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Abstract

This paper proposes and implements a novel structural VAR approach for identifying oil
demand and supply shocks. In this approach we search for two shocks in the context of a
VAR model, which explain the majority of the k-step ahead prediction error variances of oil
prices. Finally, we compare our approach with alternative identification schemes based on
sign restrictions, and we show that the proposed methods is a useful tool for decomposing
oil shocks.
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1 Introduction

Identifying and measuring shocks in the market for energy is of paramount importance for

policy-makers (e.g. a central bank trying to control expectations about consumer price infla-

tion), producers and consumers in an economy, as well as investors in the stock and commodi-

ties markets. Therefore, it is no surprise that there exists a large academic literature employing

structural vector autoregressions (SVARs). In this literature the estimated innovations from the

VAR can be used to measure oil (and other energy) shocks to variables of interest such as out-

put, price inflation, and a short term interest rate; see for example Bernanke, Gertler and

Watson (1997). However, as it has been shown recently by authors such as Kilian (2009),

Baumeister and Peersman (2013), and Lütkepohl and Net̆sunajev (2013), accurate measure-

ment of oil shocks presupposes that we are able to decompose oil price dynamics into changes

caused by demand or supply factors. This is because the intensity and transmission of oil de-

mand shocks is different from that of oil supply shocks. Additionally, the effects of various oil

shocks can have a diverse impact in an economy, so that, for example, monetary authorities

need to identify the nature of the shock in order to react accordingly. A demand-driven increase

in the price of oil will also result in an increase of the produced quantity of oil, which may be

attributed to better prospects about global economic growth. In contrast, positive supply side

shocks in the price of oil are expected to decrease the quantity of oil as well as output while

at the same time causing a stagflation effect by pushing total (headline) consumer inflation to

increase.

In this paper we reassess the issue of measuring empirically demand and supply oil shocks

using vector autoregressions. Given the evident nonlinearities between oil prices and many

macroeconomic variables such as GDP (see for instance Ravazzolo and Rothman, 2012, and

references therein), we follow Clark and Terry (2010) and Baumeister and Persman (2013)

and our preferred specification is a VAR on energy prices, quantity of energy, GDP and CPI,

which features time-varying coefficients and stochastic volatility. We examine the implica-

tions of an identification scheme, first proposed by Uhlig’s (2003) and materialized by Barsky

and Sims (2011), which decomposes energy price shocks into two components, orthogonal to

each other, such that both energy price shocks maximize the forecast error variance of energy

prices. We find a clear interpretation of the first of these two shocks as a supply-side energy

shock, resulting in a change of energy prices and CPI on the one direction and a change of

the quantity of energy and GDP in the opposite direction. The second shock can be interpreted

as demand-side shock which results in a change in all four variables in the system toward the

same direction. We find that this identification scheme is quite similar to using sign restric-

tions (Baumeister and Persman, 2013), however, it gives much more reasonable estimates of

the impulse responses which are in accordance with the reccomndations in Kilian and Murphy

(2012).

So far there are several existing methods for implementing a decomposition of VAR in-

novations into demand-driven and supply-driven shocks. The vast majority of these methods

have been applied to the market for crude oil, however, they apply for general energy markets.

Kilian (2009) has proposed to use exclusion restrictions based on a recursively identified VAR

for monthly measurements of oil supply, global demand, and oil demand. He assumes that

the short-run supply curve of oil is vertical, by sorting oil supply first in the VAR and assum-

ing that this variable is exogenous and does not respond to innovations in global demand or
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oil-specific demand. Baumeister and Peersman (2013), motivated by the fact that oil-supply

cannot remain exongenous over the quarter, when using quarterly data, they propose to use

sign restrictions. Kilian and Murphy (2012) go one step further and show that sign restrictions

alone result in overestimation of the response of variables to supply shocks and underestima-

tion of responses to demand shocks, thus suggesting to impose additional restrictions on the

oil supply elasticities on impact.

All these methods impose a great deal of restrictions in the empirical econometric models.

Even though such restrictions may be driven from economic theory, it doesn’t necessarily mean

that they are or that they should be supported by evidence in the data (the likelihood). Such

assumptions are very beneficial when estimating time-invariant VARs. However, given the

evident changing dynamics of the US economy (e.g. Great Inflation, Great Moderation, Great

Recession) as well as the volatile character of oil price shocks, it might be dangerous to impose

such structure when identifying oil shocks. For instance, both demand and supply elasticities

might have changed dramatically over the course of the past 40 years, so it is less clear how to

adapt the important contributions of Kilian and Murphy (2012) in the time-varying parameters

framework we are working with, in order to impose bounds on the elasticities at each point in

time1.

In this paper we are not arguing that there are no caveats when applying Uhlig’s (2003)

“data-based” identification scheme in an energy market VAR. For example, the identification

scheme we use makes the assumption that only two shocks affect oil prices at all forecast

horizons. This assumption could potentially be dismissed by some economists, despite the

fact that we show that these two shocks have an interpretation as demand and supply shocks.

Nevertheless, we show that identification of structural shocks is achieved with a minimal set of

restrictions compared to other methods, thus allowing an alternative interpretation of energy

price shocks. When we compare our results to demand and supply shocks identified using sign

restrictions on the impact matrix, we find a surprisngly high degree of similarity of the shape

of impulse responses, but the magnitutes can be quite different. However, there are some

differences especially in the measurement of the initial impact of an oil price increase which

is due to a supply shock, and about the measurement of the pass-through of oil prices to CPI.

In this paper we assess all this evidence by comparing impulse responses and we discuss the

implications for policy-making.

The next Section introduces the estimated reduced-form time-varying parameter VAR model

we estimate, and identification of structural shocks. In Section 3 we present all the empirical

evidence including time-varying impulse resposnes as well as time-varying forecast error vari-

ance decompositions attributed to a demand and a supply shock. Section 4 concludes the

paper.

2 Empirical Methodology

2.1 Time-varying coefficients VAR with stochastic volatility

Following Clark and Terry (2010), our starting point is a p-lag vector autoregression with time-

varying parameters and stochastic volatility estimated for global oil production (qoilt ), the real

1Such issues are explained in detail in the seminal contribution of Baumeister and Persman (2013) who are the
first to examine oil market VARs with structural instabilities.
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(deflated using US CPI) US refiners’ acquisition cost of imported crude oil (poilt ), real GDP

(gdpt), and the consumer price index (cpit)
2. The model takes the following form

yt = X
0

t�t +A
�1

t �t"t;

where yt =
�
qoil0t ; poil0t ; gdp0t; cpi

0

t;
�
0

,Xt = I4
 [1; yt�1; :::; yt�p], and "t � N (0; I4). The vector �t
contains all the VAR coefficients for the intercept and p-lags, where we set p = 4 to allow our

VAR to capture sufficient dynamics (see Hamilton and Herrera, 2004 ). At is a lower triangular

matrix with ones on the diagonal with element �ij;t, i = 2; :::; 4, j = 1; :::; i � 1, and �t is a

diagonal matrix consisting of the standard deviations �1t, such that 
t = A�1t �t
�
�tA

�1

t

�0
is

the full VAR covariance matrix at time t.

Using the standard practice in this literature (Clark and Terry, 2010, and references therein)

the coefficients �t, �t = (�21;t; :::; �ij;t), and �t = (�1t; :::; �4t) follow random walks of the form

�t = �t�1 + �
�
t ;

�t = �t�1 + �
�
t ;

log �t = log �t�1 + �
�
t ;

where ��t � N (0; Q), ��t � N (0; S), and ��t � N (0;W ) are state errors uncorrelated with

each other, as well as "t, at all leads and lags. The covariance matrix Q is of dimension k � k

where k = (p+ 1)� 4� 4, S is a 4� 4 matrix, and W is a 4� 4 diagonal matrix.

It is straightforward to show that such a structure implies that the equations above are

conditionally Gaussian linear models, that is, one can estimate any of the time-varying para-

meters (�t; �t; log �t) conditional on all other parameters using the Kalman filter/smoother.

Such conditioning is natural in Bayesian Markov Chain Monte Carlo (MCMC) methods, and in

particular the Gibbs sampler which is the preferred method in this paper. The reader is referred

to Koop and Korobilis (2010) for exact estimation details. Here it suffices to note that since we

use Bayesian methods prior distributions over all time-varying and time-invariant model para-

meters need to be carefully specified. In this paper we follow Baumeister and Peersman (2013)

and others and estimate a VAR in the pre-sample period 1947Q1-1973Q4 using OLS, and we

use these parameter estimates as starting values (prior hyperparameters) for the sample of

interest 1974Q1-2012Q4.

2.2 Identifying supply and demand shocks

Once the TVP-VAR parameters are estimated, we can obtain the structural, time-varying para-

meter, Vector Moving Average form of the VAR which is

yt = Ct (L)H0;t"t;

where Ct (L) =
�
I �B1tL�B2tL

2
� :::�BptL

p
�
�1

, Bit, for i = 1; :::; p, are 4 � 4 VAR coef-

ficient matrices obtained by rearranging the elements of the vector �t, and H0;t is the impact

matrix which satisfies H0;tH
0

0;t = 
t. There are many matrices which satisfy this condition, for

2All variables are transformed to growth rates by taking first log-differences and multiplying by 100, with the
exception of GDP which is annualized quarter-on-quarter growth rates (i.e. multiplied by 400).
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example one solution is to set H0;t = chol (
t) = �tA
�1

t which gives the standard recursive

identification that has been used extensively in the literature. Such H0;t is lower triangular,

this implies that exclusion restrictions where the preceding variables in yt are fully exogenous

to the succeeding variables, so that the first variable yt is not affecting any other variable on

impact of a structural shock, while the last variable affects all preceeding variables. Kilian

(2009) has used such exclusion restrictions in order to identify oil demand and supply shocks

in the global market3. When using quarterly data it is less clear why a specific variable in the

VAR would not respond contemporaneously to a shock in any other variable, thus making this

sort of identification scheme less attractive.

Alternative impact matrices can be obtained by rotating any solutionH0;t using an arbitrary

orthonormal matrixD (D0D = I). In this case it holds that eH0;t = H0;tD0 is also a valid impact

matrix since eH0;t eH 0

0;t = H0;tD
0DH 0

0;t = H0;tH
0

0;t = 
t. Note that in practice we go the other

way around, so that we have an estimate of 
t from the reduced form VAR, and there are

infinite matrices eH0;t (or D) that one can identify. In this paper we present two such cases.

The main identification scheme first proposed by Barsky and Sims (2011) and Uhlig (2003)

which we will adapt to identify oil shocks over time. We also explain briefly the procedure for

imposing sign restrictions on the impact matrix, similar (but not identical) to the one used in

Baumeister and Persman (2013), which will serve as a benchmark for evaluation of our results.

When imposing sign restrictions, D is identified as a rotation matrix which covnerts H0;t
into a matrix eH0;t that satisfies all sign restriction conditions, e.g. a positive oil supply shock

causes output to contract, thus causing a negative sign on the respective element of eH0;t.

3 Empirics

3.1 Data and model estimates

We use a quartery dataset which is an updated version of the data used in Baumeister and

Peersman (2013), available at http://www.aeaweb.org/aej/mac/data/2011-0065_data.zip. The

variables are the world oil production, real refiner’s acquisition cost, real GDP and CPI, and

are observed for the period 1947Q1-2012Q4. The first part of the sample, 1947Q1-1973Q4,

is used to “train the data” by estimating a time-invariant VAR using least squares, and then

use the OLS estimates as starting values for the time-varying parameter VAR estimated over

the period of interest, 1974Q1-2012Q4. The TVP-VAR (and, of course the VAR in the training

sample) has four lags. Our results are quite robust to the choice of lags, meaning that the

general shapes of the impulse responses do not change dramatically.

3Unlike this paper, or Baumeister and Peersman (2013), Kilian (2009) also uses an index of global economic
activity which plays a crucial role in the decomposition of oil demand and supply shocks.
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3.2 Impulse responses: supply vs demand shocks
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Median impulse responses (solid line) with 68% band (shaded area) of all four variables in

the VAR, in 1977Q2 - supply shocks.
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Median impulse responses (solid line) with 68% band (shaded area) of all four variables in

the VAR, in 1977Q2 - demand shocks.
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Median impulse responses (solid line) with 68% band (shaded area) of all four variables in

the VAR, in 1982Q2 - supply shocks.
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Response of variable p
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Median impulse responses (solid line) with 68% band (shaded area) of all four variables in

the VAR, in 1982Q2 - demand shocks.
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the VAR, in 1994Q4 - supply shocks.
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Median impulse responses (solid line) with 68% band (shaded area) of all four variables in

the VAR, in 1994Q4 - demand shocks.
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Median impulse responses (solid line) with 68% band (shaded area) of all four variables in

the VAR, in 2009Q1 - supply shocks.
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Median impulse responses (solid line) with 68% band (shaded area) of all four variables in

the VAR, in 2009Q1 - demand shocks.

3.3 Forecast error variance decompositions

Another positive aspect of identifying demand and supply shocks in a time-varying parameter

VAR is that we are able to obtain separate forecast error variance decompositions (FEVDs) for

the oil demand and for the oil supply shock, over time. That is, one can estimate the fraction

of the variance of the forecast error of, say, GDP which is attributed in a demand-side induced

in the price of oil (as opposed to supply-driven increases) for any specific forecast horizon of

interst.

This evidence is provide in Figure XXX. The left panels show shows the posterior median

of the time-varying FEVDs of demand-side shocks to oil price, oil quantity, GDP and CPI, while

the right panel of this figure shows the supply-driven FEVDs for the same set of variables in

our TVP-VAR.
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%FEVD, energy supply shock on GDP
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Medians (solid line) and 16th and 84th bands (shaded area) of the posterior of the

time-varying forecast error variance at the 20 quarter ahead horizon, of GDP (left panel) and

CPI (right panel) which is due to a supply, a demand, and a supply+demand change in oil

prices, respectively. Numbers in the vertical axis denote the percentage (%) of forecast error

variance explained.

4 Conclusions

In this note we propose an alternative method for decomposing demand and supply shocks

based on a statistical identification method that searches for two (or more) shocks that maxi-

mize the forecast error variance at a given horizon.
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A Appendix

In this Appendix we describe the estimation algorithm and the priors used to obtain the results

in this paper. We also provide additional results about model estimation and identification of

oil demand and supply shocks which, to our opinion, can further assist the reader to under-

stand the mechanics behind our methodology.

A.1 Estimation of the model

Consider the time-varying parameter VAR

yt = X
0

t�t +A
�1

t �t"t;

with the additional equations describing the evolution of the parameters �t, �t = (�21;t; :::; �ij;t),
i = 2; :::; 4, j = 1; :::; i� 1, and �t = (�1t; :::; �4t) using random walks of the form

�t = �t�1 + �
�
t ;

�t = �t�1 + �
�
t ;

log �t = log �t�1 + �
�
t ;

where ��t � N (0; Q), ��t � N (0; S), and ��t � N (0;W ) are state errors uncorrelated with

each other, as well as "t, at all leads and lags. The covariance matrix Q is of dimension k � k

where k = 4� (4�4+1) = 68 in our application, S is a 4�4 matrix, andW is a 4�4 diagonal

matrix.

We define the following initial conditions on the time-varying parameters

�0 � N
�
E
�
�OLS

�
; 4� var

�
�OLS

��
;

�0 � N
�
E
�
�OLS

�
; 4� var

�
�OLS

��
;

log �0 � N
�
log
�
E
�
�OLS

��
; 4� I5

�
:

where E
�
xOLS

�
denotes the OLS estimate of a parameter x, and var

�
xOLS

�
its covariance

Finally, the state covariances Q, S and W have priors

Q � iW
�
64 + 1; 0:0001� var

�
�OLS

��
;

Sj � iW
�
j + 1; 0:01� var

�
�OLS

�
j

�
; j = 1; 2; 3

Wii � iG (8; 0:001) :

Note that for estimation purposes S needs to have a specific block diagonal structure, with

the diagonal consisting of the 1 � 1, 2 � 2 and 3 � 3 submatrices S1; S2 and S3, respectively.

Estimation is implemented using Markov Chain Monte Carlo (MCMC) and in particular the

Gibbs sampler; the reader is referred to Koop and Korobilis (2010) for details.

A.2 Assessment

Figure XXX plots the time-varying standard deviations, i.e. the square root of the diagonal

elements of 
t. These estimates over time are the ones expected from previous experience
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with simialr VARs. On average (i.e. if we take the mean over all time periods t of the posterior

median of 
t) the time-varying parameter VAR generates smaller standard deviations than

its constant counterpart estimated with OLS. This evidence serves as a good rule-of-thumb

approach to assess the fit of time-varying parameter VARs, given that calculation of marginal

likelihoods and model selection is computationally cumbersome - if not infeasible; see the

discussion in Korobilis (2013).
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Medians (solid line) and 16th and 84th bands (shaded area) of the posterior of the

time-varying standard deviations from the TVP-VAR.

Figure XXX plots the time-varying correlations between the price of oil and GDP (upper

panel), and the price of oil and CPI (lower panel). Again, these results are the ones expected

from experience and common sense. Firsth, there is a clear negative relationship between oil

prices and GDP which collapses during the 2007-2009 financial crisis (where, eventually, both

oil prices and GDP collapsed in 2008). Second, there is more of a negative relationship be-

tween oil prices and CPI with regular “spikes” where correlation becomes positive (e.g. around

the recent financial crisis). Oil price inflation (nominal) on has been increasing at a very ag-

gressive rate during the post-Great Moderation period, which is a period where fluctuations on

CPI inflation have been quite moderate, thus explaining the negative (on average) correlation

between real oil prices and CPI captured by the TVP-VAR.
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Time varying correlation of p
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 and GDP
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Medians (solid line) and 16th and 84th bands (shaded area) of the posterior of time-varying

correlations between oil price and gdp (upper panel), and oil price and cpi (lower panel).
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A.3 Further results
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Impulse response of variable CPI to first energy shock

Posterior medians of impulse responses for all 20 horizons and all time-periods

(1970Q1-2012Q4). Shock is the first identified (“supply”) shock from the decomposition

explained in the main text.
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Impulse response of variable GDP to second energy shock
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Impulse response of variable CPI to second energy shock

Posterior medians of impulse responses for all 20 horizons and all time-periods

(1970Q1-2012Q4). Shock is the second identified (“demand”) shock from the decomposition

explained in the main text.
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