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Abstract

Two negative binomial quasi-maximum likelihood estimates (NB-QMLE�s) for a

general class of count time series models are proposed. The �rst one is the pro�le NB-

QMLE calculated while arbitrarily �xing the dispersion parameter of the negative

binomial likelihood. The second one, termed two-stage NB-QMLE, consists of four

stages estimating both conditional mean and dispersion parameters. It is shown that

the two estimates are consistent and asymptotically Gaussian under mild conditions.

Moreover, the two-stage NB-QMLE enjoys a certain asymptotic e¢ciency property

provided that a negative binomial link function relating the conditional mean and

conditional variance is speci�ed. The proposed NB-QMLE�s are compared with the

Poisson QMLE asymptotically and in �nite samples for various well-known particular

classes of count time series models such as the (Poisson and negative binomial) Integer

GARCH model and the INAR (1) model. Applications to two real datasets are given.
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1. Introduction

Integer-valued time series like count and binary data are well observed in a broad range

of applications (e.g. economics, �nance, epidemiology, medicine, telecommunications...).

They are characterized by some stylized facts such as small values, overfrequency of zeros,

locally constant behavior, overdispersion, positive autocorrelation structure, and asymmetric

marginal distributions (see e.g. Kedem and Fokianos, 2002; McKenzie, 2003; Fokianos,

2012; Cameron and Trivedi, 2013; Silva, 2015; Davis et al, 2016). It is well documented

that continuous-valued time series models such as ARMA-like processes are inappropriate

for modeling such integer-valued series. This is why considerable interest has been paid in

recent decades to alternative integer-valued time series models. Numerous models have been

introduced so it appears di¢cult to classify them. However, two major classes of integer-

valued models have played a central role. The �rst one is the class of models based on

integer-valued regressions like generalized ARMA (GARMA) models, Poisson autoregression

and especially Integer Generalized Conditional Heteroskedastic (INGARCH) models (e.g.

Benjamin et al, 2003; Heinen, 2003; Ferland et al, 2006; Fokianos et al, 2009; Zhu, 2011-

2012a-2012b; Doukhan et al, 2012; Christou and Fokianos, 2014; Davis and Liu, 2016; Chen

et al, 2016). The second class, however, concerns stochastic di¤erence equations involving

the thinning operator where the best known example is the INteger AR (INAR) model (e.g.

McKenzie, 1985-2003; Al-Osh and Alzaid, 1987; Silva, 2015; Bourguignon, 2016).

Ahmad and Francq (2016) recently introduced a more general integer-valued time series

model that encompasses many models of the two aforementioned classes. This model we call

INteger Generalized AutoRegression (henceforth INGAR) is de�ned through specifying its

conditional mean as a measurable parametric function of the in�nite past of the observed

process. Important subclasses of this model are the general Poisson autoregression (Doukhan

et al, 2012; Doukhan and Kengne, 2015; Kengne, 2015), the INGARCH model and the

INAR model. For the INGAR model, Ahmad and Francq (2016) established consistency

and asymptotic normality of the Poisson quasi-maximum likelihood estimate (P -QMLE),

which is calculated as if the conditional distribution of the model were Poissonian. The
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P -QMLE has in fact many advantages: i) �rstly, it is robust to misspeci�cation of the true

conditional distribution whenever the conditional expectation is well speci�ed. This is due

to the fact that the Poisson likelihood belongs to the linear exponential family (White, 1982;

Gourieroux et al, 1984a). ii) Secondly, it is asymptotically e¢cient when the true conditional

distribution of the model is Poissonian. iii) Thirdly, when the conditional variance and con-

ditional mean of the model are proportional, the P -QMLE is asymptotically e¢cient in the

class of all QMLE�s whose likelihood belongs to the linear exponential family (see Gourier-

oux et al, 1984a). The latter proportionality between the conditional mean and conditional

variance is usually called the Poisson Generalized Linear Model (henceforth GLM) assump-

tion (or link function). However, despite these advantages, the Poisson distribution, which

is known to be equidispersed �t badly to overdispersed series that are frequently observed

in practice. Therefore, it is likely that the P -QMLE does not reach its full asymptotic

e¢ciency in the presence of overdispersed data. Thus a quasi-maximum likelihood (QML)

estimate, which is calculated using an overdispersed likelihood while belonging to the linear

exponential family would be an interesting complementary to the P -QMLE.

For the INGAR model considered by Ahmad and Francq (2016), we propose two variants

of the negative binomial QMLE (NB-QMLE). These estimates are calculated on the

basis of the negative binomial likelihood, belonging to the linear exponential family. The

�rst one, which we call "pro�le NB-QMLE" (pNB-QMLE) consists in maximizing the

negative binomial likelihood over the conditional mean parameter letting the corresponding

dispersion parameter arbitrarily �xed. In particular, when the latter parameter equals one,

the resulting estimate reduces to the geometric QMLE (Aknouche and Bendjeddou, 2017).

The second one, however, consists of four stages: a two-stage NB-QMLE to estimate the

conditional mean parameter of the model and a two-stage weighted least squares estimate for

the dispersion parameter. For this, the INGAR model should satisfy a negative binomial

GLM link function involving the unknown dispersion parameter to be estimated. In the

context of static integer-valued regression, a similar three-stage estimate was termed "quasi-

generalized pseudo-maximum likelihood estimate" by Gourieroux et al (1984b) and "two-
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stage negative binomial quasi-maximum likelihood estimate" (2SNB-QMLE) byWooldridge

(1997). Adopting the latter notation, the four-stage estimate we propose will be denoted

by 2SNB-QMLE. It will be shown under some mild assumptions that the two proposed

estimates are consistent and asymptotically Gaussian without fully specifying the conditional

distribution of the model. Moreover, under the negative binomial GLM link function, the

2SNB-QMLE is asymptotically e¢cient in the class of all QMLE�s belonging to the linear

exponential family, including the P -QMLE.

The rest of this paper is outlined as follows. Section 2 presents the INGAR model and

the corresponding negative binomial QML criteria. Section 3 establishes consistency and

asymptotic normality of the pNB-QMLE and the 2SNB-QMLE. As a result, Section 4

compares the asymptotic variance of the proposed NB-QMLE�s with that of the P -QMLE

under some speci�c GLM assumptions as well as on particular classes of the INGAR model.

In particular, the Poisson INGARCH model, the negative binomial INGARCH model and

the INAR (1)model are examined. Moreover, these estimates are compared in �nite samples

via some simulation experiments. Application to the number of poliomyelitis cases in the

United States (Polio data, Zeger, 1988) and the number of transactions of the Ericsson

B stock (Transaction data, Fokianos et al, 2009; Christou and Fokianos, 2014) under the

negative binomial INGARCH framework are considered. Section 6 concludes while proofs

of the main results are left to Section 7.

In what follows, we heavily use the following notations and conventions: All random

variables and sequences we consider are de�ned on a probability space (
;F ; P ). The sym-
bols Z = f:::;�1; 0; 1; :::g, N = f0; 1; :::g and N� = N= f0g denote respectively the set of
integers, the set of nonnegative integers and the set of positive integers. The notation

Y � P (�) means that the random variable Y has a Poisson distribution with parameter

� > 0. Similarly, X � NB (r; p) means that X has the negative binomial distribution (also

called mixture Poisson-Gamma distribution). This distribution is given for any x 2 N by
fX (x) := P (X = x) = �(x+r)

x!�(r)
pr (1� p)x, where r > 0 is a positive real number called the

dispersion parameter, p 2 (0; 1) is a probability parameter, � is the gamma function and
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x! is the factorial of x. When r 2 N� has to be a positive integer, the factor �(x+r)
x!�(r)

may

be replaced by the binomial coe¢cient
�
x+r�1
x

�
. In particular, when r = 1 we �nd the geo-

metric distribution and we simply write X � G (p). Following Cameron and Trivedi (2013),
the negative binomial-K conditional distribution given a �-algebra B � F is de�ned by

X=B � NB
�
r�2�K ; r�2�K

r�2�K+�

�
where � = E (X=B) and r > 0. Two important cases of the

latter model are the negative binomial-I conditional distribution corresponding toK = 1 and

the negative binomial-II model for which K = 2. Finally, the symbols
a:s:!
n!1

,
p!

n!1
and

L!
n!1

denote respectively almost sure convergence, convergence in probability and convergence in

distribution as n ! 1 while op (1), oa:s: (1) and Op are respectively: a term converging in

probability to zero, a term converging almost surely (a:s:) to zero and a term bounded in

probability as n!1.

2. The INGAR model: a general class of count time

series models

Let �0 2 � � R
m (m 2 N�) be an unknown "true" parameter and consider a measurable

positive real-valued function � : N1��! (0;1). A general class of count time series mod-
els, as proposed by Ahmad and Francq (2016), is given through an observable integer-valued

stochastic process fXt; t 2 Zg, which is de�ned on (
;F ; P ) with conditional expectation
speci�ed as follows

E (Xt=Ft�1) = � (Xt�1; Xt�2; :::; �0) := �t (�0) := �t; t 2 Z; (2:1)

where Ft � F is the �-algebra generated by fXt; Xt�1; :::g. Letting

et := et (�0) = Xt � E (Xt=Ft�1) ;

model (2:1), which is de�ned through the conditional mean representation (2:1), may also be

written in the following stochastic di¤erence equation (or in innovation form, cf. Grunwald

et al, 2000)

Xt = � (Xt�1; Xt�2; :::; �0) + et; t 2 Z: (2:2)
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Equation (2:2), which is driven by the fFt; t 2 Zg-martingale di¤erence fet; t 2 Zg, ap-
pears to be an in�nite generalized autoregression with integer-valued solution fXt; t 2 Zg.
The term "generalized" refers to the general form of the function �, which may be linear or

nonlinear. This is why the model is termed INteger Generalized AutoRegression (INGAR).

In fact, the INGAR model (2:1)-(2:2) is quite general and encompasses many important

classes of integer-valued time series models such as the (stable) Poisson INGARCH model

(Heinen, 2003; Ferland et al, 2006), the general Poisson autoregression (Doukhan et al, 2012;

Doukhan and Kengne, 2015; Kengne, 2015), the stable negative binomial INGARCH model

(Zhu, 2011; Christou and Fokianos, 2014; Davis and Liu, 2016; Diop and Kengne, 2016) and

the INAR model (Al-Osh and Alzaid, 1987).

Note that the generality of the INGAR model (2:1) stems not only from the general

form of the function � (:) (see also Doukhan and Wintenberger, 2008), but also from the

fact that apart from the conditional mean, no other speci�cation concerning the conditional

distribution of the process fXt; t 2 Ng is required. However, it is sometimes important to
specify a link function relating the conditional variance and the conditional mean of model

(2:1), i.e.

V ar (Xt=Ft�1) = l (E (Xt=Ft�1)) ; (2:3)

where l : (0;1) ! (0;1) is a positive real function. In the literature on generalized linear
models (e.g. Nelder and Wedderburn, 1972; McCullagh and Nelder, 1989), such a link

function is also called the GLM nominal variance assumption and is induced either by the

conditional distribution of the model when it is fully speci�ed or by the structure of the

model. For example, when the conditional distribution corresponding to (2:1) is Poissonian

with parameter �t, which reduces to a special case of the general Poisson autoregression

proposed by Doukhan et al (2012), the Poisson GLM link function for model (2:1) is given

by the linear form l(x) = x. A more general linear link function

l(x) =
�
1 + 1

r0

�
x, for some r0 > 0;

is induced by the conditional negative binomial-I conditional distribution, i.e. Xt=Ft�1 �
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NB
�
r0�t;

r0�t
r0�t+�t

�
, r0 > 0 (see Cameron and Trivedi, 1986 and Section 4.1 below). Further-

more, the link function implied by the negative binomial-II conditional distribution, that is

NB
�
r0;

r0
r0+�t

�
, is given by

l(x) = x
�
1 + x 1

r0

�
; r0 > 0: (2:4)

When r0 = 1, we �nd the link function corresponding to the Geometric distribution. On

the other hand, a link function may be exhibited even when the conditional distribution of

the model is misspeci�ed. In Section 4.1.4 we will see that the GLM link function for the

INAR (1) model is always an a¢ne function regardless of the conditional distribution of this

model.

In this paper we are interested in estimating the unknown conditional mean parameter

�0 using a series X1; X2; :::; Xn (n 2 N�) generated from (2:1). When a negative binomial-II
link function like (2:3)-(2:4) is speci�ed we are also interested in estimating the dispersion

parameter r0. In fact, two instances of (2:1) are considered:

Case 1: Only the conditional mean (2:1) is speci�ed so that we only have to estimate

the conditional mean parameter �0.

Case 2: Equation (2:1) and the negative binomial-II GLM link function (2:3)-(2:4) are

both speci�ed so we have to estimate both �0 and r0.

A particularly important instance of Case 2 appears when the full conditional distribu-

tion of the model is speci�ed as a negative binomial-II one, i.e. Xt=Ft�1 � NB
�
r0;

r0
r0+�t

�
,

where a special case is the negative binomial-II INGARCH model (see Davis and Liu, 2016;

Zhu, 2011; Christou and Fokianos, 2014 and Section 4.1.3 below).

For our estimation purposes we make the following regularity assumption on (2:1).

A0 The process fXt; t 2 Zg given by (2:1) is strictly stationary and ergodic.
For some particular classes of (2:1) like the INGARCH and INAR models, assumption

A0 may be expressed more explicitly as a stability condition on �0 (see Ahmad and Francq,

2016 and Section 4.1 below). Furthermore, when the conditional distribution of (2:1) is

Poissonian, Doukhan et al (2012) provided general conditions on the function � in (2:1) for

strict stationarity and ergodicity of the model.
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Now, given a generic parameter � 2 �, the conditional mean function given by

� (Xt�1; Xt�2; :::; �) := �t (�) ; t 2 N;

clearly coincides with the conditional mean in (2:1) when � = �0. It is unobservable because of

the unobservable values X0; X�1X�2; ::: For any arbitrary �xed initial values eX0; eX�1; eX�2:::,

let

e�t (�) = �
�
Xt�1; Xt�2; :::X1; eX0; eX�1; :::; �

�
; t 2 N�;

be an observable proxy for �t (�). The latter approximation serves in calculating various

QMLE-type of �0 we intend to study below.

3. Negative binomial QMLE�s of the INGAR model

This Section considers two negative binomial QMLE�s of the INGAR model (2:1) given

a realization X1; ::; Xn of (2:1). To describe these estimates consider Case 2 of model

(2:1)-(2:4) with unknown parameters �0 and r0. For any generic � 2 � and r > 0, the

negative binomial (log) likelihood, eLNB (�; r), based on the negative binomial-II conditional
distribution, NB

�
r; r

r+e�t(�)

�
, is given by

eLNB (�; r) =
1

n

nX

t=1

elt (�; r) ; (3:1)

with elt (�; r) = r log
�

r

r+e�t(�)

�
+Xt log

� e�t(�)
r+e�t(�)

�
+ �(Xt+r)

Xt!�(r)
:

A negative binomial quasi-maximum likelihood estimate (NB-QMLE) of (�0; r0) is a

maximizer of eLNB (�; r) over � 2 � and r > 0.
Note, however, that elt (�; r) given by (3:1) is not a member of the linear exponential fam-

ily in the sense of Gourieroux et al (1984a). So any maximizer of (3:1) might be inconsistent

under misspeci�cation of the true conditional distribution of model (2:1), which constitutes

a serious limitation. In lieu of maximizing directly (3:1) and picking up the estimate com-

ponent corresponding to �0, we may consider a four-stage approach which is rather robust

to misspeci�cation of the true conditional distribution and which consists in:
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i) Fixing r in (3:1) arbitrarily to any known positive number, say r� > 0, and estimating

�0 while maximizing (3:1) with respect to �, giving a �rst-step QMLE b�r� .
ii) Estimating r0 under the GLM link function (2:3)-(2:4) using a weighted least squares

estimate br1 while replacing �0 in the weight by its QMLE, b�r� , obtained in i).
iii) Re-estimating �0 by maximizing a variation of (3:1) obtained while replacing r by

the estimate br1 obtained in ii), giving b�br1.
iv) Re-estimating r0 using the same weighted least squares method in ii) but while

replacing �0 by b�br1 obtained in iii).
For a similar approach in the context of static count regression see Gourieroux et al

(1984a; 1984b) and Wooldridge (1997; 2002). In the above �rst and third steps, maximiza-

tion of (3:1) is carried out with respect to � letting r �xed. So the last term in (3:1) may be

left out and (3:1) is simply replaced by the following "pro�le negative binomial likelihood"

eLn;r (�) =
1

n

nX

t=1

elt;r (�) with elt;r (�) = r log
�

r

r+e�t(�)

�
+Xt log

� e�t(�)
r+e�t(�)

�
: (3:2)

It should be noted that elt;r (�) in (3:2) rather belongs to the linear exponential family.
Therefore any maximizer of (3:2) with respect to � would be robust to misspeci�cation of

the conditional distribution, whenever correctly specifying the conditional mean like (2:1).

It turns out that for any �xed r > 0, eLn;r (�) is the Wedderburn quasi-likelihood function
(Wedderburn, 1974) based on the negative binomial GLM link function (2:3)-(2:4) (with r

in place of r0).

On the other hand, considering Case 1 of model (2:1) where only the conditional mean

is speci�ed, then only �0 has to be estimated and r in (3:1) can be set to any positive real

value. So maximization of (3:1) will only be done with respect to �, which again amounts

to maximizing (3:2). In summary, for both Case 1 and Case 2, we have to maximize the

pro�le (or Quasi-) likelihood (3:2) with respect to �.

In the rest of this Section we shall study asymptotics of two QML-type estimates that

maximize (3:2) over � 2 �. Subsection 3.1 examines consistency and asymptotic normality
of a maximizer of (3:2) for arbitrarily �xed r > 0. The resulting estimate will be called
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pro�le (or marginal) negative binomial quasi-maximum likelihood estimate (pNB-QMLE).

In Subsection 3.2, consistency and asymptotic normality of the four-stage estimate (see i)-iv)

above) are established assuming the nominal GLM link function (2:3)-(2:4) for an unknown

r0 > 0.

3.1. Pro�le negative binomial QMLE

Consider Case 1 of the INGAR model where only (2:1) is required. A pro�le negative

binomial quasi-maximum likelihood estimate (pNB-QMLE) of �0 is any measurable solution

of the following problem

b�r = argmax
�2�

�
eLn;r (�)

�
; (3:3)

for some � and some �xed known r > 0, where eLn;r (�) is given by (3:2). When r = 1, b�1
reduces to the geometric QMLE (G-QMLE) studied by Aknouche and Bendjeddou (2017).

The choice of ( eX0; eX�1; :::) is of no asymptotic importance, but may in�uence the accuracy

of estimate in �nite samples. In general, one assumes that eX0 = x; eX�1 = x; ::: with x

depending on the function � or on the observations (see Ahmad and Francq, 2016). To

study consistency of the pNB-QMLE, b�r, we need the following assumptions:
A1 � 7! �t (�) is a:s: continuous; �t (�) > c and e�t (�) > c, a:s: for some c > 0.
A2 at

a:s:!
t!1

0 and atXt
a:s:!
t!1

0 where at = sup�2�

���e�t (�)� �t (�)
���.

A3 E
�
X�
t

�
<1 for some � > 1.

A4 �t (�) = �t (�0) a:s: if and only if � = �0.

A5 � is compact.

Assumptions A1-A5 are standard and may be made more explicit for some particular

models of (2:1). Similar assumptions were considered by Ahmad and Francq (2016) for the

strong consistency of their P -QMLE.

Theorem 3.1 Under (2:1) and A0-A5,

b�r a:s:!
n!1

�0; for all r > 0: (3:4)
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The latter result shows that, like the P -QMLE, the pNB-QMLE is robust to mis-

speci�cation of the true conditional distribution where only (2:1) has to be speci�ed. This

is not surprising as the pro�le negative binomial log-likelihood (3:2) belongs to the linear

exponential family (see Gourieroux et al, 1984a).

We now examine the asymptotic normality of the pNB-QMLE. Let lt;r (�) be de�ned

in the same way as elt;r (�) in (3:2) with �t (�) in place of e�t (�) and set

Ln;r (�) =
1

n

nX

t=1

lt;r (�) :

Consider the following supplementary assumptions.

A6 The variables ct; ctXt; atdt; atdtXt and btdtXt are of order O (t
�� ) a:s: for some

� > 1=2, where bt = sup�2�

���e�
2

t (�)� �2t (�)
��� ; ct = sup�2�


@(e�t(�)��t(�))

@�

 and

dt = sup
�2�

max

� 1
e�t(�)(r+e�t(�))

@e�t(�)
@�

 ;
 1
�t(�)(r+�t(�))

@�t(�)
@�


�
:

A7 The true �0 belongs to the interior of �.

A8 The conditional variance vt (�0) := V ar (Xt=Ft�1) = E (X2
t =Ft�1) � �2t (�0) is a:s:

�nite.

A9 The derivatives @2�t(�)
@�@�0

and @2e�t(�)
@�@�0

exist and are continuous, the matrices

Ir = E
�

vt(�0)

�2t (�0)(r+�t(�0))
2

@�t(�0)
@�

@�t(�0)
@�0

�
and Jr = E

�
1

�t(�0)(r+�t(�0))
@�t(�0)
@�

@�t(�0)
@�0

�
;

are �nite, and Jr is nonsingular for all r > 0.

A10 There is a neighborhood V (�0) of �0 such that E

 
sup

�2V (�0)

@
2lt;r(�)

@�@�0


!
< 1 for all

r > 0.

Like consistency conditions, assumptionsA6-A10may be made more explicit for speci�c

cases of (2:1). Now we have the following asymptotic normality result.

Theorem 3.2 Under (2:1) and A0-A10,

p
n
�
b�r � �0

�
L!

n!1
N
�
0; J�1r IrJ

�1
r

�
for all r > 0: (3:5)

Some remarks are in order:
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- When the conditional distribution of the data generating process (2:1) is negative

binomial-II with parameters r0 and
r0

r0+�t
, i.e. Xt=Ft�1 � NB

�
r0;

r0
r0+�t

�
, then (3:5) holds

with Ir =
1
r0
E
�

r0+�t(�0)

�t(�0)(r+�t(�0))
2

@�t(�0)
@�

@�t(�0)
@�0

�
. In particular, when r in (3:2)-(3:3) coincides

with the "true" r0 in (2:3)-(2:4), then b�r0 becomes the maximum likelihood estimate (MLE),
which is then asymptotically e¢cient with

Ir0 =
1
r0
Jr0 :

Therefore, (3:5) becomes

p
n
�
b�r0 � �0

�
L!

n!1
N
�
0; 1

r0
J�1r0

�
: (3:6)

- A weaker result, which does not require specifying the full conditional distribution is

that under the following more general negative binomial-II GLM link function

V ar (Xt=Ft�1) = �2E (Xt=Ft�1)
�
1 + 1

r0
E (Xt=Ft�1)

�
for some �2 > 0; r0 > 0; (3:7)

which generalizes (2:3)-(2:4), b�r0 is asymptotically e¢cient in the class of all QMLE�s in the
linear exponential family (see e.g. Gourieroux et al (1984a; 1984b) and Wooldridge (1997)

in the context of QML inference for static integer-valued regression models). In that case

we have
p
n
�
b�r0 � �0

�
L!

n!1
N
�
0; �2J�1r0

�
: (3:8)

Note, however, that r0 is generally unknown and (3:6) and (3:8) does not hold unless r0 is

consistently estimated under (3:7) as we will see in the following subsection.

Now an important issue is to estimate the asymptotic variance of the pNB-QMLE.

Similarly to Ahmad and Francq (2016), a consistent estimate of the asymptotic variance

J�1r IrJ
�1
r of the pNB-QMLE, b�r, is bJ�1r bIr bJ�1r with

bIr = 1
n

nX

t=1

�
Xt�e�t(b�r)

e�t(b�r)(r+e�t(b�r))

�2
@e�t(b�r)@e�t(b�r)

@�@�0
: (3:9)

bJr = 1
n

nX

t=1

1
e�t(b�r)(r+e�t(b�r))

@e�t(b�r)@e�t(b�r)
@�@�0

: (3:10)
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3.2. Two-stage negative binomial QMLE

Consider Case 2 of model (2:1)-(2:4) for which we study the aforementioned four-stage

procedure i)-iv). Here, the second and fourth steps are described in more details. Under the

GLM assumption (2:3)-(2:4), if we set

ut = (Xt � �t)2 � E
�
(Xt � �t)2 =Ft�1

�
= (Xt � �t)2 �

�
1 + 1

r0
�t

�
�t;

then E (ut=Ft�1) = 0 and
(Xt��t(�0))2��t(�0)

�2t (�0)
= 0 +

ut
�2t (�0)

; (3:11)

where 0 =
1
r0
. Regression (3:11) is not ready to be used to estimate 0 since its regressand,

(Xt��t(�0))2��t(�0)
�2t (�0)

, depends on the unknown �0 and is then unobservable. If a consistent

estimate of �0, say b�, is available then we may form the following modi�ed (observable-

regressand) regression

(Xt�b�t)
2�b�t

b�2t
= 0 +

ut
b�2t
; (3:12)

from which a consistent estimate of r0 is br, the inverse of the weighted least squares estimate
b of 0 given by

br =
 
1
n

nX

t=1

�
(Xt�b�t)

2�b�t
�

b�2t

!�1
; b = br�1; (3:13)

where b�t = e�t
�
b�
�
. Note that the estimate br we use here is a dynamic INGAR adaptation of

the estimate proposed by Gourieroux et al (1984b) in the context of static negative binomial

regression. Now, with (3:13) the following algorithm summarizes the four-stage approach

i)-iv) described above.

Algorithm 3.1 (Two-stage NB-QMLE)

Given a �xed known r� > 0, the two-stage NB-QMLE of (�0; r0) in (2:1)-(2:4) consists

of a quadruple
�
b�r� ; br1;b�br1 ; br2

�
, which is described by the following steps:

Step 1 Set b�r� = argmax�2� eLn;r� (�), a solution to the problem (3:3) while replacing r

par r�. Let b�1t = e�t
�
b�r�
�
; (1 � t � n).

Step 2 Set b1 = 1
n

Pn
t=1

(Xt�b�1t)
2�b�1t

b�21t
and br1 = b�11 .
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Step 3 Let b�br1 = argmax�2� eLn;br1 (�) be a solution of the problem (3:3) while replacing

the generic r by br1. Get b�2t = e�t
�
b�br1
�
; (1 � t � n).

Step 4 Set b2 = 1
n

Pn
t=1

(Xt�b�2t)
2�b�2t

b�22t
and br2 = b�12 .

To get asymptotic properties of the quadruple
�
b�r� ; br1;b�br1 ; br2

�
, note �rst that b�r� is no

other than the pro�le NB-QMLE proposed in Section 3.1 whose asymptotic properties

were given by Theorem 3.1 and Theorem 3.2. So it remains to study the triple
�
br1;b�br1 ; br2

�
,

asymptotic properties of which are given by the following result.

Theorem 3.3 Under (2:1), (2:3)-(2:4) and A0-A10,

br1 a:s:!
n!1

r0; (3:14a)

p
n (b1 � 0)

L!
n!1

N

 
0; E

 �
(Xt��t(�0))2�

�
�t(�0)+

1
r0
�2t (�0)

��2

�4t (�0)

!!
; b2

A:D
= b1; (3:14b)

b�br1
a:s:!
n!1

�0; (3:14c)

p
n
�
b�br1 � �0

�
L!

n!1
N
�
0; 1

r0
J�1r0

�
; (3:14d)

where
A:D
= stands for equality in asymptotic distribution.

A few broad conclusions can be drawn.

- Strong consistency of b�br1 directly follows from strong consistency of b�r (for all r > 0)
and br1.
- The third-step estimate b�br1 is clearly more asymptotically e¢cient than the �rst-step

estimate b�r� .
- No supplementary moment assumptions apart those required byA0-A10 are needed for

consistency and asymptotic normality of b1. Other methods for estimating  are available
(e.g. Christou and Fokianos, 2014), but they may involve higher order moment conditions.

- Asymptotic distribution of br1 is a reciprocal normal distribution, which is bimodal and
has no �rst moment.

- Since b1 and b2 have the same asymptotic distribution, Step 4 is optional and may
be left out. However, for �nite-samples considerations, we keep it here because it allows to

re-estimate r0 using b�2t and hence b�br1, which is more asymptotically e¢cient than b�r we used
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in Step 2.

- A consistent estimate of the asymptotic variance 1
r0
J�1r0 of the third-step estimate, b�br1,

is

1
br2
bJ�1br2 ; (3:15)

where bJr is given by (3:10). Note that since here Ir = Jr, then (3:9) may also be used.
- A consistent estimate of the asymptotic variance of b2 in (3:14b) is

1
n

nX

t=1

�
(Xt��t(b�br1))

2�
�
�t(b�br1)+

1
r0
�2t(b�br1)

��2

�4t(b�br1)
: (3:16)

- The outputs of the 2SNB-QMLE method are br2 = (b2)�1 and b�br1.

4. Comparison between the NB-QMLE�s and the Pois-

son QMLE

For the conditional mean parameter �0 of the INGAR model (2:1), Ahmad and Francq

(2016) proposed a Poisson QMLE (P -QMLE), which is de�ned as a measurable solution

to the following problem

b�P = argmax
�2�

�
eLP;n (�)

�
; (4:1a)

where

eLP;n (�) = 1
n

nX

t=1

�
�e�t (�) +Xt log

�
e�t (�)

��
: (4:1b)

Under similar assumptions to A0-A10, Ahmad and Francq (2016) showed consistency

and asymptotic normality of the P -QMLE with

p
n
�
b�P � �0

�
L!

n!1
N
�
0; J�1P IPJ

�1
P

�
; (4:2)

where IP = E
�
vt(�0)

�2t (�0)

@�t(�0)
@�

@�t(�0)
@�0

�
and JP = E

�
1

�t(�0)
@�t(�0)
@�

@�t(�0)
@�0

�
. One important prop-

erty of the P -QMLE is its robustness to misspeci�cation of the true conditional distribution

of model (2:1). In this Section we will compare the NB-QMLE�s and P -QMLE with regard

to asymptotic relative e¢ciency for some well-known speci�c cases of (2:1) and also on some
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particular GLM link functions of (2:3). We also compare these estimates in �nite samples

through some simulation experiments.

4.1. Comparison on asymptotic relative e¢ciency for speci�c mod-

els

4.1.1. The Poisson INGARCH model (Poisson autoregression)

The Poisson integerGARCH (INGARCH (p; q)) process fXt; t 2 Zg, as proposed by Heinen
(2003) and Ferland et al (2006), is de�ned to have a Poisson conditional distribution

Xt=Ft�1 � P (�t) ; t 2 Z; (4:3a)

with conditional mean �t = �t (�0) speci�ed as follows

�t (�0) = !0 +

qX

i=1

�0iXt�i +

pX

j=1

�0j�t�j (�0) ; (4:3b)

where �0 =
�
!0; �01; :::; �0q; �01; :::; �0p

�0
is such that !0 > 0; �0i � 0, �0j � 0. Ferland et al

(2006) showed that under the following stability condition

qX

i=1

�0i +

pX

j=1

�0j < 1; (4:4)

the process fXt; t 2 Zg given by (4:3) is strictly stationary and ergodic (see also Douc et
al, 2013; Gonçalves et al, 2015; Davis and Liu, 2016). Under

Pp
j=1 �0j < 1, the conditional

mean �t of the process may be written in the form (2:1); hence model (4:3) is a special case

of (2:1). In particular, it is characterized by the following "identity" GLM link function

V ar (Xt=Ft�1) = E (Xt=Ft�1) . (4:5)

On the other hand, the P -QMLE of (4:3) reduces to the maximum likelihood estimate,

which is asymptotically e¢cient and is then more asymptotically e¢cient than the pNB-

QMLE. In particular IP = JP follows from (4:2) and (4:5). Furthermore, assumptions A1-

A10 simplify in the case of the Poisson INGARCH model (4:3) as in Ahmad and Francq
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(2016). For instance, Ir de�ned in A9 reduces to Ir = E
�

1
�t(�0)(r+�t(�0))

2

@�t(�0)
@�

@�t(�0)
@�0

�
. Note

�nally that the 2SNB-QMLE given by Section 3.2 is ill-de�ned in the present Poisson

INGARCH case since the Step 2 of Algorithm 3.1 is derived under the GLM assump-

tion (2:3)-(2:4), which is di¤erent from the link function (4:5) characterizing the Poisson

INGARCH model (4:3).

4.1.2. The negative binomial-I INGARCH model

Here we follow Cameron and Trivedi (1986, 2013) who proposed the negative binomial-

K conditional distribution in the context of static integer-valued regression. We say that

fXt; t 2 Zg is a negative binomial-K INGARCH (NB-K-INGARCH (p; q)) process if its

conditional distribution is a negative binomial one,

Xt=Ft�1 � NB (rt; �t) ; t 2 Z; (4:6a)

with parameters

rt = r0�
2�K
t and �t =

r0�
2�K
t

r0�
2�K
t +�t

; (4:6b)

where K 2 Z, r0 > 0 and �t = �t (�0) satis�es the INGARCH (p; q) representation (4:3b).
Model (4:6) in which E (Xt=Ft�1) = �t satis�es the following GLM link function

V ar (Xt=Ft�1) = E (Xt=Ft�1)
�
1 + 1

r0
(E (Xt=Ft�1))K�1

�
; (4:7)

which implies the process is overdispersed since V ar (Xt=Ft�1) > E (Xt=Ft�1).
Now consider the NB-I-INGARCH (p; q) model corresponding to K = 1, i.e.

Xt=Ft�1 � NB
�
r0�t;

r0�t
r0�t+�t

�
� NB

�
r0�t;

r0
r0+1

�
, (4:8a)

for which (4:7) reduces to the following linear form

V ar (Xt=Ft�1) =
�
1 + 1

r0

�
E (Xt=Ft�1) ; (4:8b)

which is a strict generalization of the Poisson GLM condition (4:5) implied by the Poisson

INGARCH model. In view of (4:5) and (4:8b), theNB-I-INGARCH model (4:8a) presents
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some similarities with the Poisson INGARCH model (4:3). Indeed, it is straightforward to

show that theNB-I-INGARCH is strictly stationary with �nite second moment and ergodic

under the same stationarity condition (4:4) for the Poisson INGARCH model. Moreover,

from (4:2) and (4:8b), it follows under similar assumptions to A0-A10 (see Ahmad and

Francq, 2016) that

p
n
�
b�P � �0

�
L!

n!1
N

�
0;
�
1 + 1

r0

��
E
�

1
�t(�0)

@�t(�0)
@�

@�t(�0)
@�0

���1�
:

A more important result is that under the Poisson GLM condition (4:8b), it is easily seen

that the P -QMLE is asymptotically e¢cient in the class of all QMLE�s belonging to the

linear exponential family. So the P -QMLE is more asymptotically e¢cient than the pNB-

QMLE (see Gourieroux et al, (1984a; 1984b) in the case of static integer-valued regression

models where adaptation to the present dynamic case is trivial). In fact, under A0-A10 and

in view of (3:5) and (4:8b), the asymptotic variance of the pNB-QMLE, b�r, is in "sandwich"
form with

Ir =
�
1 + 1

r0

�
E
�

1
�t(�0)(r+�t(�0))

2

@�t(�0)
@�

@�t(�0)
@�0

�
:

Note �nally that as in the Poisson INGARCH case, the 2SNB-QMLE given by Section

3.2 is ill-de�ned.

4.1.3. The negative binomial-II INGARCH model

Consider the NB-II-INGARCH (p; q) model corresponding to (4:6) with K = 2, i.e.

Xt=Ft�1 � NB
�
r0;

r0
r0+�t

�
; (4:9)

where r0 > 0 and �t is given by (4:3b). Model (4:9) has been considered by Zhu (2011), Davis

and Liu (2016) and Christou and Fokianos (2014) who gave for p = q = 1 the following strict

stationarity condition

�20

�
1 + 1

r0

�
+ 2�0�0 + �

2
0 < 1;

with �nite second moment. The formulation of Zhu (2011) is in fact,

Xt=Ft�1 � NB
�
r0;

1
1+�t

�
; (4:10)

18



where r0 2 N� is restricted to be a positive integer and �t satisfying (4:3b). However, the
latter may be written in the form (4:9) while taking �t =

�t
r0
. For model (4:9), the link function

(4:7) clearly reduces to the negative binomial-II GLM condition (3:7) (with �2 = 1), i.e.

V ar (Xt=Ft�1) = E (Xt=Ft�1)
�
1 + 1

r0
E (Xt=Ft�1)

�
; r0 > 0; (4:11)

under which the 2SNB-QMLE is derived. Christou and Fokianos (2014) used the Poisson

QMLE for estimating model (4:9) and proved its consistency and asymptotic normality with

asymptotic variance in sandwich form like (4:2) where, in view of (4:4),

IP =
1
r0
E
�
(r0+�t(�0))
�t(�0)

@�t(�0)
@�

@�t(�0)
@�0

�
:

Ahmad and Francq (2016) showed how their assumptions of consistency and asymptotic

normality for the general model (2:1) simplify for model (4:9).

Concerning the pNB-QMLE it is clear that

Ir =
1
r0
E
�
(r0+�t(�0))
(r+�t(�0))

@�t(�0)
@�

@�t(�0)
@�0

�
:

Thus none of the pNB-QMLE and P -QMLE is asymptotically superior than the other,

unless r0 would be known. In that case, one can take r = r0 and the resulting pNB-QMLE,

b�r0, would be asymptotically e¢cient. For instance, consider the Geometric INGARCH
model which is a special case of the NB-II-INGARCH model (4:9) in which r0 = 1, i.e.

Xt=Ft�1 � G
�

1
1+�t

�
:

For this model, the Geometric QMLE (G-QMLE), which is a particular case of pNB-

QMLE corresponding to r = 1, reduces to the maximum likelihood estimate and is then

asymptotically e¢cient.

However, wether or not r0 is known, the 2SNB-QMLE has the nice property of being

asymptotically e¢cient in the class of all QMLE�s belonging to the linear exponential family

(cf. Theorem 3.3). Hence, it is more asymptotically e¢cient than the P -QMLE.

Finally, it is worth noting that when K =2 f1; 2g, the link function (4:7) corresponding
to the NB-K-INGARCH model is di¤erent from both the Poisson GLM condition (4:8b)
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and the Negative binomial-II assumption (4:11). Therefore, the 2SNB-QMLE is ill-de�ned

and none of P -QMLE and pNB-QMLE is asymptotically preferred than the other.

4.1.4. The INAR(1) model

A well-known particular case of (2:1) is the �rst-order integer-valued autoregressive model

(INAR(1)) proposed by McKenzie (1985) and Al-Osh and Alzaid (1987). This model has

the following form

Xt = �0 �Xt�1 + "t; t 2 Z; (4:12)

where f"t; t 2 Zg is an independent and identically distributed (iid) sequence of non-negative
integer-valued random variables with mean E ("t) = !0 > 0 and variance V ar ("t) = �

2
0 > 0.

The symbol � denotes the binomial thinning operator (cf. Steutel and Van Harn, 1979)
de�ned for any non-negative integer-valued random variable X by �0 �X =

PX
i=1 Yi, where

fYi; i 2 Ng is an iid Bernoulli random sequence such that P (Yi = 1) = �0 2 (0; 1). It is well
known that

E (Xt=Ft�1) = �t (�0) = �0Xt�1 + !0; with �0 = (�0; !0)
0;

and that assumption A0 reduces in term of �0 to

�0 < 1;

(cf. Al-Osh and Alzaid, 1987). Furthermore, the INAR(1) model (4:12) obeys to the

following a¢ne GLM link function

V ar (Xt=Ft�1) = �0 (1� �0)Xt�1 + �
2
0

= (1� �0)E (Xt=Ft�1) + �20 � (1� �0)!0: (4:13)

Note that if
�2
0

!0
= 1 � �0 < 1, so that the innovation term "t should be underdispersed,

then the a¢ne link function (4:13) reduces to the linear Poisson GLM condition (4:8b) with

proportionality constant 1� �0. Therefore, the P -QMLE would be asymptotically e¢cient
in the class of all QMLE�s belonging to the linear exponential family and hence it would be
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more asymptotically e¢cient than the pNB-QMLE. Speci�cally,

p
n
�
b�P � �0

�
L!

n!1
N

�
0; (1� �0)

�
E
�

1
�t(�0)

@�t(�0)
@�

@�t(�0)
@�0

���1�
.

If, however,
�2
0

!0
6= (1� �0), then none of the two estimates P -QMLE and pNB-QMLE is

more asymptotically e¢cient than the other. Moreover, in all cases the 2SNB-QMLE is

ill-de�ned.

4.2. Comparison in �nite samples

We now examine the �nite-sample performance of the proposed NB-QMLE�s on simulated

series with sample size n = 1000. These series are generated from three instances of (2:1),

namely:

i) The Poisson INGARCH(1; 1) model (4:3) with parameter �0 = (2; 0:3; 0:6)
0 (cf. Table

4.1).

ii) The geometric INGARCH(1; 1) model corresponding to (4:9) with r0 = 1 and �0 =

(2; 0:3; 0:6)0 (cf. Table 4.2).

iii) The negative binomial-II INGARCH (1; 1) model (4:9) with parameters r0 = 3 and

�0 = (2; 0:3; 0:6)
0 (cf. Table 4.3).

Three QMLE�s are compared on these models: i) The Poisson QMLE (b�P , Ahmad and
Francq, 2016) given by (4:1), ii) the Geometric QMLE, b�1, corresponding to (3:3) with r = 1
and iii) the pro�le negative binomial QMLE, b�4; given by (3:3) with r = 4. For the NB-II
INGARCH (1; 1) model (4:9) we also run the two-stage NB-QMLE,

�
b�r� ; br1;b�br1 ; br2

�
, given

by Algorithm 3.1. These estimates are calculated using 500 Monte Carlo replications for the

three mentioned models. In implementing the NB-QMLE�s we used the same devices:

The starting parameter value, �(0) =
�
!(0); �(0); �(0)

�0
, of the nonlinear optimization routine

(3:3) is set to the value obtained while preliminarily running a pNB-QMLE starting from

an initial parameter �(�1) = (2; 0:3; 0:6)0 and r(�1) = 3. The unobservable starting values X0

and �0 (�) of the INGARCH(1; 1) equation are estimated respectively by

eX0 = X and e�0 (�) =
! + �X

1� � ' E (�t (�)) ; for � = (!; �; �)0 2 �; (4:14)
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where X is the empirical mean of the series X1; :::; Xn. Concerning Algorithm 3.1, which

is only applied in the case of the NB-II-INGARCH model (4:9), we need to estimate the

initial dispersion parameter r�. For this we mime the negative binomial-II GLM assumption

(4:11), taking r� to be a solution to the equation,

S2 = X
�
1 + 1

r�
X
�
;

i.e.

r� =
(X)

2

S2�X ; (4:15)

where S2 is the sample variance of X1; :::; Xn. Of course, there is no theoretical justi�cation

for this choice. We have just replaced in (4:11) the conditional variance and conditional mean

by their unconditional sample counterparts. For that choice, the series X1; :::; Xn should be

overdispersed (i.e. S2 > X), otherwise r� would be negative, which is not valid.

Mean of estimates, their standard deviation (StD) and their empirical Root Minimum

Square Error (RMSE) over the 500 replications are reported in Tables 4.1-4.3. The RMSE

of an estimate b� of �0 is calculated from the formula RMSE =
p
bias2 + StD2, where bias

is the sample mean of b� � �0 over the 500 replications.

�0 b�P b�1 b�4

! = 2

Mean

StD

RMSE

1:9891

0:2205

0:2208

2:0111

0:2977

0:2979

2:0587

0:3298

0:3350

�0= 0:3

Mean

StD

RMSE

0:3144

0:0215

0:0259

0:3322

0:0290

0:0433

0:3248

0:0328

0:0411

�0= 0:6

Mean

StD

RMSE

0:5850

0:0253

0:0294

0:5669

0:0357

0:0487

0:5713

0:0372

0:0470

Table 4.1. Mean, Standard Deviation and empirical RMSE of b�r (r = 1; 4) and
b�P for Poisson INGARCH(1; 1) series with �0 = (2; 0:3; 0:6)0 and n = 1000.
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�0 b�P b�1 b�4

! = 2

Mean

StD

RMSE

2:2428

0:4957

0:5520

2:0316

0:3227

0:3242

2:1390

0:4096

0:4325

�0= 0:3

Mean

StD

RMSE

0:2965

0:0422

0:0423

0:2973

0:0325

0:0326

0:2952

0:0359

0:0362

�0= 0:6

Mean

StD

RMSE

0:5896

0:0528

0:0538

0:6006

0:0296

0:0296

0:5949

0:0427

0:0430

Table 4.2. Mean, Standard Deviation and empirical RMSE of b�r (r = 1; 4) and
b�P for geometric INGARCH(1; 1) series with �0 = (2; 0:3; 0:6)0 and n = 1000.
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�0 b�P b�1 b�3 b�br

! = 2

Mean

StD

RMSE

2:1271

0:4811

0:4976

2:0865

0:4428

0:4512

2:0891

0:4336

0:4427

2:0812

0:4162

0:4240

�0= 0:3

Mean

StD

RMSE

0:2962

0:0381

0:0383

0:2983

0:0354

0:0354

0:2972

0:0312

0:0314

0:2953

0:0299

0:0302

�0= 0:6

Mean

StD

RMSE

0:59997

0:07434

0:07434

0:60003

0; 07069

0; 07069

0:59796

0:04309

0:04314

0:59979

0:03758

0:03758

r0 = 3

Mean

StD

RMSE

- - -

3:0104

0:2250

0:2252

Table 4.3. Mean, Standard Deviation and empirical RMSE of b�r (r = 1; 4), b�P , b�br and
br2 for NB-II-INGARCH(1; 1) series with r0 = 3, �0 = (2; 0:3; 0:6)0 and n = 1000.
From Tables 4.1-4.3 our Monte Carlo analysis broadly reveals that the parameters are

well estimated by all accessed methods and the results are consistent with asymptotic theory.

More precisely, when the conditional distribution of the INGARCH (1; 1) model follows a

given distribution, the QMLE calculated on that distribution is the best one compared to

the others regarding to its smallest RMSE. Speci�cally, in the Poisson INGARCH (1; 1)

case (cf. Table 4.1) the P -QMLE outperforms the G-QMLE and the pNB-QMLE. Simi-

larly, for the Geometric INGARCH (1; 1) model (cf. Table 4.2) the G-QMLE has smaller

RMSE than the P -QMLE and the pro�le NB-QMLE, b�4. Finally, for the NB-II-

INGARCH (1; 1) model with dispersion parameters r0 = 3 (cf. Table 4.3), the four-stage

estimate b�br outperforms the Poisson QMLE, the geometric QMLE and the pro�le NB-

QMLE, b�4.
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5. Real applications

For illustration purposes, we propose to apply the two-stage NB-QMLE given by Algorithm

3.1 to two famous integer-valued time series under the negative binomial-II INGARCH (1; 1)

framework. The �rst one is the Polio data (Zeger, 1988) while the second one is the Trans-

action data (Fokianos et al, 2009). The choice of the NB-II-INGARCH (1; 1) model is

motivated by the overdispersion of the mentioned series. Moreover, these two real series

were considered by Zhu (2011) and Christou and Fokianos (2014) respectively using the

NB-II-INGARCH (1; 1) model, but via di¤erent estimation methods. This allows us to

compare their methods with our proposed 2SNB-QMLE. All procedures have been applied

on a personal computer using R. The optimization (3:3) is carried out using the function

constrOptim() of R.

5.1. The polio data

The �rst dataset is the monthly number of poliomyelitis cases in the United States over

the sample period from 1970 to 1983 with a total of n = 168 observations (cf. Figure 5.1).

This series was originally modelled by Zeger (1988) and used later by many authors (see

Zeger and Qaqish, 1988; Davis et al, 1999; Benjamin et al, 2003; Heinen, 2003; Davis and

Wu, 2009; Zhu, 2011 among others). The Polio series with a sample mean of 1.3333 and

a sample variance of 3.5050 is clearly overdispersed. It has a large frequency of zeros, has

an asymmetric marginal distribution and is characterized by a locally constant behavior (cf.
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Figure 5.1, see also Zeger, 1987; Benjamin et al, 2003; Zhu, 2011).

1970 1972 1974 1976 1978 1980 1982 1983
0

2

4

6

8

10

12

14

year

C
o
u
n
t

0 2 4 6 8 10 12 14
0

20

40

60

80

100

120
Histogram of the Polio data

(a) (b)

Figure 5.1: Monthly number of poliomyelitis cases in the United States from 1970 to 1983.

(a) Series, (b) Histogram.

Zhu (2011) �tted a NB-II-INGARCH (1; 1) model of the form (4:10) to the polio series.

As emphasized above, this model is slightly di¤erent from the model (4:9). First, the dis-

persion parameter in (4:10) is taken to be a positive integer, which is somewhat restrictive.

Second, the probability parameter is 1
1+�t

rather than r0
r0+�t

in (4:9). So the conditional mean

of model (4:10) is not in the form (2:1). However, by taking �t =
�t
r0
we �nd model (4:9)

with a di¤erent parametrization. Zhu (2011) estimated model (4:10) using an approximate

maximum likelihood estimate. This estimate consists in maximizing the negative binomial

likelihood over � for �xed r and then choosing � with largest likelihood over all selected

values of r 2 f1; :::; rg, for some �xed positive integer r. The estimated model of Zhu (2011)
is given by

Xt=Ft�1 � NB
�
br; 1
1+b�t

�
; (5:1)

br = 2,8
<
:
b�t = 0:31190 + 0:1843Xt�1 + 0:1815b�t�1; 2 � t � 168
b�1 = X,

from which the estimate of E(Xt) is

2� 0:3119
1�(0:1843+0:1815) = 0:9836;

and the persistence (or stability) parameter is 0:1843 + 0:1815 = 0:3658.
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To compare with Zhu�s (2011) �t, we estimated a NB-II-INGARCH (1; 1) model (4:9)

using the 2SNB-QMLE (Algorithm 3.1). In implementing Algorithm 3.1 we used the same

devices as in Section 4.2. More precisely, the initial dispersion parameter r� is calculated

using (4:15) giving

r� = (1:3333)2

3:5050�1:3333 = 0:8186;

while the starting values of the INGARCH (1; 1) equation (4:3b) are taken as in (4:14).

The initial conditional mean parameter �(0) of the optimization problem (3:3) is obtained

while preliminarily running the Geometric QMLE on the polio series with initial parameter

(2; 0:3; 0:6)0. The estimated parameters of the model and their Asymptotic Standard Errors

(ASE) are summarized in Table 5.1. The ASE�s are calculated from the asymptotic distrib-

ution of the 2SNB-QMLE given by Theorem 3.3. In particular, the ASE of b2 = (br2)�1 is
computed from (3:14b) and (3:16) while the ASE of b�br2 is obtained from (3:14d) and (3:15).
Note that the ASE of br2 is not available since the distribution of br2 has not a usual form.

NB-II-INGARCH

parameters

Estimates :�
b�br1 ; b2; br2

� ASE of

b�br1 ; b2
!0 0:6564 0:2050

�0 0:3743 0:1580

�0 0:1511 0:0935

0 =
1
r0

0:3843 0:1945

r0 2:6023 �

Table 5.1: 2S-NBQML estimates and their asymptotic standard errors

for the NB-II-INGARCH(1; 1) model from the Polio data.

The �tted model (4:9) using the 2SNB-QMLE is given by

Xt=Ft�1 � NB
�
br2; br2

br2+b�t

�
; (5:2)

br2 = 2:6023;8
<
:
b�t = 0:6564 + 0:3743Xt�1 + 0:1511b�t�1; 2 � t � 168
b�1 = X = 1:3333;
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with persistence parameter 0:3743 + 0:1511 = 0:5254. Note that our estimate of the mean

E (Xt) is

0:6564
1�(0:3743+0:1511) = 1:3834;

which is closer to the sample mean X = 1:3333 than the estimated mean, 0:9836, given by

Zhu�s (2011) model. On the other hand, some properties of the residuals are shown in Figure

5.2. Indeed, from the sample autocorrelation and partial autocorrelation functions in Figure

5.2 (panels (a) and (b)), the residuals look like a white noise. However, a visual inspection

(cf. Figure 5.2, panels (c) and (d)) reveals that the normality assumption of the residuals

is untenable. In sum, regarding the stability of the estimated model, the signi�cance of its

coe¢cients and the residual analysis in Figure 5.2, it can be concluded that the estimated

model is acceptable.
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Figure 5.2: Residual analysis for the Polio series. (a) Sample autocorrelations of residuals.

(b) Sample partial autocorrelations of residuals. (c) Kernel density of residuals.

(d) QQ-plot of the residuals versus the standard normal distribution.

Now we compare in-sample performance of our �t (5:1) with that of Zhu (2011). Table
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5.2 provides the residual sum of squares (RSS) induced by models (5:1) and (5:2). These

RSS�s are given respectively by

RSS
�
b�t
�
=

168X

t=2

�
Xt � b�t

�2
;

RSS (2b�t) =

168X

t=2

(Xt � 2b�t)2 ;

starting from initial values b�1 = b�1 = X. The latter initial value was considered by Zhu

(2011).

Predictors b�t 2b�t
RSS 535:1793 540:6634

Table 5.2: Residual sum of squares (RSS) of the predictors

b�t (5:2) and 2b�t (5:1) for the Polio series.
From Table 5.2 it can be seen that our model estimated by the 2SNB-QMLE (Algorithm

3.1) slightly outperforms the model of Zhu (2011) with smaller Residual Sum of Squares

(RSS). Since the conditional mean may be in�uenced by the choice of the initial values, we

have calculated several RSS corresponding to models (5:1) and (5:2) starting from several

initial values b�1 and b�1; the unreported results were virtually the same. Finally, Figure 5.3
displays the polio data together with the estimated conditional mean b�t and the estimated
conditional variance given by bvt = b�t

�
1 + 1

br2
b�t
�
, where the overdispersion phenomenon

seems reproduced.
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Figure 5.3: Polio series and its estimated conditional mean and conditional variance.

29



5.2. Transaction data

The second dataset is the number of transactions per minute for the stock Ericsson B during

July 05, 2002. This series has a total of n = 460 observations representing the transaction of

approximately 8 hours (from 09:35 through 17:14, cf. Figure 5.4). It was used by Fokianos

et al (2009), Davis and Liu (2009) and Christou and Fokianos (2014) among others. Like

the Polio data, the Transaction series is overdispersed viewing its sample mean and sample

variance, which are equal to 9:8239 and 23:7532 respectively. It is characterized by small

values, an asymmetric marginal distribution and a locally constant behavior (cf. Figure 5.4).
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Figure 5.4: Number of transactions per minute for the stock Ericsson B during July 05, 2002.

(a) series, (b) histogram.

Using the PoissonQMLE, Christou and Fokianos (2014) �tted aNB-II-INGARCH(1; 1)

model (4:9) to the Transaction data. They found the following speci�cation

Xt=Ft�1 � NB
�
br; br

br+b�t

�
; (5:3)

br = 7:0220;8
<
:
b�t = 0:5808 + 0:1986Xt�1 + 0:7445b�t�1; 2 � t � 460
b�1 = 0;

with a strong persistence parameter 0:9431 and an estimated mean 0:5808
1�0:9431 = 10:2070.

Motivated by the fact that the 2SNB-QMLE (Algorithm 3.1) is more asymptotically

e¢cient than the P -QMLE in the context of the NB-II-INGARCH model (cf. Section

4.1.3), we applied the former estimate to the Transaction series using the same devices as
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for the Polio data. Indeed, from (4:15), the initial dispersion parameter r� is taken to be

r� = (9:8239)2

23:7532�9:8239 = 6:9285;

while the starting values of the INGARCH (1; 1) equation (4:3b) are set according to (4:14).

The parameter estimates and their Asymptotic Standard Errors (ASE) are summarized in

Table 5.3.

NB-II-INGARCH

parameters

Estimates :�
b�br1 ; b2; br2

� ASE of

b�br1 ; b2
!0 0:7996 0:4034

�0 0:7928 0:0650

�0 0:1249 0:0340

0 =
1
r0

0:1279 0:0241

r0 7:8199 �

Table 5.3: 2S-NBQML estimates and their asymptotic standard errors

for the NB-II-INGARCH(1; 1) model from the Transaction data.

Thus our �tted NB-II-INGARCH(1; 1) model from the Transaction series using the

2SNB-QMLE is given by

Xt=Ft�1 � NB
�
br2; br2

br2+b�t

�
; (5:4)

br2 = 7:8199;8
<
:
b�t = 0:7996 + 0:7928Xt�1 + 0:1249b�t�1; 2 � t � 460
b�1 = X = 9:8134;

with a strong persistence parameter of 0:9177 and an estimated mean, 0:7996
1�0:9177 = 9:7157,

which is closer to the sample mean X = 9:8239 than the estimated mean obtained from the

speci�cation of Christou and Fokianos (2014).

Figure 5.5 shows the sample autocorrelation function (panel (a)), the sample partial

autocorrelation function (panel (b)), the Kernel density (panel (c)) and the QQ-plot (panel
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(d)) of the residuals of model (5:4). It turns out that the hypothesis that the residuals form

a non-Gaussian white noise is strongly tenable.
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Figure 5.5: Residual analysis for the Transaction series. (a) Sample autocorrelations

of residuals. (b) Sample partial autocorrelations of residuals. (c) Kernel density

of residuals. (d) QQ-plot of the residuals versus the standard normal distribution.

Next we compare the RSS of our �t (5:4) with that of Christou and Fokianos (2014)

given by (5:3). Because of the high persistence parameters in both models, the RSS�s may

be in�uenced by the starting values for the moderate sample size of the Transaction series.

We therefore started the equations (5:3) and (5:4) from several initial values (cf. Table 5.4)
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although Christou and Fokianos (2014) have taken b�1 = 0.

Predictors b�t b�t b�t b�t b�t b�t
Initial values

b�1; b�1
0 0 9:8239 9:8239 10:2070 10:2070

RSS 10400:6733 10422:8003 9809:6645 9943:0150 9796:8644 9933:0780

Table 5.4: Residual sum of squares (RSS) of the predictors b�t (5:4) and b�t (5:3)
for the Transaction data.

It can be seen from Table 5.4 that model (5:4) estimated by the 2SNB-QMLE has the

smallest RSS for all chosen initial values. Figure 5.6 shows the Transaction series together

with the estimated conditional mean b�t and the estimated conditional variance given by
bvt = b�t

�
1 + 1

br2
b�t
�
, where the overdispersion phenomenon is highlighted.
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Figure 5.6: Transaction series and its estimated conditional mean and conditional variance.

6. Conclusion

In this paper we proposed two negative binomial QMLE�s, namely the pro�le NB-QMLE

and the two-stage NB-QMLE, for a general class of integer-valued time series models.

These estimates are consistent and asymptotically Gaussian under general weak assumptions.

In particular, they are robust to misspeci�cation of the true conditional distribution of

the model whenever the conditional mean is well speci�ed. Moreover, under the negative
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binomial-II GLM link function, the two-stage NB-QMLE is more asymptotically e¢cient

than the Poisson QMLE and is especially well adapted to overdispersed series. Furthermore,

it is asymptotically e¢cient in the class of all QMLE�s belonging to the linear exponential

family. In fact, the two-stageNB-QMLE may be seen as a good alternative to the maximum

likelihood estimate (for models with negative binomial-II conditional distributions), which

su¤ers from the non-robustness to misspeci�cation of the true conditional distribution and

whose calculation is very tedious. From asymptotics of the NB-QMLE�s (Theorems 3.1-

3.3), portmanteau tests for goodness-of-�t in the framework of the INGAR model are easily

derived.

On the other hand, we have seen how the proposed NB-QMLE�s can be applied to some

speci�c integer-valued models like the Poisson and negative binomial INGARCH models

and also to the INAR equation. Other famous particular cases of the INGAR model like

the log-INGARCH model (Fokianos and Tjøstheim, 2011), the double Poisson INGARCH

model (Heinen, 2003; Ahmad and Francq, 2016), the generalized Poisson INGARCH model

(Zhu, 2012a) and Integer-valued ARMA (INARMA) models also apply in the framework

of our methods. Finally, generalizations of the proposed methods to multivariate versions of

the INGAR model are appealing.

7. Proofs

7.1. Proof of Theorem 3.1

Following Wald�s approach, the proof of Theorem 3.1 is based on the following three lemmas.

Lemma 7.1 Under A1-A2

lim
n!1

sup
�2�

���Ln;r (�)� eLn;r (�)
��� = 0; a:s:

Proof Using the inequality log (x) � x � 1, the fact that e�t (�) > 0, the assumptions
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A1-A2 and the Césaro lemma it follows that

sup
�2�

���Ln;r (�)� eLn;r (�)
��� = 1

n
sup
�2�

�����

nX

t=1

�
log
�
r+�t(�)

r+e�t(�)

�
+Xt log

�
e�t(�)(r+�t(�))
�t(�)(r+e�t(�))

�������

= 1
n
sup
�2�

�����

nX

t=1

�
log
�
�t(�)�e�t(�)
r+e�t(�)

+ 1
�
+Xt log

�
r

e�t(�)��t(�)
�t(�)(r+e�t(�))

+ 1

�������

� 1
n

nX

t=1

�
1
r
sup
�2�

����t (�)� e�t (�)
���+Xt sup

�2�

���e�t (�)� �t (�)
��� rcr
�

= 1
n

nX

t=1

�
1
r
at +

1
c
Xtat

� a:s:!
n!1

0:

�

Lemma 7.2 Under A0-A4,

i) E (l1;r (�0)) <1.
ii) E (l1;r (�0)) � E (l1;r (�)) for all � 2 �.
iii) E (l1;r (�)) = E (l1;r (�0))) � = �0.

Proof Under A1 the random variables log
�

r
r+�t(�)

�
and log

�
�t(�)
r+�t(�)

�
are bounded.

Hence, they admit �nite moments of all order. By the Jensen and Hölder inequalities together

with A3 it follows that

jE (l1;r (�0))j � E (jl1;r (�0)j) � E
����log

�
r

r+�t(�0)

����
�
+ E

����Xt log
�

�t(�0)
r+�t(�0)

����
�

� E
����log

�
r

r+�t(�0)

����
�
+
�
E
�
X�
t

��1=�
����E

�
log �t(�0)

r+�t(�0)

����
�

��1

� ��1
�

<1.

(7:1)

On the other hand, using again the inequality log (x) � x� 1, we have

E (l1;r (�)� l1;r (�0)) = E
�
r log

�
r+�t(�0)
r+�t(�)

�
+Xt log

�
�t(�)(r+�t(�0))
�t(�0)(r+�t(�))

��

� rE
��

r+�t(�0)
r+�t(�)

� 1
�
+Xt

�
�t(�)(r+�t(�0))
�t(�0)(r+�t(�))

� 1
��

= rE
�
�t(�0)��t(�)
r+�t(�)

�
+ E

�
r Xt
�t(�0)

�t(�)��t(�0)
r+�t(�)

�

= rE
�
�t(�0)��t(�)
r+�t(�)

+ �t(�)��t(�0)
r+�t(�)

�
= 0; (7:2)
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By (7:1) and (7:2) it follows thatE (l1;r (�)� l1;r (�0)) 2 [�1; 0] soE (l1;r (�)) < E (l1;r (�0))
for all � 6= �0. Finally, inequality (7:2) reduces to equality if and only if

rE
�
log
�
r+�t(�0)
r+�t(�)

�
+Xt log

�
�t(�)(r+�t(�0))
�t(�0)(r+�t(�))

��
= 0;

which holds if and only if �t (�) = �t (�0) and then, by the identi�ability assumption A4, if

and only if � = �0. �

Lemma 7.3 Under A0-A5, there exists for all � 6= �0 a neighborhood V (�) such that

lim sup
n!1

sup
��2V (�)

eLn;r (��) < lim sup
n!1

eLn;r (�0) a:s: (7:3)

Proof For all � 2 � and k 2 N� let Vk(�) be the open ball of center � and radius 1=k.
Since sup�2Vk(�)\� lt;r (�) is a measurable function of the terms of fXt; t 2 Zg, which is strictly
stationary and ergodic underA0, then

n
sup�2Vk(�)\� lt;r (�) ; t 2 Z

o
is also strictly stationary

and ergodic where by Lemma 7.2 E
�
sup�2Vk(�)\� lt;r (�)

�
2 [�1;+1[. Therefore, in view

of Lemma 7.1 and the ergodic theorem (Billingsley, 2008) it follows that

lim sup
n!1

sup
�2Vk(�)\�

eLn;r (�) = lim sup
n!1

sup
�2Vk(�)\�

Ln;r (�) � E
 

sup
�2Vk(�)\�

l1;r (�)

!
:

By the Beppo-Levi theorem E
�
sup�2Vk(�)\� l1;r (�)

�
converges while deceasing to E

�
l1;r
�
�
��

as k !1. Hence, (7:3) follows from Lemma 7.2, ii). �

In view of Lemmas 7.1-7.3, we have shown that there exists for all � 6= �0 a neighborhood
V
�
�
�
such that

lim sup
n!1

sup
�2Vk(�)\�

eLn;r (�) < lim sup
n!1

eLn;r (�0) = lim sup
n!1

Ln;r (�0) = E (l1;r (�0)) :

Thus from standard arguments the proof of Theorem 3.1 is completed while using assumption

A5 of compactness of �.
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7.2. Proof of Theorem 3.2

By A7 and Theorem 3.1 we know that b�r cannot be at the boundary of � for n su¢ciently
large. Hence, a Taylor expansion of

@Ln;r(b�r)
@�

at �0 yields

0 =
p
n
@eLn;r(b�r)

@�

=
p
n
@Ln;r(b�r)

@�
+
p
n
�
@eLn;r(�)
@�

� @Ln;r(�)

@�

�

=
p
n@Ln;r(�0)

@�
+
p
n@

2Ln;r(�
�)

@�@�0

�
b�r � �0

�
+
p
n
�
@eLn;r(�)
@�

� @Ln;r(�)

@�

�
; (7:4)

for a certain �� between b�r and �0. In view of (7:4), the proof of Theorem 3.2 is based on

the following three lemmas. Lemma 7.4 shows that the last term in (7:4) is a:s: negligible

as n ! 1. Lemma 7.5 establishes the convergence in law of the �rst term of (7:4) using a

martingale central limit theorem while Lemma 7.6 shows the convergence of the matrix in

the second term of (7:4).

Lemma 7.4 Under A0-A10
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Lemma 7.5 Under A8-A9,

p
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@�
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Proof It is clear that
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o
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By A8-A9 we have
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Thus Lemma 7.4 follows from the martingale central limit theorem (e.g. Billingsley, 2008).
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Lemma 7.6 Under A8-A10 ,
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Proof Let Vk(�0) (k 2 N�) be the open ball with center �0 and radius 1=k where k is
supposed large enough so that Vk(�0) is contained in V (�0) de�ned by A10. Assume that n

is large enough so that �� belongs to Vk(�0). By stationarity and ergodicity of

(
sup

�2Vk(�0)

���@
2lt;r(�)

@�i@�j
� E

�
@2lt;r(�0)

@�i@�j

����
)
;

we have

���@
2Ln;r(�

�)

@�i@�j
� Jr (i; j)

��� =
���@

2Ln;r(�
�)

@�i@�j
� E

�
@2Ln;r(�0)

@�i@�j

����

= 1
n

�����

nX

t=1

@2lt;r(�
�)

@�i@�j
� E

�
@2lt;r(�0)

@�i@�j

������

� 1
n
sup

�2Vk(�0)

�����

nX

t=1

@2lt;r(�)

@�i@�j
� E

�
@2lt;r(�0)

@�i@�j

������

� 1
n

nX

t=1

sup
�2Vk(�0)

���@
2lt;r(�)

@�i@�j
� E

�
@2lt;r(�0)

@�i@�j

����

a:s:!
n!1

E

 
sup

�2Vk(�0)

���@
2lt;r(�)

@�i@�j
� E

�
@2lt;r(�0)

@�i@�j

����
!
.

In view of A10, the Lebesgue dominated convergence theorem yields

lim
k!1
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which completes the proof of the lemma. �
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7.3. Proof of Theorem 3.3

i) Proof of (3.14a) It su¢ces to prove strong consistency of b. From (3:12) and (3:13) we
have

b � 0 = 1
n

nX

t=1

ut
b�2t

= 1
n

nX

t=1

ut
�2t
+ 1

n

nX
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�
1
b�2t
� 1

�2t

�
: (7:5)

By the ergodic theorem the �rst term in the right hand side of (7:5) satis�es the following

limiting result

1
n

nX
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ut
�2t

a:s:!
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E
�
ut
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�
= E

�
1
�2t
E (ut=Ft�1)

�
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So it remains to show that

1
n

nX

t=1

ut
b�2t

�
1
b�2t
� 1

�2t

�
= oa:s: (1) : (7:6)

Using a Taylor expansion of 1

�2t (
b�r)
around �0, we have

1
b�2t
� 1

�2t
= 1

�2t (
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� 1

�2t (�0)

= � 2
�3t (�

�)

@�t(�
�)

@�0

�
b�r � �0

�
;

where �� is between b�r and �0. Thus (7:6) follows from A1, A10, the strong consistency of

b�r and the ergodic theorem.
ii) Proof of (3.14b) Rewrite (7:5) as follows

p
n (b � 0) = 1p
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nX
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ut
�2t
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If we show that

1p
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�
1
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� 1

�2t

�
= op(1); (7:7)

then (3:14b) would follow from the martingale central limit theorem applied for the fFt; t 2 Zg-
martingale di¤erence

n
ut
�2t
; t 2 Z

o
. Now by a Taylor expansion of 1

�2t (
b�r)
around �0, the left-

hand side of (7:7) becomes

�2(b�r��0)
0
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and (7:7) follows from the assumptionsA1 andA10, the asymptotic normality of
p
n
�
b�r � �0

�
,

which implies that

b�r � �0 = n�1=2Op (1) ;

and the ergodic theorem.

iii) Proof of (3.14c) Result (3:14c) is an obvious consequence of the strong consistency

of b�r (cf. (3:4)) for all r > 0.
iv) Proof of (3.14d) From the consistency of br1 and the

p
n-consistency of b�r for all

r > 0 we have

p
n
�
b�br1 � �0

�
=

p
n
�
b�r0 � �0

�
+
p
n
�
b�br1 � b�r0

�

=
p
n
�
b�r0 � �0

�
+ op (1) ;

so the result follows from Theorem 3.2 while replacing r by r0 (cf. (3:6)) and using the fact

that, under (4:11), Ir0 = Jr0. �
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