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Abstract

This article compares centralized with disconnected markets in which n > 2 strategic agents

trade two perfectly divisible goods. In a multi-goods uniform-price double auction (centralized

market) traders can make their demand for one good contingent on the price of the other good.

Interlinking demands across goods is - by design - not possible when each good is traded in

separate, single-good uniform-price double auctions (disconnected market). Here, agents are

constrained in the way they can submit their joint preferences. I show for a class of models

that equilibrium allocations and efficiency of centralized and disconnected markets nevertheless

coincide when the total supply of the goods is known or perfectly correlated. This suggests that

disconnected markets perform as well as centralized markets when the underlying uncertainty

that governs the goods’ market prices is perfectly correlated.

Keywords: Disconnected markets, divisible goods, multi-unit double auctions, trading

JEL classification: D44, D47, D82, G14

Modern economies consist of markets with different structures. Some markets are centralized.

They offer multiple goods within the same platform. Some others are disconnected in that only

one good is sold or traded per platform. Notably, many goods can be purchased or traded in

either centralized or disconnected markets. Different spectrum frequencies are auctioned in a cen-

tralized (combinatorial) auction, as in the FCC auction, yet also in separate (non-combinatorial)

auctions. Mineral rights, oil and gas royalties, dairy products and aquarian animals are each of-

fered in global, centralized online platforms,1 but can also be purchased in separate markets that

sell only milk, not butter, or only one species of fish, for instance. Furthermore, different financial

securities are traditionally traded in separate auctions, one for each security (e.g. OTC market,

NYSE); while modern online platforms organize exchanges of different securities within the same

market. In such a centralized market participants are allowed to demand and offer packages of the

goods. Interlinking preferences across goods is by design not possible when each good is traded in

a separate market. A dealer who bids for the 3-month German bond, for example, cannot make his

choice contingent on the price of the 1-year French bond. More generally, agents are constrained

in the way they can display their joint preferences for the goods when markets are disconnected.

They cannot freely maximize their gains from trade. Intuitively, the degree of efficiency is bound

to hinge on the market’s structure (centralized or disconnected). I show that this need not be the

case. When the residual supplies of the goods are perfectly correlated the equilibrium allocation

of disconnected markets is identical to the allocation of a centralized market. My counter-intuitive

finding suggests that the market structure may be irrelevant when the underlying uncertainty that

governs the strategic pricing process for each good is perfectly correlated.

∗For helpful discussions and comments, I thank Robert Wilson, Mohammad Akbarpour, Peter Cramton, Darrell

Duffie, David K. Levine, Paul Milgrom and all participants of his seminar.
†European University Institute, milena.wittwer@eui.eu.
1Examples of such platforms are: TheMinearlAuction, Global Dary Trade, Aquabid.
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The irrelevance result provides guidance for the design of markets. While new technology has made

it feasible to centralize separated markets, integrating them remains challenging for policy mak-

ers. They face national and institutional constraints. What is more, centralization often requires

cross-border collaboration, further complicating the integration process. In general, combining dis-

connected markets involves some cost: some are transitory (like learning costs to adapt to a new

system), some others are permanent. Existing ownership structures have to be broken. Market

makers who centralize the system (intermediaries) take away parts of the total surplus, and might

even distort the outcome by their strategic manipulations. My irrelevance result suggests when it

is not worthwhile to pay these costs, because such policy intervention would have no or negligible

effects on both the volume of trade and efficiency. It also helps one to understand why some

markets remain disconnected even though centralization has long become technologically feasible.

The markets of equity and fixed income securities are good examples. These are identical products

which are traded in dozens of trading venues, none with dominating market shares. Why does

the market structure not converge towards centralization? My result suggests a simple answer.

The gains from market integration are not high enough to force changes in the existing market

structure, because the fundamentals that drive the price for these identical products are highly

correlated.

In the model, n > 2 agents, each with an independent private type, have joint-preferences over

two perfectly divisible goods with fixed or random total supply. These goods are traded in either

a centralized or disconnected market. The later consists of two standard uniform-price double auc-

tions which are run simultaneously for each good. In each auction agents submit demand schedules

specifying a price for each quantity they demand or supply. The market clears at the price where

aggregate demand meets aggregate supply, and each agent buys or sells what he demanded or

offered at this price. When the market is centralized an agent is allowed to bid for bundles. More

precisely, the rules of the standard uniform-price double auction are extended to allow the demand

for one good to depend on the price of the other good. Holding all other rules of the game fixed

allows me to focus on the effect of centralizing disconnected markets. If I were to compare the

separate uniform-price auctions to some other combinatorial auction, I would no longer be able to

separate the effect of centralization from those coming from changes of other rules of the transac-

tion. The irrelevance result then builds on a comparison of the traded equilibrium quantities across

market structures. These are the equilibrium allocations of an ex-post equilibrium, whenever one

exists, and of a symmetric Bayesian Nash equilibrium otherwise.

My research topic fits into the literature that compares the performance of decentralized, or frag-

mented, markets with centralized markets. Decentralized markets are typically studied in (i) search

(ii) bargaining or (iii) network models. Most contributions highlight different types of inefficien-

cies in decentralized markets. Using search theory, Miao (2006), for instance, shows that social

welfare improves with monopolistic market making (i); Elliott and Nava (2015) argue in favor

of centralized clearinghouses to resolve pervasive inefficiencies of disconnected matching markets

(ii); while Elliott (2015) extends Kranton and Minehart (2001)’s pioneering network model of

trade to quantify the efficiency losses (iii). In setting up an auction model, I take a different
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perspective on decentralized markets than previous studies (i-iii). With the disconnected market

consisting of simultaneous multi-unit auctions, it relates to a growing literature put forward by

computer scientists. Motivated by Bikhchandani (1999), who warned that “simultaneous sealed

bid auctions are likely to be inefficient under incomplete information” (p. 212), they quantify the

efficiency of simultaneous auctions of heterogeneous goods by computing the “price of anarchy”

(=the maximum ratio between the social welfare under an optimal allocation and the welfare at an

equilibrium). While, most work concentrates on single-item auctions (e.g. Feldman et al. (2015a)),

Syrgkanis and Tardos (2013) show that m simultaneously run uniform-price auctions achieve “at

least” e−1
4e

≈ 0.158 of the expected optimal effective welfare.2 Malamud and Rostek (2014)’s find-

ings are orthogonal to this literature. In independent work, they develope a framework that is

similar to mine to study the potential of decentralizing the exchange of financial securities to im-

prove efficiency.4 They show that it can be strictly welfare improving to break up a centralized

structure, modeled as a multi-asset uniform-price double auction. In their model, any change in

market structure affects efficiency.

Coming from many different directions and using a wide variety of techniques, all of these articles

agree that social welfare in centralized and decentralized markets differs. My Irrelevance Theorem

goes against this broad consensus. Even though it is specific to particular applications, it is in

the spirit of famous general theorems that tell us when “market structure” in different formats

is irrelevant: Sah and Stiglitz (1987) and Dasgupta (1988) establish conditions under which the

number of firms (=market structure) does not matter for technological innovation; Modigliani and

Miller (1958) prove that the financial structure of the firm (=market structure) does not neces-

sarily matter for the creation of value; Weber (1983) shows that the realized price of any auction

game that sells identical objects (=market structure) is the realized price of the previous auction;

and Vickery (1961) proves that some rules of the auction (=market structure) are irrelevant for

the seller’s expected revenue. Building on the Revenue Equivalence Theorem, Biais (1993) then

demonstrates that centralized and fragmented markets with risk-averse agents who compete for a

single market order (=market structure) may give rise to the same expected ask (bid) price.

My main methodological contribution belongs to the literature on multi-unit auctions of perfectly

divisible goods. I rely on existing research on multi-unit auctions with perfectly divisible goods,

so called “share auctions”.3 Share auctions were introduced by Wilson (1979) for single-sided

transactions, and closely relate to Klemperer and Meyer (1989), Kyle (1989), Vives (2011), Rostek

and Weretka (2012)’s work on uniform-price double auctions. More specifically, I draw on insights

by Du and Zhu (2012), whose framework has been used in other articles in the finance literature

(e.g. Duffie and Zhu (2016)). They make assumptions on the traders’ utility functions that allow

2Feldman et al. (2015b) suggest that such inefficiency washes out in the limit as markets grow large. This is

a different environment than studied in this paper, where strategic pricing decisions of individual agents have an

impact on the outcome.
3Similar to the frequent assumption in the literature on single-unit auctions that the set of available prices is

dense, the assumption of perfect divisibility is a continuous approximation of a discrete set of quantities - which

across economic disciplines has long been recognized as a valuable alternative when discrete problems are intractable

(Woodward (2015)). With imperfect divisibility of goods or buyers who can submit only a maximal amount of bids

the analysis becomes more complex due to discontinuities and rationing. This has been demonstrated recently by

Horaçsu and McAdams (2010) and Kastl (2011, 2012).
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them to solve for ex-post equilibria of an isolated uniform-price double auction, as well as a multi-

assets double auction. My ex-post equilibria are derived based on the same assumptions.

This literature typically considers an auction in isolation neglecting possible interconnections across

auction markets. While we have some understanding of how agents behave in multi-unit auctions

that trade or sell either one good, or multiple goods within the same transaction, the existing

published literature is - to the best of my knowledge - silent about strategic incentives of agents

that participate in separate multi-unit auctions that offer related goods.4 My necessary optimality

condition for the Bayesian Nash equilibrium of this complex game holds for a broad class of utili-

ties and any differentiable distribution functions and enables me to explain the strategic incentives

that lie behind the equilibrium. Moreover, it has a straight-forward extension to the other most

frequently used (sealed-bid) multi-unit auction format, the pay-as-bid auction.

The remainder of the article is structured as follows. Having set-up the model in section 1, section

2 explains equilibrium behavior. A comparison of equilibrium allocations across market structures

and informational assumptions leads to the Irrelevance Theorem stated in section 3. Section 4

concludes.

Throughout the article I denote random variables is boldboldbold.

1 Framework

There are n > 2 agents,5 each with a private iid type sisisi, who trade two perfectly divisible goods,

indexed m = 1, 2, in a centralized market or disconnected market. The centralized market is

modeled as a multi-good uniform-price double auction, the disconnected market consist of two

separate single-good uniform-price double auctions which are run simultaneously. Total supply in

each market is either random (benchmark case) or fixed. In general I make no further distribu-

tional assumptions, with one exception. In order to obtain a linear Bayesian Nash equilibrium

candidate in the disconnected auction with random supply I follow the standard simplifying as-

sumption of the literature and let all random variables be normally distributed.6 More precisely,
(

Q2Q2Q2

Q2Q2Q2

)

∼ N

((

µ1

µ2

)

,

(

σ2 ρσ2

ρσ2 σ2

))

and sisisi ∼ N(µs, σ
2
s) iid across i and w.r.t. Q1Q1Q1,Q2Q2Q2.

Each agent submits a pair of differentiable bidding schedules

bi,m(·, si) : R → R for m = 1, 2 in disconnected auctions (1)

b̄i,m(·, ·, si) : R
2 → R for m = 1, 2 in centralized auction (1c)

These are inverse demand schedules, assumed to be decreasing in their first argument. The de-

mand functions are denoted by xi,m(·, si) and x̄i,m(·, ·, si).

4Independent to my own work Malamud, Rostek and Yoon are currently working on a related paper.
5With n = 2 agents the non-existence of equilibria has long been recognized in the literature when marginal

utility is decreasing (e.g. Kyle (1989) from Ausubel et al. (2014), Du and Zhu (2016)).
6See, for instance, Kyle (1989), Vives (2011), Rostek and Weretka (2012), who all impose a normal distributions.
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Once all agents have submitted their demands, the market for good m clears (MC) at price p∗m
where aggregate demand meets total supply. Each agent buys or sells what he asked for at this

price, abbreviated by

q∗i,m ≡ xi,m(p
∗
m, si)

(MC)
= Qm −

∑

j 6=i xj,m(p
∗
m, sj) in disconnected auctions (2)

q̄∗i,m ≡ x̄i,m(p̄
∗
m, p̄

∗
−m, si)

(MC)
= Qm −

∑

j 6=i x̄j,m(p̄
∗
m, p̄

∗
−m, sj) in centralized auction (2c)

for m = 1, 2,−m 6= m. He makes a total payment of

TP (p∗1, p
∗
2, q

∗
i,1, q

∗
i,2) ≡ p∗1q

∗
i,1 + p∗2q

∗
i,2 in disconnected auctions (3)

TP (p̄∗1, p̄
∗
2, q̄

∗
i,1, q̄

∗
i,2) ≡ p̄∗1q̄

∗
i,1 + p̄∗2q̄

∗
i,2 in centralized auction (3c)

In order to determine the optimal strategy, each agent maximizes his net payoff. It is defined as

the total utility the agent receives from the goods minus his total payment. Purchasing quantities

{q1, q2} he receives a utility of

U(q1, q2, si) =
∑

m=1,2

{

siqm −
1

2
λq2m

}

− δq1q2 where λ > 0, |δ| ≤ λ. (4)

This utility function is simple and intuitive: From winning amount qm the agent obtains a marginal

value si. Holding an “inventory” qm of the illiquid asset is costly for the trader. He pays a cost of
1
2
λq2m.

7 It may be related to regulatory capital or collateral requirements, or represent an expected

cost of being forced to raise liquidity by quickly disposing of remaining inventory into an illiquid

market (Duffie and Zhu (2016)). When δ 6= 0, the utility function displays an additional factor:

δq1q2. Its meaning is best understood by analyzing the agent’s partial utility of qm

∂U(q1, q2, si)

∂qm
= si − λqm − δq−m for m = 1, 2;−m 6= m. (5)

This partial utility is the agent’s “true marginal willingness to pay” for a quantity qm given that

he obtains quantity q−m. It decreases in the amount of good m (λ > 0), and decreases or increases

in the quantity of the other good −m depending on the sign of δ. This parameter measures the

relation across goods. Whenever δ > 0 the agent is willing to pay less for any given amount qm,

the more he purchases of good −m. The goods are substitutes. They are perfect substitutes when

δ = λ. Then the marginal utility decreases by the same amount regardless of which good the agent

purchases. On the other hand, when δ < 0, the agent values the same quantity qm more, the more

he owns of the other good −m. In this case, goods are complements. Setting δ = 0 I could shut

down any interconnection between goods to be back to the case of an isolated auction. However,

this case is uninteresting. With no relation between the goods there are no strategic effects across

goods. The allocation of the centralized and disconnected market trivially coincides. I therefore

focus on δ 6= 0 throughout the article.

7This quadratic cost is common in the literature. It is used by Vives (2011), Rostek and Weretka (2012), Duffie

and Zhu (2016) and others.
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It is this simple functional form of the utility function that makes the model tractable. In partic-

ular, a linear marginal willingness to pay with deterministic slope coefficients gives rise to a linear

equilibrium, without constraining the strategy space to linear functions. My optimality conditions

for the equilibrium in the simultaneous double auctions, however, holds for any utility function

that is, continuous, twice differentiable and has continuous cross-partial derivatives.

I focus on pure-strategy equilibria in which all agents are active in both markets. Whenever pos-

sible I solve for the ex-post equilibrium.

Definition 1. An ex post equilibrium is a profile of strategies such that there exists no profile of

types or total supply for which some agent would have an incentive to deviate.

Such equilibria are Bayesian Nash equilibria which are robust in the sense that no agent wishes

he would have chosen differently once all uncertainty resolves. This is because every agent would

choose the same strategy even if he could observe the private types of all of his competitors and the

total amount for sale. Nobody regrets his choice ex-post. This implies that we do not need to worry

about strategic effects of a secondary (or after) market. Such markets are prominent in particular in

the finance sector. Anticipating of such effects could ruin the equilibrium when taken into account.

In disconnected auctions with random total supply, there is no ex-post equilibrium. Here I look for

a pure-strategy Bayesian Nash Equilibrium (BNE). It is linear thanks to the additional assumption

that random variables are normally distributed.

Definition 2. A symmetric pure-strategy BNE is a pair {b1(·, si), b2(·, si)} that ∀i ∈ I

max
bi,1(·,si),bi,2(·,si)

E[U(q∗i,1q∗i,1q∗i,1, q
∗
i,2q∗i,2q∗i,2, si)]− E[TP (p∗1p

∗
1p
∗
1, p

∗
2p
∗
2p
∗
2, q

∗
i,1q∗i,1q∗i,1, q

∗
i,2q∗i,2q∗i,2)] with p∗mp

∗
mp
∗
m = bi,m(q

∗
i,mq∗i,mq∗i,m, si)

when bj,m(·, sj) = bm(·, sj) ∀j 6= i, m = 1, 2.

2 Equilibria

I now state, compare and explain the equilibrium strategies in the different environments. I start

by describing how traders choose their equilibrium demand schedules. Understanding how choices

are made lays the ground for the Irrelevance Theorem. Since equilibria will be linear, I derive the

intuition for this case. More precisely, I give conditions that characterize a linear Bayesian Nash

Equilibrium. It is the ex-post equilibrium in the centralized market, and the disconnected auctions

with fixed supply. More general optimality conditions for the disconnected auctions are given in

Appendix 7.1. These hold under very mild assumptions on the functional form of the utility and

distribution functions.
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Disconnected Auction 1: Let all other agents j 6= i play the equilibrium strategies {b1(·, sj), b2(·, sj)}.

Take the perspective of agent i who considers how to to bid in the auction for good 1. Assume

he behaves in auction 2 as he will in equilibrium b2(·, si). He knows that this makes him win q∗i,2q∗i,2q∗i,2,

implicitly characterized by market clearing

q∗i,2q∗i,2q∗i,2 = Q2Q2Q2 −
∑

j 6=i

x2(ppp
∗
2, sjsjsj) with ppp∗2 = b2(q

∗
i,2q∗i,2q∗i,2, si) (2)

However, since both auctions take place simultaneously and the bidder neither knows the types

of his competitors s−is−is−i nor the total supply Q2Q2Q2 ex-ante, he does not know how much he will win

in auction 2, when choosing his strategy in auction 1. In that auction, he takes the submitted

demand schedules of all others as given. What count for his choice is not the total, but the residual

supply

RS1(p1, s−is−is−i,Q1Q1Q1) = Q1Q1Q1 −
∑

j 6=i

xj,1(p1, sjsjsj) in price-quantity space (6)

q1 = Q1Q1Q1 −
∑

j 6=i

xj,1(p
RS
1 (q1, s−is−is−i,Q1Q1Q1), sjsjsj) in quantity-price space (7)

It is continuous and upward-sloping by the assumption that all bidding functions are continuous

and decreasing. Moreover, since s−is−is−i andQ1Q1Q1 are random, the residual supply is random. This makes

it difficult for the agent. If he knew the realization of the supply, he would simply pick the point

on the residual supply curve that maximizes his net payoff. To determine his optimal price offers,

he goes through all possible realizations of the residual supply curve for good 1, pRS
1 (q1, s−i, Q1).

The optimal bid-offer b1(q1, si) equates its expected marginal utility with its expected marginal

payment:

E

[

∂U(q1, q
∗
i,2q∗i,2q∗i,2, si)

∂q1

∣

∣

∣

∣

q1

]

= E

[

∂TP (pRS
1 (q1, s−i, Q1), p

∗
2p
∗
2p
∗
2, q1, q

∗
i,2q∗i,2q∗i,2)

∂q1

∣

∣

∣

∣

∣

q1

]

(8)

and clears the market: pRS
1 (q1, s−i, Q1) = b1(q1, si). Hereby, the agent takes the best guess about

how much he will obtain in the other auction, by taking the conditional expectation.

Notice that when equilibrium strategies are linear, the slopes of the residual supply curves are

deterministic. The right-hand-side is thus independent of s−i, Q1, Q2. The analogous holds for the

centralized auction.

Centralized Auction: In search for the optimal strategy, the agent now goes through all possible

pairs of realizations of residual supply curves {p̄RS
1 (q1, q2, s−i, Q1), p̄

RS
2 (q2, q1, s−i, Q2)}. Say a par-

ticular pair realizes and that offering prices {b̄1(q1, q2, si), b̄2(q2, q1, si)} makes agent i win {q1, q2}.

For each bid offer to be optimal it must be that marginal utility from winning the bid, that is

winning qm, must equate the marginal payment:
[

∂U(q1, q2, si)

∂qm

]

=

[

∂TP (p̄RS
1 (q1, q2, s−i, Q1), p̄

RS
2 (q2, q1, s−i, Q2), q1, q2)

∂qm

]

(9)

for both goods m = 1, 2, and clear both markets simultaneously: b̄1(q1, q2, si) = p̄RS
1 (q1, s−i, Q1),

b̄2(q2, q1, si) = p̄RS
2 (q2, q1, s−i, Q2).
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This condition characterizes the equilibrium strategy {b1(·, ·, si), b2(·, ·, si)} point-wise for all q1, q2,

giving rise to the following lemma. It is a variant of Du and Zhu (2012)’s Proposition 3.8

Lemma 1 (Centralized market). There is an ex-post equilibrium, in which all traders are active

in both markets. Traders submit for m = 1, 2,−m 6= m

b̄m(qm, q−m, si) = si −

(

n− 1

n− 2

)

{λqm + δq−m} .. (10)

In equilibrium each agent shades his true marginal willingness to pay ∂U(q1,q2,si)
∂qm

= si−λqm−δq−m.

This strategic behavior is commonly known as “demand-reduction” from standard multi-unit auc-

tions that sell (here trade) one good, given agents have demand for multiple units (see Ausubel

et al. (2014)). It carries over to the case of multiple goods where the true demand is multi - (here

two -) dimensional.

The equilibrium strategy of a centralized auction is very similar to the strategy of the disconnected

auctions when total supply is fixed.8

Lemma 2 (Disconnected markets with known supply). There is an ex-post equilibrium in which

all traders are active in both markets. Traders submit for m = 1, 2,−m 6= m

bm(qm, si) = b̄m(qm, qm, si) +

(

δ

n

)

(Qm −Q−m). (11)

In a disconnected auction, the price offer for goodm can - by design - not depend on the amount the

agents has of good −m. The agent is forced to substitute q−m in b̄m(qm, q−m, si) by qm. This means

that he can no longer interlink his submitted demands explicitly. What he can do however, is to

make his submitted demand in market m dependent on the total supply of the other market, Q−m.

This allows the agent to implicitly interlink his submitted demand across markets, even though

the market rules prevent him from explicitly connecting his preferences. Formally, we observe that

the optimal strategy displays a correction term: C(Qm, Q−m, δ) ≡
(

δ
n

)

(Qm − Q−m). It can be

expressed in terms of equilibrium winning quantities, q∗i,m =
(

1
λ+δ

) (

n−2
n−1

) (

si −
1
n

∑

i si
)

+ 1
n
Qm, for

m and −m: C(Qm, Q−m, δ) = δ
(

q∗i,m − q∗i,−m

)

. Doing so we see that it corrects for differences in

the equilibrium allocation.

When total supply is unknown to the traders, it is no longer possible to condition the submit-

ted demand on the total amount for sale. Therewith the traders loose this option to implicitly

interconnect the two markets.

8When the agent has a type with a common value component: γsi + κ
∑

j 6=i sj with γ + (n− 1)κ = 1, as in Du

and Zhu (2012), the ex-post equilibrium of Lemma 1 is

b̄m(qm, q−m, si) = si −

(

n− 1

nγ − 2

)

{λqm + δqm − κQm} for m = 1, 2;−m 6= m (14)

Lemma 2 remains.

8



Lemma 3 (Disconnected market with random supply). Define ρi(α) ≡ α2(n−1)σ2
s+ρσ2

α2(n−1)σ2
s+σ2 .

In a symmetric Bayesian Nash equilibrium, where all are active in both markets, traders submit

for m = 1, 2,−m 6= m

bBNE
m (qm, si) = ǫ(α) + αsi − β(α)qm with α = 1− δα

(

1

n

)

(n− 1)[1− ρi(α)] (12)

β(α) =

(

n− 1

n− 2

)

(

λ+ δρi(α)
)

ǫ(α) = δ

(

1

n

)

[

(ρi(α)µm − µ−m) + α(n− 1)µs[1− ρi(α)]
]

With random supply, the agent no longer knows how much he will win in the other auction q∗i,−mq∗i,−mq∗i,−m

when choosing his demand schedule in action m. He cannot correct for the exact difference in

the winning quantities. Yet, he does exploits the correlation across residual supplies, that is - by

market clearing - his winning quantities. This is the reason for which the correlation of winning

quantities, ρi(α), now plays a key role in his bidding choice. Otherwise, his strategy is similar to

when supply is known. This is easy to see when comparing the coefficients of the linear bidding

functions of Lemma 2 and Lemma 3 (Figure 1). Moreover, when reproducing the case of fixed

supply by degenerating the distribution of total supply (setting σ = 0, µ1 = Q2, µ2 = Q2), the

BNE is the ex-post equilibrium: bm(·, si) = bBNE
m (·, si).

Figure 1: In disconnected auctions agents submit αsi − β(α)qm + ǫ(α)

Lemma 2: Ex-post equi (known supply) Lemma 3: BNE (random supply)

α = 1 α = 1− δα
(

1
n

)

(n− 1)[1− ρi(α)]

β =
(

n−1
n−2

)

(λ+ δ) β(α) =
(

n−1
n−2

)

(

λ+ δρi(α)
)

ǫ = δ
(

1
n

)

[Qm −Q−m] ǫ(α) = δ
(

1
n

) [

(ρi(α)µm − µ−m) + α(n− 1)µs(1− ρi(α))
]

3 Irrelevance Theorem

A comparison of the equilibrium allocation across market structures leads to the Irrelevance The-

orem. It is counter-intuitive. In the centralized market, traders with joint preferences over the

goods for sale are allowed to bid for bundles and can therewith jointly maximize their total sur-

plus. Instead, in a disconnected market, their demand schedule can only depend on the price of

the security traded in that market. By design of the transaction, agents are always constrained

in the way they can display their preferences. One would therefore expect that the equilibrium

allocation of the centralized market must differ from the one of the disconnected market.

9



Irrelevance Theorem. The equilibrium allocations of centralized and disconnected markets

(i) coincide iff the total amount for sale is known to all traders, or the total amount is uncertain

but perfectly correlated across goods, and

(ii) approach one another as σ → 0 or ρ → 1.

To understand why the market structure can be irrelevant (statement (i)), recall the intuition

that was laid out to explain equilibrium behavior. While preferences are two-dimensional a the

submitted demand is one-dimensional in a disconnected auction. The agent picks an optimal point

on each possible supply curve, taking the expectation of what will happen in the other market

(condition (8)). On the contrary, in the centralized auction the agent is free to pick a pair of points

on each pair of realizations of residual supply curves (condition (9)). In choosing how much he

trades of one good the agents knows exactly how much he will trade of the other good. There is no

need to take an expectation. This means that the trader can make a relatively “better informed”

decision in the centralized market, unless the residual supply curves are perfectly correlated. In my

set-up where all traders participate in both markets, this case occurs either with fixed or random

but perfectly correlated total supply (=condition (i)). Then a realization of the residual supply

curve of good 1, which corresponds to some optimal choice for good 1, maps one-to-one to some

realization of the curve of good 2, which in turn corresponds to an optimal choice in auction 2.

Conditional on observing the realization in auction 1, the agent knows exactly how much he will

win in the other auction 2. The inherent constraint that he faces in an disconnected auction be-

comes irrelevant. He deals with the same amount of uncertainty in either market structure. As a

consequence, efficiency measures such as the social welfare or the total volume of trade coincide.

The result is robust for almost perfectly correlated residual supply curves (statement (ii)).

This intuition should generalize to many other environments that are not considered on a formal

level. Say there is some underlying uncertainty about good m. It could come from private,

affiliated or common values of strategic market participants, it could also be driven by noise

traders, or unknown total supply. The key is that, for given strategies of the other agents, there

is some aggregate random variable ZmZmZm which governs the decision process of market participants

and therewith the residual supply for good m: RSm(pm,ZmZmZm). Whenever Z1Z1Z1 is perfectly correlated

Z2Z2Z2, the residual supply curves of both goods move 1-to-1. In that case, the equilibrium allocation

of the disconnected market should be identical to the centralized market. The market structure

would not matter.

10



4 Conclusion

I provide a novel Irrelevance Theorem. It shows under which conditions strategic traders with joint

preferences over bundles of goods trade the exact same amount in disconnected and centralized

markets. Only in the later they can freely represent their true two-dimensional preferences. I argue

that the inherent constraint that agents face in a disconnected market is non-binding whenever

the underlying uncertainty that drives pricing decisions is perfectly correlated across markets. In

that case there is no informational differences that could lead to differences in allocations of the

two market structures.

Besides broad significance for the design of trading markets, my findings could have concrete policy

implications. Recently Budish et al. (2015) proposed to reform high-frequency trading markets.

They advocate to replace the continuous limit order book which causes an inefficient race in high-

frequency trading with frequently held batch uniform-price double auctions. Their model only has

one good and thus abstracts from strategic substitution, or arbitrage effects across markets. Such

effects could in principle have adverse consequences on the equilibrium dynamics. My irrelevance

result tells us when we do not have to care about cross-market effects.

In future work, I aim to generalize the theorem to apply in more environments. In addition,

my general first-order conditions of the disconnected auctions serves as theoretic foundation for

a related empirical project. In collaboration with Jason Allen and Jakub Kastl I structurally

estimate the interdependencies in primary dealer’s demand for government securities with different

maturities in pay-as-bid auctions.
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Appendix

5 Proof of Lemma 1

The proof holds for the more general utility function (used by Du and Zhu (2012)):

U(vi, q1, q2) =
∑

m=k,l

{

viqm −
1

2
λq2m

}

− δq1q2 ,with vi = γsi + κ
∑

j 6=i

sj (13)

where λ > 0, |δ| ≤ λ, γ, κ ≥ 0 and normalization γ + (n− 1)κ = 1.

It is analogous to Du and Zhu (2012)’s proof of proposition 3. There is one key differences in our

set-up. I allow total supply to be random, while Du and Zhu (2012) assume that the total amount

for sale is fixed. To account for this difference it suffices to let agent i go through all possible

realizations of the residual supply instead of all realization of type profiles of his competitors s−iin

Du and Zhu (2012)’s proof. The algebra remains unchanged, which is why I do not reproduce the

proof here. The reader is referred to Du and Zhu (2012) pp. 26-27.

The ex-post equilibrium expressed in the price-quantity space is

b̄m(qm, q−m, si) = si −

(

n− 1

nγ − 2

)

{λqm + δqm − κQm} (14)

6 Proof of Lemma 2

The proof is written for the more general utility function (13), while I only consider the case of

independent private values, that is κ = 0, γ = 1, in the text. It has two main parts. I first derive

an equilibrium candidate (section 6.1). Then I verify that there is no profitable deviation (section

6.2). The algebraic derivations of both parts are in section 6.3.

6.1 Deriving an equilibrium candidate

Take the perspective of agent i and fix a profile of private types (s1, ..., sn) ≡ (si, s−i). Assume

that all other agents play strategy {x1(·, sj), x2(·, sj)}. Agent i trades against two fixed residual

supply curves

RSi
m(pm, s−i) = Qm −

∑

j 6=i

xm(pm, sj) for m = k, l. (15)

His task is to pick an optimal point on each curve. In other words, he chooses a price that

lies on this residual supply curve in each market. He does so maximizing his payoff of winning

{q1, q2} = {RSi
1(p1, s−i), RSi

2(p2, s−i)} at prices {p1, p2}.

max
p1,p2

π(vi, p1, p2) = max
p1,p2

(

U(vi, q1, q2)−
∑

m=k,l

pmqm

)

with qm = RSi
m(pm, s−i) for m = k, l (16)
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Inserting the assumed form of the utility function (13) the agent’s maximization problem reads

max
p1,p2

∑

m=k,l

{(

γsi + κ
∑

j 6=i

−pm

)

RSi
m(pm, s−i)−

1

2
λ
(

RSi
m(pm, s−i)

)2

}

− δRSi
1(p1, s−i)RSi

2(p2, s−i)

For m = k, l and m 6= m, the first-order conditions are

0 =− xi,m(p
∗
m, s−i) +

(

γsi + κ
∑

j 6=i

sj − pm − λxi,m(p
∗
m, s−i)− δxi,−m(p

∗
−m, s−i)

)(

∂RSi
m(pm, s−i)

∂pm

∣

∣

∣

∣

pm=p∗m

)

(17)

where I have already used market clearing at the optimum, i.e. RSi
m(p

∗
m, s−i) = xi,m(p

∗
m, si) for

m = k, l. They characterize the optimal price pair {p∗1, p
∗
2}, or equivalently the optimal quantity

pair that the agent demands {xi,k(p
∗
1, si), xi,l(p

∗
2, si)}. Put differently the system of FOCs specifies

the best response of agent i to all other agents choose xm(pm, sj), for the fixed profile of types

(si, s−i).

To solve for a symmetric, linear ex-post equilibrium, I follow a guess and verify approach. It starts

by making a guess about the form of the equilibrium strategy. I guess

xm(pm, si) = amsi − bmpm + cmQm + emQ−m for m = k, l,m 6= −m (18)

This guess implies that agent i faces the following linear residual supply curves

RSi
m(pm, s−i) = Qm[1− (n− 1)cm]− (n− 1){emQ−m − bmpm} − am

∑

j 6=i

sj (19)

Now, the guessed strategy can only be a symmetric equilibrium if it is optimal for agent i to

choose this strategy xm(pm, si) in responds to all others playing it. The goal is, therefore, to find

the set of coefficients {am, bm, cm, em} for m = k, l such that this is the case. I do this in several

steps. First, I find the best responses {xi,k(p
∗
1, si), xi,l(p

∗
2, si)} of agent i, characterized system of

FOCs when imposing that all others play the guess. Since preferences interlink both markets,

each submitted demand xi,m(p
∗
m, si) will depend how much the agent purchases or sells in the

other auction xi,−m(p
∗
−m, si). The second step is to determine how the winning quantity in the

other market must be when all agents (including i) choose the guessed strategy. Substituting the

winning quantity of the other market in the FOC, and rearranging, leaves us with the following

system of equations

xi,k(p
∗
1, si) = A1(a2, a1, b1)si − B1(a2, a1, b1)p

∗
1 + C1(a2, a1, b1, c1)Q1 + E1(a2, a1, b1, e1)Q2

xi,l(p
∗
2, si) = A2(a1, a2, b2)si − B2(a1, a2, b2)p

∗
2 + C2(a1, a2, b2, c2)Q2 + E2(a1, a2, b2, e2)Q1

where Am, Bm, Cm, Cm are functions of the coefficients of the guessed equilibrium strategy. In

order for the guessed strategy to be the symmetric equilibrium it must be that agent i chooses the

same strategy as all others at all prices pm including the clearing price p∗m. We therefore find an

equilibrium candidate by matching the ‘coefficients’ of i’s best response Am, Bm, Cm, Cm with the

coefficients of the guessed strategy am, bm, cm, em.
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Step 1. To find the best responses {xi,k(p
∗
1, si), xi,l(p

∗
2, si)} of agent i to all others playing the

guess, notice that the linear residual supply (19) implies two features. First

(

∂RSi
m(pm, s−i)

∂pm

)

= (n− 1)bm (20)

Second it establishes a one-to-one mapping between the sum of all other types
∑

j 6=i sj and a

realized pair of residual supply curves. Intuitively, fixing a set of types that gives rise to a particular
∑

j 6=i sj is the same as fixing a pair of residual supply curves which only varies in this sum.

Rearranging (19) we obtain

∑

j 6=i

sj =
Qm[1− (n− 1)cm]− (n− 1){emQ−m − bmpm} −RSi

m(pm, s−i)

am
(21)

Naturally, (21) holds for RSi
m(p

∗
m, s−i) = xi,m(p

∗
m, si) at the optimal price. This brings us to the

end of the first step. Inserting (20) and (21) at pm = p∗m into the 17s characterizes agent i’s best

responses xi,m(p
∗
m, si) in both markets:

0 = −xi,m(p
∗
m, si) +

(

γsi + κ
∑

j 6=i

sj − p∗1 − λxi,m(p
∗
m, si)− δxi,−m(p

∗
−m, si)

)

(n− 1)bm

with

∑

j 6=i

sj =
Qm[1− (n− 1)cm]− (n− 1){emQ−m − bmp

∗
m} − xi,m(p

∗
m, si)

am
(BRm)

Step 2. As preferences interconnect both auctions, the quantity the agent demands at the clear-

ing price in market m, xi,m(p
∗
m, si), depends on how much the agent will win in the other market

−m, xi,−m(p
∗
−m, si). Now, because our guessed linear strategies can only be a symmetric equilib-

rium of it is optimal for agent i to also choose this strategy, we know how much that will be. With

all agents choosing the guess in market −m it clears at

p∗−m =

(

1

n

)(

a−m

b−m

)

∑

i

si +

(

1

b−m

)[

c−m −
1

n

]

Q−m +

(

e−m

b−m

)

Q−m (22)

Evaluating the guessed strategy at this price, we see that the agent must win the following in the

other market

xi,−m(p
∗
−m, si) = a−m

[

(

1−
1

n

)

si −
1

n

∑

j 6=i

sj

]

+
1

n
Q−m (23)

We can thus substitute xi,−m(p
∗
−m, si) out of i’s characterization of his optimal choice in market m

(BRm), using (23).
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Step 3. This is convenient because it essentially leaves us with one equation that relates xi,m(p
∗
m, si)

with p∗m for m = k, l. Consider market k. Bringing xi,k(p
∗
1, si) to the RHS of this equation reveals

xi,k(p
∗
1, si) = A1(a2, a1, b1)si − B1(a2, a1, b1)p

∗
1 + C1(a2, a1, b1, c1)Q1 + E1(a2, a1, b1, e1)Q2

with

A1(a2, a1, b1) =
(n− 1)b1

[

γ − δ(n− 1)a2
(

1
n

)]

[

1 + (n− 1)b1

{

κ
a1

+ δ
(

a2
a1

)

(

1
n

)

+ λ
}]

B1(a2, a1, b1) =
(n− 1)b1

[

1−
(

(n− 1)b1

{

κ
a1

+ δ
(

a2
a1

)

(

1
n

)

})]

[

1 + (n− 1)b1

{

κ
a1

+ δ
(

a2
a1

)

(

1
n

)

+ λ
}]

C1(a2, a1, b1, c1) =
(n− 1)b1

[{

κ
a1

+ δ
(

a2
a1

)

(

1
n

)

}

[1− (n− 1)c1]
]

[

1 + (n− 1)b1

{

κ
a1

+ δ
(

a2
a1

)

(

1
n

)

+ λ
}]

E1(a2, a1, b1, e1) =
−(n− 1)b1

[{

κ
a1

+ δ
(

a2
a1

)

(

1
n

)

}

(n− 1)e1 + δ 1
n

]

[

1 + (n− 1)b1

{

κ
a1

+ δ
(

a2
a1

)

(

1
n

)

+ λ
}]

An analogous equation holds for market l. For this to be the symmetric solution (i.e. an ex-post

equilibrium) we must have that i chooses the same strategy as all others, i.e.

A1(a2, a1, b1) = a1, B1(a2, a1, b1) = b1, C1(a2, a1, b1, c1) = c1, E1(a2, a1, b1, e1) = e1.

A2(a1, a2, b2) = a2, B2(a1, a2, b2) = b2, C2(a1, a2, b2, c2) = c2, E2(a1, a2, b2, e2) = e2.

Solving this system of equations (see section 6.3.1) gives the following coefficients

a1 = a2 = b1 = b2 =

(

nγ − 2

(λ+ δ)(n− 1)

)

≡ b

c1 = c2 = κ+

(

δ

n

)

b

e1 = e2 = −

(

δ

n

)

b

Inserting these coefficients into the guessed strategy gives the function of the theorem. It holds

for m = k, l,m 6= −m.

xm(pm, si) = bsi − bpm +

(

κ+

(

δ

n

)

b

)

Qm −

(

δ

n

)

bQ−m

xm(pm, si) = b

(

si − pm +

(

δ

n

)

(Qm −Q−m)

)

+ κQm

xm(pm, si) =

(

nγ − 2

(λ+ δ)(n− 1)

)(

si − pm +

(

δ

n

)

(Qm −Q−m)

)

+ κQm

IV



Or in terms of quantities

bm(qm, si) = si −

(

n− 1

n− 2

)

{(λ+ δ)qm − κQm}+

(

δ

n

)

(Qm −Q−m) (24)

By (14)

bm(qm, si) = b̄m(qm, qmsi) +

(

δ

n

)

(11)

6.2 Verifying that there is no profitable deviation

To verify that the found strategy is indeed a maximum I verify the second order condition. The

agent has no profitable deviation if

1.
∂2π(vi,p

∗

1
,p∗

2
)

∂2pm
< 0 for m = k, l

2. |H(vi, p
∗
1, p

∗
2)| ≡

∣

∣

∣

∣

∣

∂2π(vi,p
∗

1
,p∗

2
)

∂2p1

∂2π(vi,p
∗

1
,p∗

2
)

∂p1p2
∂2π(vi,p

∗

1
,p∗

2
)

∂p2p1

∂2π(vi,p
∗

1
,p∗

2
)

∂2p2

∣

∣

∣

∣

∣

> 0

Section 6.3.2 shows that the second order condition is fulfilled for any large number of agents iff

nγ > 2 and |δ| ≤ λ. Both holds by assumption.

6.3 Algebraic derivations of the proof

6.3.1 Solving the system of FOCs

I start by matching coefficients A1(a2, a1, b1) = a1 and B1(a1, a2, b1) = b1

a1 : a1

[

1 + (n− 1)b1

{

κ

a1
+ δ

(

a2

a1

)(

1

n

)

+ λ

}]

= (n− 1)b1

[

γ − δ(n− 1)a2

(

1

n

)]

⇒ a1 =
(n− 1)b1 [γ − δa2 − κ]

1 + (n− 1)b1λ
(25)

By symmetry of the problem

⇒ a2 =
(n− 1)b2 [γ − δa1 − κ]

1 + (n− 1)b2λ
(26)

If a2 = a1 ≡ a, b2 = b1 ≡ b

a =
(n− 1)b(γ − κ)

1 + (n− 1)b(λ+ δ)
(27)

b1 : b1

[

1 + (n− 1)b1

{

κ

a1
+ δ

(

a2

a1

)(

1

n

)

+ λ

}]

= (n− 1)b1

[

1−

(

(n− 1)b1

{

κ

a1
+ δ

(

a2

a1

)(

1

n

)})]

⇒ b1 =
n− 2

(n− 1)
{[(

κ
a1

)

n+ δ
(

a2
a1

)]

+ λ
} (28)
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By symmetry of the problem

⇒ b2 =
n− 2

(n− 1)
{[(

κ
a2

)

n+ δ
(

a1
a2

)]

+ λ
} (29)

If a2 = a1 = a, then

b1 = b2 = b =
n− 2

(n− 1)
{[(

κ
a

)

n+ δ
]

+ λ
} (30)

Now I solve for a1, b1 by inserting (28) into (25) and (29) into (26) to obtain expressions a1(a2), a2(a1),

which I can solve for a1, a2 by a1(a2) = a1 and a2(a1) = a2.

Start by inserting (28) into (25)

a1 =

(n− 1)

(

n−2

(n−1)
{[(

κ
a1

)

n+δ
(

a2
a1

)]

+λ
}

)

[γ − δa2 − κ]

1 + (n− 1)

(

n−2

(n−1)
{[(

κ
a1

)

n+δ
(

a2
a1

)]

+λ
}

)

λ

and rearranging

a1

{

(n− 1)

{[(

κ

a1

)

n+ δ

(

a2

a1

)]

+ λ

}

+ (n− 1)(n− 2)λ

}

= (n− 1)(n− 2)(γ − δa2 − κ)

(n− 1)nκ+ (n− 1)δa2 + a1(n− 1)λ+ a1(n− 1)(n− 2)λ = (n− 1)(n− 2)(γ − δa2 − κ)

(n− 2)γ − 2(n− 1)κ = (n− 1) {δa2 + λa1} (31)

By symmetry we obtain the analogous expression when inserting b2(a1, a2) into a2(b2, a1)

(n− 2)γ − 2(n− 1)κ = (n− 1) {δa1 + λa2} (32)

Subtracting (32) from (31)

⇒ 0 = (n− 1) {δa2 + λa1} − (n− 1) {δa1 + λa2}

It follows that

⇒ a2 = a1 ≡ a (33)

With a2 = a1 = a, we must have b2 = b1 = b

⇒ b2 = b1 ≡ b (34)

Having shown that coefficients are the same in both markets, we can solve a(b), b(a) by inserting

(27) into (30) and solving for b

b(n− 1)

{[

nκ [1 + (n− 1)b(λ+ δ)]

b(n− 1)(γ − κ)
+ δ

]

+ λ

}

= n− 2

nκ [1 + (n− 1)b(λ+ δ)] + b(n− 1) (δ + λ) (γ − κ) = (n− 2)(γ − κ)

⇒ b =
(n− 2)γ − (n− 1)κ

(n− 1)(λ+ δ)(γ + (n− 1)κ)
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With normalization γ + (n− 1)κ = 1 we have

⇒ b =
nγ − 2

(n− 1)(λ+ δ)

We back out a by plugging b into a(b) as given in (27):

⇒ a =
(nγ − 2)(γ − κ)

(λ+ δ)(nγ − 1)

Using the normalization we can show that this is the same as b

⇒ a = b

Having determined a, b it is straightforward to solve C1(a, b, c1) = c1 and E1(a, b, e1) = e1.

c1 : c1

[

1 + (n− 1)b1

{

κ

a1
+ δ

(

a2

a1

)(

1

n

)

+ λ

}]

= (n− 1)b1

[{

κ

a1
+ δ

(

a2

a1

)(

1

n

)}

[1− (n− 1)c1]

]

In symmetric solution with a1 = a2 = a, b1 = b2 = b

⇒ c1

[

1 + n(n− 1)

[

κ+ bδ
1

n

]

+ (n− 1)bλ

]

= (n− 1)

[

κ+ bδ
1

n

]

⇒ c1 = κ+
δ

n
b = κ+

δ

n

[

nγ − 2

(n− 1)(λ+ δ)

]

(35)

and

e1 : e1

[

1 + (n− 1)b1

{

κ

a1
+ δ

(

a2

a1

)(

1

n

)

+ λ

}]

= −(n− 1)b1

[{

κ

a1
+ δ

(

a2

a1

)(

1

n

)}

(n− 1)e1 + δ
1

n

]

In symmetric solution with a1 = a2 = a, b1 = b2 = b

e1

[

1 + (n− 1)b

{

κ

b
+ δ

(

1

n

)

+ λ

}]

= −(n− 1)b

[{

κ

b
+ δ

(

1

n

)}

(n− 1)e1 + δ
1

n

]

⇒ e1 = −
δ

n
b = −

δ

n

[

nγ − 2

(n− 1)(λ+ δ)

]

(36)

6.3.2 Verifying the SOC

The second derivative in market k is

∂2π(vi, p1, p2)

∂2p1
= −

(

∂RSi
k(p1, s−i)

∂p1

)

+

(

−1− λ
∂RSi

k(p1, s−i)

∂p1

)(

∂RSi
k(p1, s−i)

∂p1

)
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At the solution

∂2π(vi, p
∗
1, p

∗
2)

∂2p1
= −(n− 1)b+ (−1− λ(n− 1)b) (n− 1)b

= −(n− 1)b {1 + [1 + λ(n− 1)b]}

= −(n− 1)b [2 + λ(n− 1)b]

= −

(

nγ − 2

λ+ δ

)[

2 + λ

(

nγ − 2

λ+ δ

)]

= −

(

nγ − 2

λ+ δ

)(

2δ + λnγ

λ+ δ

)

< 0 holds since nγ > 2 and |δ| ≤ λ.

The cross-partial derivative is

∂2π(vi, p
∗
1, p

∗
2)

∂p1p2
= −δ

(

∂RSi
k(p1, s−i)

∂p1

)(

∂RSi
l (p2, s−i)

∂p2

)

At the solution

∂2π(vi, p
∗
1, p

∗
2)

∂p1p2
= −δ(n− 1)2b2

By symmetry of the problem, the hessian therefore is

H(vi, p
∗
1, p

∗
2) =

∣

∣

∣

∣

−(n− 1)b [2 + λ(n− 1)b] −δ(n− 1)2b2

−δ(n− 1)2b2 −(n− 1)b [2 + λ(n− 1)b]

∣

∣

∣

∣

The determinant of the hessian matrix is

Det(H(vi, p
∗
1, p

∗
2)) > 0 ⇔ {(n− 1)b [2 + λ(n− 1)b]}2 − δ2(n− 1)4b4 > 0

Since (n− 1)b > 0

⇔ [2 + λ(n− 1)b]2 > δ2(n− 1)2b2

Taking the square root

⇔ [2 + λ(n− 1)b] > δ(n− 1)b

⇔ 2 > (δ − λ)(n− 1)b

At the solution

⇔ 2 >

(

δ − λ

λ+ δ

)

(nγ − 2)

We know nγ > 2 (since n > 2). Then this condition holds independent of how many agents there

are as long as |δ| ≥ λ.
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7 Proof of Lemma 3

The proof involves in two main steps. First I derive the first-order condition that characterizes the

BNE of two simultaneous uniform-price double auctions for a broad class of utility functions and

any distributions with differentiable CDF (section 7.1). Then I assume that all random variables

are normally distributed and derive the functional form that a BNE must admit (section 7.2).

7.1 General optimality condition

Let sisisi (iid) and {Q1Q1Q1,Q2Q2Q2} be drawn from distributions with differentiable distribution functions.

The proof is written for the case in which at least one of the random variables has an unbounded

support (as with the normal distribution). Bounded support can be handled accordingly.

Fix some type si and let U(q1, q2, s1) be continuous, twice differentiable, with continuous partial

and cross-partial derivatives. Denote

µm(qm, q−m, si) ≡
∂U(q1, q2, si)

∂qm

µ(q1, q2, si) ≡
∂2U(q1, q2, si)

∂q1∂q2
=

∂2U(q1, q2, si)

∂q2∂q1
(by Schwarz’s Theorem)

Recall that i’s equilibrium winning quantity in auction m q∗i,mq∗i,mq∗i,m and the clearing price by p∗mp
∗
mp
∗
m are for

m = 1, 2 implicitly defined by market clearing

q∗i,mq∗i,mq∗i,m = QmQmQm −
∑

j 6=i

xm(p
∗
mp
∗
mp
∗
m, sjsjsj) with p∗mp

∗
mp
∗
m = bm(q

∗
i,mq∗i,mq∗i,m, si) (2)

and that I denote the residual supply curve in m by

RSm(pm, s−i, Qm) = Qm −
∑

j 6=i

xj,m(pm, sj) (37)

Definition 3. Define the joint distribution over i’s clearing price quantities as the probability that

agent i receives at most quantity q1 and at most quantity q2 when bidding bi,1(q1, si), bi,2(q2, si) as

Gi(q1, q2, bi,1(q1, si), bi,l(q2, si)) ≡ Pr
(

q∗i,1q∗i,1q∗i,1 ≤ q1 and q∗i,2q∗i,2q∗i,2 ≤ q2
)

(38)

Analogously, define the marginal distribution of i’s clearing price quantity in market m = 1, 2 by

Gi
m(qm, bi,m(qm, si)) = Pr

(

q∗i,mq∗i,mq∗i,m ≤ qm)
)

(39)

And the conditional distribution

Gi
2|1(q2, bi,2(q2, si)|q1, bi,1(q1, si) = Pr

(

q∗i,2q∗i,2q∗i,2 ≤ q2
∣

∣q∗i,1q∗i,1q∗i,1 ≤ q1). (40)

I denote the corresponding joint and marginal density functions by gi, gim and gi2|1, and oftentimes

abbreviate bi,m(qm, si) = bi,m for notational convenience.
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Take the perspective of agent i. Fix his type si, and denote his objective function by

V(bi,1(·, si), bi,2(·, si)) = E

[

U(q∗i,1q∗i,1q∗i,1, q
∗
i,2q∗i,2q∗i,2, si)−

∑

m=1,2

q∗i,mq∗i,mq∗i,mp
∗
mp
∗
mp
∗
m

]

(41)

Fix the strategies of all other agents at the equilibrium strategy {b∗1(·, sj), b
∗
2(·, sj)} ∀j 6= i. It

consists of two differentiable and weakly decreasing bidding functions. By definition of a symmet-

ric equilibrium there cannot be another pair of functions different from {b∗1(·, si), b
∗
2(·, si)} which

generates a higher payoff for agent i:

{b∗1(·, si), b
∗
2(·, si)} = arg max

bi,1(·,si),bi,2(·,si)
V(bi,1(·, si), bi,2(·, si)) (JM)

Since {b∗1(·, si), b
∗
2(·, si)} must be the solution to i’s maximization problem each function must solve

the agent’s maximization problem holding fixed the other:

⇒ b∗m(·, si) = arg max
bi,m(·,si)

O(bi,m(·, si)) with O(bi,m(·, si)) ≡ V(bi,m(·, si), b
∗
−m(·, si)) (M)

for m = 1 or 2 and m 6= −m. Otherwise there would be another pair of functions that would

generate a higher payoff for the agent, so that {b∗1(·, si), b
∗
2(·, si)} could not be the solution of the

joint maximization problem (JM).

Auxiliary Lemma 1. Denote ḃi,m(qm, si) =
∂bi,m(qm,si)

∂qm
.

O(bi,m(·, si)) =

∫ ∞

−∞

F(qm, bi,m(qm, si), ḃi,m(qm, si))dqm + const

and F(·, ·, ·) is continuous in its three arguments and has continuous partial derivatives with respect

to the second and third.

[Proof to be added]

Since O(bi,m(·, si)) is additive separable, b
∗
m(·, si) can only maximize O(bi,m(·, si)) if for each qm the

bid value b∗m(qm, si) maximizes F(qm, bi,m(qm, si), ḃi,m(qm, si)). The following lemma characterizes

this bid value for each qm.

Auxiliary Lemma 2. (i) If bm(qm, si) maximizes F(qm, bi,m(qm, si), ḃi,m(qm, si)) then

E

[

∂U(qm, q
∗
i,−mq∗i,−mq∗i,−m, si)

∂qm

∣

∣

∣

∣

qm

]

− bm(qm, si) = −qm





∂Gi
m(qm,bm(qm,si))

∂qm

∂Gi
m(qm,bm(qm,si))
∂bi,m(qm,si)



 (42)

(ii) When b−1(·, si) = xm(·, si) is additive separable in si

E

[

∂U(qm, q
∗
i,−mq∗i,−mq∗i,−m, si)

∂qm

∣

∣

∣

∣

qm

]

− bm(qm, si) = qm

(

∂RSm(bm(qm, si), s−i, Qm)

∂bi,m(qm, si)

)−1

(43)

[Proof to be added]

When b∗m(·, si) is part of the BNE strategy it thus must be that condition (42) holds for all qm. It

is the first-order condition of the BNE function in auction m.
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7.2 Functional form of the BNE

I will follow a guess and verify strategy, guessing that the equilibrium will take the following form

bBNE
m (qm, si) = ǫm + αmsi − βmqm

Under the linear guess and with the quadratic utility function, FOC (43) reads

si − λqm − δE[q∗i,−mq∗i,−mq∗i,−m|qm]− bm(s
i, qm) =

[

qm

(n− 1) 1
βm

]

(44)

Once I have determined an expression for the conditional expectation, I find the equilibrium

strategies by matching coefficients of agent i’s best reply functions to the guess. Only if i chooses

the same strategy as all other agents we have found a symmetric equilibrium. Below, in section

7.2.1, I show that under the assumed normal distributions

E[q∗i,−mq∗i,−mq∗i,−m|qm] =

(

1

n

)[

[µ−m − α−m(n− 1)µs]−

(

αmα−m(n− 1)σ2
s + ρσ2

α2
m(n− 1)σ2

s + σ2

)

[µm − α1(n− 1)µs]

]

+

(

1

n

)

(n− 1)

[

α−m −

(

αmα−m(n− 1)σ2
s + ρσ2

α2
m(n− 1)σ2

s + σ2

)

αm

]

si

+

(

αmα−m(n− 1)σ2
s + ρσ2

α2
m(n− 1)σ2

s + σ2

)

qm (45)

Inserting into (44) into the FOC and rearranging gives

bm(si, qm) = Em(αm, α−m) + Am(αm, α−m)si − Bm(αm, α−m, βm)qm with

Em(αm, α−m) = −δ

(

1

n

)[

[µ−m − α−m(n− 1)µs]−

(

αmα−m(n− 1)σ2
s + ρσ2

α2
m(n− 1)σ2

s + σ2

)

[µm − α1(n− 1)µs]

]

Am(αm, α−m) = 1− δ

(

1

n

)

(n− 1)

[

α−m −

(

αmα−m(n− 1)σ2
s + ρσ2

α2
m(n− 1)σ2

s + σ2

)

αm

]

Bm(αm, α−m, βm) =

[

(n− 1) 1
βm

λ+ 1

(n− 1) 1
βm

]

+ δ

(

αmα−m(n− 1)σ2
s + ρσ2

α2
m(n− 1)σ2

s + σ2

)

In the symmetric equilibrium we must have

Em(αm, α−m) = ǫm

Am(αm, α−m) = αm

Bm(αm, α−m, βm) = βm

for both markets. It can be shown that the solution must be symmetric. Here I use a short-cut

and simply impose symmetry. Denote the correlation of the winning quantities as

ρi(α) ≡
α2(n− 1)σ2

s + ρσ2

α2(n− 1)σ2
s + σ2
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The equilibrium parameter then must solve

ǫ = −δ

(

1

n

)

[

[µ−m − α(n− 1)µs]− ρi(α)[µm − α(n− 1)µs]
]

α = 1− δ

(

1

n

)

(n− 1)α
[

1− ρi(α)
]

β =

[

(n− 1) 1
β
λ+ 1

(n− 1) 1
β

]

+ δρi(α)

From the last equation can express β in terms of α

β =

(

n− 1

n− 2

)

(

λ+ δρi(α)
)

The equilibrium therefore must take the functional form as stated in the lemma

bBNE
m (qm, si) = ǫ(α) + αsi − β(α)pm with α = 1− δα

(

1

n

)

(n− 1)[1− ρi(α)] (12)

β(α) =

(

n− 1

n− 2

)

(

λ+ δρi(α)
)

ǫ(α) = δ

(

1

n

)

[

[ρi(α)µm − µ−m] + α(n− 1)µs[1− ρi(α)]
]

7.2.1 Algebraic derivation of the conditional expectation

I derive the conditional expectation in three steps. First I the joint distribution of X i
mX i
mX i
m ≡ QmQmQm −

αm

∑

j 6=i sjsjsj for m = 1, 2. Then the one of q∗i,mq∗i,mq∗i,m = 1
n

[

X i
mX i
mX i
m + (n− 1)αmsi

]

. Finally, I determine the

conditional expectation.9

Step 1. Let us start with determining the joint distribution of {X i
1X i
1X i
1,X

i
2X i
2X i
2}. These random vari-

ables are linear combinations of normally distributed variables and are therefore jointly normally

distributed.9 We can write

(

X i
1

X i
2

)

= AAA2×3YYY 3×1 with AAA2×3 ≡

(

−α1 1 0

−α2 0 1

)

and YYY 3×1 ≡







∑

j 6=i sj

Q1

Q2







For normal distributions we know9

(

X i
1

X i
2

)

= AAA2×3YYY 3×1 ∼ Nq(AAAµµµ,AAAΣAAA
′) ≡ N(µX ,ΣX)

with
µX =

(

−α1 1 0

−α2 0 1

)





(n− 1)µs

µ1

µ2



 =

(

−α1(n− 1)µs + µ1

−α2(n− 1)µs + µ2

)

and

ΣX =

(

−α1 1 0

−α2 0 1

)





(n− 1)σ2
s 0 0

0 σ2 ρσσ

0 ρσσ σ2









−α1 −α2

1 0

0 1



 =

(

α2
1(n− 1)σ2

s + σ2 α1α2(n− 1)σ2
s + ρσ2

α1α2(n− 1)σ2
s + ρσ2 α2

2(n− 1)σ2
s + σ2

)

9In deriving the conditional expectation I rely on the following lemma:
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Step 2. In the linear equilibrium, the winning quantities are linear transformations of {X i
1X i
1X i
1,X

i
2X i
2X i
2}.

(

q∗i,1q∗i,1q∗i,1
q∗i,2q∗i,2q∗i,2

)

= aaa′2×1XXX2×1 + ddd2×1with XXX2×1 ≡

(

X i
1

X i
2

)

and aaa2×1 ≡

(

1

n

)(

1

1

)

and ddd2×1 ≡

(

1

n

)(

(n− 1)α1si

(n− 1)α2si

)

Since all all random variables are jointly normal distributed, we know9

(

qi1
qi2

)

∼ N
(

aaa′2×1µx + ddd2×1, aaa2×1ΣXaaa
′
2×1

)

with

aaa′2×1XXX2×1 + ddd2×1 =

(

1

n

)

µx +

(

1

n

)(

(n− 1)α1si

(n− 1)α2si

)

and aaa2×1ΣXaaa
′
2×1 =

(

1

n

)2

ΣX

So that

(

qi1
qi2

)

∼ N

((

µqi
1

µqi
2

)

,

(

σ2
qi
1

ρiσqi
1

σqi
2

ρiσqi
1

σqi
2

σ2
qi
2

))

where for m = 1, 2,−m 6= m

µqim
≡

(

1

n

)

{µm + αm(n− 1)[si − µs]}

µqi
−m

≡

(

1

n

)

{µ−m + α−m(n− 1)[si − µs]}

and

σqim
≡

(

1

n

)

√

α2
m(n− 1)σ2

s + σ2

σqi
−m

≡

(

1

n

)

√

α2
−m(n− 1)σ2

s + σ2

and

ρi =
αmα−m(n− 1)σ2

s + ρσ2

√

[α2
m(n− 1)σ2

s + σ2][α2
−m(n− 1)σ2

s + σ2]

Lemma 4. (i) If a vector XXX is distributed multivariate normal Np(µµµ,Σ), then any linear combination is normal:

aaa′XXX = a1X1 + ...apXp ∼ N(aaa′µµµ,aaa′Σaaa), including an = 0. (ii) If aaa′XXX ∼ N(aaa′µµµ,aaa′Σaaa) for every aaa, XXX must be

Np(µµµ,Σ).

Lemma 5. If XXX is distributed as Np(µµµ,Σ) then the q-linear combinations

AAA(q×p)XXX(p×1) =

∣

∣

∣

∣

a11X1 + ....a1pXp

aq1X1 + ....aqpXp

∣

∣

∣

∣

are distributed as Nq(AAAµµµ,AAAΣAAA
′). Also theXXXp×1+dddp×1, where ddd is a vector of constats is distributed as Nq(µµµ+ddd,Σ).

Lemma 6. Given

(

X1

X2

)

∼ N

((

µ1

µ2

)

,

(

σ2 ρσσ

ρσσ σ2

))

⇒ E[X1|X2 = x2] = µ1 + ρσ
σ
(x2 − µ2).
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Step 3. We have determined that the winning quantities are jointly normally distributed. Their

conditional expectation is linear

E[q∗i,−mq∗i,−mq∗i,−m|qm] = µqi
−m

+ ρi
(

σqi
−m

σqim

)

(

qm − µqim

)

E[q∗i,−mq∗i,−mq∗i,−m|qm] =

(

1

n

)(

{µ−m + α−m(n− 1)[si − µs]} −

(

αmα−m(n− 1)σ2
s + ρσ2

α2
m(n− 1)σ2

s + σ2

)

{µm + α1(n− 1)[si − µs]}

)

+

(

αmα−m(n− 1)σ2
s + ρσ2

α2
m(n− 1)σ2

s + σ2

)

qm

E[q∗i,−mq∗i,−mq∗i,−m|qm] =

(

1

n

)[

[µ−m − α−m(n− 1)µs]−

(

αmα−m(n− 1)σ2
s + ρσ2

α2
m(n− 1)σ2

s + σ2

)

[µm − α1(n− 1)µs]

]

+

(

1

n

)

(n− 1)

[

α−m −

(

αmα−m(n− 1)σ2
s + ρσ2

α2
m(n− 1)σ2

s + σ2

)

αm

]

si

+

(

αmα−m(n− 1)σ2
s + ρσ2

α2
m(n− 1)σ2

s + σ2

)

qm (45)

8 Proof of the Irrelevance Theorem

Statement (i)

Consider first the case of fixed supply. The equilibrium quantity traded by agent i is obtained

by evaluating the demand schedule at the clearing price(s), which are easy to calculate given the

strategies given in Lemma 1 and 2 at market clearing:

x̄m(p̄
∗
m, p̄

∗
−m, si) = αT

[

si −
∑

i

si

]

+
Qm

n
= xm(p

∗
m, si) (46)

with αT ≡

(

n− 2

n− 1

)(

1

λ+ δ

)

(47)

When supply is random, the agent follows the same ex-post equilibrium strategy when markets

are centralized (Lemma 1). In a BNE of Lemma (3), the agent trades

xBNE
m (p∗m, si) = αBNE

[

si −
∑

i

si

]

+
Qm

n
(48)

with αBNE =

(

n− 2

n− 1

)(

1

λ+ δρi(αBNE)

)[

1− δαBNE

(

1

n

)

(n− 1)[1− ρi(αBNE)]

]

(49)

where ρi(αBNE) ≡
α2(n− 1)σ2

s + ρσ2

α2(n− 1)σ2
s + σ2

for α = αBNE (50)

XIV



The equilibrium amount is identical to the one of the centralized market iff αBNE = αT . To prove

that this can only hold iff ρ = 1 or σ = 0, I show that that condition (49) evaluated at αBNE = αT

does not hold iff ρ 6= 1 and σ 6= 0 ⇔ ρi(αT ) 6= 1:

(

n− 2

n− 1

)(

1

λ+ δ

)

6=

(

n− 2

n− 1

)(

1

λ+ δρi(αT )

)[

1− δ

(

n− 2

n− 1

)(

1

λ+ δ

)(

1

n

)

(n− 1)[1− ρi(αT )]

]

(

λ+ δρi(αT )

λ+ δ

)

6=1− δ

(

n− 2

n− 1

)(

1

λ+ δ

)(

1

n

)

(n− 1)
[

1− ρi(αT )
]

nλ+ nδρi(αT ) 6=n(λ+ δ)− δ(n− 2)[1− ρi(αT )]

ρi(αT )[nδ − δ(n− 2)] 6=nδ − (n− 2)δ

2ρi(αT )δ 6=2δ

⇔ ρi(αT ) 6=1 since δ 6= 0 by assumption.

Statement (ii)

Let σ 6= 0, and ρ → 1. By definition of ρi(α) → 1 for any α. Now this implies that

αBNE → αT

The same is true when fixing ρ 6= 1 and σ → 0.

XV
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