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The present article is devoted to discrete random variables that 

take a limited number of values in finite closed intervals. I prove that 

if non-zero lower bounds exist for the variances of the variables, then 

non-zero bounds or forbidden zones exist for their expectations near 

the boundaries of the intervals. This article is motivated by the need in 

rigorous theoretical support for the analysis of the influence of 

scattering and noise on data in behavioral economics and decision 

sciences.  

 

 

 

 

1.  Introduction 

 

The construction of bounds for functions of random variables is considered in 

a number of works that use information about their moments.  

Bounds for the probabilities and expectations of convex functions of discrete 

random variables with finite support are studied in [1].  

Inequalities for the expectations of functions are studied in [2]. These 

inequalities are based on information of the moments of discrete random variables.  

A class of lower bounds on the expectation of a convex function using the first 

two moments of the random variable with a bounded support is considered in [3].  

Bounds on the exponential moments of  ),min( Xy   and  }{ yXIX <   using 

the first two moments of the random variable  X  are considered in [4].  

In the present short article, information about the variance of a random 

variable that takes on limited number of values in a finite closed interval is used to 

reveal and estimate bounds on its expectation. It is proven that if there is a non-zero 

lower bound on the variance of the variable, then non-zero bounds on its 

expectation exist near the boundaries of the interval.  
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The obtained bounds (or bounding inequalities) can be treated as non-zero 

forbidden zones for the expectation near the boundaries of the interval.  

The simplest case of a discrete random variable with finite support is 

considered.  

Keeping in mind the above bounds on functions of random variables [1-4], 

functions of the expectation of a random variable can be further investigated.  

The present article is motivated mainly by the need for rigorous theoretical 

support in the analysis of the influence of scattering and noisiness of data in 

behavioral economics, decision sciences, utility and prospect theories.   

The idea of this theorem has explained, at least partially, some problems of 

utility and prospect theories, including the underweighting of high and the 

overweighting of low probabilities, risk aversion, etc. (see, e.g., [5]).  

The plenary report [6] was devoted to general questions of the description of 

noise.  

Due to the convenience of abbreviations and consonant with the usage in 

previous works, here a bound will sometimes be referred to with the term 

"restriction," especially in mathematical expressions, using its first letter "r,"  for 

example  "rExpect."  

 

 

2.  Preliminaries  

 

Let us consider a probability space  (Ω, Æ, P)  and a discrete random variable  

X,  such that  Ω  R.  Let us suppose that the values of  X  are  

,}{ kx  ,,...,2,1 Kk =   where  ∞<≤ K2 ,  

and  

bxa k ≤≤ ,  where  ∞<−< )(0 ab .  

The probability mass function of  X  is defined as  

}))(:({)()( xXPxXPxf X =Ω∈≡== ωω .  

Let us consider the expectation of  X   

µ≡≡∑
=

K

k

kXk xfxXE
1

)()( ,  

its variance  

2

1

22 )()()( σµµ ≡−=− ∑
=

K

k

kXk xfxXE   

and possible interrelationships between them.  
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3.  Non-zero bounds  

3.1.  Conditions of variance maximality  

 

The maximal value of the variance is intuitively obtained for the probability 

mass function that is concentrated at the boundaries of the interval. This statement 

is nevertheless proven in the Appendix. Such a probability mass function can be 

represented as  fX(a) = (b-μ)/(b-a)  and  fX(b) = (μ-a)/(b-a).  The following 

inequality holds consequently for the variance of  X   

))(()()()( 222 µµµµµµµ −−=
−
−

−+
−
−

−≤− ba
ab

a
b

ab

b
aXE .  (1)  

 

 

3.2.  Existence theorem  

 

Theorem. Suppose a random variable  X  takes on values  {xk},  k = 1, 2, … , 

K,  in an interval  [a, b],  0 < (b-a) < ∞,  and  2 ≤ K < ∞.  If there exists a non-zero 

lower bound  σ2
Min  on the variance  E(X-μ)2

  of the variable, such that  E(X-μ)2
 ≥ 

σ2
Min > 0,  then non-zero bounds  rExpect > 0  on its expectation  E(X)  exist near the 

boundaries of the interval  [a, b],  that is,  

brbXEraa ExpectExpect <−≤≤+< )()()( .     (2).  

Proof. It follows from (1) and the hypotheses of the theorem that  

))(()(0 22 µµµσ −−≤−≤< baXEMin .  

For the boundary  a  this leads to the inequalities  ))((2 abaMin −−≤ µσ   and  

ab
a

Min

−
+≥

2σ
µ .        (3).  

For the boundary  b  the consideration is similar and gives the inequality  

ab
b

Min

−
−≤

2σµ .        (4).  

Denoting the bounds (restrictions  rExpect) on the expectation as  

ab
r

Min

Expect −
≡

2σ
,  

and using (3) and (4), we obtain the generalized inequalities  

ExpectExpect rbra −≤≤+ µ  .  

Therefore, if the inequalities  0 < (b-a) < ∞  and  σ2
Min > 0  hold, then the 

bounds  rExpect > 0  exist, such that the inequalities (2)  

brbraa ExpectExpect <−≤≤+< )()( µ   

are satisfied which proves the theorem.  
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4.  Applications  

4.1.  Applications in behavioral economics  

 

The idea of the considered bounds was applied, e.g., in [5].  

The work [5] was devoted to the well-known problems of utility and prospect 

theories. Such problems had been pointed out, e.g., in [7]. In [5] some examples of 

typical paradoxes were studied. Similar paradoxes may concern problems such as 

the underweighting of high and the overweighting of low probabilities, risk 

aversion, the Allais paradox, etc.  

The dispersion and noisiness of the initial data can lead to bounds 

(restrictions) on the expectations of these data. This should be taken into account 

when dealing with this kind of problems. The proposed bounds explained, at least 

partially, the analyzed examples of paradoxes.  

 

 

4.2.  Possible general applications  

 

The plenary report [6] presented the idea of these new general bounds 

(restrictions) on the expectations of random variables in the presence of a non-zero 

minimal variance. Possible contributions to engineering and the economics, 

involving the dispersion of the data were considered.  

Possible general consequences of these bounds can include:  

1) A quantitative reduction of the available space of the parameters.  

2) Qualitative changes in the connectivity of the space of the parameters.  

3) Discontinuities in functions under the presence of noise.  
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Appendix. Proof of variance maximality conditions  

 

Let us search for the probability mass function  fX(x)  such that the variance of  

X  attains its maximal possible value under the condition that it has a given 

expectation  μ.   

Let us consider two arbitrary possible realizations  xa < xb  of the random 

variable  X  and the corresponding probabilities  fX(xa)  and  fX(xb).   

For the points  xa  and  xb,  one can define the point  

)()(

)()(
2

bXaX

bXbaXa

xfxf

xfxxfx

+
+

≡µ ,  

as the “two-point expectation” of  fX(xa)  and  fX(xb),  and the expression  

)()()()()( 2

2

2

2

2

22 bXbaXa xfxxfxXE µµµ −+−≡− ,  

as the “two-point variance” of  fX(xa)  and  fX(xb).  

One can denote the sum of the probabilities  fX(xa)  and  fX(xb)  by  w2.  The 

expression for the “two-point variance”  E2(X-μ2)
2
  can be easily transformed to  

2
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Let us take the derivative of the “two-point variance”  E2(X-μ)2
  with respect 

to  xa  under the conditions of constant  w2  and  μ2   
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.  

If the inequality  xa < μ2 < xb  is true, then the inequalities  (μ2-xa) < (xb-xa),   

0)(2)( 2 <−−− Aba xxxµ   

and, for this derivative,  ∂(E2(X-μ2)
2)/∂xa < 0  are true also. So, under the condition   

a ≤ xa < μ2 < xb ≤ b,  the “two-point variance” reaches its maximum at  xa = a.   

Note that, if  xa = μ2 = xb,  then  E2(X-μ2)
2
 = 0.  

Analogously, one can easily prove that the “two-point variance”  E2(X-μ2)
2
  

reaches its maximum at  xb = b.   

So, the “two-point variance” reaches its maximum at  xa = a  and  xb = b.   

Under the hypothesis that  K ≥ 2,  every point  xa,  such that  a ≤ xa < μ,  has 

the corresponding point  xb,  such that  μ < xb ≤ b  (note, the point  xb  may be the 

same for more than one  xa),  and vice versa.  

The conditions of given  w2  and  μ2  allow satisfying the condition of having 

the given expectation  μ:  For arbitrary pairs of points  xa.1  and  xb.1  varied to  xa.2  
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and  xb.2,  such that  w2.1 = w2.2 = w2  and  μ2.1 = μ2.2 = μ2,  one can write indeed  

)()()()(

)()()()(

2.22.2.22.

1.21.1.21.

bXbaXa

bXbaXa

xfxxfx

xfxxfx

µµµµµµ
µµµµµµ
−+−+−+−=

=−+−+−+−
  

and easily draw  

)()()()(

)()()()(

2.2.2.2.

1.1.1.1.

bXbaXa

bXbaXa

xfxxfx

xfxxfx

µµ
µµ
−+−=

=−+−
.  

That is, the expectation  μ = E(X)  remains the same value for arbitrary pairs of 

varied points, under the above conditions of the constant  w2  and  μ2.  

Therefore, under the condition of having the given expectation  μ,  the 

variance  E(X-μ)2
  attains its maximum for the  fX(x),  that is concentrated at the 

boundaries of the interval.  

 

 

References 

 

[1] Prékopa, A. The discrete moment problem and linear programming, Discrete 

Applied Mathematics 27(3) (1990) 235–254.  

[2] Prékopa, A. Inequalities on Expectations Based on the Knowledge of 

Multivariate Moments, Lecture Notes-Monograph Series 22 Stochastic 

Inequalities (1992) 309–331.  

[3] Dokov, S. P., D.P. Morton. Second-Order Lower Bounds on the Expectation of 

a Convex Function. Mathematics of Operations Research 30(3) (2005) 662–

677.  

[4] Pinelis, I. Exact lower bounds on the exponential moments of truncated random 

variables, Journal of Applied Probability 48(2) (2011) 547–560.  

[5] Harin, А. Data dispersion in economics (II) – Inevitability and Consequences of 

Restrictions, Review of Economics & Finance 2(4) (2012) 24–36.  

[6] Harin, А. General bounds in economics and engineering at data dispersion and 

risk, Proceedings of the Thirteenth International Scientific School “Modeling 

and Analysis of Safety and Risk in Complex Systems” Saint-Petersburg, 

Russia, SUAI, SPb., (2015) 105–117.  

[7] Kahneman, D., and R. Thaler. Anomalies: Utility Maximization and 

Experienced Utility, Journal of Economic Perspectives 20(1) (2006) 221–234.  

 

 


