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
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                                                          Bill Huajian Yang 
                                                          Zunwei Du 
 

                                                      Abstract 
Rating transition probability models, under the asymptotic single risk factor model framework, are widely used in the 
industry for stress testing and multi-period scenario loss projection. For a risk-rated portfolio, it is commonly believed 
that borrowers with higher risk ratings are more sensitive and vulnerable to adverse shocks. This means the asset 
correlation is required be differentiated between ratings and fully reflected in all respects of model fitting. In this paper, 
we introduce a risk component, called credit index, representing the part of systematic risk for the portfolio explained 
by a list of macroeconomic variables. We show that the transition probability, conditional to a list of macroeconomic 
variables, can be formulated analytically by using the credit index and the rating level sensitivity with respect to this 
credit index. Approaches for parameter estimation based on maximum likelihood for observing historical rating 
transition frequency, in presence of rating level asset correlation, are proposed. The proposed models and approaches 
are validated on a commercial portfolio, where we estimate the parameters for the conditional transition probability 
models, and project the loss for baseline, adverse and severely adverse supervisory scenarios provided by the Federal 
Reserve for the period 2016Q1-2018Q1. The paper explicitly demonstrates how Miu and Ozdemir’s original 
methodology ([5]) on transition probability models can be structured and implemented with rating specific asset 
correlation. It extends Yang and Du’s earlier work on this subject ([9]).We believe that the models and approaches 
proposed in this paper provide an effective tool to the practitioners for the use of transition probability models. 

 
Keywords: CCAR stress testing, multi-period scenario, loss projection, credit index, risk sensitivity, asset correlation, 
transition frequency, transition probability, through-the-cycle, maximum likelihood 

 

 

1. Introduction   
 

The largest bank holding companies with assets above $10 billion operating in the United States are subject 
to the Comprehensive Capital Analysis and Review (CCAR, [2]) annual exercise by the Federal Reserve to 
assess whether they have sufficient capital to continue operations throughout times of economic and 
financial stress, and whether they have robust, forward-looking capital-planning processes that account for 
their unique risks. The CCAR stress testing includes the assessment of loss on baseline, adverse, and 
severely adverse scenarios on a quarterly basis provided by the Federal Reserve covering a period of nine 
quarters.  

Under the AIRB (Advanced Internal Rating-Based) framework for a bank, a dynamic rating transition 
probability model provides a tool for multi-period scenario loss assessment: Given the risk rating 
distribution for a risk-rated portfolio at the beginning of a horizon, the risk rating distribution at the end of 
the horizon can be derived by using the conditional transition probabilities given by a scenario.  This 
calculation is re-iterated through a period of time and loss projection for a multi-period scenario is thus 
obtained, given the EAD and LGD components.   

Let }1|{ kiRi  denote a rating system with k ratings, where a lower index i indicates the lower 

default risk. Thus 1R is the best quality rating and kR is the worst rating, i.e., the default rating. It is 

assumed that, under the asymptotic single risk factor (ASRF) model framework, the risk for an entity with a 

non-default rating iR is governed by a latent random variable iz , called the firm’s normalized asset value, 
which splits into two parts as ([1], [3], [4], [5], [6], [9]): 
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             )1,0(~),1,0(~,10,1 NNssz iiiiii                                   (1.1) 
 

where s  denotes the systematic risk (common to all non-default ratings)  and i  is the idiosyncratic risk 

independent of .s  The quantity i is called the asset correlation for rating .iR  It is assumed that there exist 

threshold values }{ ijb such that a firm’s rating migrates from iR to jR  or worse (called downgrade) in 

horizon when iz falls below the threshold value )1(  jkib .  
 

The idiosyncratic risk can be factored in a transition probability model by the threshold values }.{ ijb  In 

contrast, modeling for systematic risk, in presence of rating level asset correlation, is challenging.  
 
When the risk for a portfolio is believed to be homogenous, uniform asset correlation can be assumed, and 
fitting for conditional transition probability models is relatively simple.  However, for a risk-rated portfolio, 
it is commonly believed that borrowers with higher risk ratings are more sensitive and vulnerable to 
adverse shocks, and risk behaviours differ from rating to rating. This means the asset correlation is required 
be differentiated between ratings and fully recognized in all respects of model fitting. This paper explicitly 
demonstrates how Miu and Ozdemir’s original methodology ([5]) on rating transition models can be 
structured and implemented with rating specific asset correlation. 
 
Rating level asset correlation is recognized for transition probability models by Yang and Du ([9]). 
However, the macroeconomic variable coefficients (i.e., the coefficients in (a) below) are fitted via a 
regression ([9], expression (3.3)) without fully reflecting the rating level asset correlation.  New approaches 
for parameter fitting are proposed in this paper with rating level asset correlation being fully recognized. 
 
A credit index, as introduced in the next section and as in its simplest form, is a linear combination of a list 
of given macroeconomic variables, normalized to have zero mean and one standard deviation, under some 
appropriate assumption.  As shown in Theorem 2.3 in the next section, the conditional transition 
probabilities, given the list of macroeconomic variables, can be formulated analytically by the following 
three types of parameters: 
 

(a) The coefficients of macroeconomic variables for the credit index  
(b) The risk sensitivity for a rating with respect to the credit index 

(c) The threshold values }{ ijb  

  
Threshold values in (c) can be estimated separately (Section 2.3). For parameters in (a) and (b), we will 
propose the estimation approaches by maximizing the log-likelihood for observing the historical rating 
transition frequency, with rating level sensitivity fully incorporated. 
 
The advantages of the proposed transition probability models and the parameter estimation approaches 
include the following: 
 

1. Rating transition probability models are structured by a credit index (representing the part of 
systematic risk for the portfolio explained by a list of given macroeconomic variables) and the risk 
sensitivity with respect to this credit index for each rating. 

2. The proposed parameter estimation approaches are based on maximum likelihood for observing 
historical rating transition frequency. The rating level asset correlation is fully recognized in all 
aspects of model fitting. 

3. Transition probability models fitted in this way are robust, not only at the portfolio level, but at the 
rating level as well. 

 
The paper is organized as follows: In section 2, we introduce the concept of credit index, and show the 
analytical formulation of the conditional transition probability models given a list of macroeconomic 
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variables. In section 3, we propose the parameter estimation approaches based on maximum likelihood for 
observing rating transition frequency.  The proposed models and parameter estimation approaches are 
validated in section 4, where we fit a transition probability models and project the loss for a commercial 
portfolio based on the supervisory scenarios provided by the Federal Reserve for the period 2016Q1-
2018Q1. 
 
 

2. Rating Transition Probability Models  
 

In this section, we introduce the concept of credit index, a component representing the part of systematic 
risk explained by a given list of macroeconomic variables. We then show the analytical formulation of the 
condition rating transition probabilities given a list of macroeconomic variables using this credit index.  

 
 

2.1 Rating transition probabilities given the single latent systematic risk factor s      
 

 

Let )(spij  denote the transition probability, given the single latent risk factor ,s  for a firm with a non-

default risk rating iR at the beginning of a horizon and migrating to jR  at the end of the horizon.  

Proposition 2.1. The following equations hold for the transition probability :)(spij   
 

            ]1/)[(]1/)[()( )()1( iijkiiijkiij sbsbsp                  

                        )
~

()
~

( )()1( srbsrb ijkiijki                                                                      (2.1) 

where    

            iiir   1/                                                                                                               (2.2) 

  
2

11/
~

ihiihihi rbbb                                                                                         (2.3) 
 

Proof.  Expressions (2.1) and (2.2) follow from (1.1) and the definition of threshold values }.{ ijb  For 

(2.3), we have by (2.2): 
 

         iir  1/11
2

  

     
2

11/
~

ihiihihi rbbb                 

□ 
 

We call ir the risk sensitivity for rating iR  with respect to the systematic risk factor .s   
 

By (2.1)-(2.3), the default probability )(spik  and downgrade probability )()1( sp ii   are given by: 
 

            )1()(
2

1 srrbsp iiiik  , )1()(
2

)()1( srrbsp iiikiii    

 

Given a non-default rating iR , the risk sensitivity ir  can be estimated by maximizing the log-likelihood for 

observing the default or downgrade frequency, using for example, SAS PROC NLMIXED ([9]).  
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2.2. The credit index and transition probabilities given macroeconomic variables 
     

Given a list of macroeconomic variables ),...,,,( 21 mxxxx  let iu  be the mean value of .ix Consider a 

linear combination of the form:  
 

            ,...)( 2211 mmxaxaxaxc     
 

 Let ).(~
iii uxx   Normalize )(xc by setting  

 

          vxaxaxavuxcxci mm /)~...~~(/])([)( 2211   
 

where u and v  denote respectively the mean and standard deviation of ).(xc  We assume that, in presence 

of the given macroeconomic variables, the systematic risk factor s splits into two parts as in (2.4) below:  
 

10),1,0(~,1)( 2   Neexcis                                       

   ])~~...~~~~([ 2211 exaxaxa mm                                                            (2.4) 
 

where  

21,/~   vaa ii  
 

By (2.1)-(2.4), we have the following expressions for transition probability )(spij : 
 

)])((
~

[)])((
~

[)( )()1( excirbexcirbsp ijkiijkiij                                  (2.5) 

            ])~~...~~~~(
~

[ 2211)1( erxaxaxarb immijki           

                   ])~~...~~~~(
~

[ 2211)( erxaxaxarb immijki                                                   (2.6) 

 

Let )]([ 10 saaEs  denote the expected value of )( 10 saa   with respect to .s  In the subsequent 

discussions, we need the following lemma: 
 

Lemma 2.2. ([8]) )1/()]([
2

1010 aasaaEs  , where )1,0(~ Ns      

 

Let ]|)([)( xspExp ijij   be the expected value of transition probability )(spij  given macroeconomic 

variables )...,,,( 21 mxxxx  .   

 

Theorem 2.3.  Assume that e  in (2.4) is independent of ....,,, 21 mxxx  Then the following equations hold 

for transition probability )(xpij : 

     ))(~())(~()( )()1( xcirbxcirbxp ijkiijkiij                                                             (2.7) 

                )]~~...~~~~(~[ 2211)1( mmijki xaxaxarb                    

                     )]~~...~~~~(~[ 2211)( mmijki xaxaxarb                                                  (2.8)     

where 
 

          )1(1/1/~ 2222   iiiii rrrrr                                                                     (2.9) 

         
222 ~11/

~
ihiihihi rbrbb                                                                                     (2.10) 
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Proof.  Expressions (2.7) and (2.8) follow respectively from (2.5) and (2.6) by Lemma 2.2.  For (2.9) and 
(2.10), we have by Lemma 2.2 and (2.3):     
 

          
)1(1/1

1/1

222

222









iihi

iihihi

rrb

rrbb
 

 

By definition of ,~
ir  we have  

)1(1/1/~ 2222   iiiii rrrrr  

)1(1/1~1 2222  iii rrr           

2~1 ihihi rbb                                                                        

□ 
 

 

The linear combination )~~...~~~~( 2211 mmxaxaxa   in (2.8) is constrained by: 

  

     1)~~...~~~~( 2211  mmxaxaxav                                                                         (2.11) 
 

where (v x) denotes the standard deviation of the random variable .x  

 
The default and downgrade probabilities have a simpler form and are given respectively by: 
 

            )]~~...~~~~(~~1[()( 2211

2

1 mmiiiik xaxaxarrbxp                                       (2.12) 

          )]~~...~~~~(~~1[)( 2211

2

)1( mmiiikiii xaxaxarrbxp                             (2.13) 

 

Given the asset correlations }{ i  in (2.1) and thus },{ ir  the risk sensitivity ir
~ with respect to )(xci  is 

driven by the parameter  as in (2.9).  
 

We define the credit index for a portfolio to be the )(xci where the following conditions are satisfied: 
 

      (a)  The residual e  in (2.4) is independent of ....,,, 21 mxxx  

      (b)  )(xci is obtained from a normalization of a linear combination mmxaxaxa ~...~~
2211   

             with which the model )}({ xpi  best predicting (through maximum likelihood as stated more 

             specifically in section 3.2) the default probability of the portfolio, where 
 
 

                  )]~...~~(~[)( 2211 mmiii xaxaxarcxp                                                   (2.14) 
 

              is a model predicting the default probability for the rating .iR  The quantity ir
~ in (2.14) is driven  

              by (2.9). No constraint is imposed for parameters }{ ic  and }....,,,{ 21 maaa  

 
Condition (b) can be adapted to targeting the downgrade risk (rather than default risk) when default rate for 
the portfolio is low. 
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Similarly to the quantities ir and ,i  defined under model (2.1) with respect to the single latent risk factor 

,s  we have the risk sensitivity ir
~ for rating iR  with respect to the credit index ),(xci  and ,~

i  which is 

defined as:  
 

             
2~  ii    

 

By (2.1) and (2.4), we can think i
~  as the part of asset correlation i  explained by the credit index ).(xci  

 

Proposition 2.4. For quantities ir
~ and ,~

i  the following statements hold: 
 

(a) Similarly to expression (2.2) for ir and ,i   

 
 

(b) ii rr ~  and ii  ~  
 

Proof. Statement (b) follows from the facts 10    and .1 22    For (a), recall: 
 

             
22

1/~  iii rrr   

             )1/(1~1 22222  iii rrr   

                         )1/()1( 222 ii rr   

            )1/()~1/(~ 22222

iiii rrrr                                                                                       (2.15) 

 
By (2.2), we have: 

             iiir   1/  

             )1/(
22

iii rr                                                                                                            (2.16) 

 
By (2.15) and (2.16), we have 
 

             iiii rr  ~)~1/(~ 222   

             iiir  ~1/~~   

□ 
 

Consequently, by (2.7), for the determination of the transition probabilities )},({ xpij    the following 

parameters (total mkk  )1)(1( ) are required: 
 

(a) Parameters maaa ~...,,~,~
21 for macroeconomic variables in credit index )(xci   

(b) Rating level risk sensitivities 121
~...,,~,~
krrr  

(c) Threshold values kjkibij  1,11},{   

 

Remark 2.5. The threshold values }{ ijb can be estimated separately, as shown in the next section. 

Therefore, the key to the transition probabilities )}({ xpij is the determination of parameters: 

maaa ~...,,~,~
21  and .~...,,~,~

121 krrr  

 

iiir  ~1/~~ 
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 2.3. Determination of the threshold values }{ ijb  

 

Let )]([ spEp ijij   be the through-the-cycle (TTC) transition probability.  By Lemma 2.2 and (2.1)-

(2.3), we have: 
 

   
)()(

)]1([)]1([

)()1(

2

)(

2

)1(

jkijki

iijkiiijkiij

bb

srrbEsrrbEp








 

 

This means, }{ ijb can be found by using the TTC transition probabilities }.{ ijp   
 

We now describe how the TTC transition probabilities }{ ijp  can be determined by using the maximum 

likelihood approach.   
 

Given i , the log-likelihood for observing the rating transition frequencies }{ ijn  (through-the-cycle 

frequencies are used here) is (up to a constant given by an appropriate multinomial coefficient number): 
 

                     ikikiiii pnpnpnLL log...loglog 2211                                      (2.17) 
 

Using the relation 121 ...1  kiiiik pppp and setting to zero the derivative of (2.17) with 

respect to ,11,  kjpij we have  
 

             0)...1/(/ 121  kiiiikijij pppnpn  

            ikikijij pnpn //                                                                                           
 

Because this holds for each )1( kjj  for the fixed k , the vector )...,,,( 21 ikii ppp  is in proportion 

with )...,,,( 21 ikii nnn .  Therefore, the maximum likelihood estimate for ijp is given by: 
 

             iijikiiijij nnnnnnp /).../( 21                                                          (2.18) 
 

where 

            ikiii nnnn  ...21  

   
In general, we expect that a rating migrates more likely to a closer non-default rating at the end of the 
horizon than a faraway non-default rating; and higher risk rating carries higher default probability. 
Therefore monotonicity constraints as below are usually imposed: 
 

            121 ...   ikiiii ppp             

            121 ...  iiii ppp                                                                                         

            kkkk ppp 121 ...                                                                                       

 
 
 

3. The Proposed Parameter Estimation Approaches  
 
In this section, we propose the parameter estimation approaches based on maximum likelihood for 
observing historical rating transition frequency. 
 



8 
 

  

3.1 Log-likelihood functions for observing rating transition frequency 
 

Given a non-default rating iR at the beginning of a horizon, we consider the following three rating 

transition frequencies: 
 

(a) ijn - The frequency transiting to jR at the end of the horizon  

(b) id - The default frequency at the end of the horizon 

(c)  idd - The frequency downgraded to a worse or default rating at the end of the horizon. 

 
With the multinomial probability distribution, we have the corresponding log-likelihood functions (for all 

ratings for a single horizon) as below (up to a constant independent of the parameters in )}({ xpij ): 

    ))(log(...))(log())(log( )1(
1

)1(2
1

21
1

1 xpnxpnxpnLL jk

k

j

jkj

k

j

jj

k

j

j 





      (3.1)             

    





1

1

))](log())(1log()[(
k

i

ikiikii xpdxpdnLL                                                    (3.2)                                    

     



 

1

1
)1()1( ))](log())(1log()[(

k

i

iiiiiii xpddxpddnLL                                    (3.3)                                     

where ....21 ikiii nnnn    

 
For parameter fitting for the credit index, we use only (3.2) (or (3.3) when default rate is low for the 

portfolio), with )(xpik given by )(xpi  in (2.14).  For risk sensitivity fitting of },~{ ir  we use (3.2) or (3.3) 

with )(xpik or )(xpik given by (2.7) as below:  
 

             )](~~1[()(
2

1 xcirrbxp iiiik                                                                             (3.4) 

           )](~~1[)(
2

)1( xcirrbxp iiikiii                                                               (3.5) 

 
 

The total log-likelihood for a time series sample is the sum of all the horizon log-likelihoods over all 
horizons. 
 
A function is log concave if its logarithm is concave. If a function is concave, a local maximum is actually 
a global maximum, and the function is unimodal. This property is important for maximum likelihood 
search. 
      

Proposition 3.1. The log likelihood functions (3.2) and (3.3) are concave as a function of ,~...,,~,~
21 maaa  

and (3.4) or (3.5) is log concave as a function of .~
ir  This concavity holds when the standard normal 

cumulative distribution  is replaced by any probability cumulative distribution which is log concave 
(e.g., the cumulative distribution for logistic distribution).  
 
 

Proof. It is well-known that the standard normal cumulative distribution is log concave, and the sum of 

concave functions is again concave.  It is also known that, if )(xf is log concave, then so is ),( bAzf   

where bAz  :
1

RR
m   is any affine transformation from the m-dimensional Euclidean space to the 1-
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dimensional Euclidean space.  This means both the cumulative distribution )(x and )()( xxF   

are log concave, and (3.2) or (3.3) is concave as a function of .~...,,~,~
21 maaa   

 

For the concavity of (3.4) or (3.5) as a function of ,~
ir  it suffices to show that the 2nd derivative of the 

function 

           )]1(log[)( 2
rarbrL                                                                                  (3.6) 

is non-positive for any constants a  and .b  The 2nd derivative  
22 /)]([ drrLd is given by: 

  

)}1(/)1(')]1(/[)]1([{)1/( 22222222
rarbrarbrarbrarbarbr    

)1(/)1)()(1( 22/322
rarbrbrarb                              

    III                                                                                                            (3.7) 
 

where   and '  denote the 1st and 2nd derivatives of  .  Because the factor in the 1st term of (3.7) below 
 

      )}1(/)1(')]1(/[)]1([{ 222222
rarbrarbrarbrarb    

 

corresponds to a 2nd derivative of ),(log x it is non-positive. Thus the 1st term in (3.7) is non-positive. The 

2nd term in (3.7) is non-positive if .0b  For the case ,0b  we can change b back to the negative case 

using the function )()( xxF   and repeat the same discussion to have non-positivity of the 2nd 

derivative of (3.6). 

□ 

 

 

3.2 Parameter estimation by maximum likelihood approaches  
 
 

In this section, we assume that the threshold values }{ ijb are known and so are },{ ir where ir is the risk 

sensitivity given by (2.2) for a non-default rating iR with respect to the latent systematic risk factor .s  This 

is because both }{ ijb and }{ ir are defined before observing any macroeconomic condition

)...,,,( 21 mxxxx   (see section 2.1 for the estimation of },{ ir  and section 2.3 for }).{ ijb  

 

As noted in remark 2.5, the key to the rating transition probabilities )}({ xpij  is the determination of the 

coefficients maaa ~...,,~,~
21 for the credit index, and rating level risk sensitivities 121

~...,,~,~
krrr .  Recall that 

the credit index enters the model via (2.4) and is defined by parameters: , .~...,,~,~
21 maaa  By Proposition 

2.3, the following relation is satisfied for :~
ir  

 

          )1(1/~ 22   iii rrr                                                                                           (3.7) 
 

Given }{ ijb and },{ ir  recall that the coefficients maaa ~...,,~,~
21 for the credit index are derived from a 

normalization of a linear combination ,~...~~
2211 mmxaxaxa   with which the model )}({ xpi  best 

predicting the default probability of the portfolio, where )(xpi  is by (2.14) as: 
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                  )]~...~~(~[)( 2211 mmiii xaxaxarcxp                                                  (3.8)             
 

This can be implemented by using the log likelihood function (3.2) with )(xp ki  being replaced by )(xpi  

above. Maximize the corresponding total log likelihood for parameters , .~...,,~,~
21 maaa  

 

When , maaa ~...,,~,~
21 are known, }~{ ir can be determined in theory by (3.7). However, for a better and 

more robust model, we propose to perform additional recalibration for each ir
~ at rating level by maximum 

likelihood using the total log likelihood via (3.4) or (3.5) across time for that rating.  The final rating 
transition model is given by (2.7). 
 
We thus propose the following two-step approach: 
 

Step 1. Estimate maaa ~...,,~,~
21  for the credit index  

 
 

Maximize the total log likelihood by (3.2) and (3.7) as a function of , .~...,,~,~
21 maaa  To ensure these 

estimates are the global maximum estimates, a series of additional searches are performed: Let ]1,0(  

vary through the set of values }1|/{ NiNi  for large integer N . For each value of ,   calculate }~{ ir

using (3.7). Find the maximum likelihood estimates for maaa ...,,, 21  using the total log likelihood by 

(3.2) and (3.8) for all time for all ratings. By the concavity of (3.2) as a function of ,...,,, 21 maaa  any of 

these local maximum likelihood estimates maaa ...,,, 21  are the global maximum likelihood estimates for 

a given .  Repeat this process for enough many times and compare with the initial results to obtain the 

global maximum likelihood estimate for , ....,,, 21 maaa  Normalize the linear combination 

mmxaxaxa ~...~~
2211  to obtain the estimate for .~...,,~,~

21 maaa     

 

Step 2. Estimate ir
~

for each non-default rating iR separately  

 

Calculate credit index )(xci  as  
 

         vxaxaxaxci mm /)~~...~~~~()( 2211    
 

where v is the standard deviation of .~~...~~~~
2211 mmxaxaxa  We then recalibrate and estimate ir

~ by 

maximizing the total log-likelihood by (3.2) or (3.3) across time for  rating ,iR with )(xpik and )()1( xp ii   

given by (2.7) as: 
 

             )](~~1[()(
2

1 xcirrbxp iiiik                                           

           )](~~1[)(
2

)1( xcirrbxp iiikiii                                  

 
We implemented the above two-step optimization process by using SAS PROC NLMIXED procedure. 
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4. An Empirical Example: CCAR Stress Testing for a Commercial Portfolio 
 
In this section, we fit the rating transition model for a commercial portfolio, and assess the nine quarter 
losses for the portfolio for the supervisory scenarios provided by the Federal Reserve for the period 
2016Q1-2018Q1. 
 
The data is created synthetically from the historical quarterly rating transition frequency for a US 
commercial portfolio (The sample default rate does not reflect the original portfolio true default rate). 

There are 7 ratings for the portfolio, with rating 1R as the best quality rating and 7R as the default rating.  

 
We match the sample to the macroeconomic data (sourced from the Federal Reserve) by calendar quarter. 
We are focused on the following nine macroeconomic variables:    

 
         Table 1. Macroeconomic variables  

       
 
Selection of variables is subject to a governance review process. Each variable should pass the unit root 
tests. Here we consider four lag variables for each macroeconomic variable: lag 0 (current), lag 1 (lag 1 
quarter), lag 2 (lag two quarters), lag 3 (lag three quarters). Each lag variable is named by prefixing to the 
original name by a label “L” together with its lag number.   
 
In the remainder of this section, we are focused on model fitting and scenario loss projection as described 
by (a)-(d) below:   
 
 
(a) Variable selection 

 
Let m denote the number of variables in a model. Due to the limited number of data points in the time 

series sample, we consider only models with .4m  A preliminary model selection process is performed 
via SAS logistic regression with model selection option being set to “Score”, targeting portfolio default 
frequency over the sample. The top best 1000 models (in the form of variable combination, no coefficients 
provided by SAS with this model selection option) for each value of m are selected for subsequent 
evaluations. 
 
(b)  Transition probability model fitting 
 

For each list of macroeconomic variables mxxx ...,,, 21 from step (a), follow the steps proposed in section 

3.2 to fit for coefficients maaa ~...,,~,~
21  and sensitivities 121

~...,,~,~
krrr .  

 
The table below shows the top 10 transition probability models based on the accuracy in predicting the 
portfolio default rate in the downturn period 2008Q1-2009Q4, where the last 6 columns in the table denote 
the risk sensitivity for each non-default rating with respect to the corresponding credit index. The column 
MAD denotes the average deviation (average of absolute values for the prediction error) between the 
realized and predicted portfolio default rate over the period 2008Q1-2009Q4 

# Variable Description

1 GDP_GQOQ_COM Growth Rate of US Gross  Domestic Product (quarter over quarter annual ized by compounding)

2 LURC_DQOQ Increase of US Civi l ian Unemployment Rate (quarter over quarter annual ized)

3 PCREPI_GQOQ_COM Growth Rate of US Commercia l  Real  Estate Price (quarter over quarter annual ized by compounding)

4 PPSDJT_GQOQ_COM Growth Rate of Dow Jones  Total  Stock Market Index (quarter over quarter annual ized by compounding)

5 RCBBB_DQOQ Increase of US BBB 10-Year Corporate Yield (quarter over quarter annual ized)

6 RCBBB_RT10Y US 10-year BBB Corporate Credit Spread 

7 RTB_DQOQ Increase of US 3-Month Treasury Bi l l : Secondary Market Rate  (quarter over quarter annual ized)

8 RT10Y_DQOQ Increase of US Constant Maturi ty Treasury Yield, 10 Yrs   (quarter over quarter annual ized)

9 VIX_FED US Impl ied Volati l i ty (Maximum of dai ly va lues  per quarter)
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          Table 2. Top 10 models             

        
 
 
(c) Transition probability model performance 
 
The charts below show the back-test results for the top transition model (#1 in table 2) between 2006Q1 
and 2015Q1. In general, we expect the predicted default rate is higher in the downturn period 2008Q1-
2010Q1. 
 
The 1st and 2nd charts at top row show the predicted and realized default rates at the portfolio level and for 

rating ,6R respectively.  It turns out that this model is able to pick up the default rate at the portfolio level 

and for ratings 543 ,, RRR and 6R as well. For rating ,1R the best quality rating, the predicted default rate is 

flat as expected, due to its low realized default rate (close to zero except for one quarter) for this rating.   

 
          Figure 1. Predicted vs. realized portfolio default rate for the top model    

 
 
 

(d) Scenario loss projection  
 

Let )(...,),(),( 070201 tststs denote the percentage distribution for ratings 721 ...,,, RRR for the portfolio 

at the beginning 0t of a horizon.  Let )}({ xpij be transition probabilities for this horizon given the list of 

macroeconomic variables )....,,,( 21 mxxxx   To facilitate the subsequent calculations, we add another 

row }{ 7 jp  to the transition matrix: 0)(7 xp j  for ,61  j  and .1)(77 xp  Then the rating 

distribution for the portfolio at the end of the horizon 1t is given by: 

 

                )()(...)()()()()( 7072021011 xptsxptsxptsts iiii   

 

Model CI Model Variable CI Model Parameter Rating Level Risk Sensitivity to CI

# V1 V2 V3 MAD RSQ Parm1 Parm2 Parm3 1 2 3 4 5 6

1 L1_VIX_FED L1_RT10Y_DQOQ 0.0019 0.72 10.40 50.26 0.02 0.13 0.20 0.10 0.12 0.19

2 L1_PCREPI_GQOQ_COM L1_RT10Y_DQOQ L0_LURC_DQOQ 0.0019 0.75 -1.76 17.18 64.75 0.23 0.20 0.24 0.17 0.13 0.17

3 L0_GDP_GQOQ_COM L1_PCREPI_GQOQ_COM 0.0020 0.75 -28.70 -4.69 0.23 0.16 0.25 0.14 0.14 0.18

4 L1_GDP_GQOQ_COM L3_PCREPI_GQOQ_COM 0.0020 0.73 -34.86 -4.42 0.16 0.16 0.21 0.12 0.12 0.17

5 L1_RT10Y_DQOQ L0_LURC_DQOQ 0.0020 0.71 23.89 77.82 0.13 0.20 0.24 0.17 0.11 0.16

6 L1_VIX_FED L0_PPSDJT_GQOQ_COM L2_LURC_DQOQ 0.0021 0.84 2.58 -1.47 60.12 0.18 0.20 0.21 0.16 0.15 0.21

7 L1_PCREPI_GQOQ_COM L0_LURC_DQOQ 0.0021 0.72 -2.10 57.77 0.35 0.20 0.24 0.17 0.13 0.17

8 L3_PCREPI_GQOQ_COM L0_LURC_DQOQ L2_LURC_DQOQ 0.0021 0.82 -1.74 41.16 31.51 0.09 0.20 0.22 0.16 0.14 0.20

9 L1_RCBBB_RT10Y L0_PPSDJT_GQOQ_COM L2_LURC_DQOQ 0.0021 0.83 27.15 -1.69 59.64 0.19 0.20 0.22 0.16 0.14 0.21

10 L1_GDP_GQOQ_COM L0_PPSDJT_GQOQ_COM L2_LURC_DQOQ 0.0021 0.83 -10.24 -1.51 64.67 0.20 0.21 0.22 0.16 0.13 0.21
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Let )( 1tli and )( 1tei denote respectively the LGD and EAD factors for a default facility at the horizon end 

1t  for risk rating iR . Then the marginal portfolio default rate and marginal loss due to the period ],( 10 tt

are given respectively by 
1t

p  and )( 1tL below: 

 

             )()(...)()()()( 6706270217011
xptsxptsxptspt   

             )()()(...)()()()()()()( 1667061227021117011 tfxptstfxptstfxptstL   

 

where )( 1tfi is the sum of products )]()][([ 11 tetl ii  over all facilities for the borrower. Using the top 

transition model selected from table 2, we calculate in the next table the portfolio default rate and loss for 
each quarter for baseline, adverse, and severely adverse scenarios, provided by the Fed for a period of nine 

quarters from 2016Q1 to 2018Q1. Here the cumulative portfolio default rate tc  at time t is calculated from 

the marginal default rate tp by using the formula: 
 

tttt pccc )1( 11    

 
The loss is presented as a percentage of the portfolio total exposure at the beginning of the period. The 
results show that, the model projects a loss of 3.42% for the baseline scenario, and 4.24% for the adverse 
scenario, and 6.11% for the severely adverse scenario:    

 
          Table 3. Loss projection on Fed’s scenarios 2016Q1-2018Q1          

       
 
 

Conclusions. Rating transition probability models are widely used in industry for multi-period scenario 
loss projection. This paper explicitly demonstrates how Miu and Ozdemir’s original methodology can be 
structured and implemented with rating specific asset correlation. The models proposed in this paper are 
structured by using a risk component, called credit index, representing the part of systematic risk for the 
portfolio explained by a list of macroeconomic variables. Rating transition probabilities are formulated 
analytically by using the rating level sensitivity with respect to this credit index. The proposed parameter 
estimation approaches are based on maximum likelihood for observing the historical rating transition 
frequency.  Rating level asset correlation is fully recognized in all respects of model fitting. The resulting 
models by these approaches are in general robust, not only at the portfolio level, but also at the rating level 
as well. These approaches can be implemented easily using, for example, SAS PROC NLMIXED ([9]) by 
modellers. We believe that the models and approaches proposed in this paper provide an effective tool to 
the practitioners for the use of migration matrix methodology for CCAR stress testing and loss projection. 
 
Acknowledgements: The authors thank Carlos Lopez for proposing the use of credit index, his consistent 
inputs, insights, and supports for this research. Special thanks go to Clovis Sukam for his critical reading 
for this manuscript, and Nikolay Hovhannisyan, Wallace Law, and Biao Wu for many valuable discussions, 
insights, and comments.      
  
 

Year / Marginal Port Default Rate Cumulative Port Default Rate Marginal Loss Projection Cumulative Loss Projection

Quar Base Adv Sev Adv Base Adv Sev Adv Base Adv Sev Adv Base Adv Sev Adv

201601 0.40% 0.39% 0.38% 0.40% 0.39% 0.38% 0.0026 0.0026 0.0025 0.0026 0.0026 0.0025

201602 0.32% 0.27% 0.36% 0.72% 0.66% 0.73% 0.0032 0.0027 0.0036 0.0058 0.0053 0.0061

201603 0.38% 0.49% 0.85% 1.10% 1.15% 1.58% 0.0039 0.0050 0.0092 0.0097 0.0103 0.0153

201604 0.40% 0.58% 1.04% 1.50% 1.72% 2.60% 0.0040 0.0060 0.0112 0.0137 0.0162 0.0263

201701 0.44% 0.62% 1.05% 1.93% 2.33% 3.63% 0.0044 0.0064 0.0112 0.0180 0.0225 0.0372

201702 0.43% 0.55% 0.77% 2.34% 2.87% 4.37% 0.0043 0.0056 0.0080 0.0222 0.0280 0.0449

201703 0.42% 0.51% 0.64% 2.76% 3.36% 4.98% 0.0042 0.0052 0.0066 0.0263 0.0330 0.0512

201704 0.42% 0.52% 0.56% 3.16% 3.87% 5.51% 0.0042 0.0053 0.0058 0.0304 0.0382 0.0566

201801 0.39% 0.44% 0.46% 3.55% 4.29% 5.95% 0.0040 0.0044 0.0047 0.0342 0.0424 0.0611
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