proof of Theorem 1 we fous on the limiting distributions of test statistis for modelswhere �1 is not known to be zero a priori. The ase where the restrition �1 = 0 is imposedfollows by making straightforward modi�ations to these proofs. We begin with the resultin (4.8).The limiting distribution of �S&L is derived in S&L. In that artile it is given in a slightly16



di�erent form, however. To see that the present form is equivalent it may be worth notingthat (A:21) of S&L may be written alternatively asT�1X̂ 0�1�(b̂)�1(X̂ � X̂�1)= T�1PTt=p[b̂(L)x̂t�1℄[b̂(L)�x̂t℄ + op(1)= T�1PTt=p[b(1)fxt�1 � (�̂1 � �1)(t� 1)g℄[b(L)�xt � b(1)(�̂1 � �1)℄ + op(1)d! �2 R 10 G(s; �)dB(s)� �2K(�) R 10 G(s; �)ds; (A:1)
where the last relation follows from well-known limit theorems by noting that the limitingdistribution of �̂ given in (3.12) of S&L an be written alternatively as !K(�), where! = �=b(1),K(�) = h(�)�1 Z 10 (1� �s)dB0(s) + h(�)�1(� �) Z 10 (1� �s)B(s)ds (A:2)and h(�) = 1� �+ �2=3. From the representation in (A:1) the limiting distribution in (4.8)follows as in the proof of the asymptoti distribution of the test statisti in S&L. Thus, toprove (4.8), it remains to show that �adj and �+adj have the same limiting distribution as �S&L.Using T�1=2x̂[Ts℄ d�! !G(s; �) (A:3)(see (A:18) of S&L) and the fat that ft(�) satis�es Assumption 1(b) it an be seen thatT�1 TXt=1 x̂t�1�ft(�̂) � T�1 max1�t�T jx̂tj TXt=1 sup�2� k�ft(�)k = Op �T�1=2�and that a similar result also holds with �ft(�̂) replaed by �Ft(�̂). Using these fatsand arguments similar to those in the proof of Lemma 1 of S&L it an be shown that theappropriately standardized moment matrix in the GLS estimation of (4.3) is asymptotiallyblok diagonal and also positive de�nite. Sine it is further straightforward to show thatPTt=1�ft(�̂)uyt = Op(1) and similarly with �ft(�̂) replaed by �Ft(�̂) it follows that thelimiting distribution of the GLS estimator of � in (4.3) and hene that of its t-ratio is thesame as in the ase of the auxiliary regression model (4.1). We have thus shown that (4.8)holds for the test statisti �adj .As for test statisti �+adj, note �rst that the arguments used for �adj above and those inthe proof of Theorem 1 of S&L show that the appropriately standardized moment matrixin the auxiliary regression model used to obtain the test statisti �+adj is asymptotially17



positive de�nite and also blok diagonal between ŵt�1 and the other regressors. Derivingthe expression of the error term in this auxiliary regression model it is further straightforwardto show that �+adj has the same limiting distribution as �S&L and �adj . Thus, (4.8) is proven.Sine the test statistis �int and �+int are obtained by augmenting the auxiliary regressionmodels used to obtain test statistis �adj and �+adj , respetively, by an interept term, (4.9)an be proven by extending the arguments used above in a standard manner.ReferenesAmsler, C. & J. Lee (1995), An LM test for a unit root in the presene of a struturalhange, Eonometri Theory, 11, 359 - 368.Banerjee, A., R.L. Lumsdaine & J.H. Stok (1992), Reursive and sequential tests of theunit-root and trend-break hypotheses: Theory and international evidene, Journal ofBusiness & Eonomi Statistis, 10, 271 - 287.Elliott, G., T.J. Rothenberg & J.H. Stok (1996), EÆient tests for an autoregressive unitroot, Eonometria, 64, 813 - 836.Fuller, W.A. (1976), Introdution to Statistial Time Series, New York: Wiley.Leybourne, S., P. Newbold & D. Vougas (1998), Unit roots and smooth transitions, Journalof Time Series Analysis, 19, 83 - 97.L�utkepohl, H., C. M�uller & P. Saikkonen (2000), Unit root tests for time series with astrutural break when the break point is known, in C. Hsiao, K. Morimune & J.Powell (eds.), Nonlinear Statistial Inferene: Essays in Honor of Takeshi Amemiya,Cambridge: Cambridge University Press, forthoming.Monta~n�es, A. & M. Reyes (1998), E�et of a shift in the trend funtion on Dikey-Fullerunit root tests, Eonometri Theory, 14, 355 - 363.Perron, P. (1989), The great rash, the oil prie shok and the unit root hypothesis, Eono-metria, 57, 1361 - 1401.
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Perron, P. (1990), Testing for a unit root in a time series with a hanging mean, Journalof Business & Eonomi Statistis, 8, 153 - 162.Perron, P. & T.J. Vogelsang (1992), Nonstationarity and level shifts with an appliation topurhasing power parity, Journal of Business & Eonomi Statistis, 10, 301 - 320.Saikkonen, P. & H. L�utkepohl (1999), Testing for unit roots in time series with level shifts,Disussion Paper, SFB 373, Humboldt-Universit�at zu Berlin.Zivot, E. & D.W.K. Andrews (1992), Further evidene on the great rash, the oil-prieshok, and the unit-root hypothesis, Journal of Business & Eonomi Statistis, 10,251 - 270. Table 1. Summary of TestsTeststatisti Underlying auxiliary regressionAsymptoti distribution �R 10 G(s; �)2ds��1=2 R 10 G(s; �)dG(s; �)�S&L x̂t = �x̂t�1 + u�t�adj x̂t = �x̂t�1 +�ft(�̂)0�1 +�Ft(�̂)0�2 + uyt�+adj ŵt = �ŵt�1 + [b̂(L)�ft(�̂)0℄�1 + [b̂(L)�Ft(�̂)0℄�2 +Ppj=1 �j�x̂t�j + rytAsymptoti distribution �R 10 �G(s; �)2ds��1=2 R 10 �G(s; �)dG(s; �)�int x̂t = � + �x̂t�1 +�ft(�̂)0�1 +�Ft(�̂)0�2 + u+t�+int ŵt = � + �ŵt�1 + [b̂(L)�ft(�̂)0℄�1 + [b̂(L)�Ft(�̂)0℄�2 +Ppj=1 �j�x̂t�j + r+t
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Table 2. Simulated Quantiles of Null Distributions of Test Statistis Based on 10 000RepliationsDistribution T �0:01 �0:025 �0:05 �0:150 -2.65 -2.26 -1.97 -1.63100 -2.61 -2.25 -1.96 -1.62(4.6) 200 -2.64 -2.26 -1.94 -1.62(� = 0) 500 -2.60 -2.25 -1.95 -1.621000 -2.55 -2.24 -1.96 -1.6150 -2.93 -2.56 -2.28 -1.98100 -2.73 -2.41 -2.15 -1.83(4.6) 200 -2.68 -2.34 -2.05 -1.73(� = �7) 500 -2.64 -2.30 -2.00 -1.671000 -2.56 -2.22 -1.96 -1.6350 -3.64 -3.28 -2.99 -2.67100 -3.58 -3.22 -2.94 -2.62(4.7) 200 -3.58 -3.22 -2.93 -2.62(� = 0) 500 -3.47 -3.17 -2.90 -2.621000 -3.48 -3.15 -2.88 -2.5850 -3.34 -2.96 -2.65 -2.37100 -3.23 -2.90 -2.61 -2.33(4.8) 200 -3.17 -2.91 -2.64 -2.33(� = 0) 500 -3.22 -2.92 -2.64 -2.351000 -3.18 -2.86 -2.62 -2.3350 -3.83 -3.48 -3.21 -2.91100 -3.62 -3.30 -3.03 -2.74(4.8) 200 -3.51 -3.24 -2.96 -2.66(� = �13:5) 500 -3.43 -3.09 -2.84 -2.571000 -3.40 -3.11 -2.85 -2.5750 -3.81 -3.45 -3.15 -2.86100 -3.73 -3.38 -3.11 -2.80(4.9) 200 -3.64 -3.32 -3.06 -2.77(� = 0) 500 -3.62 -3.32 -3.08 -2.791000 -3.55 -3.28 -3.03 -2.76
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Table 3. Empirial Sizes of Tests Based on DGP (6.1), T = 100, T1 = 50, � = �7=� 13:5,Nominal Signi�ane Level 5%Shift Testfuntion b1 � 0S&L � 0adj �+0adj �S&L �adj �+adjf (1)t 0.5 0.077 0.076 0.069 0.085 0.087 0.0710.8 0.164 0.165 0.064 0.072 0.073 0.063f (2)t 0.5 0.186 0.223 0.276 0.163 0.252 0.2760.8 0.227 0.301 0.405 0.089 0.155 0.197f (3)t 0.5 0.193 0.269 0.224 0.158 0.360 0.2620.8 0.206 0.533 0.227 0.080 0.501 0.160
Table 4. Relative Rejetion Frequenies of Tests, T = 100, T1 = 50, � = 0, NominalSigni�ane Level 5%Shift DGP (6.1), b1 = 0:5 DGP (6.1), b1 = 0:8 DGP (6.2), b1 = 0:5 DGP (6.2), b1 = 0:8funtion Test � = 1 0.9 0.8 � = 1 0.9 0.8 � = 1 0.9 0.8 � = 1 0.9 0.8f (1)t �0S&L 0.039 0.289 0.533 0.016 0.156 0.314 0.039 0.284 0.524 0.020 0.138 0.275�0adj 0.039 0.291 0.535 0.016 0.156 0.315 0.040 0.285 0.527 0.020 0.140 0.275�+0adj 0.063 0.353 0.590 0.050 0.292 0.436 0.061 0.343 0.575 0.053 0.287 0.382�S&L 0.010 0.054 0.190 0.000 0.006 0.030 0.009 0.050 0.174 0.000 0.005 0.025�int 0.020 0.090 0.302 0.000 0.006 0.034 0.022 0.091 0.305 0.001 0.004 0.029�+int 0.080 0.233 0.526 0.065 0.167 0.286 0.075 0.216 0.499 0.064 0.149 0.262f (2)t �0S&L 0.043 0.235 0.423 0.023 0.123 0.243 0.041 0.231 0.415 0.021 0.129 0.248�0adj 0.064 0.270 0.454 0.045 0.155 0.288 0.065 0.257 0.433 0.037 0.141 0.276�+0adj 0.048 0.254 0.445 0.026 0.142 0.272 0.049 0.246 0.426 0.025 0.140 0.271�S&L 0.014 0.056 0.179 0.000 0.004 0.030 0.010 0.051 0.177 0.000 0.006 0.028�int 0.048 0.146 0.349 0.021 0.033 0.089 0.045 0.131 0.336 0.019 0.029 0.063�+int 0.052 0.167 0.367 0.029 0.045 0.115 0.053 0.151 0.348 0.030 0.039 0.080f (3)t �0S&L 0.047 0.215 0.378 0.020 0.120 0.220 0.044 0.219 0.384 0.022 0.113 0.217�0adj 0.064 0.266 0.417 0.079 0.223 0.302 0.060 0.268 0.426 0.082 0.217 0.293�+0adj 0.059 0.249 0.404 0.037 0.144 0.249 0.056 0.252 0.418 0.036 0.140 0.243�S&L 0.011 0.044 0.173 0.000 0.005 0.024 0.014 0.046 0.165 0.000 0.005 0.022�int 0.060 0.141 0.322 0.074 0.086 0.133 0.062 0.146 0.325 0.072 0.091 0.134�+int 0.048 0.120 0.314 0.016 0.028 0.064 0.052 0.129 0.317 0.014 0.029 0.068
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