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POINT-IN-TIME PD TERM STRUCTURE MODELS
FOR MULTI-PERIOD SCENARIO LOSS PROJECTION*

- Methodologies and imple mentations for IFRS 9 ECL
and CCAR stress testing

Bill Huajian Yang
Abstract

Rating transition models ([8], [ 13]) have been widely used for multi-period scenario loss projection for CCAR stress testing and IFRS
9 expected credit loss estimation. Though the cumulative probability of default (PD) fora rating can be derived by repeatedly applying
the migration matrix at each single forward scenario sequentially, divergence between the predicted and realized cumulative default
rates can be significant, particularly when the predicting horizon extends to longer periods ([4]). In this paper, we propose approaches
to modeling the forward PDs directly. The proposed models are structured via a credit index, representing the systematicrisk forthe
portfolio explained by a list of macroeconomic variables, together with the risk sensitivity with respect to the credit index, for each
rating and each forward term. An algorithm for parameter estimation is proposed based on maximum likelihood of observing the
default frequency foreach non-default rating and each forward term. T he proposed models and approaches are validatedon a
corporate portfolio, where a forward PD model and a point-in-time rating transition model arefitted. It is observed that both models
demonstrate strong strengths in predicting portfolio quarterly default rate (i.e. in one-term horizon), but the term model outperforms in
general the transition model as the predicting horizon extends to longer periods (e.g., 1 -yearor 2-year horizons), due to the fact that
the termmodel is calibrated over a longer horizon. We believe that the proposed models will provide practitioners a new and robust
tool for modeling directly the PD term structure for multi-period scenario loss projection, for CCAR stress testing and IFRS9
expected credit loss (ECL) estimation.

Keywords: CCAR stress testing, impairment loan, IFRS9 expected credit loss, PD term structure, forward PD, marginal PD, credit
index, risk sensitivity, maximum likelihood

1. Introduction

Let p, (l‘k) denote the forward probability of default (PD) for a loan in the k th period (l‘kf1 s Zk] after the

initial observation time £, i.., the conditional probability of default for the loan in the period given that

. . . h S
the loan does not default before the period. Then the marginal PD for theloan in the k' period is given
by:

(A—c ()P ()

where ¢,_,(%,_,) denotes the cumulative PD for the period (Z,,?,_,], and (1—c,_;(#,_,)) is thesurvival

probability for the loan for the period (%,,#,_;].

Let [ (t;) and e,(t;) denote respectively the point-in-time LGD and EAD factors for the i" period after the
initial observation time f,,. Let f;(¢,) =[[,(¢,)][e;(?,)]. Given the point-in-time PD term structure, the

. . . L S th .
expected credit loss for a loan in a period from theinitial observation time f, up to the k period can be

estimated, assuming the point-in-time EAD and LGD term structures, by:
Loss = p,(t) f,(t) + (A=, (t) p, ) [, (&) + ...+ (L=, (0, ) P (8) fo (8,) (LD

Rating transition models ([4], [8], [12], [13]) have been widely used for multi-period scenario loss
projection for CCAR ([5]) stress testing and IFRS 9 ([1], [2], [3]) expected credit loss estimation. Though
cumulative PDs for a rating can be derived by repeatedly applying the migration matrix at each single
forward scenario sequentially, divergence between the predicted and realized cumulative default rates can
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be significant, when the number of iterations increases ([4]). Forward looking point-in-time PD term
structure comes into play as an option.

A credit index, as introduced in [13] and summarized in the next section,is a linear combination of a list of
given macroeconomic variables thatbest predict the default risk of the portfolio under some appropriate
assumptions. The linear combination is normalized to have zero mean and one standard deviation. As

shown in Theorem 2.2 in the next section, forward PDs for a non-default risk rating Ri and a forward term

can be structured via the credit index by using the following three types of parameters:

(a) The coefficients of macroeconomic variables for the credit index, which are common for all
non-default ratings and forward terms, at the portfolio level

(b) The risk sensitivity with respect to the credit index for each rating and each forward term

(¢c) The threshold value for each rating and each forward term

Threshold values in (c) can be estimated separately (Lemma 2.1 (b)). For parameters in (a) and (b), we will
propose estimation approaches based on maximum likelihood for observing the default frequency for each
rating and each forward term.

The advantages for the proposed forward PD model for PD term structure include the following:

1. Analytical formulations for forward PDs can be derived underthe Merton model framework

2. The model is structured via a credit index, representing the part of systematic risk for the portfolio
explained by a list of given macroeconomic variables, together with therisk sensitivity with respect
to the credit index, for each rating and each forward term. This means, given the credit index, the
model for a rating and a forward term is determined by the sensitivity and the threshold value (for
the intercept).

3. Parameters estimation is based on maximum likelihood for observing historical forward term
default frequency, which can be implemented by using, for example, the SAS procedure PROC
NLMIXED ([10]).

The paper is organized as follows: In section 2, we define the credit index for a portfolio, and derive the
forward PD model underthe Merton model framework. In section 3, we showhow a PD term structure can
be derived based on forward PDs and how loss can be evaluated over a multi-period scenario using the PD
term structure. In section 4, we determine the log-likelihood function for observing the term default
frequency. In section 5, we propose an algorithm for fitting the forward PD model. The proposed model
and parameter estimation approaches are validated in section 6, where we fit a forward PD model and a
point-in-time rating transition model for a corporate portfolio. Back-test and out-of-sample testresults are
provided.

2. Proposed Models for Forward Probability of Default

Given a borrower with a non-default risk rating R, at the initial time #,, assume the borrower did not

default in the period [Z,,%,_;]. We assume that the default risk for the borrower in the period (#,_;, %, ] is

governed by a latent random variable z;, (), called the firm’s normalized assetvalue, which splits into
two parts underthe Merton model framework as ([6], [7], [8], [9], [12], [13]):

2O =sOp, +&, OJ1=p, , 0<p., <1, s(t)~NO.D, &, ~N©O,1) @1

where S(t) denotes the systematic risk (common to all non-default ratings and all terms) at time f and

&;, (1) is theidiosyncratic risk independent of S(l). The quantity 0, is called the asset correlation given



the initial risk rating R, and forward term number k. It is assumed that there exist threshold values {b, , }
such that the borrower will default in the k" period (tk_l, tk] if the normalized assetvalue z,, (¢) falls

below the threshold value b, , . We call b, , the default point for the k" forward term for a borrower

whose initial risk rating is R, at time?, .

For simplicity, we supress the time label ¢ from z,, (¢), (), &, (¢), and write themas z,,, s, &;;

respectively causing no confusions.

2.1. Forward probability of default

For a borrower with a non-defaultinitial risk rating Ri at the initial time l‘0 , the krh forward PD is the
conditional probability that the borrower defaults in the k' period (Z‘k_l, l‘k] given that the borrower does

notdefault in the period [ZO, lk_l] . For a given sample, the forward PD can be estimated by

d; () n, (@) 2.2)

where 1, (tk) denotes the number of borrowers who survived the period [lo, tk_l] with an initial risk
rating R, at theinitial time 7, and d,, (¢, )is the number of borrowers, within those 7, (¢, ) borrowers,

who defaulted in the period (Z‘,H R l‘k] .

Let p; (s) denote the k " forward PD given the systematicrisk § in the kth period. Under model (2.1),

we have
P (8)=P(z, <b,|s)
=Ple,, <(by—s /P ) 1-p,, ]
= Db, —5/p ) \1-p,, ] 23)

where @ denotes the standard normal cumulative distribution. Let

hie =P IY1= P 24
= Pix =r;‘k2/(1+’;‘k2)’ 1/\/1_/01‘1{ =\I1+rz‘k2 2.5)

By (2.3) and (2.5), we have
P ()= @(by\1+1," —1,8) 2.6)

i
We can interpret the quantity 7;, as the risk sensitivity for the k" forward PD, namely p,, (§), with

respect to the systematic risk factor .



Given a non-default rating Rl. at the initial time 7 and a forward term k, therisk sensitivity 7;, canbe

estimated by maximizing the likelihood given by (2.6) for observing the default frequency for the rating
and the forward term, using for example, the SAS procedure PROC NLMIXED ([10], [12], [13]).

2.2. The proposed forward PD models

Let Es () denote the expectation with respectto s. The threshold value b,, canbe derived from the

h .
through-the-cycle average of the k" forward PDs, as shownin the statement (b) below:

Lemma 2.1.(a) ([11)) E [P (a,+ a,5)]=D(a,//1+ a12 ), where s ~ N(0O,1)
(b) (D(blk) = Es [pik (S))]

Proof of Lemma 2.1 (b). This follows from (2.6) by applying Lemma 2.1 (a). O

Given a list of macroeconomic variables X, X,, ..., X,, with means U, U,,...,U, ,let W()C) be a linear

combination:

w(x)=ax, +a,x, +...+a,x, 2.7)
Let X, = (X, —u;). Normalize W(X) by setting the credit index for the portfolio to be
ci(x) =[w(x)—ul/v=(aXx +a,x, +...+a,x,)/v 2.8)

where U and V denote respectively the mean and standard deviation of W(X). We assume that, given the

list of macroeconomic variables, the systematic risk factor § splits into two parts asin (2.9) below:

s=—Aci(x)—e1=2, e~N(,1), 0<A<1 2.9)
=-{A(ax, +a,x, +...+a,x,)+oe]

a=alv, c=A1-2

By (2.6) and (2.9), we have:

where

P (8)=®[b 1+, +1 (Aci(x) + oe)] (2.10)
= @b 1471, + 1, MAF + 0,7, +...+d,%,)+7,0¢] @.11)

Let p,, (x) = E[p;, ()] x] be the expected value of p;, () given macroeconomic variables

X = (xl,x2,...,xm) .Wecall p; (x) the forward PD given the scenario X.

Applying Lemma 2.1 (a) to (2.10) and (2.11), we have the following theorem for forward PDs:



Theorem 2.2. Given a list of macroeconomic variable X, X,, ..., X,,, assume that the residual e in (2.9)

is independentof X;, X,,..., X, . Under (2.1), we have:

P () =D[b, 1+ 7+ Fci(x)] 2.12)
=®[b, 1+7, +F,(@5F +a,%, +...+d,%,)] @2.13)
where

R =r Al Jlen o = Al 1+ (=27 2.14)

Proof. By (2.14), the definition of Zk, we have:

JI+F2 = len 2 114 n,20-2)
= b, 1Hn 11 A=) =b, 147,

We need only to show (2.12). Applying Lemma 2.1 (a) to (2.10), we have:
Dix ()C) = E[P,-k (S) | x]

= Ofb, 141 L, (A= 2) +ei) n Al L+, (1= )]

= @b, \1+7, +F,ci(x)]

There are a lot of choices for (2.8). Given the asset correlations {,Oik} in (2.1) (thus {I’,-k D), we define the

credit index for a portfolio to be the ci(x)by (2.8) satisfying the following conditions:

(a) The residual € in (2.9) is independentof X, X,,..., X, .
(b) ci(x)is normalized from a linear combination @,X, + @,X, +...+a, X, with which the model

{ﬁl(x)} best predicts (via maximum likelihood as stated more precisely in section 5) the default

probability of the portfolio, where

D, (x)=D[c, +7,(aX +a,X, +...4+a,Xx,)] (2.15)

m--m

is a model predicting the default probability for the initial rating Ri in one-term horizon, and the
corresponding risk sensitivity 7;, is driven by (2.14). No constraintis imposed for{al,az,...,am}

and the intercept parameters {C;, }.

Remark 2.3. Forward PDs in models (2.12)-(2.13) are given after the portfolio credit index is determined.
The fact that no constraint is imposed for intercepts {C,, } ensures the full optimization is possible for

parameters {al,az,...,am}.
Remark 2.4. The portfolio credit index is fitted targeting the portfolio default risk for one-term horizon

only. It can be extended to cover a longer horizon when data sparsity is not an issue and the risk pattern is
persistent for the extended horizon.



Similarly to the quantities 7 and 0,., which are defined under (2.1) with respect to the systematic risk

o~ . . e th .
factor s, the quantity ¥;, can be interpreted as therisk sensitivity for the k" forward PD with respect to

the credit index Ci(X), and a quantity p,, canbe defined by:
~ 2
Piy = Pl

Proposition 2.5. The following three equations hold:

Fik :\//51‘1( / 1_/51‘1( > ﬁik :7ik2 /(1+7;‘k2)’ 1/\/1_ﬁik :Vl—i_Fikz

Proof of Proposition 2.5. We showonly the first relation. Notice that 62 =1 _22. By (2.14), we have:

= rik;“‘\ll"'rikzo-z
= 1+7 =1+, 2 /1+1,20%) =(1+1,) [(1+r,°0%)
=72 IA+F ) = 2 (0 +1,0) 2.16)

By (2.4), we have:

Tk =~ Pik /\ll_pik
= py =1 MA+7,0) @.17)
By (2.16) and (2.17), we have

7ik2/(1+ 7ik2) = /Oik}L2 =P

:>;;k =\/Z/\/1_ﬁik

O

Consequently, by (2.12) and (2.13), for the determination of the forward PDs {pik (x)}, the following

parameters are required:

(a) Parameters 51 s 52, cens Zim for macroeconomic variables in credit index ci(x), common to all
non-default ratings and all forward terms

(b) Risk sensitivities {’7, X }, with one sensitivity for each non-default risk rating and each forward
term

(c) Threshold values {b,» X }, with one value for each non-default risk rating and each forward term

The threshold values {bik } can be estimated separately by using Lemma 2.1(b). Therefore, the key to the
probabilities { p;, (x)}is the determination of parameters: 51, 52, s El'm and {7, }.
Remark 2.6. When the number of ratings is large and data sparsity is an issue, fitting the rating level

sensitivities {;’;k} could be a problem. In practice, we can re-group the risk ratings into fewer classes, for

example, into grades of investment, sub-investment, and problematic. While the forward term numbers can
be re-grouped, based on the risk patterns observed from the historical term structure. For example, forward



term numbers can be re-grouped into (1},{2}, {3,4}, and one group for every four consecutive terms

after time t,.

2.3. A review of the benchmark point-in-time rating transition probability models

Point-in-time rating transition probability model is proposed by Miu and Ozdemir ([8]), and extended by
Yang and Du ([12], [13])) to facilitate rating level asset correlation.

Let ¢ U(x) denote the expected value of transition probability from an initial rating Ri at f, torating R jat

the end of horizon, given macroeconomic variables X = (X, X,,...,X,, ). Under the Merton model
framework (with the k in (2.1) being setto 1), it can be shown ([13]), similarly to (2.12)-(2.13), that

1) = DGy ;) + FCi(X) = DGy, + Tici(X))
= @[q, ) T (@K + A%, +...+a,X,)]

- O[q,,_;, +7(@X +a,%, +..+4,Xx,)]

where g., =¢q,,/1+ Fiz ,and ci(x) is the portfolio credit index defined similarly using (2.15). The
quantities {qij} are the threshold values with g,; = q)_l(ﬁij), where ﬁij is the through-the-cycle transition
probability from rating Ri to rating Rj , which can be estimated from the historical sample. The key

parameters to this rating transition probability model are 51, 52, ey 5"1 and {Z }, which can be estimated

([13]) by an approach similar to the algorithm described in section 5.

3. The Derived PD Term Structure and Multi-Period Loss Projection

In this section, we describe how a point-in-time PD structure can be derived from the forward PDs, and
how loss can be projected over a multi-period scenario given the PD term structure or given a point-in-time
rating migration model.

3.1. Point-in-time PD term structure derived from forward PDs

Let x(#,) denote the vector of values of macroeconomic variables X;,X,,...,X,, at time f,. Let
Dik [x(tk )] be the forward PD for the krh forward term given the scenario x(tk ) For a borrower with a
non-default initial risk rating Ri at 1, the cumulative probability of default c;; (Z, ) over the period

(Z‘O, I ]can be derived from the forward PDs as follows:

c,’](t1) =p; 1[x(t1 )]
Cio(t,) =, () +[1—¢; (1)]x p; ,[x(2,)]

() =c¢; (G )+ = (8 )X py[x(2,)]

7



Note that the quantity (1 —c¢;, (#,)) is the survival probability for the period [Z,, f, ]. The following

proposition demonstrates the relationship between the forward PD and survival probability:

Proposition 3.1. The factorization (3.1) holds for the survival probability:
1- Cik (tk) = (1 — Dii [x(t1 )])(1 - piz[x(tz )])(1 - Pik [X(fk )]) (3-1)

Proof. Factorization (3.1) follows from the equation below by induction:

l—Cik (tk) = [1 —Cirg (tk_l )] X (1 —Dix [)C(tk )])

3.2. Multi-period scenario loss projection

Given the point-in-time PD term structure, the expected credit loss for the period (Z‘O, l‘k] for a loan of a

borrower, with initial rating Rl. at I, can be evaluated as follows (using the notation of (1.1)):

Loss;(t,) = pu[x()1f, (1) +[1—c;, (¢ p[x(2)1 £, (2,) + ...
+[1—0,-;(,1(lk)]P,-k[x(lk)]fk (tk) (3-2)

The marginal PD for the period (tkfl R tk] is givenby [1—c, ,_,(t,_)1p, [x(t,)].

Given the point-in-time rating transition probability and a scenario X(%, ), let T[x(t,)] = {t.,,(t)}

denote the rating migration matrix, and l‘ij(l‘k)the probability thata rating Ri will migrate to Rj in one-
term horizon. Assume that higher index rating carries higher default risk and there are, for example, 21
ratings with R21 the default rating. Then the last column of the matrix contains the point-in-time PDs for
all risk ratings, and the last row of the matrix is setas:

v, (t)=0if 1<j<20

Vo () =1

With these notations, the cumulative PD for the period (to, I, ] for a loan of a borrower, whose initial risk

rating is Ri ,can be derived by the matrix multiplication as below:

u, T[x(t)IT[x(t,)]).. T[x(¢,)] (3.3)

. . +th L
where U; is a row vectorwith all components equal to zero except for I component, which is 1.

Consequently, marginal PDs can be derived and multi-period scenario loss can be evaluated using a
methodology similar to (3.2).

4. Log-Likelihood Functions for Observing Term Default Frequency



In this section, we introduce a concept called forward log-likelihood, corresponding to the forward PD for a
forward term. We showhow the log-likelihood, by observing the multistage term default frequency, can be
formulated, using the forward log-likelihoods. The log-likelihood function expressions (4.1) and (4.3)
below will be used later in section 5 for parameter fitting.

Recall from section 2.1 the following notations:
(a) n,(t,)- The number of borrowers who survived the period [#,,#, ;] with an initial risk rating
Ri at the initial time 7,

(b) d,,(t,)- The number of borrowers who defaulted in (¢, _,,f, ].

Given the historical data for a risk-rated portfolio, a time series of the form{n,, (¢, ),d,, (¢,)} can be

derived. The forward log-likelihood is defined for each pair (i,k) asin (4.1) below, for the k" forward

term and the initial rating Ri at time 1/, using pik[x(tk )], ie., the forward PD for the term (tk_l,l‘k] :

FL,'k = z{[nik (tk) - d,'k (tk )] log( 1- Pix [x(tk )]) + d,'k (tk ) 10g( pik[x(tk )])} 4.1)

with 7, sliding through the sample time window. Here we assume that the term default count follows a

binomial distribution. The binomial coefficient, which is independent of the parameters for p,, [x(Z, )] (as
given by (2.12) or (2.15)), has been dropped. Expression (4.1) is the actual log-likelihood over the

conditional probability space given that borrowers have survived the period [to 2 ].

In general, we are interested in the log-likelihood for a forward period [Z,,%,,, ] with k terms. We assume
that there is no withdrawal in the sample, and a borrower either defaults or survives at the end of a period.
Let L, (h, h + k) denote the log-likelihood for a borrower with initial rating R, at #, over the period

[th, th+k] given that the borrower survived the period [l‘o, th_l] , where the time window [l‘h s th+k] slides
through the sample time window as in (4.1). Similarly, let L(A, 1+ k) be the log-likelihood over the
period [l‘h, Lok ]for all borrowers of the portfolio with a non-default initial risk rating at 1, given that the
borrowers survived the period [7,,?,_,], where the time window [Z,, 7., ] slides through the sample time

window.

Proposition 4.1. Under the assumption of no withdrawal, the following equations hold (up to a constant
independent of the parameters for {pij [x(tk )]} as given by (2.12) or (2.15)):

L (hh+k)=FL,,, +FL,, ,+..+FL,, . (42)
L(h,h+k)=)_ L (h,h+k) @3)

Expression (4.2) demonstrates an additive property of the log-likelihood function: the log-likelihood for a
forward period of consecutive forward terms is the sum of the individual forward log-likelihoods for the
forward terms. This is expected because of the multiplicative property of the conditional probability for a
multistage event.



Proof of Proposition 4.1. Equation (4.3) follows directly from (4.2). We showonly (4.2), and the case
when /1 = (. For the simplicity, we write

n,‘j(tj)’ dij(tj)’ Pij[x(fj)], Cij(tj)
respectively by:

n;, dj, pj,andcj.

Note that the marginal probability that a borrower with an initial rating Ri defaults in the period (¢ it j]

is: (1—c;_;) p;.Thus the likelihood for observing d ; defaults in period (¢, ,, ;] is:

d. d.

(I=¢; )" p;”’
(up to a factor given by binomial coefficient of choosing dj defaulters from 7, borrowers). Consequently,
the likelihood for observing a sequence {dj }j=l, 5....x Of defaults in the period (to,tk ], with dj defaults in
each period (¢

jfl,tj],is:

At =p p, " p A=) (A= )® . (A—c, ) (1= )" D40 (44

. L . —(dy+dy+otdy) .
(up to a constant factor given by binomial coefficients) where the last factor (1—c, )" (dirdat-+do) s the

likelihood of those surviving the entire period [Z,,7, ]at the end.
Because of the no-withdrawal assumption, the following equation holds:

n.=n—(d +d,+..+d, ) @.5)
By equation (3.1) of Proposition 3.1, we have:

(1-¢, )d2 - C’z)d3 w(d=c, )dk (I1-c, )nr(d1+d2+...+dk)
=(1- pl)dz [(1-p)d- pz)]ds L[Ad=p)HA=p,)..A- pkq)]dk
[A-ppd—=p,)..d-p, NE ~(d,+dy+..+dy )
=(1- pl)d2+d3+...+dk (1— pz)d3+d4+...+dk (1= pk—l)dk (= p)(d= py).(i=p, )
=(1-p)" “(1- )" ) (11— Pt )" ~(d+dyttd, ) (1-p, )nl—(d] dytotd,)

d

=(1- pl)”‘_d‘ 1- pz)"z_d2 (1= pkfl)nk"fd"’1 1- pk)nr g (4.6)

The last equality (4.6) follows from (4.5). By (4.4), we have the following log-likelihood for the period
[Z,, 1, ]:

log(A(z,)) =[d, log( p,)+(n, —d,)log(1- p))]+[d, log( p,) +(n, —d,)log(1-p,)]+...
+[d, log( p,) +(n, —d,)log(1-p,)]

Letting the period [ZO, I, ]slide through the sample time window, we obtain the following log-likelihood:

10



L(0,k) =Y 1og(A(t,)) = FL, + FL,, +...+ FL,
O

A function is log concave if its logarithm is concave. If a function is concave, a local maximum is actually
a global maximum, and the function is unimodal. This property is important for searching of the maximum
likelihood estimates.

Proposition 4.2. The log likelihood function (4.1), where p,,[x(f,)] is given by (2.15), is concaveas a

function of ¢;, 4, 4,,...,q,,, andit is concave as a function of 7;,, where p,, [x(t,)] is given by (2.12).

This concavity of (4.1) holds when the cumulative standard normal distribution ® is replaced by any
cumulative probability distribution which is log concave (e.g., the cumulative distribution for logistic
distribution).

Proof. Tt is well-known that the cumulative standard normal distribution is log concave, and the sum of
concave functions is again concave. It is also known that, if ' (x)is log concave,thensois f(Az+ D),

where Az+b:R" —R' is any affine transformation from the m-dimensional Euclidean space to the 1-
dimensional Euclidean space. This means both the cumulative distribution ®(x) and F(x) = ®(—x) are

log concave, and (4.1) is concave as a function of ¢;, d,, 4,,...,d,,, where p, [x(t,)]is given by (2.15).

For the concavity of (4.1) as a function of 7;,, where p,, [x(#,)] is given by (2.12), it suffices to show

that the 2" derivative of the function
L(r) =log[ ®(bV1+ r*+ ra)) @7
is non-positive for any constants @ and b. The 274 derivative dz[L(I’)]/a'I’2 is given by:

(brIN1+ 7+ a)* {1+ P+ ra)|” [OBN1+ 1+ ra)l* + @ (bV1+ r + ra) | DOV + r + ra)}

+ PN+ PP+ ra) D)1+ r2) 2 | DN+ P+ ra)
=1+1 4.8)

where @ and ¢' denote the 15t and 2"d derivatives of @ . Because the factor in the 15 term of (4.8) below

{(HoON1+ r*+ ra)? OOV + P+ ra)l + ¢ (bN1+r*+ ra) | DN+ r’+ ra)}

corresponds to a 2" derivative of log d(x), it is non-positive. Thus the 1*!term in (4.8) is non-positive. The
21d term in (4.8) is non-positiveif » < (. For the case b > 0, we can change b backto the negative case

using the function F'(x) = ®(—x) and repeat the same discussion to have non-positivity of the 2
derivative of (4.7). O

5. Parameter Estimation by Maximum Likelihood Approaches

In this section, we assume that the threshold values {b;, } are known andsoare {7;, }, where 7;, is the risk

sensitivity given by (2.1) and (2.4) for the initial rating Ri and term Kk with respect to the latent systematic
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risk factor 5. Note thatboth {b;; } and {r;, } are defined before observing any macroeconomic condition

X = (xl,xz,...,xm) (see section 2.1 for the estimation of{l’i « }, and Lemma 2.1 (b) in section 2.2 for
{by D).

As indicated at the end of section 2.2, the key to the forward PDs {pik (x)} is the determination of the
coefficients Eil R 52, cees 5m for the credit index, and rating level risk sensitivities {'ﬁk }. The credit index

enters the model via (2.9) and is defined by parameters: A, 51, 52, vees 5,”. Recall thatby (2.14) the

following relation is satisfied:

Fo=r A1 (=2 5.1)

Given {b, }and {r; }, recall thatthe coefficients d,, d,, ..., d,, for the credit index are derived from a

normalization of a linear combination 61136'1 + a256'2 +...+ Clm;C‘m, with which the model{ﬁi (x)} best

predicts the default probability of the portfolio for initial ratings for one-term horizon, where ﬁi (x) is by
(2.15) as:

D, (x)=®[c;, +7,(aX, +a,X, +...+a,Xx,)] (5.2)

m” m

This can be implemented by using the log likelihood function (4.1) with p,, (X) being replaced by ﬁi (x)

above. Maximize the corresponding totallog likelihood for parameters A, al , 52, . Zim.

When A4, Eil , 52 y ey 22m are known, {7;, } can be determined by a calibration for each 7, atrating level by

maximizing the total log likelihood by (4.1) for the initial rating R, and termk with p,, (X) being given by
(2.12), thatis, thefinal term structure model is given by (2.12).

We thus propose the following two-step approach:
Step 1. Estimate Zil, 52, vees Zim for the credit index

Get the first estimates for A, 4,, d,,...,a,, by maximizing the total log likelihood by (4.1) and (5.2) for
all initial ratings for one forward term as a function of A, 4,, 4,,...,4,,. To ensure these first estimates

are the global maximum likelihood estimates, a series of additional searches are performed: Let 4 € (0,1)
vary through the set of values {i/ N |l <i < N} for large integer N (e.g., N =10 ). For each value of 4,

calculate{’l;;k}usillg (5.1). Find the maximum likelihood estimates for &, 4,, ..., d,, using the total log

likelihood by (4.1) and (5.2) for all initial ratings and one term. By the concavity of (4.1) as a function of
a,, ay,...,a

, any of these local maximum likelihood estimates 4, d,, ...,d, are the global maximum

m m

likelihood estimates for a given A. Use these estimates as the initial values for A, a,, a,,...,4a,,, and re-
maximize the total log likelihood by (4.1) and (5.2) as a function of A, @, a,,...,d,,. Repeat this process
to obtain the global maximum likelihood estimate for A, @, a,,...,d,,. Normalize the linear combination

a,X, + a,X, +...+a,X, to obtain the estimate for d,, d,, ...,

m*
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Step 2. Estimate 7;, for each initial rating R, and term k separately

Calculate credit index ci(x) as:
ci(x)=(ax, +a,x, +..+a,x,)/v

where Vis the standard deviation of alfl +525C'2 +...+5m55m.We then calibrate and estimate 7;-k by

maximizing the total log-likelihood using (4.1) for the initial rating R; and termk with p,, [x(?,)] being
given by (2.12) as:

P (%) = @by [T+ ;;kz +rci(x)]

We implemented the above two-step optimization process by using SAS PROC NLMIXED procedure.

6. An Empirical Example: The PD Term Structure for a Corporate Portfolio

The sample is created synthetically from a historical dataset of a corporate portfolio containing quarterly
rating level default frequency (The sample default rate does not represent the original portfolio default

rate). There are 21 ratings for the portfolio, with rating Rl being the best quality rating and R21 the default
rating. The higher the rating index, the higher default risk.

The chart below depicts the trend of forward default rates, averaged over the sample time window, for 20
forward terms (i.e., 20 forward quarters):

1. At portfolio level
2. For investment rating
3. For sub-investment rating

It is observed that the simple average forward default rates tend to converge after about 20 terms:

Figure 1. Simple average forward default rate
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For this reason, we can focus on terms covering a period of 4 years (16 quarters). For terms beyond 16
quarters, a constant forward rate is assumed for all ratings. This constantrate can be estimated, for
example, by the portfolio level average forward default rate for the 5" year.

Macroeconomic data is sourced from the Federal Reserve. It is merged with the term default frequency
sample by matching the end quarter of a term to the calendar quarter of the macroeconomic data. Inclusion
of macroeconomic variables is subject to a governance review process. All variables should pass the unit
root tests. We consider four lag-versions for each macroeconomic variable: lag 0 (current), lag 1 (lag 1
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quarter), lag 2 (lag two quarters), lag 3 (lag three quarters). Each lag-version variable is named by prefixing
to the original name by a label “L” together with its lag number.

The table below shows the 9 macroeconomic variables we use. The Pearson correlation to the quarterly
portfolio level default rate is reported in thelast 4 columns for the four lag-versions of each variable:

Table 1. Macroeconomic variables

# Variable ipti Lo L1 L2 L3

1 |GDP_GQOQ_COM  |Growth Rate of US Gross Domestic Product (quarter over quarter annualized by compounding) 038 024 039 053
2 [Lurc_baoa Increase of US Civilian Unemployment Rate (quarter over quarter annualized) 056 059 064 056
3 [PCREPI_GQOQ_COM |Growth Rate of US Commercial Real Estate Price (quarter over quarter annualized by compounding) 032 049 048 035
4 |PPSDJT_GQOQ_COM|Growth Rate of Dow Jones Total Stock Market Index (quarter over quarter annualized by compounding) | 0.06 0.01 -0.16 -0.38]
5 |RCBBB_DQOQ Increase of US BBB 10-Year Corporate Yield (quarter over quarter annualized) 013 015 016 014
6 |RCBBB_RT10Y US 10-year BBB Corporate Credit Spread 053 051 058 051
7 |RT10Y_DQOQ Increase of US Constant Maturity Treasury Yield, 10 Yrs (quarter over quarter annualized) 014 002 0.03 -0.28
8 |RTB_DQOQ Increase of US 3-Month Treasury Bill: Secondary Market Rate (quarter over quarter annualized) 0.16 006 031 043
9 |VIX_FED US Implied Volatility (Maximum of daily values per quarter) 052 036 043 047

In the remainder of this section, we focus on model fitting, as described by (a)-(c) below:

(a) Variable selection for term models

Let m denote the number of variables in a model. Due to the limited number of data points in the time

series sample, we consider only models with 71 =2 or 3. A preliminary model selection process is
performed via SAS logistic regression with model selection option being setto “Score”, targeting portfolio
level default frequency over the sample. The top best 5000 models for each value of m are selected for
further processing.

This SAS selection option calculates the score statistics for each possible variable combination without
performing a full regression analyses, then select the specified number of models based on the higher score
statistics.

(b) Forward PD model fitting

For each list of macroeconomic variables X;, X,,..., X, from step (a), follow the steps proposed in section 5

~

to fit for coefficients @, d,, ...,d, andsensitivities {7, }.

The table below shows the top 10 forward PD models ranked by RSQ for portfolio level quarterly default
rate (e.g., 15'term), and the average RSQ for portfolio level forward default rates for forward terms in the
1st,20d 3 and 4'h years.

Table 2. Top 10 models

Risk Factors for Credit Index Models Average Portfolio Level RSQ

1st 1st 2nd 3rd 4th

# \21 V2 V3 Quart | Year | Year | Year | Year
1|LO_PPSDJT_GQOQ_CO |L1_RTB_DQOQ LO_LURC_DQOQ 0.66 0.63 0.59 0.71 0.32
2[t3_Pcrepiaaoa_co |L1_RTB_DaOQ L0_LURC_DQOQ 061 | 070 | 076 | 079 | 036
3 >L-07VIX7FED L1_RTB_DQOQ LO0_LURC_DQOQ 0.60 0.61 0.61 0.73 0.35
4(L1_RTB_DQOQ L1_RT10Y_DQOQ L0_LURC_DQOQ 0.60 0.69 0.75 0.78 0.34
5[L0_GDP_GQOQ_COM |L1_RTB_DQOQ LO_LURC_DQOQ 0.59 0.61 0.61 0.72 0.24
6/L3_GDP_GQOQ_COM |L1_RTB_DQOQ LO_LURC_DQOQ 0.58 0.69 0.79 0.80 0.40
7|L2_PCREPI_GQOQ_CO (L1_RTB_DQOQ LO0_LURC_DQOQ 0.58 0.69 0.77 0.78 0.36
8(L3_RCBBB_RT10Y L1_RTB_DQOQ L0_LURC_DQOQ 0.57 0.68 0.78 0.78 0.38
9|L1_PCREPI_GQOQ_COM(L1_RTB_DQOQ LO_LURC_DQOQ 0.56 0.68 0.77 0.73 0.40
10|LO_RCBBB_RT10Y L1_PCREPI_GQOQ_COM L1_RTB_DQOQ 0.56 0.68 0.77 0.83 0.42
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(c) Benchmarking and back tests for the selected forward PD model

The top term model selected from Table 2 is scored over the development sample. Two rating migration
models are used for benchmarking:

(1) The through-the-cyclerating transition model
(2) A point-in-time rating transition model, using the same list of macroeconomic variables as for the
selected top forward term model.

The through-the-cycle transition matrix is calculated from the rating migration frequency across time
(Lemma 2.1 (b), orsee [12] for detailed calculation). The point-in-time transition model is developed

following the approaches as reviewed in section 2.3.

The figure below plots the quarterly portfolio level default rate (e.g., one-term horizon), and portfolio level
cumulative default rate for 1, 3, and 4 year horizons.

Figure 2. Predicted vs. realized cumulative portfolio default rate
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Model RSQ is given as in the tables 3 for back-test for the selected point-in-time term structure model and
point-in-time transition model, to predict the portfolio cumulative default rates over the entire sample:

Table 3. Backtest - model RSQ for predicting
portfolio cumulative default rate
PIT Model 1Quar 1Year 2Years 3Years 4 Years
Term 0.66 0.88 0.88 0.76 0.77
Transition 0.67 0.81 0.72 0.56 0.38

Table 4. Outsample test- model RSQ for predicting portfolio cumulative default rate

Training Training+Validation
PIT Model |1 Quar 1Year 2Years 3Years 4Years |1 Quar 1Year 2Years 3 Years 4Years
Term 0.62 0.91 0.91 0.90 0.54 0.63 086 0.87 0.82 0.83
Transition 0.74 0.83 0.69 0.76 0.21 0.70 0.76  0.58 0.33  0.11

For the out-of-sample test for the model methodologies, we face a limitation for the availability of the
number of data points (number of quarters) and the number of downturn periods in the time series sample.
We split the time series sample into two parts: the training and validation. The term and transition models
are refitted over the training sample consists data points up to year of 2010, based on the end quarter of a
forward term, using the same list of macroeconomic variables for both models as the top selected term
model. The sample after 2010 is used as the validation sample. Model RSQ over the training sample is
reported in table 4. Since the training sample contains the stress period (2008Q1-2009Q4) when default
rate is very high, while the validation sample covers a period after 2010 when default rate is very low (a
period of 5 years after 2010), for a fair comparison between training and validation, we report only the
model RSQ over the combined sample.
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The following are observed from this empirical example:

(a) The point-in-time term model slightly underperforms the point-in-time transition model for
predicting portfolio default rate for one-quarter horizon. Both models demonstrate strong strengths
in predicting portfolio quarterly default rate, particularly, for the downturn period 2008Q1-
2010Q1.

(b) The point-in-time term model outperforms in general the point-in-time transition model when
predicting horizon extends to longer periods, due to the fact that the term model is calibrated over
a longer horizon.

(¢) Through-the-cycle transition model is weak in picking up the trends during the economic recession
or expansion.

Conclusions. Models that directly fit the forward term default rate are proposed in this paper. The proposed
models are structured via a credit index, representing the part of systematic risk for the portfolio explained
by a list of given macroeconomic variables, together with the risk sensitivity, for each non-default initial
risk rating and each forward term. An algorithm for parameter fitting is proposed by using the maximum
likelihood for observing the term default frequency. We believe the proposed model and approaches will
provide practitioners a new and robust toolto the modeling of PD term structure for multi-period scenario
loss projection, for CCAR stress testing and IFRS 9 expected credit loss estimation.
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