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Abstract
Due to significant line resistances in microgrids, active power variations

produced by wind turbine can lead to significant fluctuations in voltage magnitudes
and as a result economic of the grid. This project proposes a voltage sensitivity
analysis-based scheme to achieve voltage regulation at a target bus in such
microgrids. The method is local and can be implemented in the absence of
widespread communication system or remote measurement. The economic
performance of the method is illustrated on the IEEE-13 bus distribution network.
Dynamic simulations (in PSCAD/EMTDC) are presented to assess the voltage

regulation characteristics.

Introduction

While FERC 661-A requires operational at power factor greater than 0.95
for wind energy systems, many wind operators currently prefer unity power factor
(UPF) operation. The method provides adjustments on reactive power based on the
active power produced by the DFIG.

The primary objective of the VAR controller (proposed method) is to regulate the
voltage at the target bus by modulation the DFIG reactive power in response to

active power variations. This is based on sensitivity analysis.



The power flow equations for the system considering both inductive and resistive

characteristics of the power lines are as follows:

{ P =0 Vil Vil [Yan]. cos(8pn + 6, — 88)
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The sensitivity of the bus voltages to deviations in active/reactive powers is obtain
by computing the power flow Jacobian linearizing the power flow equations about

a nominal operating point given by:
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Provided the Jacobian is well conditioned, deviations in bus voltage magnitudes

can be obtained from:
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Denote the wind generator bus by “w” and the target bus by “v”. The voltage

variations at the bus “v” due to active/reactive power variations at “w’ are given

by:

A‘/;J - S’Up-vw-ARu + SUQ?)U;-AQm

For ideal voltage regulation, the reactive power must be modulated in response to

variations in active power as given by:
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Consequently, the required reactive power adjustment to compensate for voltage
fluctuations due to active power variations is given by:

If the set point is chosen at P0=0, Q0=0, can be written as a constant power factor

equation:

Producing large amounts of reactive power by wind generators increases its
winding currents and relevant losses. To minimize the operational losses, the set
point is chosen at PO=Pave, Q0=0, where Pave is the average of the wind generator

active power.

The proposed method achieves voltage regulation at a single target bus. This can
be generalized so that the control is exercised to extend voltage regulation at

multiple buses.



Methodology
Simulation of proposed method is classified to three classifications. The

IEEE 13 node test system, The DFIG structure and control system and applies the
proposed method.

IEEE 13 node test system
This distribution system contains 13 buses, unbalanced load, capacitor banks

and etc. The loads of this system are from different types such as power constant
(PQ), current constant (I) and Impedance constant (Z). The simulation of this

system is shown below:
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The simulation was run and the results compared with [1], [2]. Equivalent of

voltage magnitudes derived from simulation with [5] illustrate the verity of

simulation.

DFIG structure and control system
We can consider a DFIG structure as below:

I S

1h
10000.0

@@aﬁfﬂq

DC link
Ao e A [ i
T4s Tos Tis 4 (]
PWM based rotor-side = PWM based stator-side
converter converter
< o o .
g 0
g >7 = 10000.0
il
5
Induction Generator
Grid Network

There are different methods for control DFIG system. In this simulation, vector
control based on [7], [8] is done. The system employs two back to back converters:
A rotor side converter (RSC) and a grid side converter (GSC) [1-8]. Typically,
these converters are rated at about 25%-30% of the generator rating. While the
RSC is used to adjust the rotor current, The GSC is responsible for adjusting the

DC link voltage. The complete simulation procedure of control system is

mentioned in [10].

Case Study
A schematic diagram of a DFIG and proposed VAR controller is shown below:



The DFIG system consist of four components namely: a) DFIG and converter
units, b) maximum power point tracking (MPPT)/RSC controller, ¢) GSC
controller, d)VAR coordinator[9-16]. One part of DFIG control system that receive
”Qref” and “Pref” for produce “Id” and “Iq” (two main control parameters) is

shown below:
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“Pref” input is used for MPPT (refer to last fig). Therefore, just one control
parameter remains for VAR controller (Qref) [17-23].

Based on below equation and control part, the VAR control method was applied.



SUPyw
Qw = -

P, — P,
Svdun ( 0) + Qo

Reactive Power Reference

*

- 31127 4 [

g

The quantity of sensitivity coefficient (-0.31127) is from sensitivity matrix that
mentioned in [13], [14]. After apply this control part, the DFIG is connected to the
bus 611 and the bus 652 chooses for target bus [17], [18]. For generate variations

in input wind power, the tower shadow and wind shear effects are used as follows:
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Names and quantities of parameters which are shown in upper equations are

completely mentioned in [19], [20].

The output torque (simulation result) is shown below. It is obvious, that the output

torque drops three times per each revolution.
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Simulation Results
A ramp in wind speed exerted as follows:
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The outputs (voltage diagram of bus 652) derived as follows:
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Proposed Method

It is obvious that proposed method had good effect on magnitude and frequency

voltage variations of target bus [20].
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