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               POINT-IN-TIME PD TERM STRUCTURE MODELS  

            FOR MULTI-PERIOD SCENARIO LOSS PROJECTION    

               - Methodologies and implementations for IFRS 9 ECL  

                   and CCAR stress testing  
 

                                                       Bill Huajian Yang 
                                                                     Abstract 
Rating transition models ([8], [13]) have been widely used for multi-period scenario loss projection for CCAR stress testing and IFRS 
9 expected credit loss estimation. Though the cumulative probability of default (PD) for a rating can be derived by repeatedly applying 
the migration matrix at each single forward scenario sequentially, divergence between the predicted and realized cumulative default 
rates can be significant, particularly when the predicting horizon extends to longer periods ([4]). In this paper, we propose approaches 
to modeling the forward PDs directly. The proposed models are structured via a credit index, representing the systematic risk for the 
portfolio explained by a list  of macroeconomic variables, together with the risk sensitivity with respect to the credit index, for each 
rating and each forward term. An algorithm for parameter estimation is proposed based on maximum likelihood of observing the 
default frequency for each non-default rating and each forward term. The proposed models and approaches are validated on a 
corporate portfolio, where a forward PD model and a point-in-time rating transition model are fitted. It is observed that both models 
demonstrate strong strengths in predicting portfolio quarterly default rate (i.e. in one-term horizon), but the term model outperforms in 
general the transition model as the predicting horizon extends to longer periods (e.g., 1-year or 2-year horizons), due to the fact that 
the term model is calibrated over a longer horizon. We believe that the proposed models will provide practitioners a new and robust 
tool for modeling directly the PD term structure for multi-period scenario loss projection, for CCAR stress testing and IFRS 9 
expected credit loss (ECL) estimation.  

 
Keywords: CCAR stress testing, impairment loan, IFRS 9 expected credit loss, PD term structure, forward PD, marginal PD, credit 
index, risk sensitivity, maximum likelihood 

 
 

1. Introduction  
 

Let )( kk tp  denote the forward probability of default (PD) for a loan in the 
th

k period ],( 1 kk tt  after the 

initial observation time ,0t i.e., the conditional probability of default for the loan in the period given that 

the loan does not default before the period. Then the marginal PD for the loan in the 
th

k period is given 
by: 
 

           )())(1( 11 kkkk tptc   
 

where )( 11  kk tc denotes the cumulative PD for the period ],,( 10 ktt  and ))(1( 11  kk tc is the survival 

probability for the loan for the period ].,( 10 ktt  
 

Let )( ii tl and )( ii te denote respectively the point-in-time LGD and EAD factors for the 
th

i period after the 

initial observation time 0t .  Let )]()][([)( iiiiii tetltf  . Given the point-in-time PD term structure, the 

expected credit loss for a loan in a period from the initial observation time 0t up to the 
th

k period can be 

estimated, assuming the point-in-time EAD and LGD term structures , by: 
 

         )()())(1(...)()())(1()()( 112222111111 kkkkkk tftptctftptctftpLoss          (1.1) 

   
Rating transition models  ([4], [8], [12], [13]) have been widely used for multi-period scenario loss 
projection for CCAR ([5]) stress testing and IFRS 9 ([1], [2], [3]) expected credit loss estimation. Though 
cumulative PDs for a rating can be derived by repeatedly applying the migration matrix at each single 
forward scenario sequentially, divergence between the predicted and realized cumulative default rates can 
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be significant, when the number of iterations increases ([4]). Forward looking point-in-time PD term 
structure comes into play as an option. 
 
A credit index, as introduced in [13] and summarized in the next section, is a linear combination of a list of 
given macroeconomic variables  that best predict the default risk of the portfolio under some appropriate 
assumptions. The linear combination is  normalized to have zero mean and one standard deviation.  As 

shown in Theorem 2.2 in the next section, forward PDs for a non-default risk rating iR  and a forward term 

can be structured via the credit index by using the following three types of parameters: 
 

(a) The coefficients of macroeconomic variables for the credit index, which are common for all 
non-default ratings and forward terms, at the portfolio level   

(b) The risk sensitivity with respect to the credit index for each rating and each forward term 
(c) The threshold value for each rating and each forward term 

  
Threshold values in (c) can be estimated separately (Lemma 2.1 (b)). For parameters in (a) and (b), we will 
propose estimation approaches based on maximum likelihood for observing the default frequency for each 
rating and each forward term. 
 
The advantages for the proposed forward PD model for PD term structure include the following: 
 

1. Analytical formulations for forward PDs can be derived under the Merton model framework 
2. The model is structured via a credit index, representing the part of systematic risk for the portfolio 

explained by a list of given macroeconomic variables, together with the risk sensitivity with respect 
to the credit index, for each rating and each forward term. This means, given the credit index, the 
model for a rating and a forward term is determined by the sensitivity and the threshold value (for 
the intercept).  

3. Parameters estimation is based on maximum likelihood for observing historical forward term 
default frequency, which can be implemented by using, for example, the SAS procedure PROC 
NLMIXED ([10]).  
 

The paper is organized as follows: In section 2, we define the credit index for a portfolio, and derive the 
forward PD model under the Merton model framework.  In section 3, we show how a PD term structure can 
be derived based on forward PDs and how loss can be evaluated over a multi-period scenario using the PD 
term structure.  In section 4, we determine the log-likelihood function for observing the term default 
frequency. In section 5, we propose an algorithm for fitting the forward PD model. The proposed model 
and parameter estimation approaches are validated in section 6, where we fit a forward PD model and a 
point-in-time rating transition model for a corporate portfolio. Back-test and out-of-sample test results are 
provided. 
       

 
 

2. Proposed Models for Forward Probability of Default  
 

Given a borrower with a non-default risk rating iR  at the initial time ,0t  assume the borrower did not 

default in the period ],[ 10 ktt . We assume that the default risk for the borrower in the period ],( 1 kk tt   is 

governed by a latent random variable )(tz ki , called the firm’s normalized asset value, which splits into 
two parts under the Merton model framework as ([6], [7], [8], [9], [12], [13]): 
 

   )1,0(~)(),1,0(~)(,10,1)()()( NtNtsttstz kikikikikiki      (2.1) 

 

where )(ts  denotes the systematic risk (common to all non-default ratings and all terms) at time t  and 

)(tki  is the idiosyncratic risk independent of ).(ts  The quantity ki  is called the asset correlation given 
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the initial risk rating iR and forward term number .k It is assumed that there exist threshold values }{ kib

such that the  borrower  will default in the 
th

k period ],( 1 kk tt   if the normalized asset value )(tz ki falls 

below the threshold value kib .  We call kib the default point for the 
th

k forward term for a borrower 

whose initial risk rating is iR at time 0t .  

 

For simplicity, we supress the time label t  from ),(tz ki ),(ts ),(tki and write them as ,kiz ,s ki
respectively causing no confusions. 
 
 
 

2.1. Forward probability of default   
 

For a borrower with a non-default initial risk rating iR  at the initial time 0t , the 
th

k forward PD is the 

conditional probability that the borrower defaults in  the 
th

k period ],( 1 kk tt   given that the borrower does 

not default in the period ],[ 10 ktt . For a given sample, the forward PD can be estimated by 

 

             )(/)( kkikki tntd                                                                                    (2.2) 
 

where )( kki tn  denotes the number of borrowers who survived  the period ],[ 10 ktt  with an initial  risk 

rating iR  at the initial time 0t , and )( kki td is the number of borrowers, within those )( kki tn  borrowers, 

who defaulted in the period ],( 1 kk tt  . 

 

Let )(sp ki  denote the 
th

k forward PD given the systematic risk s  in the 
th

k period. Under model (2.1), 

we have 
 

                
]1/)([

)|()(

kikikiki

kikiki

sbP

sbzPsp

 


 

              ]1/)[( kikiki sb                                                              (2.3) 
 

where  denotes the standard normal cumulative distribution. Let  
 

                  kikikir   1/                                                                                        (2.4) 
 

                 
222

11/1),1/( kikikikiki rrr                                      (2.5) 
 

By (2.3) and (2.5), we have 
 

                  )1()(
2

srrbsp kikikiki                                                            (2.6) 

 

We can interpret the quantity kir as the risk sensitivity for the 
th

k forward PD, namely ),(sp ki with 

respect to the systematic risk factor .s   
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Given a non-default rating iR at the initial time 0t and a forward term ,k  the risk sensitivity kir  can be 

estimated by maximizing the likelihood given by (2.6) for observing the default frequency for the rating 
and the forward term, using for example, the SAS procedure PROC NLMIXED ([10], [12], [13]).  

 

 
 
 
2.2. The proposed forward PD models 
 

Let )(sE  denote the expectation with respect to s. The threshold value kib can be derived from the 

through-the-cycle average of the 
th

k forward PDs, as shown in the statement (b) below:  
 

Lemma 2.1. (a)  ([11]) )1/()]([
2

1010 aasaaEs  , where )1,0(~ Ns      

(b) ))]([)( spEb kiski   

 
Proof of Lemma 2.1 (b). This follows from (2.6) by applying Lemma 2.1 (a). □ 
 

Given a list of macroeconomic variables mxxx ...,,, 21 with means ,...,,, 21 muuu let )(xw  be a linear 

combination:  
 

            mmxaxaxaxw  ...)( 2211                                                                               (2.7) 
 

Let ).(~
1 ii uxx   Normalize )(xw  by setting  the credit index for the portfolio to be 

 

           vxaxaxavuxwxci mm /)~...~~(/])([)( 2211                                            (2.8) 

 

where u and v  denote respectively the mean and standard deviation of ).(xw  We assume that, given the 

list of macroeconomic variables, the systematic risk factor s splits into two parts as in (2.9) below:  
 

         10),1,0(~,1)( 2   Neexcis                                                  (2.9) 

           ])~~...~~~~([ 2211 exaxaxa mm    
 

where  

             
21,/~   vaa ii  

 

By (2.6) and (2.9), we have: 
 

    )])((1[)(
2

excirrbsp kikikiki                                                            (2.10)                      

                   ])~~...~~~~(1[ 2211

2
erxaxaxarrb kimmkikiki                         (2.11) 

 

 

Let ]|)([)( xspExp kiki   be the expected value of )(sp ki  given macroeconomic variables

)...,,,( 21 mxxxx  . We call )(xp ki the forward PD given the scenario .x  

 
Applying Lemma 2.1 (a) to (2.10) and (2.11), we have the following theorem for forward PDs:   
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Theorem 2.2.  Given a list of macroeconomic variable ,...,,, 21 mxxx  assume that the residual e  in (2.9) 

is independent of ....,,, 21 mxxx  Under (2.1), we have: 

      )](~~1[)(
2

xcirrbxp kikikiki                                                                                (2.12)   

                   )]~~...~~~~(~~1[ 2211

2

mmkikiki xaxaxarrb                                             (2.13)     

where 
 

               )1(1/1/~ 2222   kikikikiki rrrrr                                                (2.14) 

 

Proof.  By (2.14), the definition of ,~
kir  we have: 

 

)1(1/1~1 2222  kikiki rrr           

2222 ~1)1(1/1 kikikikiki rbrrb          

                                                                
We need only to show (2.12).  Applying Lemma 2.1 (a) to (2.10), we have: 
 

])1(1/)()1(1/1[

]|)([)(

22222  



kikikikiki

kiki

rrxcirrb

xspExp
 

         )](~~1[
2

xcirrb kikiki   

 □ 
 

 

There are a lot of choices for (2.8).  Given the asset correlations }{ ki  in (2.1) (thus }),{ kir  we define the 

credit index for a portfolio to be the )(xci by (2.8) satisfying the following conditions : 
 

      (a)  The residual e  in (2.9) is independent of ....,,, 21 mxxx  

      (b)  )(xci is normalized from a linear combination mmxaxaxa ~...~~
2211  with which the model 

            )}(~{ xpi  best predicts (via maximum likelihood as stated more precisely in section 5) the default 

            probability of the portfolio, where 
 
 

                  )]~...~~(~[)(~
22111 mmiii xaxaxarcxp                                          (2.15) 

 

is a model predicting the default probability for the initial rating iR in one-term horizon, and the 

corresponding risk sensitivity 1
~

ir  is driven by (2.14). No constraint is imposed for }...,,,{ 21 maaa  

and the intercept parameters }.{ kic   

 
Remark 2.3. Forward PDs in models (2.12)-(2.13) are given after the portfolio credit index is determined. 

The fact that no constraint is imposed for intercepts }{ kic ensures the full optimization is possible for 

parameters }....,,,{ 21 maaa   

 
Remark 2.4. The portfolio credit index is fitted targeting the portfolio default risk for one-term horizon 
only. It can be extended to cover a longer horizon when data sparsity is not an issue and the risk pattern is 
persistent for the extended horizon.  
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Similarly to the quantities ikr and ,ik  which are defined under (2.1) with respect to the systematic risk 

factor ,s  the quantity kir
~ can be interpreted as the risk sensitivity for the 

th
k forward PD with respect to 

the credit index ),(xci  and a quantity ki
~  can be defined by: 

  

                       
2~  kiki    

 

Proposition 2.5. The following three equations hold: 
 
 
 
 

Proof of Proposition 2.5. We show only the first relation. Notice that .1 22    By (2.14), we have: 
 

             
22

1/~  ikkiki rrr   

             )1/()1()1/(1~1 22222222  kikikikiki rrrrr   

               )1/()~1/(~ 22222

kikikiki rrrr                                                                     (2.16) 
 

By (2.4), we have: 
 

             kikikir   1/  

             )1/(
22

kikiki rr                                                                                              (2.17) 
 

By (2.16) and (2.17), we have 
 

             kikikiki rr  ~)~1/(~ 222   

            kikikir  ~1/~~   

□ 

 

Consequently, by (2.12) and (2.13), for the determination of the forward PDs )},({ xpik  the following 

parameters are required: 
 

(a) Parameters maaa ~...,,~,~
21 for macroeconomic variables in credit index ),(xci  common to all 

non-default ratings and all forward terms 

(b) Risk sensitivities },~{ kir with one sensitivity for each non-default risk rating and each forward 

term 

(c) Threshold values },{ kib with one value for each non-default risk rating and each forward term 
 

The threshold values }{ ikb can be estimated separately by using Lemma 2.1(b). Therefore, the key to the 

probabilities )}({ xp ki is the determination of parameters: maaa ~...,,~,~
21  and }.~{ kir   

 

Remark 2.6.  When the number of ratings is large and data sparsity is an issue, fitting the rating level 

sensitivities }~{ kir  could be a problem.  In practice, we can re-group the risk ratings into fewer classes, for 

example, into grades of investment, sub-investment, and problematic. While the forward term numbers can 
be re-grouped, based on the risk patterns observed from the historical term structure. For example, forward 

222 ~1~1/1),~1/(~~,~1/~~
kikikikikikikiki rrrr  
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term numbers can be re-grouped into },4,3{},2{},1(  and one group for every four consecutive terms 

after time .4t   

 
 

2.3. A review of the benchmark point-in-time rating transition probability models 
 
 

Point-in-time rating transition probability model is proposed by Miu and Ozdemir ([8]), and extended by 
Yang and Du ([12], [13])) to facilitate rating level asset correlation.  
 

Let )(xtij  denote the expected value of transition probability from an initial rating iR at 0t  to rating jR at 

the end of horizon, given macroeconomic variables )...,,,( 21 mxxxx  .  Under the Merton model 

framework (with the k in (2.1) being set to 1), it can be shown ([13]), similarly to (2.12)-(2.13), that   

 

     ))(~())(~()( )()1( xcirqxcirqxt ijkiijkiij                                                             

                )]~~...~~~~(~[ 2211)1( mmijki xaxaxarq                    

                     )]~~...~~~~(~[ 2211)( mmijki xaxaxarq                                                     
 

where  ,~1
2

ihihi rqq  and )(xci  is the portfolio credit index defined similarly using (2.15). The 

quantities }{ ijq are the threshold values with ),(1
ijij pq

 where ijp is the through-the-cycle transition 

probability from rating iR to rating jR , which can be estimated from the historical sample.  The key 

parameters to this rating transition probability model are maaa ~...,,~,~
21  and },~{ ir which can be estimated 

([13]) by an approach similar to the algorithm described in section 5.  
 
 

 

3. The Derived PD Term Structure and Multi-Period Loss Projection 

 
In this section, we describe how a point-in-time PD structure can be derived from the forward PDs, and 
how loss can be projected over a multi-period scenario given the PD term structure or given a point-in-time 
rating migration model. 

    
3.1. Point-in-time PD term structure derived from forward PDs 
 

Let )( ktx  denote the vector of values of macroeconomic variables mxxx ...,,, 21 at time .kt  Let 

)]([ kki txp be the forward PD for the 
th

k forward term given the scenario ).( ktx  For a borrower with a 

non-default initial risk rating iR  at 0t , the cumulative probability of default )( kki tc over the period 

],( 0 ktt can be derived from the forward PDs as follows : 

 

          

...,

)]([)](1[)()(

)]([)(

22111122

1111

txptctctc

txptc

iiii

ii





  

          )]([)](1[)()( 1111 kkikkikkikki txptctctc                        
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Note that the quantity ))(1( kki tc is the survival probability for the period ].,[ 0 ktt The following 

proposition demonstrates the relationship between the forward PD and survival probability:   
 
 
 

Proposition 3.1. The factorization (3.1) holds for the survival probability:            
 

        )])([1)])...(([1)])(([1()(1 2211 kkiiikki txptxptxptc                    (3.1) 

 
Proof.  Factorization (3.1) follows from the equation below by induction: 
 

            )])([1()](1[)(1 11 kkikkikki txptctc                          

□ 
 
 

3.2. Multi-period scenario loss projection   
 

Given the point-in-time PD term structure, the expected credit loss for the period ],( 0 ktt for a loan of a 

borrower, with initial rating iR  at ,0t  can be evaluated as follows (using the notation of (1.1)): 
 

      ...)()]([)](1[)()]([)( 2222111111  tftxptctftxptLoss iiiki  

                   )()]([)](1[ 1 kkkkikki tftxptc                                                             (3.2) 
 

The marginal PD for the period ],( 1 kk tt   is given by )].([)](1[ 11 kkikki txptc   

 

Given the point-in-time rating transition probability and a scenario ),( ktx  let )}({)]([ kjik tttxT   

denote the rating migration matrix, and )( kji tt the probability that a rating iR  will migrate to jR in one-

term horizon.  Assume that higher index rating carries higher default risk and there are, for example, 21 

ratings with 21R  the default rating.  Then the last column of the matrix contains the point-in-time PDs for 

all risk ratings, and the last row of the matrix is set as:  
 

        0)(21 kj tv  if 201  j  

       .1)(2121 ktv  
 

With these notations, the cumulative PD for the period ],( 0 ktt for a loan of a borrower, whose initial risk 

rating is ,iR can be derived by the matrix multiplication as below: 

 

            )]([)]...([)]([ 21 ki txTtxTtxTu                                                                         (3.3) 
 

where iu  is a row vector with all components equal to zero except for 
th

i component, which is 1. 

Consequently, marginal PDs can be derived and multi-period scenario loss can be evaluated using a 
methodology similar to (3.2). 
 
 
 

4. Log-Likelihood Functions for Observing Term Default Frequency 
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In this section, we introduce a concept called forward log-likelihood, corresponding to the forward PD for a 
forward term. We show how the log-likelihood, by observing the multistage term default frequency, can be 
formulated, using the forward log-likelihoods. The log-likelihood function expressions (4.1) and (4.3) 
below will be used later in section 5 for parameter fitting.   
 
Recall from section 2.1 the following notations: 
 

(a) )( kki tn - The number of borrowers who survived the period ],[ 10 ktt  with an initial risk rating 

iR  at the initial time 0t   

(b) )( kki td - The number of borrowers  who defaulted in ],( 1 kk tt  . 

 

Given the historical data for a risk-rated portfolio, a time series of the form )}(),({ kkikik tdtn can be 

derived. The forward log-likelihood is defined for each pair ),( ki as in (4.1) below, for the
th

k forward 

term and the initial rating iR  at time ,0t  using )],([ kki txp i.e., the forward PD for the term :],( 1 kk tt   

 

     
kt

kkikkikkikkikkiki txptdtxptdtnFL )])}([log()()])([1log()]()({[       (4.1) 

with kt sliding through the sample time window. Here we assume that the term default count follows a 

binomial distribution. The binomial coefficient, which is independent of the parameters for )]([ kki txp (as 

given by (2.12) or (2.15)), has been dropped. Expression (4.1) is the actual log-likelihood over the 

conditional probability space given that borrowers have survived the period ].,[ 10 ktt  
 

In general, we are interested in the log-likelihood for a forward period ],[ khh tt  with k terms. We assume 

that there is no withdrawal in the sample, and a borrower either defaults or survives at the end of a period.  
 

Let ),( khhLi  denote the log-likelihood for a borrower with initial rating iR at 0t over the period 

],[ khh tt   given that the borrower survived the period ],[ 10 htt , where the time window ],[ khh tt  slides 

through the sample time window as in (4.1). Similarly, let ),( khhL  be the log-likelihood over the 

period ],[ khh tt  for all borrowers of the portfolio with a non-default initial risk rating at 0t given that the 

borrowers survived the period ],[ 10 htt , where the time window ],[ khh tt  slides through the sample time 

window. 
 
Proposition 4.1. Under the assumption of no withdrawal, the following equations hold (up to a constant 

independent of the parameters for )]}([{ kji txp  as given by (2.12) or (2.15)): 

 

                   khihihii FLFLFLkhhL   ...),( 21                                            (4.2) 

                    
i

i khhLkhhL ),(),(                                                                              (4.3) 

Expression (4.2) demonstrates an additive property of the log-likelihood function: the log-likelihood for a 
forward period of consecutive forward terms is the sum of the individual forward log-likelihoods for the 
forward terms. This is expected because of the multiplicative property of the conditional probability for a 
multistage event.    
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Proof of Proposition 4.1.  Equation (4.3) follows directly from (4.2). We show only (4.2), and the case 

when .0h  For the simplicity, we write  
 

     ),( jji tn ),( jji td )],([ jji txp  )( jji tc   
 

respectively by:   
 

     ,jn ,jd ,jp and .jc  
 

Note that the marginal probability that a borrower with an initial rating iR defaults in the period ],( 1 jj tt 

is: .)1( 1 jj pc  Thus the likelihood for observing jd defaults in period ],( 1 jj tt  is:  
 

      jj d

j

d

j pc )1( 1  
 

(up to a factor given by binomial coefficient of choosing jd defaulters from jn borrowers). Consequently, 

the likelihood for observing a sequence kjjd ...,,2,1}{   of defaults in the period ],,( 0 ktt with jd defaults in 

each period ],,( 1 jj tt  is: 
 

    
)...(

12121
2113221 )1()1...()1()1(...)( kkk dddn

k

d

k

ddd

k

dd

k ccccpppt


      (4.4) 
   

(up to a constant factor given by binomial coefficients) where the last factor 
)...( 211)1( kdddn

kc
 is the 

likelihood of those surviving the entire period ],[ 0 ktt at the end.  

 
Because of the no-withdrawal assumption, the following equation holds: 
 

          )...( 1211  ii dddnn                                                                                  (4.5) 

 
By equation (3.1) of Proposition 3.1, we have: 
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1
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21
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ddndn
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
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kkkk dn

k

dn

k
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


   )1()1(...)1()1( 112211

121                                    (4.6) 
 
 

The last equality (4.6) follows from (4.5).  By (4.4), we have the following log-likelihood for the period 

:],[ 0 ktt    
 

  ...)]1log()()log([)]1log()()log([))(log( 2222211111  pdnpdpdnpdtk  

                   )]1log()()log([ kkkkk pdnpd                                                
 

Letting the period ],[ 0 ktt slide through the sample time window, we obtain the following log-likelihood: 
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kiii

t

ki FLFLFLtkL
k

 ...))(log(),0( 21  

□ 
 
A function is log concave if its logarithm is concave. If a function is concave, a local maximum is  actually 
a global maximum, and the function is unimodal. This property is important for searching of the maximum 
likelihood estimates. 
      

Proposition 4.2. The log likelihood function (4.1), where )]([ kki txp  is given by (2.15), is concave as a 

function of ,ic ,...,,, 21 maaa  and it is concave as a function of ,~
kir where )]([ kki txp  is given by (2.12). 

This concavity of (4.1) holds when the cumulative standard normal distribution  is replaced by any 
cumulative probability distribution which is log concave (e.g., the cumulative distribution for logistic 
distribution).  
 
 

Proof. It is well-known that the cumulative standard normal distribution is log concave, and the sum of 

concave functions is again concave.  It is also known that, if )(xf is log concave, then so is ),( bAzf   

where bAz  : 1
RR

m   is any affine transformation from the m-dimensional Euclidean space to the 1-

dimensional Euclidean space. This means both the cumulative distribution )(x and )()( xxF   are 

log concave, and (4.1) is concave as a function of ,ic ,...,,, 21 maaa where )]([ kki txp is given by (2.15). 

 

For the concavity of (4.1) as a function of ,~
kir  where )]([ kki txp  is given by (2.12), it suffices to show 

that the 2nd derivative of the function 
 

           )]1(log[)( 2
rarbrL                                                                                  (4.7) 

 

is non-positive for any constants a  and .b  The 2nd derivative  
22 /)]([ drrLd is given by: 

 

 )}1(/)1(')]1(/[)]1([{)1/( 22222222
rarbrarbrarbrarbarbr    

)1(/)1)()(1( 22/322
rarbrbrarb                              

    III                                                                                                            (4.8) 
 

where   and '  denote the 1st and 2nd derivatives of  .  Because the factor in the 1st term of (4.8) below 
 

      )}1(/)1(')]1(/[)]1([{ 222222
rarbrarbrarbrarb    

 

corresponds to a 2nd derivative of ),(log x it is non-positive. Thus the 1st term in (4.8) is non-positive. The 

2nd term in (4.8) is non-positive if .0b  For the case ,0b  we can change b back to the negative case 

using the function )()( xxF   and repeat the same discussion to have non-positivity of the 2nd 

derivative of (4.7). □ 
 
 
 

5. Parameter Estimation by Maximum Likelihood Approaches   
 

In this section, we assume that the threshold values }{ kib are known and so are },{ kir where kir is the risk 

sensitivity given by (2.1) and (2.4) for the initial rating iR  and term k with respect to the latent systematic 
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risk factor .s  Note that both }{ ijb and }{ kir are defined before observing any macroeconomic condition

)...,,,( 21 mxxxx   (see section 2.1 for the estimation of },{ kir  and Lemma 2.1 (b) in section 2.2 for 

}).{ ikb  

 

As indicated at the end of section 2.2, the key to the forward PDs )}({ xpik  is the determination of the 

coefficients maaa ~...,,~,~
21 for the credit index, and rating level risk sensitivities }~{ kir .  The credit index 

enters the model via (2.9) and is defined by parameters: , .~...,,~,~
21 maaa  Recall that by (2.14) the 

following relation is satisfied: 
 

                    )1(1/~ 22   kikiki rrr                                                                                    (5.1) 

 

Given }{ kib and },{ kir  recall that the coefficients maaa ~...,,~,~
21 for the credit index are derived from a 

normalization of a linear combination ,~...~~
2211 mmxaxaxa   with which the model )}(~{ xpi  best 

predicts the default probability of the portfolio for initial ratings for one-term horizon, where )(~ xpi  is by 

(2.15) as: 
 

                  )]~...~~(~[)(~
22111 mmiii xaxaxarcxp                                                  (5.2)             

 

This can be implemented by using the log likelihood function (4.1) with )(xp ki  being replaced by )(~ xpi  

above. Maximize the corresponding total log likelihood for parameters , .~...,,~,~
21 maaa  

 

When , maaa ~...,,~,~
21 are known, }~{ kir can be determined by a calibration for each kir

~
at rating level by 

maximizing the total log likelihood by (4.1) for the initial rating iR and termk with )(xp ki  being given by 

(2.12), that is, the final term structure model is given by (2.12). 
 
 
We thus propose the following two-step approach: 
 

Step 1. Estimate maaa ~...,,~,~
21  for the credit index  

 

Get the first estimates for , maaa ...,,, 21  by maximizing the total log likelihood by (4.1) and (5.2) for 

all initial ratings for one forward term as a function of , ....,,, 21 maaa  To ensure these first estimates 

are the global maximum likelihood estimates, a series of additional s earches are performed: Let )1,0(  

vary through the set of values }1|/{ NiNi  for large integer N (e.g., 10N ). For each value of ,  

calculate }~{ kir using (5.1). Find the maximum likelihood estimates for maaa ...,,, 21  using the total log 

likelihood by (4.1) and (5.2) for all initial ratings and one term. By the concavity of (4.1) as a function of 

,...,,, 21 maaa  any of these local maximum likelihood estimates maaa ...,,, 21  are the global maximum 

likelihood estimates for a given .  Use these estimates as the initial values for , ,...,,, 21 maaa  and re-

maximize the total log likelihood by (4.1) and (5.2) as a function of , ....,,, 21 maaa  Repeat this process 

to obtain the global maximum likelihood estimate for , ....,,, 21 maaa  Normalize the linear combination 

mmxaxaxa ~...~~
2211  to obtain the estimate for .~...,,~,~

21 maaa     
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Step 2. Estimate kir
~

for each initial rating iR and term k  separately  

 

Calculate credit index )(xci  as:  
 

         vxaxaxaxci mm /)~~...~~~~()( 2211    
 

where v is the standard deviation of .~~...~~~~
2211 mmxaxaxa  We then calibrate and estimate ikr~ by 

maximizing the total log-likelihood using (4.1) for the initial rating iR  and termk with )]([ kki txp being 

given by (2.12) as: 
 

           )](~~1[)(
2

xcirrbxp kikikiki   

 
We implemented the above two-step optimization process by using SAS PROC NLMIXED procedure. 
 
 
 

6. An Empirical Example: The PD Term Structure for a Corporate Portfolio 
 

 

The sample is created synthetically from a historical dataset of a corporate portfolio containing quarterly 
rating level default frequency (The sample default rate does not represent the original portfolio default 

rate). There are 21 ratings for the portfolio, with rating 1R being the best quality rating and 21R the default 

rating. The higher the rating index, the higher default risk.  
 
The chart below depicts the trend of forward default rates, averaged over the sample time window, for 20 
forward terms (i.e., 20 forward quarters): 
 

1. At portfolio level  
2. For investment rating  
3. For sub-investment rating  

 
It is observed that the simple average forward default rates tend to converge after about 20 terms: 
 
            Figure 1. S imple average forward default rate 

         
 
For this reason, we can focus on terms covering a period of 4 years (16 quarters). For terms beyond 16 
quarters, a constant forward rate is assumed for all ratings.  This constant rate can be estimated, for 
example, by the portfolio level average forward default rate for the 5th year. 
 
Macroeconomic data is sourced from the Federal Reserve. It is merged with the term default frequency 
sample by matching the end quarter of a term to the calendar quarter of the macroeconomic data. Inclusion 
of macroeconomic variables is subject to a governance review process. All variables should pass the unit 
root tests.  We consider four lag-versions for each macroeconomic variable: lag 0 (current), lag 1 (lag 1 
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quarter), lag 2 (lag two quarters), lag 3 (lag three quarters). Each lag-version variable is named by prefixing 
to the original name by a label “L” together with its lag number. 
 
The table below shows the 9 macroeconomic variables we use. The Pearson correlation to the quarterly 
portfolio level default rate is reported in the last 4 columns for the four lag-versions of each variable:    
 
 
 

         Table 1. Macroeconomic variables 

         
         

 

In the remainder of this section, we focus on model fitting, as described by (a)-(c) below:   
 
 
(a) Variable selection for term models 

 
Let m denote the number of variables in a model. Due to the limited number of data points in the time 

series sample, we consider only models with 2m or .3  A preliminary model selection process is 

performed via SAS logistic regression with model selection option being set to “Score”, targeting portfolio 
level default frequency over the sample. The top best 5000 models for each value of m are selected for 
further processing. 
 
This SAS selection option calculates the score statistics for each possible variable comb ination without 
performing a full regression analyses, then select the specified number of models based on the higher score 
statistics.  
 
 
(b)  Forward PD model fitting 
 

For each list of macroeconomic variables mxxx ...,,, 21 from step (a), follow the steps proposed in section 5 

to fit for coefficients maaa ~...,,~,~
21  and sensitivities }.~{ kir  

 

The table below shows the top 10 forward PD models ranked by RSQ for portfolio level quarterly default 
rate (e.g., 1st term), and the average RSQ for portfolio level forward default rates for forward terms in the 
1st, 2nd, 3rd, and 4th years. 
 
 
       Table 2. Top 10 models    

      
 
 

# Variable Description

1 GDP_GQOQ_COM Growth Rate of US Gross  Domestic Product (quarter over quarter annual ized by compounding)

2 LURC_DQOQ Increase of US Civi l ian Unemployment Rate (quarter over quarter annual ized)

3 PCREPI_GQOQ_COM Growth Rate of US Commercia l  Real  Estate Price (quarter over quarter annual ized by compounding)

4 PPSDJT_GQOQ_COM Growth Rate of Dow Jones  Total  Stock Market Index (quarter over quarter annual ized by compounding)

5 RCBBB_DQOQ Increase of US BBB 10-Year Corporate Yield (quarter over quarter annual ized)

6 RCBBB_RT10Y US 10-year BBB Corporate Credit Spread 

7 RT10Y_DQOQ Increase of US Constant Maturi ty Treasury Yield, 10 Yrs   (quarter over quarter annual ized)

8 RTB_DQOQ Increase of US 3-Month Treasury Bi l l : Secondary Market Rate  (quarter over quarter annual ized)

9 VIX_FED US Impl ied Volati l i ty (Maximum of dai ly va lues  per quarter)

# V1 V2 V3

1st  

Quart

er

1st 

Year

2nd 

Year

3rd 

Year

4th 

Year

1 L0_PPSDJT_GQOQ_CO

M

L1_RTB_DQOQ L0_LURC_DQOQ 0.66 0.63 0.59 0.71 0.32

2 L3_PCREPI_GQOQ_CO

M

L1_RTB_DQOQ L0_LURC_DQOQ 0.61 0.70 0.76 0.79 0.36

3 L0_VIX_FED L1_RTB_DQOQ L0_LURC_DQOQ 0.60 0.61 0.61 0.73 0.35

4 L1_RTB_DQOQ L1_RT10Y_DQOQ L0_LURC_DQOQ 0.60 0.69 0.75 0.78 0.34

5 L0_GDP_GQOQ_COM L1_RTB_DQOQ L0_LURC_DQOQ 0.59 0.61 0.61 0.72 0.24

6 L3_GDP_GQOQ_COM L1_RTB_DQOQ L0_LURC_DQOQ 0.58 0.69 0.79 0.80 0.40

7 L2_PCREPI_GQOQ_CO

M

L1_RTB_DQOQ L0_LURC_DQOQ 0.58 0.69 0.77 0.78 0.36

8 L3_RCBBB_RT10Y L1_RTB_DQOQ L0_LURC_DQOQ 0.57 0.68 0.78 0.78 0.38

9 L1_PCREPI_GQOQ_COM L1_RTB_DQOQ L0_LURC_DQOQ 0.56 0.68 0.77 0.73 0.40

10 L0_RCBBB_RT10Y L1_PCREPI_GQOQ_COM L1_RTB_DQOQ 0.56 0.68 0.77 0.83 0.42
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(c) Benchmarking and back tests for the selected forward PD model  
 
The top term model selected from Table 2 is scored over the development sample. Two rating migration 
models are used for benchmarking: 
 

(1) The through-the-cycle rating transition model   
(2) A point-in-time rating transition model, using the same list of macroeconomic variables as for the 

selected top forward term model. 
 
The through-the-cycle transition matrix is calculated from the rating migration frequency across time 
(Lemma 2.1 (b), or see [12] for detailed calculation). The point-in-time transition model is developed 
following the approaches as reviewed in section 2.3. 
 
The figure below plots the quarterly portfolio level default rate (e.g., one-term horizon), and portfolio level 
cumulative default rate for 1, 3, and 4 year horizons.    
 
   Figure 2. Predicted vs. realized cumulative portfolio default rate    

     
 

 

Model RSQ is given as in the tables 3 for back-test for the selected point-in-time term structure model and 
point-in-time transition model, to predict the portfolio cumulative default rates over the entire sample: 
 

     
        
For the out-of-sample test for the model methodologies, we face a limitation for the availability of the 
number of data points  (number of quarters) and the number of downturn periods in the time series sample.  
We split the time series sample into two parts: the training and validation. The term and transition models 
are refitted over the training sample consists data points up to year of 2010, based on the end quarter of a 
forward term, using the same list of macroeconomic variables for both models as the top selected term 
model. The sample after 2010 is used as the validation sample.  Model RSQ over the training sample is 
reported in table 4.  Since the training sample contains the stress period (2008Q1-2009Q4) when default 
rate is very high, while the validation sample covers a period after 2010 when default rate is very low (a 
period of 5 years after 2010), for a fair comparison between training and validation, we report only the 
model RSQ over the combined sample. 
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T able  3. Backtest - mode l RSQ for predicting  

        portfolio cumula tive  de fault ra te      

0.88 0.88 0.76 0.77

0.67 0.81 0.72 0.56 0.38

T able  4.  Out sample  test - mode l RSQ for predicting portfolio cumula tive  de fault ra te

0.91 0.91 0.90 0.54 0.86 0.87 0.82 0.83

0.74 0.83 0.69 0.76 0.21 0.70 0.76 0.58 0.33 0.11
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The following are observed from this empirical example: 
 

(a) The point-in-time term model slightly underperforms the point-in-time transition model for 
predicting portfolio default rate for one-quarter horizon. Both models demonstrate strong strengths 
in predicting portfolio quarterly default rate, particularly, for the downturn period 2008Q1-
2010Q1.  

(b) The point-in-time term model outperforms in general the point-in-time transition model when 
predicting horizon extends to longer periods , due to the fact that the term model is calibrated over 
a longer horizon. 

(c) Through-the-cycle transition model is weak in picking up the trends during the economic recession 
or expansion.  
 

         
Conclusions . Models that directly fit the forward term default rate are proposed in this paper. The proposed 
models are structured via a credit index, representing the part of systematic risk for the portfolio explained 
by a list of given macroeconomic variables, together with the risk sensitivity, for each non-default initial 
risk rating and each forward term. An algorithm for parameter fitting is proposed by using the maximum 
likelihood for observing the term default frequency.  We believe the proposed model and approaches will 
provide practitioners a new and robust tool to the modeling of PD term structure for multi-period scenario 
loss projection, for CCAR stress testing and IFRS 9 expected credit loss estimation.  
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