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1 Introduction

Hiring, staffing and scheduling are strategic decisions for the management of call centers,

that represent a highly labor-intensive and large services industry, in which human resources

costs account for 60-70% of the operating budget (Gans et al., 2003). Forecasts of call arrivals

are a key input for choices relating to the acquisition and deployment of human resources,

therefore they ultimately determine the ability of managers to achieve an optimal balance

between service quality and operating costs (Akşin et al., 2007).

We present a novel strategy to select time series models of call arrivals that is based on

three pillars: (i) a flexible loss function; (ii) statistical evaluation of forecast accuracy; (iii)

economic evaluation of forecast performance using money metrics.

The use of a flexible loss function, as well as the implementation of statistical tests to

rank and select forecasting models represent the first novelty of this paper. In fact, in this

strand of the literature, most studies only provide model rankings based on symmetric loss

functions or informal forecast comparisons (see Bastianin et al., 2011 and Ibrahim et al.,

2016 for a survey). Since over-forecasting leads to over-staffing and hence unnecessarily

high operating costs, while under-forecasting results in under-staffing and hence low service

quality, the choice of the metric used to evaluate competing time series models depends on

the preferences of the call center management, that are not necessarily well approximated

by a symmetric loss function.

An asymmetric loss function is required when the call center operates under a Service

Level Agreement (SLA). An 80/20 SLA is widely applied and implies that eighty percent of

the incoming calls must be answered within twenty seconds (Stolletz, 2003). In this case, a

reasonable degree of over-forecasting is less costly than the same amount of under-prediction,

possibly because agents becoming free at short notice might be assigned to meetings and

training (Taylor, 2008).

We rely on the loss function put forth by Elliott et al. (2005) that nests both symmetric

and asymmetric loss functions as special cases and hence describes a wide range of call center

managers’ preferences.

The second novelty of this study is the translation of statistical measures of forecasting
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performance into money metrics. Money measures of performance, are intimately related to

the profit maximizing behavior of economic agents and hence should be considered by call

center managers as more intuitive evaluation instruments to complement loss functions and

statistical tests (Leitch and Tanner, 1991).

We estimate fourteen time series models — including the Seasonal Random Walk (SRW)

as a benchmark — that capture different key features of daily call arrivals. These data are

characterized by the presence of intra-weekly and intra-yearly seasonality, inter-day depen-

dency (i.e. non-zero auto-correlation), overdispersion (i.e. the variance of the arrival count

per time period is larger than its expected value) and conditional heteroskedasticity (see e.g.

Ibrahim et al., 2016). These features are shared by the three series we analyze, that are

daily arrivals at call centers operated by an Italian electric utility and by two retail banks,

one in the U.S. and the other in Israel.

Moreover, since it is well documented that combined forecasts often outperform forecasts

generated by individual models (Timmermann, 2006), the third novelty of the paper is to

implement seven forecast combination methods applied to five sets of models. Overall, we

produce a total of 47 alternative forecasts.

We show that second moment modeling using Generalized Autoregressive Conditional

Heteroskedasticity (GARCH) models is the preferred approach when forecasting daily call

arrivals, thus suggesting that volatility modeling is useful. This result holds true not only

for the call center managed by the Italian utility, but also for the two retail banks’ arrival

series.

From the point of view of a call center manager, our results indicate that outsourcing

the development of forecasting models could be worth its cost: the simple SRW model

is always outperformed by other, relatively more sophisticated, but easily implementable,

specifications.

The economic evaluation of forecast accuracy is somehow similar to that of Shen and

Huang (2008), however there are some differences between the two approaches. First, the

forecast horizon is different; second, their accuracy metric is the staffing level, while ours

is the money the manager can earn; third, they rely on the Root Mean Squared that is

a symmetric loss function, while we design a compensation scheme which penalizes under-
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staffing more heavily than over-staffing.

The paper of Taylor (2008) is related to our work because, to the best of our knowledge,

is the only paper that evaluates a large number of time series models and combination

schemes. Compared with Taylor (2008), we do not deal with intra-day forecasts, but we

evaluate the performance of models more thoroughly.

There are at least two ways in which our results can be used to derive intra-daily fore-

casts. First, we can think that daily arrivals are used in a top-down approach where they

are disaggregated to high frequency by some procedure (Gans et al., 2003). Alternatively,

we can assume that the manager of the call center designs intra-day staffing schedules on

the basis of a judgmental process tha is based on its forecasts of daily totals.

The plan of the paper is as follows. Section 2 describes data, empirical methods and

our approach to the economic evaluation of forecasts. Empirical results are presented and

discussed in Section 3, while Section 4 concludes.

2 Data and methods

2.1 Data

We have collected three series recording the daily call arrivals received by call centers in

different industries and countries. The main results of the paper are based on call arrivals

for a call center managed by an anonymous Italian energy utility. Robustness checks in

Section 3.3 replicate the analysis for two alternative series that are call arrivals at call

centers operated by two anonymous retail banks, one located in Israel and the other in the

U.S..1

Call arrivals at the call center operated by the Italian energy utility range from Septem-

ber 2008 until September 2010, for a total of T = 749 observations. The call center, whose

employees help customers with invoicing problems, operates fourteen hours per day and is

closed only during public holidays. Closing days are known in advance and hence are kept

1A plot of the Italian data appears in Bastianin et al. (2011). We thank Avi Mandelbaum for providing

access to the data for retail banks through the Technion Service Enterprise Engineering (SSE) Laboratory.

See http://ie.technion.ac.il/Labs/Serveng for a detailed description of these series.
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in the estimation sample by substituting zero observations with the number of calls recorded

during the previous week; forecasts for these days are subsequently set to zero.

This series exhibits all the features that are typical of call arrivals data. It displays both

daily and monthly seasonality: the number of incoming calls decreases steadily from Monday

to Sunday; moreover, given the nature of the service provided by the company, the intensity

of calls varies with the season of the year, peaking during winter and summer. Lastly, even

controlling for seasonality and autoregressive dynamics, the LM test for ARCH effects rejects

the null hypothesis of homoskedasticity.

The call arrivals for the two banks have similar characteristics: seasonality, as well as

conditional heteroskedasticity.

2.2 Forecasting models and methods

Given the nature of our series, all models have been chosen so as capture different key

features such as the presence of autocorrelation, seasonality, overdispersion and conditional

heteroskedasticity. The empirical specifications implemented in the analysis are shown in

Table 1 and can be ideally assigned to three groups.

The first group includes: the Seasonal Random Walk (SRW) model, which is used as a

benchmark, and a variety of time series models. We focus on well established specifications

such as: the Box-Jenkins Airline model, ARMAX and SARMAX models with and without

GARCH effects, the Periodic Autoregressive (PAR) model and Holt-Winters exponential

smoothing.

The total number of calls arriving at call centers in a given time period is a count and as

such it is usually modeled as a Poisson arrival process (Gans et al., 2003). The underlying

assumption is that there is large population of potential customers, each of which makes

calls independently with a very low probability. Simple dynamic models for count data are

then further plausible specifications.

Jung and Tremayne (2011) have shown that when forecasting with count data there is

not a dominating modeling approach, therefore we consider three specifications based on the

Exponential, Poisson and Negative Binomial distribution, respectively. While the Poisson
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Table 1: Summary of models
Dependent

id Name Variable Explanatory Variables

M0 Seasonal Random Walk Yt Yt−7

M1 ARMAX yt AR(1), AR(7), AR(8), MA(1), Dt

M2 ARMAX-GARCH(1,1) yt AR(1), AR(7), AR(8), MA(1), Dt

M3 TVD-AR yt Dt

M4 SARMAX yt AR(1), SAR(7), MA(1), SMA(28), Dt

M5 SARMAX-GARCH(1,1) yt AR(1), SAR(7), MA(1), SMA(28), Dt

M6 PAR(2) yt yt−1, yt−2,Dt

M7 Airline ∆×∆7yt MA(1), SMA(8)

M8 Poisson Yt Yt−1,Dt

M9 NegBin Yt Yt−1,Dt

M10 Exponential Yt Yt−1,Dt

M11 MEM yt/ŷSR,t yt−1/ŷSR,t−1,Dt

M12 Spline-SARX yt/ŷLR,t AR(1), SAR(7), Dt

M13 Holt-Winters yt Multiplicative

Notes: Yt is the number of incoming calls; yt ≡ log Yt; Dt is a vector of dummies, one for each day of the week; ∆k = (1−Lk)
where L is the lag operator. ŷSR,t denotes fitted values from the regression of yt on the vector of dummies; ŷLR,t denotes fitted
values from the interpolation of yt with a natural cubic spline, with the number of knots that equals the number of months in
the sample; ARMA and seasonal ARMA terms are denoted as AR(.), MA(.), SAR(.) and SMA(.), where the number in brackets
represents their order; “multiplicative” indicates that forecasts from M13 are obtained with the multiplicative Holt-Winters
exponential smoothing, see Gardner (2006) for details.

model requires the variance of the arrival count per time period to be equal to its expected

value, the Negative Binomial relaxes this assumption.

We add to this set of standard models, a third group of seasonal autoregressive spec-

ifications that have not been previously used to predict incoming calls (see Taylor, 2008,

and references therein). These include: a linear model with smoothly changing deterministic

seasonality (i.e. the Time Varying Dummy AR, TVD-AR, model of Franses and van Dijk,

2005) and the Multiplicative Error Model (MEM) of Engle (2002). Lastly, we also forecast

with a SARMAX model applied to the series of incoming calls, after monthly seasonality

has been removed with a natural cubic spline function.

Estimation and forecasting of models is carried out recursively: the estimation sample

expands by including a new observation at each iteration.2 The first iteration relies on an

estimation sample of R = 371 days. The forecast horizon, h, ranges from one day to one

month, that is h = 28 days. The recursive scheme implies that the number of predictions,

2Although the recursive or expanding scheme has the advantage of using more observations than the

rolling forecasting scheme, the latter has the is robust to the presence of structural breaks. However, for our

series there is no evidence of structural breaks.
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Ph for h = 1, . . . , 28, varies from P1 = 378 to P28 = 351.

Model selection is performed only once using the sample of data pertaining to the first

iteration of the estimation-forecasting scheme. We have selected most of the specifications in

Table 1 using both the Schwarz Information Criterion (SIC) to choose the optimal number

of lags (or, for some models, SARMA terms) and a stepwise regression approach.3 Models

are also subject to passing a Lagrange Multiplier test for first-to-eighth order residual auto-

correlation at the 5% confidence level. For ARMA(p,q) models we set pmax, qmax = 28; for

seasonal AR(k) and MA(l) terms, we tried the following kmax, lmax = 7, 14, 21, 28.

Some models include a GARCH component because squared residuals from ARMAX

and SARMAX specifications display some un-modeled dynamics. Moreover, the inclusion of

a GARCH equation can help us to shed light on the usefulness of second moment modeling

for forecasting call arrivals.

2.3 Combining methods

Given that combined forecasts are often found to outperform individual models (see Tim-

mermann, 2006), we implement many combination schemes to predict call arrivals.

As shown in Table 2, our fourteen models are collected into five groups that always

exclude the benchmark SRW model. The first set, G1, excludes only the Holt-Winters ex-

ponential smoothing. The second group of models, G2, includes two ARMAX specifications

and the TVD-AR model. Group G3 differs from G4 in that the latter excludes the PAR

model, from the set containing ARMAX, TVD-AR and SARMAX models. The last group,

G5, is made up of models for time series of count data.

We combine forecasts from these five groups of models with average, trimmed aver-

age, median, minimum, maximum and Approximate Bayesian Model Averaging (ABMA)

combining schemes, see Table 3. All these methods have a feature in common: they do

not require holding out a set of out-of-sample observations and hence they can be used in

real-time by the forecast user.

Stock and Watson (2004) have shown that simple combining methods such as the av-

3The stepwise approach starts with a model including all terms selected with the SIC; then it is repeatedly

applied until all variables are significant at the 5% critical level.
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Table 2: Groups of models for combining methods
id models

G1 Mi for i = 1, ..., 12

G2 M1,M2,M3

G3 M1,M2,M3,M4,M5,M6

G4 M1,M2,M3,M4,M5

G5 M8,M9,M10

Notes: see Table 1.

erage, the trimmed average and the median work well in macroeconomic forecasting. If

compared to the simple average, both the median forecast and the trimmed average com-

bination method (that excludes the highest and the lowest forecasts) reduce the impact of

individual outlying forecasts. The maximum and minimum combination methods are used

to represent two opposite situations, in which a manager is either adverse to under-staffing,

or is trying to minimize labor costs and is not subject to any kind of SLA.

Table 3: Combining methods

Method Description

Average (c1) fc1
Gi,t

= 1
MGi

∑MGi
m=1 fm,t

Trimmed Average (c2) fc2
Gi,t

= 1
MGi

−2

∑

(

MGi
−2

)

m=1 fm,t

Median (c3) fc3
Gi,t

= median
(

fGi,t

)

Min (c4) fc4
Gi,t

= max
(

fGi,t

)

Max (c5) fc5
Gi,t

= min
(

fGi,t

)

ABMA-SIC (c6) fc6
Gi,t

=
∑MGi

m=1 w
cj
m,tfm,t

ABMA-AIC (c7) fc7
Gi,t

=
∑MGi

m=1 w
cj
m,tfm,t

Notes: f
cj
Gi,t

denotes the forecast at time t obtained with combining method j on Gi, for j = 1, . . . , 7 and i = 1, . . . , 5; fm,t is the

forecast at time t from model m, for m = 1, . . . ,MGi
, where MGi

is the number of models in the i-th group; fGi,t is a
(

MGi
× 1

)

vector of forecasts from models in Gi; Approximate Bayesian Model Averaging (ABMA) uses weights, w
cj
m,t =

exp {ζm,t}
∑

MGi
m=1

exp {ζm,t}
,

where ζm,t = ICm,t −max
(

ICGi,t

)

, for m = 1, ...,MGi
, j = 6, 7, i = 2, ..., 5 and IC = SIC, AIC. The (MGi

× 1) vector, ICGi,t,
contains the IC of models in the i-th group. Combining method c6 is based on the SIC, while c7 uses the AIC; both exclude
G1 from ABMA.

ABMA, successfully applied to macroeconomic forecasting by Garratt et al. (2003), uses

the Schwarz and Akaike Information Criterion (SIC and AIC, respectively), to approximate

the posterior probability of individual models. ABMA is applied only to models sharing the

dependent variable expressed with a common unit of measure, therefore G1 is excluded.
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2.4 Statistical measures of forecast accuracy

The need for a loss function that can be either symmetric or asymmetric arises in many

economic and management problems. In the case of a call center outsourcing the production

of forecasts, this family of loss functions serves two purposes: first, it allows to assign a

different cost to positive and negative forecast errors; second, it helps the call center manager

and the professional forecaster to decide the shape of the loss and hence to use the same

metric of predictive performance.

We use fi,t to denote either an individual, or a combined forecast; the corresponding

forecast error is ui,t, while ℓi,t(ui,t) denotes the loss function. If not needed, we drop both

model and time subscripts. Following Elliott et al. (2005), we can write:

ℓ (u; ρ, φ) = [φ + (1 − 2φ) I (u < 0)] |u|ρ (1)

where I(.) is the indicator function. The shape of the function is determined by two param-

eters ρ > 0 and φ ∈ (0, 1). The loss function is asymmetric for φ 6= 0.5: over-forecasting

is costlier than under-forecasting for φ < 0.5; on the contrary, when φ > 0.5, positive

forecast errors (under-prediction) are more heavily weighed than negative forecast errors

(over-prediction). Special cases of the function include: the quad-quad loss for ρ = 2 and

the lin-lin loss for ρ = 1. Moreover, we get the mean absolute error (MAE) loss function for

ρ = 1 and φ = 0.5, and the mean square error (MSE) loss function for ρ = 2 and φ = 0.5.

For each model and combination method, we produce a total of 28 series, one for each

forecast horizon, h. Given that presenting detailed results for each h is not a viable option,

we need a method to rank models according their overall performance. A multivariate

generalization of the flexible loss function of Elliott et al. (2005) has been developed by

Komunjer and Owyang (2012). Like its univariate counterpart, this function is defined by

two parameters: ρ ≥ 1 and τ , where −1 ≤ τ ≤ 1 is an asymmetry parameter, which is linked

to the parameter φ as follows: τ = 2φ − 1. Let uh,p be the p-th column of the (H × P )

forecast errors matrix, then the multivariate flexible loss function can be written as:

L (u; ρ, τ) =
(
‖u‖ρ + τu

)
‖u‖ρ−1

ρ (2)
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where ‖u‖ρ =
(∑H

h=1 |uh|
ρ
)1/ρ

is the lp-norm.

When there is only one forecast error series, Eq. (2) reduces to L (u; ρ, τ) = (|u| + τu)

|u|ρ−1 = 2 [1 − φ + τI(u > 0)] |u|ρ. Notice that this expression is equivalent, up to a scale

factor of two, to Equation (1). As in the univariate case, the multivariate loss includes

some special cases: when φ = 0.5 (τ = 0) and ρ = 2, we obtain the trace of the MSE loss

function, while for φ = 0.5 (τ = 0) and ρ = 1, Equation (2) reduces to the trace of the

MAE loss function (see Zeng and Swanson, 1998). In both cases, symmetry also ensures

the multivariate loss to be additively separable in univariate losses. On the contrary, when

φ 6= 0.5 (τ 6= 0) the loss function becomes asymmetric and is not additively separable in

individual losses.

2.5 Monetary measures of forecast accuracy

Dorfman and McIntosh (1997) and Leitch and Tanner (1991) have shown that money metrics

of performance, such as the value of information and certainty equivalent, are more closely

related to forecast’s profit than traditional summary statistics based on loss functions.

Assumptions. We assume that each day t the manager uses his forecast of inbound calls for

t + 1 in an algorithm that determines the number of agents (nt) needed to comply with the

company’s SLA. We impose an 80/20 SLA, implying that at least eighty percent of incoming

calls should be answered within twenty seconds. The algorithm used to staff the call center

is the Erlang-C queuing model: we assume that the average call duration is three minutes

and that the call center is open fourteen hours a day. Notwithstanding its limitations, the

Erlang-C model is widely used in practice, possibly because of its simplicity (Akşin et al.,

2007; Gans et al., 2003).

Let the manager’s daily payoff, Wt, be the sum of a fixed F and a variable part, vt, that

is Wt = F + vt (dt). For the fixed part of the payoff, we impose that the call center manager

earns on average 1200 Euro for 28 working days, that is F = ⌈1200/28⌉ = 43 Euro per

day. The variable part of the payoff, vt(.), depends on the manager’s ability to staff the call

center, dt, which is evaluated ex-post and is defined as a function of the distance between

his decision, nt, and the optimal number of agents n∗
t (i.e. n∗

t is calculated using the realized
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number of incoming calls as input to the Erlang-C model).

The company relies on the compensation scheme displayed in Table 4. We have designed

it so as to penalize under–staffing more heavily than over–staffing; this can be justified by as-

suming that the company’s objective is to maximize customer satisfaction. Moreover, we as-

sume that the company’s compensation policy implies symmetry of over– and under–staffing

if forecast errors of both signs exceed a certain threshold. At the end of the forecasting

sample, whose length is P , the manager’s payoff will be: π = P × F +
∑P

t=1 vt.

Following Dorfman and McIntosh (1997), we assume that the manager has a negative

exponential utility function: U(π) = 1 − exp (−λπ), where λ represents the manager’s

absolute risk aversion coefficient. Notice that, for the negative exponential utility function,

λ−1 describes the willingness to lose. Depending on dt, the manager can either get a bonus

(bt), or be subject to a maximum penalty (pt) of 10 Euro. Given that each day he can lose

at most 20 Euro, λ is varied across the following set of values: λ = [j × P × (bt + pt)]
−1,

where j = 0.1, 0.5, 0.7 denotes a percentage of the variable part of the payoff. This implies

that the willingness to lose can take on the following values λ−1 = {732, 3660, 5124} Euro.

If the manager could always get the bonus, the total payoff would be P × (F + 10) = 18603

Euro, where F = 43 Euro and P = 351 days; therefore the values that the willingness to

lose can take on are equivalent to 0.4% 19.7% and 27.5% of the total payoff.

The end-of-period expected utility is EU(π) = 1 − Mπ(−λ), where Mπ (−λ) is the

Moment Generating Function, MGF (see Collender and Chalfant, 1986; Elbasha, 2005; Gbur

and Collins, 1989). This result and our compensation scheme allow to calculate the expected

utility using Maximum Likelihood estimates of the multinomial MGF.4

The economic value of information. The economic value of information of a set of a forecast

can only be determined with reference to the informativeness of an alternative set of forecasts.

Following Dorfman and McIntosh (1997), we define the value of perfect information as the

value of a model that generates perfect forecasts: nt = n∗
t , ∀t.

If the manager could purchase this model, she would face no risk and the payoff distri-

4The MGF of a multinomially distributed random variable is: MX(t) = (
∑

r

k=1
pke

tk)
P
. An estimate of

the probability pk can be calculated as: p̂k =
∑

H

t=1
I(nt ∈ CIk)/H, where CIk for k = 1, ..., 7, denotes the

naive confidence interval in Table 4.
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Table 4: Multinomial payoff scheme
lower bound upper bound bonus / penalty

k (LBk) (UBk) (Euro)

1 0.00 0.80 -10

2 0.80 0.90 -5

3 0.90 0.95 -2.5

4 0.95 1.05 10

5 1.05 1.10 -1.25

6 1.10 1.20 -2.5

7 1.20 ∞ -10

Notes: the multinomial compensation scheme implies that at time t the manager gets a bonus bt = 10 Euro if n∗
t × LB4 ≤

nt < n∗
t × UB4.

bution would be a single point at π∗ = max (π). The lack of risk (i.e. var(π∗) = 0) implies

that the value of perfect information, V ∗, is simply the payoff obtainable from the perfect

forecast, in other words: V ∗ = π∗. Given that a forecast can be “consumed” only in discrete

quantities, the expected marginal utility of the forecast, MU , equals its expected utility.

We know that in equilibrium the price ratio of two goods is equal to their marginal rate of

substitution, hence the value of forecasting method i is the solution of: Vi/V
∗ = MUi/MU∗.

Solving for Vi, using MUi = EUi and V ∗ = π∗, yields (see Dorfman and McIntosh, 1997):

Vi =
π∗EUi

EU(π∗)
(3)

Equation (3) can be used to define the incremental value of information of forecast i with

respect to model M0 as:

∆Vi ≡ Vi − VM0
(4)

Therefore, Mi ≻ M0, if ∆Vi > 0 or, equivalently, if Vi > VM0
.

The certainty equivalent. An alternative money metrics of forecast accuracy is the certainty

equivalent (CE), which is defined as the value π̃ ≡ CEi that solves U(π̃) = EU(πi):

CEi = −
1

λ
log [1 − EU (πi)] (5)

We can state that Mi ≻ Mj if CEi > CEj. The CE can also be used to determine the

maximum amount of money the manager is willing to pay in order to switch from model i

to model j.
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We assume that the manager can choose between using the naive SRW forecast (M0)

for free, or buying model i from an expert. Moreover, let us assume that buying forecast i

costs δi, where δi represents a fraction of the payoff the manager would get from the naive

forecast, that is δi ≡ θπM0
with 0 < θ < 1. The fraction of payoff deriving from the naive

model that the manager is willing to pay to use forecast i can be written as:

δi = CEi − CEM0
(6)

or, equivalently, as: θ = (CEi − CEM0
)/πM0

.

2.6 Linking monetary and statistical measures of forecast accu-

racy

For the sake of completeness, we present a wide set of results involving symmetric and

asymmetric loss functions, as well as the willingness to pay, δi, and the incremental value of

information, ∆Vi.

More precisely, we assume the loss function in Equation (2) to be of the quad-quad

kind (ρ = 2), while we vary the asymmetry parameter across the following set of values:

φ = {0.42, 0.50, 0.58} (i.e. τ = {0.16, 0.00,−0.16}). When φ = 0.5, the ranking is equivalent

to MSE ranking in the univariate case and coincides with the trace of MSE ranking in the

multivariate case. When φ = 0.42, over-forecasting is costlier than under-forecasting, and

vice versa for φ = 0.52.

Subsequently, in order to mimic the interaction between a professional forecaster and

the call center’s manager, we focus on a subset of results. At this stage, we do not see

the magnitude of the asymmetry as relevant (i.e. it would not be realistic to state that a

practitioner has clear opinion on the parameters of the loss function). On the contrary, we

believe that is fundamental to take a stance on the direction of the asymmetry. We thus

assume that the call center operates under a 80/20 SLA and is subject to a fee when the

waiting time exceeds a given threshold; therefore a reasonable degree of over-staffing is less

costly than the same amount of under-staffing. The presence of a fee is not the only reason
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why we assume this shape for the loss function. Actually, over-staffing might be less costly

than under-staffing, because agents in excess, not answering to calls, can be used for other

duties within the call center.

Given this set of assumptions, when the statistical loss function is parametrized so as

to penalize under-prediction more heavily than over-prediction (i.e. ρ = 2, φ = 0.52),

our economic evaluation of forecasts becomes a suitable alternative (to standard statistical

metrics) to present the results to the manager of the call center.

3 Empirical results

We start this section by highlighting and discussing our main results:

• Outsourcing the development of a forecasting model worth its cost: the benchmark

(SRW) model is outperformed by relatively more sophisticated, but easily imple-

mentable, methods.

• Second-moment modeling is useful: the addition of a GARCH component to ARMAX

and SARMAX models improves their performance. Moreover, the SARMAX–GARCH

model is among the best performing specifications.

• Combined forecasts often outperform models.

• ABMA is the preferred combining method.

• The economic and statistical evaluation of models and combining methods deliver

consistent results. The best individual forecasts are those involving second-moment

modeling, while the best combining method is ABMA based on a group of models that

includes models with a GARCH component.

• It is reasonable to assume that the ABMA forecasting method would have higher main-

tenance costs than an individual model. Then, when over–forecasting is less heavily

penalized than under–forecasting, the economic evaluation identifies the SARMAX–

GARCH model as the best option.
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Our empirical exercise mimics the interaction between a professional forecaster and the

management of a call center. We assume that there are three main steps in this interaction.

First, a preliminary step in which the customer and the adviser agree on the shape the

loss function. The second step involves only the adviser, who uses statistical tests and

loss functions to shrink the number of models to be presented to the customer. Finally, in

the third step, the manager of the call center selects a forecasting method on the basis of

statistical or economic criteria.

3.1 Ranking and statistical tests

Model rankings using univariate and multivariate flexible losses are presented in Table 5.

The univariate loss rankings for forecast horizons of one day (h = 1 day), one week (h = 7

days) and one month (h = 28 days) are shown in columns 2-7, while rankings based on the

multivariate loss for h = 1, 2, . . . , 28 are presented in the last three columns. The analysis of

forecast accuracy over different horizons is key to assist the management of call centers. In

fact while forecasts at monthly horizon are needed for hiring new agents, forecasts at weekly

and daily horizon are used for the scheduling of the available pool of agents (Akşin et al.,

2007).

Focusing on individual forecasts, both univariate and multivariate symmetric losses (φ =

0.5) suggest that the best performing model is the SARMAX–GARCH. This result holds

also when including the combined forecasts in the ranking. As for the combining methods,

ABMA based on the AIC seems to be the best available option. Notice that the best ABMA

combinations are those based on sets of models that include the SARMAX forecasts with

and without GARCH equation and the ARMAX–GARCH, namely those individual forecasts

to which are associated some of the lowest individual and system losses.

When analyzing asymmetric losses, the ranking of models changes according to the

incidence of over- and under-forecasting; nevertheless, we can confirm most of the results

just highlighted for the symmetric case. Interestingly, in the multivariate case, when under-

forecasting is more penalized than over-forecasting (φ = 0.58), the MEM becomes the best

option.
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Table 5: Ranking of models and combined forecasts
h = 1 h = 7 h = 28 h = 1, ..., 28

φ = 0.42 φ = 0.5 φ = 0.58 φ = 0.42 φ = 0.5 φ = 0.58 φ = 0.42 φ = 0.5 φ = 0.58 φ = 0.42 φ = 0.5 φ = 0.58
M0 44 (13) 32 (7) 43 (12) 44 (13) 32 (7) 43 (12) 44 (13) 32 (7) 43 (12) 29 (7) 43 (12) 43 (12)
M1 18 (4) 19 (4) 23 (4) 18 (4) 19 (4) 23 (4) 18 (4) 19 (4) 23 (4) 26 (5) 23 (5) 22 (6)
M2 21 (5) 14 (3) 15 (3) 21 (5) 14 (3) 15 (3) 21 (5) 14 (3) 15 (3) 15 (3) 14 (3) 28 (7)
M3 26 (8) 27 (6) 24 (5) 26 (8) 27 (6) 24 (5) 26 (8) 27 (6) 24 (5) 18 (4) 22 (4) 37 (10)
M4 13 (3) 5 (2) 4 (2) 13 (3) 5 (2) 4 (2) 13 (3) 5 (2) 4 (2) 8 (2) 6 (2) 31 (8)
M5 9 (2) 1 (1) 3 (1) 9 (2) 1 (1) 3 (1) 9 (2) 1 (1) 3 (1) 4 (1) 1 (1) 34 (9)
M6 23 (6) 20 (5) 27 (6) 23 (6) 20 (5) 27 (6) 23 (6) 20 (5) 27 (6) 28 (6) 26 (6) 8 (3)
M7 5 (1) 43 (12) 45 (14) 5 (1) 43 (12) 45 (14) 5 (1) 43 (12) 45 (14) 44 (13) 45 (14) 45 (14)
M8 41 (12) 40 (11) 37 (9) 41 (12) 40 (11) 37 (9) 41 (12) 40 (11) 37 (9) 40 (11) 37 (9) 6 (2)
M9 37 (10) 36 (10) 33 (8) 37 (10) 36 (10) 33 (8) 37 (10) 36 (10) 33 (8) 37 (10) 34 (8) 14 (4)
M10 39 (11) 35 (9) 32 (7) 39 (11) 35 (9) 32 (7) 39 (11) 35 (9) 32 (7) 35 (9) 32 (7) 16 (5)
M11 45 (14) 44 (13) 40 (10) 45 (14) 44 (13) 40 (10) 45 (14) 44 (13) 40 (10) 43 (12) 42 (11) 1 (1)
M12 29 (9) 45 (14) 44 (13) 29 (9) 45 (14) 44 (13) 29 (9) 45 (14) 44 (13) 45 (14) 44 (13) 44 (13)
M13 24 (7) 33 (8) 42 (11) 24 (7) 33 (8) 42 (11) 24 (7) 33 (8) 42 (11) 30 (8) 41 (10) 42 (11)
Avg. G1 16 [13] 21 [16] 12 [10] 16 [13] 21 [16] 12 [10] 16 [13] 21 [16] 12 [10] 25 [21] 18 [15] 9 [6]
Avg. G2 17 [14] 16 [13] 17 [14] 17 [14] 16 [13] 17 [14] 17 [14] 16 [13] 17 [14] 17 [14] 17 [14] 26 [20]
Avg. G3 6 [5] 12 [10] 11 [9] 6 [5] 12 [10] 11 [9] 6 [5] 12 [10] 11 [9] 12 [10] 11 [9] 19 [14]
Avg. G4 12 [10] 10 [8] 7 [5] 12 [10] 10 [8] 7 [5] 12 [10] 10 [8] 7 [5] 11 [9] 9 [7] 25 [19]
Avg. G5 40 [29] 39 [29] 36 [28] 40 [29] 39 [29] 36 [28] 40 [29] 39 [29] 36 [28] 39 [29] 36 [28] 11 [8]
Tr. Avg. G1 8 [7] 23 [18] 10 [8] 8 [7] 23 [18] 10 [8] 8 [7] 23 [18] 10 [8] 20 [16] 16 [13] 12 [9]
Tr. Avg. G2 25 [18] 22 [17] 19 [16] 25 [18] 22 [17] 19 [16] 25 [18] 22 [17] 19 [16] 21 [17] 21 [18] 27 [21]
Tr. Avg. G3 15 [12] 11 [9] 13 [11] 15 [12] 11 [9] 13 [11] 15 [12] 11 [9] 13 [11] 13 [11] 13 [11] 20 [15]
Tr. Avg. G4 19 [15] 9 [7] 5 [3] 19 [15] 9 [7] 5 [3] 19 [15] 9 [7] 5 [3] 10 [8] 8 [6] 24 [18]
Tr. Avg. G5 47 [33] 47 [33] 47 [33] 47 [33] 47 [33] 47 [33] 47 [33] 47 [33] 47 [33] 46 [32] 47 [33] 47 [33]

Notes: continued on next page
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Table 5 (continued)
Ranking of models and combined forecasts

h = 1 h = 7 h = 28 h = 1, ..., 28
φ = 0.42 φ = 0.5 φ = 0.58 φ = 0.42 φ = 0.5 φ = 0.58 φ = 0.42 φ = 0.5 φ = 0.58 φ = 0.42 φ = 0.5 φ = 0.58

Med. G1 4 [4] 17 [14] 18 [15] 4 [4] 17 [14] 18 [15] 4 [4] 17 [14] 18 [15] 24 [20] 19 [16] 10 [7]
Med. G2 20 [16] 18 [15] 19 [16] 20 [16] 18 [15] 19 [16] 20 [16] 18 [15] 19 [16] 19 [15] 20 [17] 23 [17]
Med. G3 7 [6] 8 [6] 14 [12] 7 [6] 8 [6] 14 [12] 7 [6] 8 [6] 14 [12] 14 [12] 12 [10] 18 [13]
Med. G4 14 [11] 4 [3] 6 [4] 14 [11] 4 [3] 6 [4] 14 [11] 4 [3] 6 [4] 9 [7] 7 [5] 21 [16]
Med. G5 36 [27] 36 [27] 33 [26] 36 [27] 36 [27] 33 [26] 36 [27] 36 [27] 33 [26] 36 [27] 33 [26] 13 [10]
Min G1 31 [22] 31 [25] 41 [31] 31 [22] 31 [25] 41 [31] 31 [22] 31 [25] 41 [31] 1 [1] 40 [31] 46 [32]
Min G2 3 [3] 13 [11] 22 [19] 3 [3] 13 [11] 22 [19] 3 [3] 13 [11] 22 [19] 7 [6] 10 [8] 38 [28]
Min G3 1 [1] 6 [4] 9 [7] 1 [1] 6 [4] 9 [7] 1 [1] 6 [4] 9 [7] 2 [2] 4 [3] 40 [30]
Min G4 2 [2] 7 [5] 8 [6] 2 [2] 7 [5] 8 [6] 2 [2] 7 [5] 8 [6] 3 [3] 5 [4] 39 [29]
Min G5 35 [26] 34 [26] 30 [24] 35 [26] 34 [26] 30 [24] 35 [26] 34 [26] 30 [24] 34 [26] 31 [25] 17 [12]
Max G1 46 [32] 46 [32] 46 [32] 46 [32] 46 [32] 46 [32] 46 [32] 46 [32] 46 [32] 47 [33] 46 [32] 41 [31]
Max G2 32 [23] 28 [22] 28 [22] 32 [23] 28 [22] 28 [22] 32 [23] 28 [22] 28 [22] 31 [23] 28 [22] 4 [3]
Max G3 34 [25] 30 [24] 31 [25] 34 [25] 30 [24] 31 [25] 34 [25] 30 [24] 31 [25] 33 [25] 30 [24] 2 [1]
Max G4 33 [24] 29 [23] 29 [23] 33 [24] 29 [23] 29 [23] 33 [24] 29 [23] 29 [23] 32 [24] 29 [23] 3 [2]
Max G5 43 [31] 42 [31] 39 [30] 43 [31] 42 [31] 39 [30] 43 [31] 42 [31] 39 [30] 42 [31] 39 [30] 5 [4]
SIC G2 28 [20] 26 [21] 26 [21] 28 [20] 26 [21] 26 [21] 28 [20] 26 [21] 26 [21] 23 [19] 25 [20] 36 [27]
SIC G3 30 [21] 24 [19] 21 [18] 30 [21] 24 [19] 21 [18] 30 [21] 24 [19] 21 [18] 27 [22] 27 [21] 30 [23]
SIC G4 27 [19] 25 [20] 25 [20] 27 [19] 25 [20] 25 [20] 27 [19] 25 [20] 25 [20] 22 [18] 24 [19] 35 [26]
SIC G5 41 [30] 40 [30] 37 [29] 41 [30] 40 [30] 37 [29] 41 [30] 40 [30] 37 [29] 40 [30] 37 [29] 6 [5]
AIC G2 21 [17] 14 [12] 15 [13] 21 [17] 14 [12] 15 [13] 21 [17] 14 [12] 15 [13] 15 [13] 14 [12] 28 [22]
AIC G3 10 [8] 1 [1] 1 [1] 10 [8] 1 [1] 1 [1] 10 [8] 1 [1] 1 [1] 5 [4] 2 [1] 32 [24]
AIC G4 10 [8] 1 [1] 1 [1] 10 [8] 1 [1] 1 [1] 10 [8] 1 [1] 1 [1] 5 [4] 2 [1] 32 [24]
AIC G5 37 [28] 36 [27] 33 [26] 37 [28] 36 [27] 33 [26] 37 [28] 36 [27] 33 [26] 37 [28] 34 [27] 14 [11]

Notes: the first column uses the following shorthand notation: “Avg.” = Average, “Tr. Avg.” = Trimmed Average, “Med.” = Median, “SIC” = ABMA using SIC and “AIC” = ABMA

using AIC; entries represent the ranking of models and forecast combinations based on the statistics
√

P−1
∑P

t=1 Lt, where L is the generalized loss function in Eq. (2) and P = 351; statistics

in columns 2-10 are based on the univariate loss for forecast horizons, h = 1, 7, 28, while those in the last three columns are based on the multivariate loss for h = 1, ..., 28; the shape of the
loss function is determined by ρ = 2 and the asymmetry coefficient: φ = 0.42, 0.50, 0.58 (τ = 0.16, 0.00,−0.16); these values guarantee that the multivariate loss is always non-negative (see
Komunjer and Owyang (2012) for details); entries outside brackets represent the overall ranking of the forecast; entries in round brackets represent the ranking among models, while entries in
square brackets denote the ranking among combining methods; models, Mm, groups of models, Gi, and combining methods are described in Tables 1, 2 and 3; entries in bold denote the three
models with the lowest loss.
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Table 6: Reality Check test
h = 1 h = 7 h = 28

φ = 0.42 φ = 0.5 φ = 0.58 φ = 0.42 φ = 0.5 φ = 0.58 φ = 0.42 φ = 0.5 φ = 0.58
M0 – – – ⋆ – – ⋆⋆ ⋆⋆ ⋆⋆
M1 – – ⋆ – – – – – –
M2 – – ⋆ ⋆ ⋆ ⋆ – – ⋆
M3 – – ⋆ – – – – ⋆ ⋆
M4 – – ⋆⋆ ⋆⋆ ⋆⋆ ⋆⋆ – ⋆ ⋆⋆
M5 – ⋆⋆ ⋆⋆ ⋆⋆ ⋆⋆ ⋆⋆ ⋆⋆ ⋆⋆ ⋆⋆
M6 ⋆⋆ ⋆⋆ ⋆⋆ ⋆ ⋆⋆ ⋆⋆ – – ⋆
M7 ⋆ ⋆⋆ ⋆⋆ – – – ⋆ ⋆ ⋆
M8 – – – – – – – – –
M9 – – – – – – – – –
M10 – – – – – – – – –
M11 – – – – – – – – –
M12 – – – – – – – – –
M13 – – – – – – ⋆⋆ ⋆⋆ ⋆⋆
Avg. G1 – – ⋆ – ⋆ ⋆⋆ – ⋆ ⋆⋆
Avg. G2 – ⋆⋆ ⋆⋆ – – – – – –
Avg. G3 ⋆⋆ ⋆⋆ ⋆⋆ – – ⋆ – – –
Avg. G4 – ⋆⋆ ⋆⋆ ⋆ ⋆ ⋆⋆ ⋆⋆ ⋆⋆ ⋆⋆
Avg. G5 – – – – – – – – ⋆
Tr. Avg. G1 – ⋆ ⋆ ⋆ – ⋆ – ⋆ ⋆⋆
Tr. Avg. G2 – ⋆ ⋆⋆ – ⋆ ⋆ – – –
Tr. Avg. G3 – ⋆ ⋆⋆ ⋆ ⋆ ⋆⋆ – – ⋆⋆
Tr. Avg. G4 – – – ⋆ – – ⋆⋆ ⋆⋆ ⋆⋆
Tr. Avg. G5 – – – – – – – – –
Med. G1 ⋆ ⋆⋆ ⋆⋆ – ⋆⋆ ⋆⋆ – – –
Med. G2 – – – – – ⋆ – – –
Med. G3 – ⋆⋆ ⋆⋆ ⋆⋆ ⋆⋆ ⋆⋆ – – ⋆⋆
Med. G4 – ⋆ ⋆⋆ ⋆⋆ ⋆⋆ ⋆⋆ ⋆⋆ ⋆⋆ ⋆⋆
Med. G5 – – – – – – – – –
Min G1 ⋆⋆ ⋆⋆ ⋆⋆ – – – ⋆⋆ ⋆⋆ ⋆⋆
Min G2 ⋆⋆ ⋆⋆ ⋆⋆ ⋆ ⋆ ⋆⋆ ⋆⋆ ⋆⋆ ⋆⋆
Min G3 ⋆⋆ ⋆⋆ ⋆⋆ ⋆⋆ ⋆⋆ ⋆⋆ ⋆⋆ ⋆⋆ ⋆⋆
Min G4 ⋆⋆ ⋆⋆ ⋆⋆ ⋆⋆ ⋆⋆ ⋆⋆ ⋆⋆ ⋆⋆ ⋆⋆
Min G5 – – – – – – – – –
Max G1 – – – – – – – – –
Max G2 – – – – – – – – ⋆
Max G3 – – – – – – – – –
Max G4 – – – – – – – – –
Max G5 – – – – – – – – –
SIC G2 – – – – ⋆ ⋆ – – ⋆
SIC G3 – – – – – – – ⋆ ⋆⋆
SIC G4 – – – – – ⋆ – – ⋆
SIC G5 – – – – – – – – –
AIC G2 – – ⋆ ⋆ ⋆⋆ ⋆⋆ – ⋆ ⋆
AIC G3 – ⋆⋆ ⋆⋆ ⋆⋆ ⋆⋆ ⋆⋆ ⋆⋆ ⋆⋆ ⋆⋆
AIC G4 – ⋆⋆ ⋆⋆ ⋆⋆ ⋆⋆ ⋆⋆ ⋆⋆ ⋆⋆ ⋆⋆
AIC G5 – – – – – – – – –

Notes: the table presents results of the Reality Check test of White (2000) as modified by Hansen (2005); the benchmark model
is indicated in the first column, where the following shorthand notation is used: “Avg.” = Average, “Tr. Avg.” = Trimmed
Average, “Med.” = Median, “SIC” = ABMA using SIC and “AIC” = ABMA using AIC; the test is implemented using the
stationary (block) bootstrap of Politis and Romano (1994); the number of bootstrap repetitions is equal to 999, the block length
equals 29 days; a p-value lower than 0.05 indicates that we reject the hypothesis that the benchmark performs as well as the
best alternative model; “–” denotes a p-value < 0.05, “⋆” denotes 0.05 ≤ p-value < 0.1, “⋆⋆” denotes a p-value ≥ 0.1.

Focusing on combination schemes, “minimum forecasts” based on G3 and G4 yield the

lowest average losses when φ = 0.42. On the contrary, when under-forecasting in costlier

than over-forecasting (φ = 0.52), these forecasts do not make in the first positions anymore.

In this case, either the ABMA-AIC combining methods, or the “maximum forecasts” lead

to the lowest average losses. Moreover, we can observe that neither count data models, nor

the Spline-SARX model seem to be valuable options.
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Table 7: In Model Confidence Set?
h = 1 h = 7 h = 28

φ = 0.42 φ = 0.5 φ = 0.58 φ = 0.42 φ = 0.5 φ = 0.58 φ = 0.42 φ = 0.5 φ = 0.58
M0 – – – – – – – – –
M1 – – – – – – – – –
M2 – – – – – – – – –
M3 – – – – – – – – –
M4 – X – – – – – – –
M5 – X X – – – – – –
M6 – X X – – – – – –
M7 X X X – – – – – –
M8 – – – – – – – – –
M9 – – – – – – – – –
M10 – – – – – – – – –
M11 – – – – – – – – –
M12 – – – – – – – – –
M13 – – – – – – – – –
Avg. G1 – – X – – – – – –
Avg. G2 – X X – – – – – –
Avg. G3 – X X – – – – – –
Avg. G4 – X X – – – – – –
Avg. G5 – – – – – – – – –
Tr. Avg. G1 – X X – – – – – –
Tr. Avg. G2 – – – – – – – – –
Tr. Avg. G3 – – – – – – – – –
Tr. Avg. G4 – – – – – – – – –
Tr. Avg. G5 – – – – – – – – –
Med. G1 – X X – – – – – –
Med. G2 – – – – – – – – –
Med. G3 – X X – – – – – –
Med. G4 – – – – – – – – –
Med. G5 – – – – – – – – –
Min G1 – – – – – – – – –
Min G2 X X X – – – – – –
Min G3 X X X X – – X – –
Min G4 X X X X – – X – –
Min G5 – – – – – – – – –
Max G1 – – – – – – – – –
Max G2 – – – – – – – – –
Max G3 – – – – – – – – –
Max G4 – – – – – – – – –
Max G5 – – – – – – – – –
SIC G2 – – – – – – – – –
SIC G3 – – – – – – – – –
SIC G4 – – – – – – – – –
SIC G5 – – – – – – – – –
AIC G2 – – – – – – – – –
AIC G3 – – – – – – – – –
AIC G4 – X X X X X X X X

AIC G5 – – – – – – – – –

Notes: the table presents results of the Model Confidence Set (MCS) procedure of Hansen et al. (2011) implemented using
the stationary (block) bootstrap of Politis and Romano (1994); the number of bootstrap repetitions is equal to 999, the block
length equals 29 days; “–” indicates that the model is not in the MCS at the 90% confidence level, while “X” indicates that the
model belongs to the MCS; the first column uses the following shorthand notation: “Avg.” = Average, “Tr. Avg.” = Trimmed
Average, “Med.” = Median, “SIC” = ABMA using SIC and “AIC” = ABMA using AIC.

Lastly, we find that second–moment modeling is important when forecasting call arrivals.

In fact, when a GARCH component is added to ARMAX and SARMAX models their ranking

improves in most cases. This result suggest that these simple models could also been useful

in the literature dealing with density forecasts (see e.g. Taylor, 2012).

From the standing point of a practitioner, results in Table 5 also suggest that, indepen-

dently of the shape of the loss function, outsourcing the forecasting exercise could be worth
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its cost; in fact, the benchmark SRW model is always outperformed by other relatively more

sophisticated specifications.5

Since the number of forecasts under consideration is quite large, these conclusions might,

to some extent, be subject to data snooping effects. Both the Reality Check test (RCT) of

White (2000) and the Model Confidence Set (MCS) of Hansen et al. (2011), are designed to

deal with data snooping. The difference between the two procedures is that while the former

requires a benchmark model, the latter does not.

Results of the RCT are shown in Table 6; the null hypothesis is that the benchmark

performs as well as the best alternative model. The results are based on the consistent

p-values of Hansen (2005), who has shown that the original procedure has low power when

a poor performing forecast enters the set of alternative models.

Using the SARMAX–GARCH model, or the ABMA–AIC combined forecasts (based

either on G3, or on G4), we reject the null hypothesis only once.

The MCS is used to compare the forecast accuracy of models without selecting a bench-

mark model and yields a set of specifications that contains the best forecast with a prespec-

ified asymptotic probability. As it can be seen from Table 7, this test is more selective than

the RCT. Considering one day ahead forecasts and under MSE loss the MCS, at the 90%

confidence level, contains only four individual models: SARMAX, SARMAX–GARCH, PAR

and the Airline model. When over-forecasting is more penalized than under-prediction (i.e.

φ = 0.42), the only model entering the MCS is the Airline; while, when positive forecast

errors are more heavily weighted than negative forecast errors (i.e. φ = 0.58), the SARMAX–

GARCH and the PAR are also in the MCS. When the forecast horizon is one week, or one

month, only the ABMA–AIC combined forecasts based on G4 are always in the MCS.

Therefore, when the loss function is parametrized so as to penalize under-prediction

more heavily than over-prediction, the best performing model and combination method are

the SARMAX–GARCH and the ABMA–AIC based on G4.

5This fact is supported also by the Diebold and Mariano (1995) test. These results are available from the

authors upon request.
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3.2 Choosing the best forecasting method

We now focus on the task of selecting the best method given a forecast horizon of one day

and assuming that the manager of the call center is more adverse to under-staffing than to

over-staffing. We thus shrink the set of alternative forecasts so as to include all individual

models and the combined forecast obtained with ABMA-AIC applied to group G4.

The economic evaluation of forecasts based on the willingness to pay, δi, and the incre-

mental value of information, ∆Vi, is presented in Table 8. Although both economic measures

of performance decrease as the absolute risk aversion increases, the manager’s willingness to

pay seems to be less responsive to such a change than the incremental value of information.

The second column of Table 8 shows the percentage change in the root MSE distance for

comparison: an entry below 100 indicates that the i-th model outperforms the benchmark.

All measures suggest that the worst performing model is the MEM; as for the best model,

both money metrics point to the SARMAX–GARCH and to the ABMA–AIC combined

forecast. The manager is willing to pay up to 1687 Euro in order to use these models instead

of the benchmark. The model to which is associated the minimum (positive) willingness to

pay, 912 Euro, is the Poisson count data specification.

The ranking based on the incremental value of information is consistent with that based

on the willingness to pay. On the contrary, being symmetric about zero forecast errors,

the ranking based on the MSE ranking is quite different: for instance, the Airline model

would be preferred to the SARMAX–GARCH model which is the best option when the loss

function is consistent with the manager’s compensation scheme.

Overall, both economic and statistical evaluation of models indicate the SARMAX–

GARCH model and the ABMA-AIC combining method based on G4 as the best options for

the manager. However, using only statistical methods, we cannot clearly identify which of

these options is the best. On the contrary, given that the monetary value of the two forecasts

and the manager’s willingness to pay for them are very similar, we can conclude that the

SARMAX–GARCH is to be preferred to the ABMA–AIC combined method.

Actually, given that the latter method involves more than one model and that the

specification of models has to be periodically revised, it will have higher maintenance costs
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Table 8: Economic evaluation of models
δi (Euro) ∆Vi (Euro)

∆RMSE (%) λ = 0.0002 λ = 0.0003 λ = 0.0005 λ = 0.0002 λ = 0.0003 λ = 0.0005
M1 58.40 1377.40 1377.40 1377.30 401.66 114.03 11.96
M2 58.50 1544.90 1544.80 1544.60 445.01 125.19 12.97
M3 62.27 1342.40 1342.40 1342.30 392.47 111.63 11.74
M4 57.06 1413.70 1413.70 1413.70 411.15 116.49 12.19
M5 56.85 1687.40 1687.30 1687.20 481.04 134.29 13.77
M6 59.02 1433.70 1433.60 1433.50 416.35 117.84 12.31
M7 55.86 1517.40 1517.40 1517.30 437.98 123.40 12.81
M8 76.36 912.39 912.30 912.16 275.33 80.22 8.73
M9 76.10 988.59 988.47 988.28 296.65 86.05 9.30
M10 76.10 988.59 988.47 988.28 296.65 86.05 9.30
M11 123.66 -933.48 -933.27 -932.94 -324.07 -105.60 -13.59
M12 62.72 1031.10 1031.10 1030.90 308.44 89.26 9.62
M13 61.19 1217.50 1217.40 1217.40 359.21 102.88 10.93
AIC G4 56.85 1687.40 1687.30 1687.20 481.04 134.29 13.77

Notes: economic evaluation of one day ahead forecasts; ∆RMSE=100×(RMSEi/RMSEM0
), where the RMSE corresponds to

the flexible loss distance for ρ = 2 and φ = 0.5; the incremental value of information is ∆Vi = Vi − VM0
, where Vi is the value

of information from model i; the willingness to pay for model i is δ = CEi − CEM0
, where CEi is the certainty equivalent

from model i; λ is the coefficient of risk aversion.

than the SARMAX–GARCH model. Moreover, if the model is run by an employee of the

call center and not by the professional forecaster, we see the “ease-of-use” as a critical factor

for the choice of the best forecast.

All in all, we have shown that simple measures of performance expressed in monetary

terms are easy to construct and offer greater flexibility than the often used symmetric loss

functions. This flexibility allows the forecasts’ user and the adviser to judge the predictive

performance of models with the same metric. Moreover, being expressed in monetary terms,

we believe that these measures are more interesting for practitioners than traditional sta-

tistical distances. Finally, from the perspective of the professional forecaster, we see the

results in this section as complementary to those based on flexible loss functions. From the

standpoint of forecast’s users, we believe that the economic measures are to be preferred

because more closely linked to their profit maximizing behavior.

3.3 Robustness checks: alternative dataset

The usefulness of our results clearly depends on their degree of generalizabililty. To shed

light on this matter we consider two alternative series representing the number of call arrivals

recorded at the call centers operated by two banks, one located in Israel and the other in

the U.S.. In Table 9 we list for each series the model with the lowest Mean Squared Forecast

Error. As it can been seen either the ARMAX–GARCH or SARMAX–GARCH are the

winning option in all countries and at all forecast horizons.
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Table 9: MSE ranking of models in Israel, Italy and the U.S..
country h = 1 h = 7 h = 21 h = 1, ..., 28

Israel M2 M5 M2 M2

Italy M5 M5 M5 M5

U.S. M2 M2 M3 M2

Notes: the first column identifies the dataset used; entries in columns 2-4 represent the model with the lowest Mean Squared
Forecast Error (MSFE) at forecast horizon 1,7,28 days, while entries in the last column represent the model with the lowest
sum of MSFE over forecast horizons h = 1, 2, . . . , 28. Models are described in Tables 1.

4 Conclusions

Call centers’ managers and companies relying on call center services are interested in obtain-

ing accurate forecasts of call arrivals for achieving optimal operating efficiency. This paper

has shown how to choose among forecasting methods in call centers.

The empirical exercise in this paper mimics the interaction between a professional fore-

caster and a manager needing forecasts of incoming calls to decide how many agents are

required each day at a call center. In this context, we have evaluated fourteen models and a

set of seven forecast combination schemes using flexible loss functions, statistical tests and

economic measures of performance.

Each of these forecasts is able to capture one or more key features of the daily call arrival

series. Moreover, all of the models and combination methods are computationally tractable,

with a relatively small number of parameters that can be easily estimated and updated with

any off-the-shelf statistical software as new data become available. This is a crucial point in

the selection of a model for forecasting call arrivals. In fact, to be of practical use, it must

not only reproduce the key features of the data, but also be easily implementable so as to

quickly generate new forecasts to update the operational decisions in call centers (Ibrahim

et al., 2016).

After taking a stance on the shape of the statistical loss function, parametrized so

as to make under-forecasting costlier than over-forecasting and to be consistent with the

compensation scheme used to pay the manager of the call center, we have shown that the

professional forecaster can shrink the number of methods to present to the customer by using

the Reality Check test and the Model Confidence Set.

These tests as well as the ranking of models suggest that the best available options are the

SARMAX–GARCH and a combined forecast obtained with ABMA. Subsequently, we have
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shown that the economic evaluation of forecast accuracy leads to the same results. However,

given that individual and combined forecasts have approximately the same monetary value,

the manager will choose the SARMAX–GARCH model, due to lower maintenance costs.

The maintenance costs of a forecasting model used by an employee of the call center include

direct costs, due to periodical checks of the specification, as well as indirect costs, associated

to the relative complexity of the forecasting method. Given that a combined forecast involves

a set of models, whose specifications have to be periodically checked, it will probably lead to

higher maintenance costs and hence the SARMAX–GARCH model will be the best available

choice.

We have presented a wide array of results involving different loss functions, forecast

horizons and call arrival series, we can also draw some more general conclusions. First,

it emerges that from the point of view of a manager, outsourcing the forecasting exercise

could be worth its cost; in fact, the benchmark SRW model is always outperformed by other

relatively more sophisticated specifications. Second, independently of the forecast horizon

and for any shape of the loss function, the combination of forecasts, especially if based on

optimal combining weights calculated by means of ABMA, proves useful and lead to lower

statistical losses than most individual models. Third, the statistical evaluation of models

indicates that second–moment modeling, and not only seasonality, is important; in fact either

the ARMAX–GARCH or SARMAX–GARCH model emerges as one of the best alternatives

both among individual and combined forecasts. This last result implies that anticipating the

variability of call arrivals is extremely important, in that when a call centers operates under

a SLA, higher uncertainty requires higher staffing levels to meet service quality objectives.

Moreover, given its ease-of-implementation the SARMAX–GRACH model seems to be a

good candidate also for density forecasting.
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