
Munich Personal RePEc Archive

Recent changes in British wage

inequality: Evidence from firms and

occupations

Schaefer, Daniel and Singleton, Carl

University of Edinburgh

January 2017

Online at https://mpra.ub.uni-muenchen.de/76744/

MPRA Paper No. 76744, posted 11 Feb 2017 09:06 UTC



Recent changes in British wage inequality:

Evidence from firms and occupations*

Daniel Schäfer† Carl Singleton‡

Latest version: January 2017

Abstract

Using a dataset covering a large sample of employees and their mostly very large

employers, we study the dynamics of British wage inequality over the past two decades.

Contrary to other studies, we find little evidence that recent increases in inequality

have been driven by differences in the average wages paid by firms. Instead greater

dispersion within firms can account for the majority of changes to the wage distribution.

After controlling for the changing occupational content of employee wages, the role

of average firm residual differences is approximately zero; the modestly increasing

trend in between-firm wage inequality is explained by a combination of changes in

between-occupation inequality and the occupational specialisation of firms. It is possible

that previous studies, which assign some of the importance of changes in the between-firm

component to industry, have misrepresented a significant role for occupations. These

results are robust across measures of hourly, weekly and annual wages.
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1 Introduction

The long-term trend of rising wage inequality in Great Britain has been extensively

documented (Hills et al., 2010; Machin, 2011; Belfield et al., 2017). As in the US and several

other countries, the majority of this increase in Britain occurred in the 1980s, but stagnant

median real wages in the last two decades have re-focused attention on where the proceeds

of growth are ending up. Although well studied, some ambiguity remains over what is the

predominant driver of changes in the wage distributions of labour markets such as Britain’s.

One suggested explanation points towards pay setting practices and the increasingly generous

remuneration of executives and senior managers (Piketty, 2013). Others have identified rising

skill and occupational wage premiums, potentially driven by skill-biased technological change

(Katz &Murphy, 1992; Machin & van Reenen, 1998). Further explanations highlight changing

institutions, with major examples in Britain being the decline in unionisation (Card et al.,

2004) and the introduction of aminimumwage in 1999 (Machin, 2011). One way to potentially

disentangle these explanations is to ask how much have differences between firms, relative to

changes within firms, driven recent inequality trends. We attempt to answer this question for

the last two decades in Great Britain. The answer matters for at least two major reasons. First,

if inequality is rising within firms, it has implications for perceptions of fairness and worker

morale, and their theoretical links to productivity growth (Akerlof & Yellen, 1990). Second, it

potentially has political connotations, with regards to how salient overall inequality trends are

to individual workers. We hope that the results here can help direct future efforts to identify

the specific determinants of long-run wage inequality changes, both in Britain and elsewhere.

This paper relates closely to a large and recent literature studying the importance of the

firm in determining within country wage inequality trends and patterns. The majority of

these studies have found that trends in the overall variance of wages are strongly driven by

between-firm (or establishment) differences: by the variance of average firmwages, as opposed

to the increasing or decreasing dispersion within firms.1 Specifically for Britain, Faggio et al.

(2010) find that rising wage inequality in the fifteen years to 1999 is almost entirely accounted

1See amongst others for the US: Davis & Haltiwanger (1991); Dunne et al. (2004); Barth et al. (2016); Song et al.
(2016). For Sweden: Nordström Skans et al. (2009); Akerman et al. (2013). For West Germany: Card et al. (2013).
For Brazil: Alvarez et al. (2016); Benguria (2015); Helpman et al. (2017). Also, see the recent survey by Card et al.
(2016).

1



for by an estimate of between-firm variance. Prominently, Song et al. (2016) note that the

substantial increase in wage variance between US firms has accompanied greater assortative

matching of workers and firms. They suggest that the increasing outsourcing of tasks and

occupational concentration of firms could account for some part of these results. However,

due to a lack of occupational data this has been largely untested.2

The main contribution of this paper is to extend the results of Faggio et al. (2010), using

the same survey data of wages and hours, but by instead matching a representative sample of

employees to the majority of large British firms, for the more recent period between 1996 and

2015. This provides us with a more robust sample of jobs, as opposed to using some separate

source to estimate firm average wages; i.e. Faggio et al. (2010) lacked data on wages within

firms. The main limitation of our data is that on average we only observe one percent of the

employee wages in any firm, unlike the near census data of other recent studies. Nonetheless

the data also offer some advantages. They are generally considered to be accurate records from

firms’ payrolls of annual and weekly earnings, and their constituent components, including

hours worked.3 The dataset contains a detailed classification of occupations, which will

prove to be important here, not least given the significant role of the polarisation of work

in recent British inequality trends (Goos & Manning, 2007), and the increasing occupational

specialisation of firms (Cortes & Salvatori, 2016).

To preview our main results, we find no compelling evidence that overall inequality trends

over the past two decades have been mostly driven by changes in firm level differences. This

result is consistent across hourly, weekly and annual wage rates. In particular, controls

for the occupational content of wages, over time, make firm level differences redundant

in accounting for the dynamics of inequality throughout the wage distribution. Some

combination of changes to between-occupation inequality and the sorting of occupations

across firms must therefore account for any observable role for between-firm differences. This

2A notable exception is Weber-Handwerker & Spletzer (2016), who do make some progress on this for the US,
finding a small part of wage inequality growth between establishments can be explained by the changing extent of
occupational concentration. For West Germany, Card et al. (2013) find that intrinsically high wage workers have
become increasingly more likely to work for high wage firms, and vice versa for low wages. This effect can explain
the vast majority of estimated increasing between-occupation inequality in recent decades.

3See for example, Nickell & Quintini (2003); Devereux & Hart (2006); Blundell et al. (2014); Elsby et al. (2016),
who due to this perceived accuracy, have used the survey extensively to document the extent of real and nominal
wage rigidity over the business cycle.
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not only highlights that the drivers of recent wage inequality changes in Britain could be

different, but also that the estimated importance of between-firm inequality found elsewhere

could similarly disguise an important role for the occupational transformation of firms and

labour markets.

The remainder of the paper proceeds as follows: Section 2 describes the data, Section

3 presents the results from decompositions of overall and residual wage variance over the

last two decades in Britain, Section 4 describes the dynamics of inequality throughout the

wage distribution, and Section 5 concludes. Further information concerning the data, sample

construction, mathematical details and additional results are presented in the Appendix.

2 Data

The data we use are from the New Earnings Survey Panel Dataset (NESPD), 1975-2015,

which is distributed under secure license access by the UK Data Service, with the permission

of the data owners, the Office for National Statistics (ONS). It is a continuing sample of

approximately one percent of all Pay As You Earn (PAYE) taxpayers in Britain, with the sample

selected using the same last two digits of worker National Insurance numbers each year,

covering up to 180 thousand employee jobs per year.4 A small number of jobs not registered

for PAYE, which tend to be of very low pay, are not sampled. Employees who are not paid in

the reference period are also excluded. These are both potential sources of composition bias

in measuring inequality changes, which could especially vary over the economic cycle. But

it is certainly an advantage that the data is a long-running panel, since we can expect many

repeated observations of employer-employee matches.5 Data is collected via a questionnaire

issued to employers, who are required by law to respond, and it is intended to be completed

with reference to payrolls. They return the gross weekly earnings and hours worked of

employees, and their constituent components, as well as an employee’s occupation and other

information potentially related to remuneration, such as pensions and collective agreements.

4National Insurance numbers are issued to all individuals in the UK who have the right to work. For UK
nationals these are typically issued when turning sixteen.

5Though we cannot exploit this feature fully since in the current publicly available form of the dataset
employers cannot be identified completely or robustly over time, but only within year.
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The reference period for the survey is always a week in April. Gross annual earnings for the

preceding year to April have been recorded since 1999.

It is a significant advantage of these data that we can consider the robustness of results

across different frequencies of pay. For example, the compositional differences in two jobs

samples from the NESPD which contain either non-missing observations of weekly or annual

wages could be large, given that for the latter individuals must have been with the same

employer for at least twelve months. From 1996 information on employer size and industry

classification are added by the ONS from the Inter-Departmental Business Register (IDBR), an

administrative census of all UK registered companies.6 Only very small businesses consisting

of the self-employed are not found on the IDBR. The employer reporting unit observed in

the NESPD is generally the enterprise or a local unit thereof. For the vast majority of the

data used in the analysis that follows the ‘firm’ is an enterprise.7 For a sub-period 2004-15,

the enterprise of all jobs is identified, including for those whose data were returned at the

local unit level, and we use this as a robustness check of whether our less precise definition

of a firm could significantly affect any results.8 This earnings survey is generally considered

to be unusually accurate, at least as compared with household based surveys. The NESPD

has undergone several minor methodological changes over its lifetime, but the principal aim

of collecting detailed and precise information on hours, pay and occupations has remained

consistent. In Appendix A we briefly summarise the relevant changes, as well as providing

greater detail than what follows on how we construct our analysis sub-samples.

2.1 Creating a large firm sample of the NESPD

For all sub-samples of the NESPDwe include only those aged 16-64 and exclude jobs where

pay in the reference week has been affected by absence or leave. For weekly wages and hours

worked we use reported values excluding any overtime. We also drop a tiny number of jobs

6This register is compiled by Her Majesty’s Revenue and Customs and contains all firms whose turnover is
above the Value Added Tax threshold and/or has at least one member of staff registered for income tax collection.

7We are comfortable that the enterprise is a typical definition of the firm, as defined for UK government
administrative purposes. IDBR definition: “An Enterprise can be defined as the smallest combination of legal
units (generally based on VAT and/or PAYE records) that is an organisational unit producing goods or services,
which benefits from a certain degree of autonomy in decision-making, especially for the allocation of its current
resources. An enterprise carries out one or more activities at one or more locations. An enterprise may be a sole
legal unit.”

8We can do this using the annual cross-section datasets of the Annual Survey of Hours and Earnings (see ONS),
from which the NESPD in later periods is derived by the ONS.
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with records of over a hundred hours worked in the reference week. Hourly rates of pay, as

in the published ONS summary descriptives, are inferred from gross weekly pay and basic, or

usual, hours worked. From 1999 we drop less than half a percent of all observations in each

year whose computed hourly rate of pay is less than eighty percent of the applicable National

Minimum Wage. When considering annual earnings records we use only observations where

the employee has been with the firm for at least a year. All monetary values are deflated to

1997 prices using the ONS’ Retail Price Index from April, to match the reference period of

the NESPD.9 To analyse and estimate a within-firm component of wage dispersion we have to

match sufficient numbers of employees to each observed firm. Hence we construct a large firm

sample of the NESPD. We consider only jobs in each year at enterprises with 250 employees or

more, according to the IDBR.10 In the baseline sample we consider only full-time jobs, defined

as working over thirty hours in a week before overtime, and in each year then retain only firms

for which there are ten or more job observations with non-missing values of weekly pay and

basic hours worked. We construct several other NESPD sub-samples, which are discussed in

the results, where we vary the minimum number of job observations per firm and consider not

only full-time workers.11

Throughout the following analysis and results one can generally replace any reference

to ‘firms’ with ‘large firms,’ or even ‘very large firms.’ This is clear when we compare the

enterprise size distributions in 2013 of the UK population and the firms in our baseline NESPD

sub-sample (Table A1). Over seventy percent of UK enterprises with over 250 employees have

less than a thousand employees. But in our baseline sample, such firms are only five percent

of the total number. On the other hand, firms with more than two thousand employees

are relatively over represented; the sample includes a similar number of firms with over

five thousand employees as there are such UK enterprises.12 Thus, we cannot represent the

9Accessed from the ONS website 25/05/2016.
10The cut-off between the definition of Small and Medium Enterprises (SMEs) and Large firms in the UK is

typically at 250 employees.
11The restriction of there being at least ten job observations for any firm included in the NESPD sub-sample

imposes a de facto minimum size of more than a thousand employees. For the analysis of annual wages the
sub-sample contains only firms who have at least ten full-time job observations which have non-missing values
for annual pay, and which are at least a year old.
12Part of the non-sampling discrepancy here is due to the NESPD being British as opposed to UK. In 2013 ONS

data suggests there were thirty enterprises in Northern Ireland with over a thousand employees. Using actual
enterprise identifiers from the ASHE to define firms in 2013, and otherwise the same criteria to construct the
baseline large firm sample, gives us 598 enterprises with over five thousand employees.
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whole firm size distribution of Britain, we can nonetheless claim to sample employees from

practically all very large enterprises. As such we are able to study a significant fraction of

jobs and wages; for example, in 2013 the firms in our sample represent approximately forty

percent of employee jobs.13

Given we are studying the dynamics of wage inequality, we also briefly document how

the baseline sample’s firm size distribution has evolved over time, between 1997 and 2007 for

example (Table A2). The share of firms with more than two thousand employees increased

by over thirteen percentage points in this period, with the largest increase amongst those

with five thousand or more. The share of employee observations in very large firms similarly

increased. Despite this, the true distribution of these firms was relatively unchanged over the

period, according to their administrative IDBR enterprise level of employment. We believe

this reflects a shift since 2004 in the employer reporting unit of the earnings survey towards

more commonly being the enterprise, as opposed to the local unit.14 To give further insight

we describe the sample’s changing industrial make-up over the same ten years (Figure C1).15

The share of firms associated with the manufacturing sector decreases notably, whilst real

estate and business services firms are increasingly represented, reflecting well-known recent

patterns of structural change in Britain. We observe similar trends if we consider the

represented labour shares of sectors, though in this case there is also a sizeable decline in

the share of employees in public administration and defence.

An advantage of our data over those used in similar studies is the inclusion of

employer descriptions of jobs and their assignment to a detailed occupational classification.16

Comparing the incidence of major occupation groups in the sample over time, some

occupations are less prevalent in 2007 than in 1997, with a particularly large decrease for

professionals (Table A3). At the same time the share of elementary occupations has increased

13According to the ONS Labour Market Statistics Workforce Jobs series, there were approximately 27.5 million
employee jobs in Great Britain in 2013.
14This coincides with the replacement of the NESPD with the ASHE. Despite studying the documentation we

cannot find any noteworthy reason for such a sizeable shift.
15Throughout the paper industry sectors refers to the Standard Industrial Classification (SIC) 2003, unless stated

otherwise. See Appendix A for details on where and how SIC 2007 codes in the NESPD have been cross-walked to
SIC 2003.
16Throughout, occupations refer to the International Standard Classification of Occupations 1988 (ISCO88),

unless stated otherwise. See Appendix A for details on how ONS Standard Occupation Classifications (SOC) were
cross-walked.
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by almost the same amount. This sample of large British firms, and a further sample of their

employees, would appear to have some different characteristics over time. Partially this could

reflect well-known long-run trends of structural change, but could also be a feature of how we

construct the sample and focus on only the part of the economy populated by large firms in

any period.

2.2 Describing wages in large firms and the NESPD

Since economy-wide trends in wages have been extensively documented elsewhere using

the NESPD (e.g. Machin, 2011), here we only focus on whether recent patterns amongst jobs

in large firms have been notably different. Figure 1 compares selected percentiles of real

log wages for full-time employees between our baseline sub-sample and the whole NESPD.

Figure C2 similarly compares mean values. All measures of real wages were relatively stagnant

during the 2000s. They also experienced a substantial decline since 2008, especially as

compared with other downturns. The variance of log weekly wages increased for the whole

NESPD persistently from 1975 to 1995 (Figures 1a). The variance of wages in our baseline

sample is somewhat lower than in the whole NESPD. This is due to a tighter distribution of

wages above the median amongst those working in larger firms. Generally though the pattern

of wages across the large firms distribution is similar to the whole NESPD: for example, both

show a steep increase in hourly and weekly wages for top earners in the early 2000s, as well as

a decline in variance at the onset of the Great Recession, driven by relatively higher earnings

at the bottom. Figure 2a further demonstrates these changes by plotting wages relative to

1996 for selected percentiles of the large firm sample. The increase in the variance of log

annual wages, which include performance related payments, is substantial between 1999 and

2007 (see also Figure 3b). As shown in Figures 1b and 2b, this is explained by real wages

falling at the lower percentiles and only marginally rising at the median, whilst the ninetieth

percentile increased consistently through this period. Much of the increased variance during

the preceding decade was reversed in 2008 by a relatively greater increase in log wages at the

bottom, a compositional effect of the Great Recession. These patterns are similar when we

consider all employees and not only those working full-time (Figures C3-C5).
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FIGURE 1: Percentiles of real log wages in large firms, full-time employees only, and
comparison with the whole NESPD sample, 1975-2015

(a) Weekly (b) Annual

Notes.- author calculations using the NESPD, age 16-64 and full-time employees only. ‘Weekly’ exclude overtime.
‘Annual’ are for employees with the firm at least one year. See the text for further details of sample construction.
Shaded areas represent official UK recessions. Dashed lines without markers are the series for a large firm
sub-sample of the NESPD.

FIGURE 2: Percentiles of real log wages in large firms, full-time employees only: differences
relative to 1996/9

(a) Weekly (b) Annual

Notes.- see Figure 1.

3 Wage inequality trends: the role of between-firm variance

To account for how much of the variance in employee wages is explained by differences

in the average wages paid by firms, we use the well-known decomposition of Davis &

Haltiwanger (1991). This approach is used widely in the related literature. The total variance

of the natural logarithm of wages across a set firms and their employees Ve can be decomposed

into a within-firm component Vwf and the variance of average log wages between firms Vbf .

From our samples we estimate this decomposition as follows. Denoting the total number of

firms in a given year by J , and the number of employees we observe in firm j = 1, ..., J by Nj ,
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such that the total sample number of employees is N =
∑J

j=1Nj , then we can write

1

N

J∑

j=1

Nj∑

i=1

(wij − w̄)
2

︸                   ︷︷                   ︸

Overall - Ve

=
1

N

J∑

j=1

Nj∑

i=1

(wij − w̄j )
2

︸                    ︷︷                    ︸

Within-firm - Vwf

+

J∑

j=1

Nj

N
(w̄j − w̄)

2

︸              ︷︷              ︸

Between-firm - Vbf

, (1)

whereby wij , w̄, and w̄j denote respectively the log wage of employee i in firm j , the sample

mean of log wages, and the sample mean of log wages within firm j .17 The term capturing

the between-firm component of wage dispersion weights by employment share the observed

distance of a firm’s estimated average wage to the overall average wage, such that larger firms

have a potentially greater influence on wage dispersion than smaller firms.18

Table 1 summarises the decomposition results discussed throughout this section. Since

the data are not top-coded, we exclude the top one percent of earners from all calculations

in this section. Throughout the remainder of the paper we mostly focus on weekly wages, as

these are recorded in the data independently of an employer’s response for the hours worked

of their employees. Further, this sample includes jobs which are less than a year old. These

jobs would be excluded from an analysis of annual wages and their importance within the

true wage distribution could vary over time. Figure 3 plots the components of (1) for each

year between 1996 and 2015 for full-time employees in our sample. Total wage dispersion

is increasing when measured over the entire sample period (column (9), Table 1). However

there is an observable difference pre and post the 2008 financial crisis. The latter period

experienced falling inequality, mostly accounted for by the decreasing variance of wages

within firms, whilst at the same time between-firm inequality continued to increase. Prior to

2008, the increase in within-firm inequality explained the majority of the overall trend (over

80 percent: column (7), Table 1). The overall variance of log weekly wages mirrors closely the

17Sampling errors in the values of firm average wages (or hours) will positively bias between-firm variance
estimates and their shares of the overall variance. We do not attempt to correct this, and instead rely on our
analysis being focused on trends, since the size of this bias is unlikely to vary significantly over the period studied.
The literature in this area, such as Card et al. (2013), also acknowledges the bias from sampling error, and similarly
tends to ignore it, by arguing that trends are unlikely to be affected. Here we are especially reliant on any changes
to the NESPD/ASHE sample frame or method not affecting the level of bias over time. We are confident that this
is qualitatively the case, given our knowledge of the timing of any such changes, as discussed in Appendix A.
18Within the data there are two potential choices for how to weight firms: by their share of employee observations

in the sample, or their relative size as indicated by their IDBR recorded number of employees. Our preference
throughout the paper is the former, but we find it has no qualitative effect on results throughout. We demonstrate
this for an example in Figure C6.

9



pattern of the within-firm component, as can be seen in Figure 3a.19 It is clear that the pre

2008 increase and the post 2008 decrease in inequality are driven mostly by the within-firm

component in Britain, which contrasts starkly with previous findings for other countries.

A similar conclusion holds for annual wages in Figure 3b, which exhibit more substantial

inequality changes over the period, most likely explained by the inclusion of overtime and

bonus payments (see also Figure C9).20 Just over forty percent of the long-run increase in

annual wage inequality is accounted for by between-firm variation, compared, for example,

with sixty percent found by Song et al. (2016) for jobs in large US firms. A decrease in wage

dispersion during the financial crisis is also more pronounced in annual wages, and accounted

for mostly within firms, perhaps reflecting again the presence of performance related and

bonus pay.

FIGURE 3: Within and between-firm components of the variance in log employee wages,
1996-2015

(a) Weekly (b) Annual

Notes.- author calculations using the NESPD, age 16-64 and full-time employees only. ‘Weekly’ exclude overtime.
‘Annual’ wages are for employees with the firm at least one year. The data is for all large firms in the NESPD who
have at least ten full-time employee wage observations in that year. The top one percent of wage values in each
year are excluded from calculations here. Shaded areas represent official UK recessions. Lines without markers are
linear trends.

It is apparent that over the last two decades any short or medium-term inequality changes

are not driven by the between-firm component. Overall wage inequality exhibits stronger

co-movement with its within-firm component than the between, implying that the latter

is less important in driving any overall changes. This result also holds when we consider

19The two series have a correlation coefficient of 0.85, compared to 0.7 for the overall and between-firm
component.
20Barth et al. (2016) show that conditioning the sample on “stayers”, as we have done here, relatively dampens

the measured change in US annual wage inequality. However, the relevance of that result here is limited since
we are instead comparing across different frequencies of pay and possibly quite different sample compositions of
workers.
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three sub-samples, each consisting of approximately a third of the employee observations:

the public sector, SIC 2003 sectors G-H (wholesale, retail, hotels restaurants etc.) and the

remainder of the private sector (Figure C7). Given we consider only full-time employees at

this point, unsurprisingly the results are qualitatively unchanged for hourly wage inequality

(see Figure C8). Where we can identify firms exactly at the enterprise level, using the ASHE

datasets for 2004-2015, results are also not qualitatively different (Figure C10).

It is a substantial advantage of our data that we can confidently identify the determinants

of actual wage inequality as opposed to earnings, by being able to further decompose weekly

wages into components which account for the variance in log hourly wages and hours worked,

and their covariance:

Vwf = Vw
wf +V h

wf +2Covwf (w,h), (2)

Vbf = Vw
bf +V h

bf +2Covbf (w,h) (3)

(see Appendix B.1 for exact definitions and derivations of these terms). The covariance terms

are potentially significant, since both individual and firm average wages and hours are known

to be strongly correlated.21

Figure 4 plots the decomposition described by (2)-(3) for weekly wages. Unlike other

related studies, we can show explicitly that the variation in hours worked does not affect the

results for full-time employees. Both between and within-firm hours variance components

together account for less than five percent of weekly wage variance throughout the period

(column (2), Table 1). This provides some support then to results in other studies which cannot

directly observe hours, but restrict their attention to full-time employees, such as in Card et al.

(2013). When we contrast this with a decomposition of weekly wage variance which includes

those working part-time, changes in the variance of hours worked within firms most closely

determine overall inequality changes; in the last two decades firms have been increasingly

using of a mix of part and full-time employees. However, the sharp increase in wage variance

21This advantage of our data is emphasised in a recent study by Belfield et al. (2017). Using potentially less
accurate household survey data for all employees, they find that a sixth of the increase in male log weekly earnings
variance over the past two decades in Britain is accounted for by greater hours variation. The increased tendency
of low wage work to accompany low hours accounts for a further thirty percent. They also find that the entire fall
in female wage inequality is explained by these factors, and not by any change in wage rate variance.
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amongst all employees in 2004-05 observed here coincides with a methodological shift in the

survey, whereby more low-paid and part-time jobs without PAYE numbers were sampled. We

discuss this further in the Appendix, but it is a good reason why we mostly focus on only

full-time workers in the analysis here. In terms of levels, hours components account for as

much as forty percent of overall wage inequality. The covariance in hours and wages, both

within and between firms, is also a significant component, together accounting for as much as

twenty percent, reflecting the tendency of part-time jobs to be more commonly low-wage.

FIGURE 4: Within and between-firm, hourly rate and usual hours components of the variance
in log weekly employee wages, 1996-2015

(a) Full-time

(b) All employees

Notes.- author calculations using the NESPD, age 16-64 only. Wages and hours exclude overtime. The top one
percent of wage values in each year are excluded from calculations here. The data is for all large firms in the
NESPD who have at least ten (full-time) employee observations in that year. The ‘Covar.’ series represent twice
sample covariance terms. The “Overall” series, in both left and right panels, is the total sample variance. As such,
all other series across both panels sum within year to this total variance. See the text for further details of how the
sample is constructed. Shaded areas represent official UK recessions. Lines without markers are linear trends.
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TABLE 1: Summary of decomposition results for the variance in log employee wages

1996 2005 2015 Change 1996-2005 Change 1996-2015
Level Share Level Share Level Share Level Share Level Share
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
F
u
ll
-t
im

e
em

p
lo
y
ee
s

Raw weekly wages: 0.191 0.219 0.214 0.028 0.023
Between: total 0.058 0.305 0.062 0.284 0.072 0.339 0.004 0.014
Hourly wages bf 0.074 0.387 0.072 0.331 0.083 0.389 -0.001 -0.056 0.009 0.002
Usual hours bf 0.005 0.029 0.004 0.016 0.004 0.016 -0.002 -0.012 -0.002 -0.012
Covariance bf -0.021 -0.110 -0.014 -0.063 -0.014 -0.067 0.007 0.047 0.007 0.043
Within: total 0.133 0.695 0.157 0.716 0.141 0.661 0.024 0.021 0.009 -0.034

Hourly wages wf 0.138 0.723 0.161 0.734 0.139 0.65 0.023 0.011 0.001 -0.073
Usual hours wf 0.003 0.016 0.006 0.027 0.006 0.028 0.003 0.011 0.003 0.012
Covariance wf -0.008 -0.044 -0.01 -0.045 -0.003 -0.016 -0.001 -0.001 0.005 0.027

Resid. weekly wages: 0.088 0.101 0.013
Between 0.022 0.246 0.020 0.198 -0.002
Within 0.066 0.754 0.081 0.802 0.014 0.049

Raw annual earnings: 0.279 0.393 0.412 0.115 0.133
Between 0.078 0.281 0.010 0.254 0.135 0.328 0.022 0.057
Within 0.201 0.719 0.293 0.746 0.277 0.672 0.093 0.027 0.076 -0.047

Resid. annual earnings: 0.214 0.317 0.412 0.103 0.198
Between 0.037 0.174 0.049 0.154 0.135 0.328 0.012 0.098
Within 0.177 0.826 0.268 0.846 0.277 0.672 0.092 0.020 0.100 -0.154

A
ll
em

p
lo
y
ee
s

Raw weekly wages: 0.574 0.629 0.601 0.055 0.027
Between: total 0.204 0.356 0.204 0.325 0.218 0.363 0.000 0.014
Hourly wages bf 0.092 0.160 0.090 0.143 0.099 0.165 -0.002 -0.018 0.007 0.005
Usual hours bf 0.051 0.090 0.050 0.080 0.049 0.082 -0.001 -0.009 -0.002 -0.008
Covariance bf 0.061 0.106 0.064 0.102 0.07 0.116 0.003 -0.004 0.009 0.010
Within: total 0.370 0.644 0.424 0.675 0.383 0.637 0.055 0.031 0.013 -0.007

Hourly wages wf 0.169 0.295 0.171 0.272 0.139 0.231 0.002 -0.023 -0.031 -0.064
Usual hours wf 0.133 0.232 0.199 0.316 0.188 0.312 0.066 0.085 0.055 0.081
Covariance wf 0.068 0.118 0.055 0.087 0.056 0.094 -0.013 -0.03 -0.011 -0.024

Notes.- author calculations using the NESPD. See text for further description of the data sample andmethods. bf andwf refer to the between and within-firm
components of the overall variance. Relevant rows may not sum exactly due to rounding.
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3.1 Residual wage inequality

In Section 3 we described how the baseline sample has changed over time in terms of firm

size, and the industry sectors and occupations represented. Further, we cannot be certain that

our results are not affected by changes in how much some characteristics of jobs are rewarded:

for example, the recent rise in the London wage premium, which could potentially manifest

as greater between-firm inequality.22 To account for this, we regress log wages in each year

of our sub-samples of the NESPD on sets of employee and employer characteristics, and then

describe inequality in the resulting residuals. In each wages equation we include a minimum

set of controls for sex, age and its square, and the region of employment. We also consider

controls for industry sectors and occupations at varying levels of detail, as well as the IDBR

enterprise size of the firm.23 All remaining heterogeneity in wages, originating from employee,

firm and employee-firm specific premiums, is left in the error term.

Figure 5 compares the estimated residual log weekly and annual wage variance with

the equivalent overall non-residual variance, using alternative specifications of the wages

regression described above. For both measures of wages, the patterns over time appear to

be mostly unaffected by the inclusion of controls for regions, age groups, gender and industry

sectors. This implies that any dynamic changes in the overall composition of our baseline

sample of the NESPD and/or wage premiums for observable characteristics are insignificant.

In other words, the changes in actual British wage inequality over this period are mostly

residual changes, occurring within regions, age groups, gender and industry sectors. Replacing

the controls for industries with occupations however does lead to less pronounced inequality

dynamics in the estimated residuals. Therefore, changes in between-occupation inequality and

the sorting of workers across occupations must be significant factors in the last two decades.

The level of weekly wage variance is reduced by approximately a half with controls for sex,

22For example, ONS published results from the ASHE for the nominal median weekly pay of full-time employees
shows an increase between 1997 and 2007 of forty-five percent in London, compared with thirty-five percent in
the North East. Another notable trend in British wage premiums is the closing of the Gender Pay Gap over that
time period.
23We do not have information on years of education, or some other explicit proxy for levels of human capital. The

only way we can mitigate the resulting concern, that this missing information would be correlated with occupation
controls, is by considering the robustness of any results whilst varying the detail of the occupational classification
used.

14



age, region and occupation groups.24 This fraction does not increase substantially when we

consider a more detailed classification of occupation groups or add industry controls. Thus,

these broad occupation groups not only explain a large portion of the wage variance, but also

the inequality of residual wages is not greatly affected by conditioning on a more detailed

classification of jobs.

FIGURE 5: Variance of residual log employee wages, 1996-2015

(a) Weekly (b) Annual

Notes.- author calculations using the NESPD, age 16-64 and full-time employees only. ‘Weekly’ exclude overtime.
‘Annual’ are for employees with the firm at least one year. The top one percent of wage values in each year are
excluded from calculations here. The data is for all firms in the NESPD who have at least ten full-time employee
observations. “Overall” gives the non-residual variance. All residual log wages are calculated using OLS with
controls for sex, age, age squared and major regions. Also presented here are results with controls in addition for
SIC 2003 2 digit, ISCO sub-major groups, ISCO minor groups, & SIC 2003 2 digit with ISCO sub-major groups.
Shaded areas represent official UK recessions. Lines without markers are linear trends.

We can also account for the role of between-firm differences in residual wage inequality

changes. Figure 6 shows that by conditioning on industry, occupation or both, the share

of residual wage variance accounted for by the within-firm component rises substantially.

Unsurprisingly, a large part of the difference in average wages across firms is accounted

for by their industries and the types of workers they employ. For residual weekly wages

especially, with controls for occupations the within-firm share increases over time relative

to the equivalent measure for actual wages. More importantly for the discussion here, there is

no suggestion that the between firm component is driving the overall pattern of residual wage

inequality.

24Although the total number of sub-major occupation groups controlled for in the sample is twenty-nine, in
practice, nine of the groups constitute less than two percent of observations across all years.
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FIGURE 6: Share of within-firm component in the variance of residual log employee wages,
1996-2015

(a) Weekly (b) Annual

Notes.- see Figure 5.

4 Inequality changes throughout the wage distribution

In analysing the dynamics and components of an aggregate measure of wage inequality we

could miss a more complex evolution of the cross-sectional wage distribution over time. To

determine the role of firms in changes across and within the distribution of wages we employ

a graphical method of analysis popularised by Juhn et al. (1993), and subsequently adapted

by Song et al. (2016) and Benguria (2015) amongst others. Simply note that we can re-write

log wages as follows,

wij
︸︷︷︸

Employees

= w̄j
︸︷︷︸

Firms

+
[

wij − w̄j

]

︸     ︷︷     ︸

Employee/firm

. (4)

We compute estimates of the averages of each term in (4) within each percentile bin of the

employee wage distribution in every year. By considering the resulting differences across

percentiles and between years, we can then account for the role of firm average wages, as

opposed to the relative difference between employees’ wages and their firms’ averages, in

driving wage inequality changes.

Figure 7 represents this decomposition for the change in real log weekly wages between

1997 and 2007, using the baseline sub-sample of full-time employees. The relatively smooth

“Employees” series plots the change in the average log wage of workers in each percentile

between the two years. To avoid confusion, these are unlikely to be the same individuals; this

is a comparison of annual cross-sections. Each percentile is decomposed using around four to

five hundred job observations in each year. A positive slope across percentiles indicates that
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FIGURE 7: Change 1997-2007 in the average log weekly wage by percentile of employees and
the contribution from firms

Notes.- author calculations using NESPD, age 16-64, full-time employees only. Weekly exclude overtime. The data
is for all firms in the NESPD who have at least ten full-time employee observations. The “Employees” values are
computed by taking the average log real wages of employees within each percentile, increasingly ordered by the
level of wages in both years, and taking the difference across years. The “Firms” values are computed by taking
the average across workers, in each percentile, of the average log wages of the firms they work for, in each year,
and then taking the difference across years. The “Employees/Firms” values are the residual of these other values:
equivalently, the average across workers, in each percentile, of the log difference in employee wages from their
firms’ avearage value, in each year, and taking the difference across years.

in some portion of the wage distribution inequality has increased. For example, wages at the

median increased by 0.05 log points over this period, but by 0.1 points at the seventy-fifth

percentile, and 0.2 points at the ninety-fifth. Representing the evolution of wage inequality

in this way shows that relatively small changes in the time series of overall wage variance

can bely starker inequality dynamics. For example, here we can see that inequality has fallen

amongst the very lowest earners, undoubtedly in no small part due to the introduction of

the National Minimum Wage in 1999. By construction, the average level of the “Firms”

components across percentiles is the same as that for “Employees”, and the “Employee/firm”

component is centred about zero. For the graphical analysis it is the slopes of these series

across the percentiles which concern us.

The firms component contributes somewhat to the rise in wage inequality at the top of

the wage distribution, but the employee/firm component also contributes, increasing across

the percentiles from the twentieth onwards. This is consistent with results for the US in Song

et al. (2016), that amongst large firms the between-firm component appears to not be wholly

driving wage dynamics. However, in Great Britain for this period, for smaller firms than what
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are considered large in Song et al. (2016), the firms component is weaker. Before progressing

further, we also represent the change in inequality since the Great Recession, for 2008-2015,

in the same way (Figure C11). We can demonstrate here that our results are unaffected if

to define firms we instead use the administrative definition of an enterprise from the ASHE

datasets. Real wages decreased across the whole distribution since the financial crisis, but

inequality also fell. However, there is no suggestion in the data that this can be accounted for

by changes in the differences in average wages between firms.

4.1 Residual wage percentiles: the role of occupations

As we have shown above, a substantial fraction of wage variance unsurprisingly is

accounted for by some simple employer and employee characteristics. We also showed that

accounting for worker heterogeneity and changing wage premiums reduces the amount of

inequality which can be attributed to between-firm differences. In Figure 8 we consider the

same graphical analysis as above, but using the residual weekly wages of full-time employees.

For brevity, we ignore the equivalent analysis for predicted wages since any changes in

inequality they account for are much smaller in magnitude.25

We present results here using several variants of the wage regression. Including only

controls for sex, age and region of work leaves the pattern of wage inequality changes

relatively unaffected, when compared with Figure 7, with wages at the top still having moved

substantially away from the median, but with little change below the median. The within

and between-firm series remain noisy across the percentiles, but there is still no sense that

average firm wages explain the majority of the relatively greater rise in wage premiums at the

top. After adding industry controls, this becomes even clearer, and the firms contribution

more or less disappears. This is somewhat consistent with the variance decomposition of

US establishment level average earnings carried out by Barth et al. (2016), who find that

up to a half of its increase in the three decades to 2007 can be accounted for by controls

for industry specific wages. If we instead control for occupational wage premiums, the

pattern of employee wage changes across the percentiles noticeably alters. There is then

evidence of rising inequality across the distribution, with the slope becoming steeper from

25See again Figure 5, or for the US equivalent result which corroborates this see for examples Juhn et al. (1993)
& Barth et al. (2016).
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FIGURE 8: Change 1997-2007 in the average residual log weekly wage by percentile of
employees and the contribution from firms

(a) Sex, age, region (only) (b) Ind. subsection

(c) Occ. sub-major (d) Occ. minor

(e) Ind. subsection & occ. sub-major (f) Ind. subsection, occ. sub-major & firm size

Notes.- author calculations using NESPD, age 16-64, full-time employees only. Weekly exclude overtime. The data
is for all firms in the NESPD who have at least ten full-time employee observations. All residual log wages are
estimated using OLS with controls, in addition to those stated, for sex, age, age squared, and major regions. See
notes for Figure 7 or the text for a description of how series are calculated and interpretation.

the eightieth percentile upwards. Firm average residual wages did not account for these

dynamics: neither for rises below the eightieth percentile nor the greater increase in the

highest employee residual wages. This result becomes even clearer when we consider more

detailed classifications of jobs, and adding controls for firm size makes no difference. Once we

condition on the occupational content of wages, the firm specific component becomes almost
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irrelevant in accounting for residual wage inequality dynamics. Any change in wage inequality

across large firms is due to a combination of changes in between-occupation inequality and

the concentration of high or low wage occupations within firms. Further, given that the main

result here does not appear to depend on controls for industry, it is possible that previous

results in other studies, which assign some of the importance of changes in the between-firm

component to industrial change, are to an extent misrepresenting a more significant role of

occupations.

4.2 Some robustness checks

We consider how robust these results are to variations in the time period studied. Still

focusing on full-time weekly wages, Figure 9 considers the changes for selected ventiles of the

non-residual employee weekly wage distribution relative to 1996. The average wages paid by

firms can account for some of the relatively greater increase in the top five percent of employee

wages in the early 2000s. But dispersion within firms explains most of the overall inequality

patterns over the last two decades.

FIGURE 9: Average log weekly wage of employees in selected ventiles, relative to 1996, and
contributions from firms

(a) Overall - “Employees” (b) Between - “Firms”

(c) Within - “Employee/firm”

Notes.- see Figure 7.
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Figure C13 looks at changes over five years across all percentiles for three sub-periods.

Notably for robustness, these are periods where the classification of occupations used in the

NESPD is constant, and thus cross-walking across classifications was not necessary. As also

seen above, the majority of recent increases in employee wage inequality occurred in the five

years to 2001. There is no contribution to this from the firms component for residual log

wages. This is also the case for non-residual wage inequality, apart from some contribution

to greater changes above the ninety-fifth percentile. For 2002-07 and 2005-10, the rise in

wage inequality is small, and this is driven by greater wage changes for only the highest

earners. Figure 10 replicates Figure 9 but instead for residual wages. There is no substantial

contribution from between-firm inequality to the dynamics of the residual wage distribution

since 1996. Figure C12 further demonstrates the robustness of this result across all percentiles,

considering changes over other ten year periods, each beginning in a year between 1996-2000.

FIGURE 10: Average residual log weekly wage of employees in selected ventiles, relative to
1996, and contributions from firms

(a) Overall - “Employees” (b) Between - “Firms”

(c) Within - “Employee/firm”

Notes.- see Figure 8.

So far we have only discussed the dynamics of weekly wages for full-time employees

working for firms with at least ten job observations in the NESPD in any given year. We
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can also check whether results change for the period 1997-2007 when we alter these aspects

of the sample. Figures C14-C16 decompose the log change in the weekly wages of full-time

employees who are employed by large enterprises with at least one, five or twenty employee

job observations. For actual wages, as we increase the sample size and include some smaller

firms, it becomes clearer graphically that the firms component cannot explain inequality

dynamics. Considering residual wages, with controls for occupations, the results are also

qualitatively unchanged as we vary the average firm size in our sample. In Figure C17 we

return to our baseline sample, but now study only private sector employees. Again, the results

are unaffected. Further, Figure C18 shows that there is no qualitative difference in results if

we decompose hourly wage dynamics as opposed to weekly. For annual wages, Figure C19

demonstrates that for non-residual wage inequality all of the dynamics across percentiles are

explained by the changing picture within firms. This is also the case when we turn to the

inequality in annual wage residuals. Finally, we also consider the picture for weekly wages

including part-time employees, and after conditioning on employee characteristics, there is no

suggestion in Figure C20 that firm average wages have driven inequality dynamics in this case

either.

4.3 Reconciling our results with the existing literature

Despite finding evidence for this short period in Great Britain that is contrary to much of

the recent literature, we nonetheless believe we can reconcile our results with some of these

previous studies of inequality dynamics. First, our analysis is dominated by the very largest

firms in Britain. Already Song et al. (2016) have shown that in the US firm size matters.26

Larger firms come from a starting point of having more diverse workforces and complex pay

structures, and so there is far more scope for changes over time in the dispersion of wages

within as they evolve. Second, we believe our results chime strongly with a hypothesis from

Song et al. (2016): the reason within-firm inequality cannot account for overall dynamics in

most studies could be due to the increasing occupational concentration, or specialisation, of

firms, coinciding with falling costs of outsourcing work tasks, and a greater tendency to focus

on so-called “core-competencies.” The very large and long-lived firms which dominate our

26Similarly, Mueller et al. (2016) have found that inequality pay between job titles within British firms is
increasing with their size.
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sample are where wemight expect such changes in the degree of specialisation to mostly occur.

Further, adding to this the continued trend of increasingly polarised demand for occupations

in the British labour market, it is then no longer surprising that once we focus on the inequality

dynamics of residual wages, which control for changing occupational wage premiums and the

composition of the workforce, the role of innate between-firm differences becomes markedly

weaker, or even non-existent.

To illustrate the above points further, we focus on the “Firms” component of the change

between 1997 and 2007 in weekly wage residuals for full-time employees, represented by

Figure 8b: i.e. with controls for industry sectors but not occupations in the log wage regression.

Averaging across employee wage percentiles, we carry out a shift-share decomposition of

this component. This accounts for the role of the changing occupational structure of the

firms represented in each decile (see Appendix B.2 for details). Figure 11 shows part of this

decomposition. The “Wages” component, which is computed by holding the occupational

structure of firms representing the employees in each decile constant, and allowing only

wages to change, does not correlate across percentiles with the overall “Firms” component;

the between-firm inequality increase through the top deciles is mostly accounted for by the

changing occupational structure of the firms who pay the highest wages, holding occupational

wage premiums constant.

FIGURE 11: Decomposing the firm component of employee wage inequality patterns,
1997-2007: the role of changing firm occupation shares vs wages

Notes.- this figure takes the average over deciles of the firm component of wage changes, as in Figure 8b (circle
markers), and carries out a shift-share decomposition. The two components thereof reported here are as follows:
first holding the average across employees of firm occupation shares constant, and considering only average
occupational wage changes (cross markers), and second holding the average across employees of firm average
occupational wages, in a decile, constant but varying only firm occupation shares (diamond markers).
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5 Conclusion

We have used well-known methods to answer whether recent changes in British wage

inequality, viewed through a sample of employees at mostly very large firms, can be accounted

for by between-firm inequality. We have found substantial evidence that in the last two

decades this has not been the case. This is also clear when we consider wage residuals,

controlling for changes to occupational premiums and the composition of employment. At

first look this would appear to contradict what is becoming a stylised fact, across several

countries, that between-firm wage inequality is the most important driver of overall trends.

But this is not the first paper to suggest that some part could be accounted for by the changing

supply and demand of occupations across firms and labourmarkets (see Card et al., 2013; Song

et al., 2016). The results here strongly suggest that future analyses of this kind should attempt

to seek out data which can address the possible role of the changing occupational structure of

firms. Otherwise it could be challenging to identify whether inequality changes are accounted

for by some unexplainable greater segregation of workers across firms, or whether this to

some extent reflects only the combined effects of changes to the occupational polarisation of

employment and firm level specialisation. In other words, the role of assortative matching

over innate firm and worker productivities could be overstated.

A significant limitation of the analysis here is that we are restricted to studying repeated

cross-sectional data of jobs and wages, since employers cannot be identified reliably across

time for any extended period in the NESPD. Furthermore the results here only reflect what

has happened for the wages in mostly very large firms. We believe this is the limit of what

can be achieved using currently available British data sources. We hope that existing UK

administrative earnings data, for all employees and their employers, will become available

for research in the near future. Only then can the continuing large evidence gap regarding

the determinants of British wage inequality be more completely addressed, with the NESPD’s

more detailed records of job characteristics, such as hours and occupations, serving as a useful

supplementary data source.
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Appendix A. Further description of the data and sample construction

In what follows we give some brief additional details regarding the datasets used, and how
we have constructed the sub-samples thereof. All the relevant documentation and variable
descriptions attached to these datasets are publicly available from the UK Data Service. The
ONS has also published various documents concerning the data quality and consistency of
the NESPD and ASHE. We will publish our replication files for the analysis and sample
construction.

We focus on methodological details through the period 1996-2015. From 1975 to 2003,
under its guise as the New Earnings Survey, very little changed in the methodology and
construction of the longitudinal panel dataset. Throughout this period, it should be a
true random sample of all employees in employment, irrespective of employment status,
occupation, size of employer etc. Given the legal obligation of employers to respond, and their
use of payrolls, it has a very high response rate and is believed to be accurate. There is also
no cumulative attrition from the panel, as any individual not included in the NESPD in any
year, for whatever reason, remains in the sampling frame the following year. Conditional on
a hundred percent response, the NESPD is a true one percent random sample of employees.
However, there are two major sources of under-sampling, both occurring if individuals do
not have a current tax record. This could occur for some individuals who have very recently
moved job, or for those who earn very little (mostly part-time), and so do not have to pay
tax or National Insurance. From 2004, the ASHE replaced the NESPD. This aimed to sample
some of those employees under-represented in the NESPD. It added supplementary responses
for those without a PAYE reference, and also attempted to represent employees whose jobs
changed between the determination of the sampling frame in January and the reference period
in April. Since the ONS states that the bias these amendments were introduced to address were
actually small, we do not believe they could affect our results substantially. The ASHE also
introduced some imputations, using similar matched ‘donor’ observations where responses
were, for example, missing an entry of basic hours but had recorded pay. These imputations
were added for weighting purposes, but throughout our analysis we ignore the weights in
the ASHE. From 2005, a new questionnaire was also created which was intended to reduce
the latitude for respondents’ own interpretations of what was being asked of them. From 2007
there were further notable changes. Beforehand, occupations were classified as follows: either,
if the respondent stated an employee’s job had not changed in the past year, the previous year’s
occupational classification was applied. Otherwise, it was manually coded. Afterwards an
automatic coding, text recognition, tool was used. “The effect of using ACTR was to code more
jobs into higher paying occupations. The jobs that tended to be recoded into these higher
paying occupations generally had lower levels of pay than the jobs already coded to those
occupations. Conversely, they tended to have higher levels of pay than the other jobs in the
occupations that they were recoded out of. The impact of this was to lower the average pay
of both the occupation group that they had moved from and that they had moved to.” As
such, this would certainly increase within occupation wage inequality for the highest earners,
and reduce it for the lowest earners. Nonetheless, we do not believe this is significant in
affecting our results. In the main text, we focus the graphical analysis on changes across
the period 1997-2007, but also find our results are unchanged for the periods 1996-2006
and 1996-2001. From 2007, the sample size of the ASHE was reduced by twenty percent,
with reductions targeted on those industries that exhibit the least variation in their earnings
patterns. However, we do not believe this could have affected our results substantially.
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To construct the sub-samples from the panel dataset for 1975-2015, for the analysis of
hourly or weekly pay, we first drop a few cases of duplicates over all variables. Then, using the
panel identifier, year, the information from the IDBR concerning enterprise status and number
of employees, industry classification and gross weekly pay including overtime, we also drop
some cases which are then determined to be the same job. We do not drop observations where
an individual has multiple jobs. We keep only observations for individuals aged 16-64, and
which have not been marked as having loss of pay in the reference period through absence,
employment starting in the period, or short-time working, and which are marked as being
on an adult rate of pay (i.e. dropping trainees and apprenticeships). This is practically the
same filter applied for ONS published results using the NESPD or ASHE. We also drop all
observations with zero or missing values for basic hours, and hourly or weekly pay excluding
overtime. Basic hours are intended to be a record for the employee in a normal week, excluding
overtime andmeal breaks. Gross weekly pay is themain recorded value in the survey, and from
this overtime records are then simply subtracted. Hourly rates are then derived from dividing
by basic hours worked. We drop observations with over a hundred basic hours worked, as these
could reflect measurement error and inclusion of overtime. Full-time is defined as working
over thirty basic hours in a week. But there are a tiny number of discrepancies in some years,
we believe relating to teaching contracts, where the definition applied by the ONS differs.
We however recode these such that for all observations the thirty hours threshold applies.
To further address some potential for measurement error especially in the recorded basic
hours, we drop observations whose hourly rate of pay excluding overtime is less than eighty
percent of the National Minimum Wage (NMW) which applies each April, with allowance
for the different age-dependent rates of the NMW over time. We set the threshold lower to
avoid dropping observations where employers have rounded figures about the NMW, where
the degree of rounding could vary with the actual value of the NMW, a behaviour which has
been hypothesised by the ONS. To then construct the large firm sample, we drop all employers
whose exact enterprise reference number of employees from the IDBR, which is only available
from 1996 onwards, is less than 250. We also drop observations where the IDBR status,
number of employees or industry classification is missing. We then identify each employer
in the dataset using the combination of their five digit industry code, IDBR status and exact
number of IDBR enterprise employees, within each year. For large firms we are confident
this can uniquely identify the reporting organisation of the NESPD. The large firm samples
we subsequently analyse then condition on there being a minimum number of remaining job
observations per firm in a year. For annual pay, we construct the large firm samples in the
same way, except we additionally filter out observations where the employee is reported to not
have been with the employer for twelve months, and drop observations with zero or missing
values of annual gross pay in place of hours or weekly pay. When handling the ASHE annual
cross-section datasets we use the exact same approach, except here there is a unique enterprise
level identifier which we can use to identify the firms within each year.

For 1996-2001 occupations are classified using the three digit ONS 1990 Standard
Occupational Classification (SOC). For 2002-2010, this is replaced with the four digit SOC
2000, and for 2011-2015, with the SOC 2010. We experimented using the ONS’ publicly
available cross-walk from 2010 and 2000 to 1990 classification, but discovered that this causes
a large structural break in the distribution of occupations. In particular, it causes a substantial
additional degree of polarisation of work from 2002 onwards, which would potentially
generate erroneous and large increases in within occupation inequality around this date. To
address this we rely on a conversion of SOC 1990 and 2000 to the 1988 International Standard
Classification of Occupations (ISCO). We obtain these conversions from the Cambridge Social
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Interaction and Stratification Scale (CAMSIS) project. For the industry classification, we
convert ONS Standard Industrial Classification (SIC) 2007 to 2003, using files made available
by the UK Data Service. This conversion uses the 2008 Annual Respondents Dataset where
both classifications were applied, and where any 2007 code mapping to multiple 2003 codes is
decided using whichever of the two bore a greater share of economic output. For 1996-2002,
the work region of the employee is missing, and so we derive this ourselves consistent with the
ONS geo-maps, using the more detailed work area variable.

TABLE A1: Comparison of baseline sample firm size distribution, and represented employees,
with UK population of enterprises, 2013

Number of obs. Total employees in enterprises (000s)†

Enterprise size† Sample firms‡ UK enterprises Sample firms UK enterprises

250 - 999 92 6,400 69 2,927
1,000 - 1,999 308 1,050 469 1,455
2,000 - 4,999 644 830 2,098 2,612
5,000+ 596 635 8,204 8,805

Total 1,640 8,915 10,804 15,799

† Values for sample firms use the IDBR record of the number of employees in the enterprise which includes the
firm. This is not the number of observations of employee jobs in the sample.
‡ All firms in the baseline sample with a minimum of ten full-time employee observations in the NESPD in 2013,
and subject to the other sampling criteria described in the text.
Notes.- author calculations using NESPD. UK enterprises population figures from UK Business: Activity, Size and
Location (IDBR, March 2015).

TABLEA2: Baseline sample number of firm and employee observations by employer size, 1997
& 2007

Firms Employees IDBR ent. employees (000s)†

Change Change Change

Enterprise size† 1997 2007 in share 1997 2007 in share 1997 2007 in share

250 - 999 125 43 -0.05 1,729 497 -0.03 89 32 0.00
1,000 - 1,999 352 214 -0.08 5,322 2,814 -0.06 539 328 -0.02
2,000 - 4,999 512 548 0.05 10,068 9,789 -0.03 1,612 1,817 0.03
5,000+ 485 569 0.09 26,915 36,242 0.12 9,431 8,350 -0.01

Total 1,474 1,374 44,034 49,342 11,671 10,525

† Values for the sample firms use the IDBR record of number of employees in the enterprise which includes the
firm.
Notes.- author calculations using NESPD.
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TABLE A3: Baseline sample incidence of ISCO88 major occupation groups

Major group† 1997 2007 Change

1 0.12 0.15 -0.02
2 0.22 0.16 0.06
3 0.09 0.14 -0.05
4 0.24 0.20 0.03
5 0.11 0.14 -0.03
6 & 7 0.08 0.04 0.04
8 0.08 0.05 0.03
9 0.05 0.11 -0.06

† Key: 1. Legislators, senior officials and managers,
2. Professionals, 3. Technicians and associate
professionals, 4. Clerks, 5. Service workers and shop
and market sales workers, 6. Skilled agricultural and
fishery workers, 7. Craft and related trades workers,
8. Plant and machine operators and assemblers, 9.
Elementary occupations.
Notes.- author calculations using NESPD.

Appendix B. Mathematical details

B.1 Variance decomposition - hours and wages

From the main text, we can re-write (1), the total variance of log weekly wages as follows,
where ω and η denote the hourly non-log wage rate and hours worked respectively, and h
denotes log hours,
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B.2 Shift-share analysis of the change in the firm component of employee wages

Let each decile be denoted by d, where Nd is all employees observed in a period in that
decile of the wage distribution. Let k denote an employment type, with K types in total. The
share of all employees, irrespective of decile, in type k in the firm of an employee i is given by
αk,i . The mean log wage of type k in the firm of employee i is given by wk,i . We let this value be
zero where a firm does not employ anybody of type k. We can write the mean of firm average
log wages for employees in a decile as
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Using (8) and denoting historical values by ′, we can write the difference in the mean of firm
average log wages for employees in some decile, between period t and some historical period,
representing the difference operator by ∆, as
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Appendix C. Additional figures

FIGURE C1: Shares of firms and employees in the baseline sample in SIC 2003 sectors, 1997
& 2007

(a) Firms

(b) Employees

Notes.- author calculations using New Earnings Survey. See the text for description of the sample. SIC2003
codes: A. Agriculture, hunting and forestry; B. Fishing, C. Mining and quarrying, D. Manufacturing, E. Utilities, F.
Construction, G. Wholesale and retail, H. Hotels and restaurant, I. Transport and telecommunication, J. Financial
intermediation, K. Real estate, business services, L. Public admin and defence, social security, M. Education, N.
Health and social work, O. Other comunnity and social services.
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FIGURE C2: Mean of real log wages in large firms, full-time employees only, and comparison
the with whole NESPD sample, 1975-2015

(a) Weekly (b) Hourly

(c) Annual

Notes.- see Figure 1. The top one percent of wage observations in any year are excluded from all calculations here.
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FIGURE C3: Mean of real log wages in large firms, all employees, and comparison with the
whole NESPD sample, 1975-2015

(a) Weekly (b) Hourly

(c) Annual

Notes.- see Figure 1, except here is with all employees. The top one percent of wage observations in any year are
excluded from all calculations here.
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FIGURE C4: Percentiles of real log wages in large firms, all employees, and comparison with
the whole NESPD sample, 1975-2015

(a) Weekly (b) Annual

Notes.- see Figure 1, except here is with all employees. Dashed lines without markers are the series for the large
firm sample of the NESPD.

FIGURE C5: Percentiles of real log wages in large firms, all employees: differences relative to
1996/9

(a) Weekly (b) Annual

Notes.- see Figure 2, except here is with all employees.

FIGURE C6: Share of variance in log weekly employee wages from within-firm component,
1996-2015: comparison of firm weights

Notes.- see Figure 3. ‘Sample’ gives results where firms are weighted using their share of sample observations in
that year. ‘IDBR...’ gives results where firms are weighted using their administrative record of enterprise size from
the IDBR.
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FIGURE C7: Share of variance in log weekly employee wages from within-firm component

(a) All firms
(b) Private sector excl. wholesale, retail, hotels,
restaruants etc.

(c) Public sector only

Notes.- see Figure 3. Panel (b) excludes major SIC 2003 sectors G & H. Public sector is represented by public
corporation or nationalised industry, central government and local authority employers.

FIGURE C8: Share of variance in log hourly employee wages from within-firm component

(a) All firms
(b) Private sector excl. wholesale, retail, hotels,
restaruants etc.

(c) Public sector only

Notes.- see Figure C7
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FIGURE C9: Share of variance in log annual employee wages from within-firm component

(a) All firms (b) Public sector only

Notes.- see Figure 3 and see Figure C7.

FIGURE C10: Share of variance in log weekly employee wages from within-firm component:
NESPD large firm sample vs ASHE enterprises

Notes.- author calculations using the New Earnings Survey and Annual Survey of Hours and Earnings, age 16-64
only, all employees. Weekly wages exclude overtime. In the left panel the data is for all large firms in the NESPD
who have at least ten employee observations in a year. The right panel is the equivalent but using IDBR enterprise
identifiers in the ASHE, instead of a broader definition of a ‘firm’. The top one percent of wage values in each year
are excluded from calculations here. Shaded areas represent official UK recessions.
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FIGURE C11: Change 2008-2015 in the average log weekly wage by percentile of employees
and the contribution from firms: NESPD large firm sample vs ASHE large enterprises

Notes.- see Figure 7 and Figure C10.

FIGURE C12: Change in the average residual log weekly wage by percentile of employees and
the contribution from firms: other ten year time periods

(a) 1996-2006 (b) 1997-2007

(c) 1998-2008 (d) 2000-2010

Notes.- see Figure 7 and Figure 8. Residual log wages are estimated using OLS with controls for sex, age, age
squared, major regions and occupation sub-major groups (ISCO88).
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FIGURE C13: Change in the average residual log weekly wage by percentile of employees and
the contribution from firms: other five year time periods

(a) 1996-2001

(b) 2002-2007

(c) 2005-2010

Notes.- see Figure 7 and Figure 8. Residual log wages are estimated using OLS with controls for sex, age, age
squared, major regions and occupation sub-major groups (ISCO88).
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FIGURE C14: Change 1997-2007 in the average residual log weekly wage by percentile of
employees and the contribution from firms: all large firms in the NESPD with 1+ employee
observations

Notes.- see Figure 7 and Figure 8. The data used here is for all large firms who have at least one employee
observation in the NESPD in a year. Residual log wages are estimated using OLS with controls for sex, age, age
squared, major regions and occupation sub-major groups (ISCO88).

FIGURE C15: Change 1997-2007 in the average residual log weekly wage by percentile of
employees and the contribution from firms: all large firms in the NESPD with 5+ employee
observations

Notes.- see Figure C14, except the data used here is for all large firms who have at least five employee observations
in the NESPD in a year.
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FIGURE C16: Change 1997-2007 in the average residual log weekly wage by percentile of
employees and the contribution from firms: all large firms in the NESPD with 20+ employee
observations

Notes.- see Figure C14, except the data used here is for all large firms who have at least twenty employee
observations in the NESPD in a year.

FIGURE C17: Change 1997-2007 in the average residual log weekly wage by percentile of
employees and the contribution from firms: private sector only

Notes.- see Figure 7 and Figure 8, except the data used here is for all large private sector firms in the NESPD who
have at least ten full-time employee observations in a year. Residual log wages are estimated using OLS for all
firms, with controls for sex, age, age squared, major regions and occupation sub-major groups (ISCO88).
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FIGURE C18: Change 1997-2007 in the average log hourly wage by percentile of employees
and the contribution from firms: comparison with residual wages

Notes.- see Figure 7 and Figure 8. Hourly wages exclude overtime. Residual log hourly wages are estimated using
OLS with controls for sex, age, age squared, major regions and occupation sub-major groups (ISCO88).

FIGURE C19: Change 1997-2007 in the average log annual wage by percentile of employees
and the contribution from firms: comparison with residual wages

Notes.- see Figure 7 and Figure 8, except the data used here is for all large firms who have at least ten employee
observations, who have been with the firm at least a year, in the NESPD in a year. Residual log wages are estimated
using OLS with controls for sex, age, age squared, major regions and occupation sub-major groups (ISCO88).
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FIGURE C20: Change 1997-2007 in the average log weekly wage by percentile of employees
and the contribution from firms, full & part-time workers: comparison with residual wages

Notes.- see Figure 7 and Figure 8, except here the data is for all employees, not full-time only. Residual log wages
are estimated using OLS with controls for sex, age, age squared, major regions and occupation sub-major groups
(ISCO88).
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